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Abstract

As most of the heritability of complex traits is attributed to common and low frequency

genetic variants, imputing them by combining genotyping chips and large sequenced refer-

ence panels is the most cost-effective approach to discover the genetic basis of these traits.

Association summary statistics from genome-wide meta-analyses are available for hun-

dreds of traits. Updating these to ever-increasing reference panels is very cumbersome as it

requires reimputation of the genetic data, rerunning the association scan, and meta-analys-

ing the results. A much more efficient method is to directly impute the summary statistics,

termed as summary statistics imputation, which we improved to accommodate variable

sample size across SNVs. Its performance relative to genotype imputation and practical util-

ity has not yet been fully investigated. To this end, we compared the two approaches on real

(genotyped and imputed) data from 120K samples from the UK Biobank and show that,

genotype imputation boasts a 3- to 5-fold lower root-mean-square error, and better distin-

guishes true associations from null ones: We observed the largest differences in power for

variants with low minor allele frequency and low imputation quality. For fixed false positive

rates of 0.001, 0.01, 0.05, using summary statistics imputation yielded a decrease in statisti-

cal power by 9, 43 and 35%, respectively. To test its capacity to discover novel associations,

we applied summary statistics imputation to the GIANT height meta-analysis summary sta-

tistics covering HapMap variants, and identified 34 novel loci, 19 of which replicated using

data in the UK Biobank. Additionally, we successfully replicated 55 out of the 111 variants

published in an exome chip study. Our study demonstrates that summary statistics imputa-

tion is a very efficient and cost-effective way to identify and fine-map trait-associated loci.

Moreover, the ability to impute summary statistics is important for follow-up analyses, such

as Mendelian randomisation or LD-score regression.
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Author summary

Genome-wide association studies (GWASs) quantify the effect of genetic variants and

traits, such as height. Such estimates are called association summary statistics and are typi-

cally publicly shared through publication. Typically, GWASs are carried out by genotyp-

ing * 5000000 SNVs for each individual which are then combined with sequenced

reference panels to infer untyped SNVs in each’ individuals genome. This process of geno-
type imputation is resource intensive and can therefore be a limitation when combining

many GWASs. An alternative approach is to bypass the use of individual data and directly

impute summary statistics. In our work we compare the performance of summary statis-
tics imputation to genotype imputation. We observe that genotype imputation shows a 3- to

5-fold lower RMSE compared to summary statistics imputation, as well as a better capabil-

ity to distinguish true associations from null results. Furthermore, we demonstrate the

potential of summary statistics imputation by presenting 34 novel height-associated loci,

19 of which were confirmed in UK Biobank. Our study demonstrates that given current

reference panels, summary statistics imputation is a very efficient and cost-effective way to

identify common or low-frequency trait-associated loci.

Introduction

Genome-wide association studies (GWASs) have been successfully applied to reveal genetic

markers associated with hundreds of traits and diseases. The genotyping arrays used in these

studies only interrogate a small proportion of the genome and are therefore typically unable to

pinpoint the causal variant. Such arrays have been designed to be cost-effective and include

only a set of tag single nucleotide variants (SNVs) that allow the inference of many other

unmeasured markers. To date, thousands of individuals have been sequenced [1, 2] to provide

high resolution haplotypes for genotype imputation tools such as IMPUTE and minimac [3,

4], which are able to infer sequence variants with ever-increasing accuracy as the reference

haplotype set grows.

Downstream analyses such as Mendelian randomisation [5], approximate conditional

analysis [6], heritability estimation [7], and enrichment analysis using high resolution anno-

tation (such as DHS) [8] often require genome-wide association results at the highest possi-

ble genomic resolution. Summary statistics imputation [9] has been proposed as a solution

that only requires summary statistics and the linkage disequilibrium (LD) information esti-

mated from the latest sequencing panel to directly impute up-to-date meta-analysis sum-

mary statistics [10]. Because summary statistics imputation uses summarised data as input, it

is not bounded to privacy restrictions related to the use of individual data. Another advan-

tage is its substantially lower computation time compared to genotype imputation. For

example, for imputation of the UK Biobank data, it is about 500 times faster (4200 vs 8.3

CPU days comparing Minimac [4] to our SSIMP software [11]).

This study compares summary statistics imputation directly to genotype imputation and

focuses on its practical advantages using real data. In particular, we evaluated two experiments:

1) we ran a GWAS on both simulated traits and human height using data from 1200086 indi-

viduals from the UK Biobank and compared the performances of summary statistics imputa-
tion and genotype imputation, using direct genotyping/sequencing as gold standard; 2) we

imputed association summary statistics from a HapMap-based GWAS study [12] using the

UK10K reference panel to explore new potential height-associated variants which we validated

using results from Marouli et al. [13] and the UK Biobank height GWAS (n = 3360474). We
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extended summary statistics imputation [9, 14] which yields increased imputation accuracy by

accounting for variable sample sizes. For all applications presented in this manuscript we are

using this improved version of summary statistics imputation.

Materials and methods

Summary statistics imputation (SSimp)

By combining summary statistics for a set of variants and the fine-scale LD structure in the

same region, we can estimate summary statistics of new, untyped variants at the same locus.

We assume a set of univariate effect size estimates ai are available for SNVs i = 1, . . ., I from

a linear regression between a continuous phenotype y and the corresponding genotype gi mea-

sured in N individuals. Without loss of generality we assume that both vectors are normalised

to have zero mean and unit variance. Thus ai ¼
ðg iÞ0�y
N and a ¼ ða1; a2; . . . ; aIÞ

0
�N ða;SÞ. S

represents the pairwise covariance matrix of effect sizes of all i = 1, . . ., I SNVs.

To estimate the univariate effect size αu of an untyped SNV u in the same sample, one can

use the conditional expectation of a multivariate normal distribution. The conditional mean of

the effect of SNV u can be expressed using the effect size estimates of the tag SNVs [9, 15]:

âu ¼ aujM ¼ au þ ΣuMΣ� 1

MMða � αÞ ; ð1Þ

where M is a vector of so-called tag SNVs, ΣuM represents the covariance between SNV u and

all M markers and ΣMM represents the covariance between all M markers.

We assume that estimates for the two covariances are available from an external reference

panel with n individuals and denote them s ¼ Σ̂Mu, S ¼ Σ̂MM. The corresponding correlation

matrices are γ and Γ, with c = N � s and C = N � S being the estimates for the correlation matri-

ces. Further, by assuming that SNV u and the trait are independent conditioned on the M
markers, i.e. au � ΣuMΣ� 1

MMα ¼ 0, Eq (1) becomes

âu ¼ aujM ¼ s0S� 1a ¼ c0C� 1a ð2Þ

One can also choose to impute the Z-statistic instead, as derived by Pasaniuc et al. [9]:

ẑ ujM ¼ c0C� 1z ð3Þ

with z ¼ a
ffiffiffiffi
N
p

, when the effect size is small (as is the case in typical GWAS).

Similar to Pasaniuc et al. [9], we chose M to include all measured variants within at least

250 Kb of SNV u. To speed up the computation when imputing SNVs genome-wide, we apply

a windowing strategy, where SNVs within a 1 Mb window are imputed simultaneously using

the same set of M tag SNVs the 1 Mb window plus 250 Kb flanking regions on each side.

Shrinkage of SNV correlation matrix. To estimate C (and c) we use an external reference

panel of n individuals. Since the size of C often exceeds the number of individuals (q� n),

shrinkage of matrix C is needed to guarantee that it is invertible.

Off-diagonal values of C are shrunk towards zero and the extent of which is characterised

by a shrinkage parameter λ. As a consequence, it also lowers the RMSE in summary statistics
imputation [16], as values in C close to zero, may represent pure noise (and zero LD), which

can be inflated when inverting the matrix.

By applying shrinking, the modified matrix becomes

Cl ¼ ð1 � lÞC þ lI ð4Þ
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Even though c is not inverted, we still shrink it to curb random fluctuations in the LD esti-

mation in case of no LD.

cl ¼ ð1 � lÞc ð5Þ

Inserting cλ and Cλ, Eq (2) then becomes

âu ¼ aujM ¼ c0
l
C� 1

l
a ð6Þ

Note that λ can vary between 0 and 1, with λ = 1 turning C to the identity matrix, while

λ = 0 leaves C unchanged. Schäfer & Strimmer [16] find an optimal λ by minimising the vari-

ance of matrix C. Wen & Stephens [17] propose to adjust matrix C in a way that they represent

recombination hotspots correctly. A similar idea is to set small absolute correlation values to 0.

Here, we mainly focus on two commonly used λ values: λ fixed at 0.1 [9], and λ changing with

the reference panel size n: l ¼ 2=
ffiffiffi
n
p

[18].

Imputation quality. Imputation quality, r2, is defined as the squared correlation between

the imputed and true genotypes. An r2 value of 1 means perfect imputation, whereas r2 of 0

indicates poor imputation [19]. In summary statistics imputation this quantity is the total vari-

ance explained by a linear model where the imputed genotype is regressed onto all measured

markers. It was proposed by Pasanuic et al. [9] to be estimated as

r̂2

pred ¼ c0
l
C� 1

l
cl ð7Þ

Furthermore, we introduce an adjusted form to account for the ratio between the number of

parameters (q) and sample size (n) [20]. Due to the fact that many measured SNVs are corre-

lated, we further modify the formula by adjusting the number of parameters in the formula to

the effective number of variants qeff [21]:

r̂2

pred;adj ¼ 1 � ð1 � r̂2

predÞ
n � 1

n � qeff � 1
ð8Þ

Negative values in Eq (8) are set to zero.

Summary statistics imputation accounting for varying sample size and missingness. All

previously published summary statistics imputation methods assume that all effect estimates

are based on the same set of N individuals. This assumption does not hold most of the time

since meta-analysis studies use different genotyping chips or different imputation reference

panels. As a result, the covariance between effect estimates will change. In the extreme case

when effect estimates are computed in two non-overlapping samples, the correlation will be

zero even if there is very high LD between the two SNVs.

To perform imputation, we require the correlation between any target complete Z-statistic,

zu, and any observed partial Z-statistic, z�k , (with k 2M),

dk ≔ Cor ½zu; z
�

k � ¼ cuk

ffiffiffiffiffiffiffiffiffi
Nk

Nmax

s

We define Nk as the sample size of SNV k, N as a vector recording the sample size of each

tag SNV, Nmax as the maximum in N, and assume that every tag SNV k the sample of individu-

als is a subset of a complete sample of Nmax individuals.
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By defining dkl ≔
Nk\lffiffiffiffiffiffiffi
NkNl
p , we can calculate the adjusted (estimated) correlation matrix D,

where each element is calculated as follows:

Dkl ¼ ckldkl : ð9Þ

We present two estimators of δkl. Typically, we do not know the details of the exact sample

overlap for every pair of SNVs, Nk\l, and instead simply know Nmax and the vector N. There-

fore, we must derive the sample overlap Nk\l based on assumptions about the dependence

structure of missingness.

The most conservative assumption is maximum possible overlap, resulting in maximum

dependence, as this minimises the imputed Z-statistic. If each SNV has a corresponding binary

missingness vector, the correlation between these missingness vectors will be maximised when

the sample overlap is at its maximum, Nk\l = min(Nk, Nl). To enable the dependent approach,

we construct a D matrix by replacing Nk\l with min(Nk, Nl),

DðdepÞkl ¼ Ckld̂
ðdepÞ
kl ¼ Ckl min

ffiffiffiffiffi
Nk
p

ffiffiffiffiffi
Nl
p ;

ffiffiffiffiffi
Nl
p

ffiffiffiffiffi
Nk
p

� �

: ð10Þ

If the missingness vectors are independent of each other, the expected overlap can be esti-

mated as

DðindÞkl ¼ Ckld̂
ðindÞ
kl ¼ Ckl

ffiffiffiffiffiffiffiffiffiffi
NkNl
p

Nmax
: ð11Þ

Finally, we impute zujz�M as

ẑ u ¼ d0D� 1z�M : ð12Þ

by using d from Eq (9) and D from either, Eq (10) or Eq (11).

In order to convert ẑu into the corresponding estimate of the standardised effect, we con-

sider

âu ¼
ẑ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nmaxd
0D� 1d

p : ð13Þ

Note that d0D−1 d is the corresponding imputation quality.

Details to the estimation of δ can be found in S3 Appendix.

Comparison of summary statistics imputation versus genotype imputation
UK Biobank data. The UK Biobank [22] comprises health related information about

5000000 individuals based in the United Kingdom and aged between 40-69 years in 2006-2010.

For our analysis we used Caucasians individuals (amongst people who self-identified as Brit-

ish) from the first release of the genetic data (n = 1200086). For SNVs, the number of individu-

als range between n = 30431 and n = 1200082. Additionally to custom SNP array data, UK

Biobank contains imputed genotypes [23]. A subset of 8200967 variants were genotyped and

imputed, and 72M variants were imputed by UK Biobank, using SHAPEIT2 and IMPUTE2
[23].

Imputation of height GWAS summary statistics conducted in UK Biobank. We

imputed GWAS Z-statistics (ran on directly genotyped data) using summary statistics imputa-
tion within 1 Mb-wide regions, by blinding one at the time and therefore allowing the remain-

ing SNVs to be used for tagging. As tag SNVs we used all SNVs except the focal SNV within a

1.5 Mb window.
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Selection of regions and SNVs. We selected 706 regions in total, consisting of 535 loci

containing height-associated SNVs [12, 13] and 171 regions not containing any height-associ-

ated (all P� 10−5) SNV. More specifically, within each height-associated region we only

imputed SNVs that have LDmax> 0.2. LDmax was defined as the largest squared correlation

between a SNV and all height-associated SNVs on the same chromosome. In the 171 null

regions we chose only those variants with LDmax� 0.05 with any associated marker on the

same chromosome. These selection criteria lead to 440992 variants being imputed. We did not

analyse palindromic SNVs (A/T and C/G) (30306 variants), SNVs with missing genotypes for

more than 360024 (30%) individuals (20317 variants), SNVs with MAF < 1% (30010 variants).

These restrictions left us with 370467 of the 440992 imputed SNVs.

Comparison of summary statistics imputation and genotype imputation. To compare

the performance between summary statistics imputation and genotype imputation followed by

association we compared each method to the directly genotyped data association as gold stan-

dard. Fig 1 gives an overview of how these three types of summary statistics are related and

compared. We used RMSE, bias, correlation, and the regression slope (no intercept) to evalu-

ate these approaches against the truth.

Fig 1. Overview of genotype vs. summary statistics imputation. From genotype data (top-left, G) we can calculate summary statistics (top-right, SS). Summary

statistics for an unmeasured/masked SNV can be obtained via two ways: we can impute genotype data (bottom-left, G-GTimp) using genotype imputation and then

calculate summary statistics via linear regression (bottom-middle, SS-GTimp), or by applying summary statistics imputation on the summary statistics calculated

from genotype data (bottom-right, SS-SSimp). For the purpose of our analysis, we are only looking at genotyped (and genotype imputed) SNVs, thus masking one

focal SNV at the time and imputing it using summary statistics from neighbouring SNVs. We can then compare the three summary statistics calculated for a particular

focal SNV in Figs 4, 5 and S11–S14.

https://doi.org/10.1371/journal.pgen.1007371.g001
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More precisely, the RMSE and the Bias for a set of k = 1 . . . K SNVs is:

dk ¼ Z
SSimp
k � Zk

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK

k¼1

d2

k

s

Bias ¼
1

K

XK

k¼1

dk

with ZSSimpk being the Z-statistic resulting from summary statistics imputation for SNV k and

Zk the Z-statistic resulting from genotype data for SNV k (our gold standard). Likewise, we

replaced ZSSimpk with ZGTimpk , to calculate RMSE and bias for genotype imputation.

Note that for height-associated SNPs with missing genetic data we rescaled the association

Z-statistic Zu as follows Z�u ¼ Zu �
ffiffiffiffiffiffiffi
Nmax
Nu

q
in order to make it comparable with its imputed ver-

sion (ZGTimp, ZSSimp), derived from the full sample.

Additionally, we calculated power and false positive rate (FPR) for each method. For this,

we randomly selected 30390 SNVs and used each once as null and once as associated SNV.

For the null scenario, we simulated a random, standard normal phenotype. For the alterna-

tive scenario, we simulated a phenotype such that the SNV explained 0.01% of the simulated

phenotype variance (corresponding to typical a GWAS effect size). For both scenarios we cal-

culated the summary statistics via genotype imputation and summary statistics imputation.

For summary statistics imputation, we first ran a GWAS within ± 0.75 Mb of the focal SNV,

and subsequently used the estimated summary statistics to perform summary statistics impu-
tation. For SNVs with a real association we calculated the power as the fraction qA of SNVs

with a P< α (qA = fA/mA, with mA being the number of associated SNVs and fA among them

those with P< α), whereas for SNVs with no association we calculated FPR as the fraction

qN of SNVs with P< α (qN = fN/mN, with mN being the number of null SNVs and fN among

them those with P< α). We varied α between 0 and 1 and visualised FPR versus power for

each method. The standard deviation was calculated based on the assumption of a binomial

distribution for fA and fN: fi * B(mi, qi). The respective variance estimation for qi is then:

Var(qi) = qi(1 − qi)/mi.
Stratifying results. The obtained (summary statistics) imputation results were grouped

based on the imputed SNVs (i) being correlated (LD> 0.3) to any height-associated SNV on

the same chromosome or being a null SNV (LD< 0.05); (ii) low-frequency (1%< MAF� 5%)

or common SNV (MAF> 5%); (iii) being badly-(r̂2
pred;adj � 0:3), medium- (0:3 < r̂2

pred;adj � 0:7)

or well-imputed (0:7 < r̂2
pred;adj � 1). Height-associated SNVs are exclusively from 535 regions

and termed associated SNVs, while SNVs not associated with height stem from 171 regions and

are termed null SNVs. Throughout the manuscript, LD is estimated as the squared correlation

[24].

Summary statistics imputation of the height GWAS of the GIANT

consortium

GIANT consortium summary statistics. In 2014 the GIANT consortium published

meta-analysed height summary statistics involving 79 cohorts, 2530288 individuals of Euro-

pean ancestry, and 205500858 autosomal HapMap SNVs [12], leading to the discovery of 423

height-associated loci (697 variants). Later, Marouli et al. [13] published summary statistics of

the exome array meta-analysis (2410419 SNVs in up to 3810625 individuals), finding 122 novel
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variants (located in 120 loci) associated with height. Of the 122 exome variants, four were not

available in UK10K and seven were on chromosome X, and could therefore not be imputed

(because Wood et al. [12] did not include chromosome X), leaving 111 variants. We refer to

the summary statistics by Wood et al. [12] as HapMap study, and to Marouli et al. [13] as

exome chip study.

Summary statistics imputation of Wood et al.. We imputed all non-HapMap variants

that were available in UK10K, using the summary statistics in Wood et al. [12] as tag SNVs. In

general, we only imputed variants with MAFUK10K� 0.1% (this allows a minimal allele count

of 8’ 0.001 � 3781 � 2), except for the 111 exome variants reported in Marouli et al. [13],

which we imputed regardless of their MAF. We divided the genome into 20789 core windows

of 1 Mb. We imputed the summary statistics of each variant using the tag SNVs within its

respective window and 250 Kb on each side. Fig 2 gives an overview of the datasets and meth-

ods involved.

Definition of a candidate locus. After applying summary statistics imputation we

screened for SNVs with r̂2
pred;adj � 0:3 and an (imputed) P-value� 10−8 and applied conditional

analysis, aiming to limit the results to SNVs acting independently from known HapMap find-

ings. The significance threshold of 10−8 was chosen based on the effective number of SNVs

evaluated (< 902760018). For each imputed 1 Mb window, we started the conditional analysis

by defining two sets of SNVs. The first set contained all imputed SNVs that had an imputed P-

value� 10−8, ranging from position bp(1) to bp(2). The second SNV set contained all reported

HapMap SNVs (697 in total) within a range of bp(1) − 1 Mb and bp(2) + 1 Mb. Having two

SNV sets—the first set with newly detected variants, the second set with reported HapMap

Fig 2. Overview of imputation and replication scheme. This illustration gives an overview how we used> 2M GIANT

HapMap summary statistics (black rectangle) as tag SNVs to impute> 10M variants with MAF� 0.1% in UK10K. After

adjusting the summary statistics for conditional analysis we applied a selection process that resulted in 35 candidate loci. To

confirm these 35 loci we used summary statistics from UK Biobank (blue) as replication as well as summary statistics from

the exome chip study, if available [13] (red). Loci that had not been discovered by the exome chip study, were termed novel.

https://doi.org/10.1371/journal.pgen.1007371.g002

Applications of summary statistic imputation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007371 May 21, 2018 8 / 32

https://doi.org/10.1371/journal.pgen.1007371.g002
https://doi.org/10.1371/journal.pgen.1007371


variants—we could then condition each SNV in the first set on all SNVs in the second set,

using approximate conditional analysis [25] and UK10K as the reference panel. Next, we

declared a region as a candidate locus if at least one imputed variant in that locus had a condi-

tional P-value� 10−8. Additionally, for each (35) lead variant in the candidate regions we per-

formed conditional analysis using each HapMap SNV (in turn) within 1 Mb vicinity. Finally,

we performed a conditional analysis for nearby candidate loci (neighbouring windows), to

avoid double counting. In each candidate locus we report the imputed variant with the smallest

conditional P-value as the top variant.

Replication of candidate loci emerging from summary statistics imputation. We repli-

cate our findings using our UK Biobank height GWAS results and for SNVs present on the

exome chip we also use the recent height GWAS [13]. For both attempts to replicate our find-

ings, UK Biobank and the exome chip study, the significance threshold for replication is α =

0.05/k, with k as the number of candidate loci.

For replication using UK Biobank we used summary statistics based on the latest release of

genetic data with n = 3360474 individuals, provided by the Neale lab [26]. For SNVs that were

not present in the latest release we used summary statistics from the first release of genetic data

(n = 1200086)).

Annotation of candidate loci. We use two databases to annotate newly discovered SNVs.

First, we use GTEx [27], an eQTL database with SNV-gene expression association summary

statistics for 53 tissues. Second, we conduct a search in Phenoscanner [28], to identify previous

studies (GWAS and metabolites) where the newly discovered SNVs had already appeared.

For these two databases we report the respective summary statistics that pass the significance

threshold of α = 10−6. We only extract the information for variants that were defined as as

novel discoveries.

Simulation

We simulated genetic data on 25’000 individuals was used. In brief, we used data from the five

European subpopulations CEU, GBR, FIN, TSI and IBR of the 1000 Genomes reference

panel [1]. We chose to up-sample chromosome 15 using HAPGEN2 [29] to 50000 individuals

for each subpopulation, yielding a total of 250000 individuals. Of these, half of the data was

used to estimate the LD structure C and the other half to simulate the association study with

an in silico phenotype. The simulation procedure is described in more detail in S1 Appendix.

Forty regions were selected with one non-HapMap causal variant in each and all HapMap

SNVs were used as tag SNVs. Sample size distributions were drawn from two published

GWAS studies (on HDL [30] and T2D [31]). Missingness was assigned at random positions

while respecting the missingness correlation parameter θmiss, with zero value reflecting miss-

ingness at random and one corresponding to the maximum possible sample overlap between

SNVs.

Reference panels

To estimate LD structure in C and c (Eq (2)) we used 30781 individuals from UK10K data [32,

33], a reference panel of British ancestry that combines the TWINSUK and ALSPAC cohorts.

Software

All analysis was performed with R-3.2.5 [34] programming language, except GWAS sum-

mary statistics computation for UK Biobank genotype and genotype imputed data, for which

SNPTEST-5.2 [35] was used. For summary statistics imputation we used SSIMP [11].

Applications of summary statistic imputation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007371 May 21, 2018 9 / 32

https://doi.org/10.1371/journal.pgen.1007371


Results

To assess the performance of summary statistics imputation in realistic scenarios we used two

different datasets. In Section “Comparison of summary statistics imputation versus genotype
imputation” we compare the performance of summary statistics imputation to genotype imputa-
tion, using measured and imputed genotype data from 1200086 individuals in the UK Biobank.

In Section “Summary statistics imputation of the height GWAS of the GIANT consortium”, we

use published association summary statistics from 2530288 individuals to show that summary
statistics imputation can be used to identify novel associations. For all analyses we used an

improved estimation of the standardised effect sizes that is robust to variable sample missing-

ness. We validate this method in the next Section “Varying sample size and missingness”. Both

analyses are centered around the genetics of human height. In the following we will often refer

to two GIANT (Genetic Investigation of ANthropometric Traits) publications: Wood et al.
[12], an analysis of HapMap variants that revealed 423 loci, and Marouli et al. [13], an exome

chip based analysis that revealed 120 new height-associated loci. Together, these two studies—

the HapMap and the exome chip study—constitute the most complete collection of genetic

associations with height.

Varying sample size and missingness

The conventional estimate of the standardised effect of a SNV u, âðconvÞu , (Eq (2)) is unbiased,

under certain assumptions, but can have large variance when there is variation in the sample

sizes recorded in NM. In this section, we used upsampled 1000 Genomes data [1] and simu-

lated phenotype with known standardised effect α and various missingness design. We com-

pare the MSE of the conventional estimation to the MSE of two other estimators, Eq (13) using

D(dep) and D(ind), derived in the method section.

In general, the size of the overlap is unknown and we recommend using the assumption of

maximum dependence (D(dep)) as it is the most conservative assumption. An alternative is to

assume randomly distributed missingness (D(ind)). Most pairs of SNVs in GIANT attain close

to the maximum possible missingness-overlap (S10 Fig) and therefore this assumption is not

overly-conservative.

The results in Fig 3 demonstrate that the conventional method has the largest MSE across

all the simulation parameters tested. Where the variance in sample size is very large (top row

of Fig 3), the true correlation is often very close to zero. Both of our methods effectively make

this same (correct) assumption of low correlation and therefore they both perform equally

well.

Where the variation in sample size is less extreme, as in the simulations on the bottom

row of Fig 3, there is less shrinkage of correlation and the simulated missingness correlation

becomes more relevant. Where the simulated data has the maximum possible missingness cor-

relation (on the right hand side of the subplots in Fig 3), i.e. the sample overlap between each

pair of SNVs is as large as possible given their two sample sizes, D(dep) performs better (as

expected). With lower overlap (first column) D(ind) performs better.

Comparison of summary statistics imputation versus genotype imputation
By having two types of genetic data at hand, genotype and imputed genotype data, we were

able to compare summary statistics of 370467 typed SNVs resulting from (1) associations calcu-

lated from original genotype data (ground truth); (2) associations calculated from imputed

genotype data (genotype imputation) and (3) associations imputed from summary statistics cal-

culated using genotype data (Fig 1). For our analysis, we defined 706 genomic regions in total,
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among which 535 contain SNVs associated with height [12, 13], while the remaining 171

regions were selected to be free of any known height associated SNVs.

We examined imputation results for different SNV categories. These were grouped based

on (i) their association status (being correlated with the causal SNV vs. null SNVs) with the

lead SNV of each of the 535 height-associated regions (60080 variants were correlated, 310567

were not); (ii) frequency (MAF: 1%< low-frequency� 5%< common; 130857 and 230790

variants, respectively); and (iii) imputation quality based on summary statistics imputation
(r̂2

pred;adj: low� 0.3< medium� 0.7 < high; 724, 90792, and 270131 variants, respectively). S1

and S2 Figs show the distribution of SNV counts in each of these twelve subgroups. We term

the 60080 SNVs correlated with a height-associated lead SNV as associated SNVs. Conversely,

we refer to the 310567 SNVs that are not correlated with any height-associated lead SNV as null
SNVs. For both, null and associated SNV groups, the largest group of analysed variants were

common and well-imputed (S1 Fig). The fraction of SNVs with low quality imputation

increases with lower minor allele frequency (S2 Fig). However, the number of rare variants

(MAF < 1%) were too small (20411 variants, among these only 13 associated variants), similar

Fig 3. Accounting for variable sample size. Effect of missingness on accuracy of imputation of standardised effects, evaluated via simulations where true effect is

known. The y-axis is the MSE (on log-scale) between the true standardised effect and the conventional estimate which ignores missingness (Eq (1), grey), our estimate

D(dep) (Eq (10), green), and our estimate D(ind) (Eq (11), blue). The x-axis is the ‘missingness-correlation’ (θmiss), where a value of 1 means the number of individuals in

the samples had maximum overlap with each other, and 0 means they were simulated independently leading to smaller overlap. Each boxplot shows the MSEs across

the 40 regions simulated. Top row is where the N’s (simulated sample sizes) are selected randomly from a study of T2D [31], with sample sizes varying between 13 and

1100219 individuals. Bottom row is based on HDL [30], with sample sizes ranging between 500000 and 1870167 individuals. All sample sizes are scaled to 0-to-12500 as

this is the size of the simulated GWAS.

https://doi.org/10.1371/journal.pgen.1007371.g003
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to the number of badly-imputed SNVs (724 variants, among these only one associated variant)

to draw meaningful conclusions and hence we limited our analysis to common and low-fre-

quency, and medium- and well-imputed variants.

We focused on two aspects of the imputation results. First, we compared how summary sta-
tistics imputation and genotype imputation perform relative to the ground truth (direct geno-

typing). For this we used four measures: the root mean squared error (RMSE), bias, the linear

regression slope, and the correlation. Second, we calculated power and false positive rate for

genotype imputation and summary statistics imputation directly.

Genotype imputation outperforms summary statistics imputation for low allele fre-

quency. Fig 4 shows in green the comparison between summary statistics resulting from

measured genotype data (ground truth) and imputed summary statistics for 60080 height-asso-

ciated variants. As expected, the performance drops as the imputation quality and as the MAF

decrease. For well-imputed common SNVs (the largest subgroup with 50714 variants), sum-
mary statistics imputation performs on average well with a correlation and a slope close to 1

(cor = 0.998 and slope = 0.98), but it drops to cor = 0.928 and a slope = 0.83) for low imputa-

tion quality, low-frequency variants. On the other hand, for genotype imputation (Fig 4, blue

dots) all subgroups of SNVs show near perfect slope and correlation. Note that imputation

quality for summary statistics imputation and genotype imputation differ in definition and we

find that the latter was consistently higher (S3 and S4 Figs) and showed little variation across

SNVs. To be able to compare the performance between genotype imputation and summary sta-
tistics imputation for the same subgroups of SNVs we used the imputation quality defined by

summary statistics imputation to classify SNVs.

For the 310567 null SNVs we present the same metrics as for associated SNVs. We analysed

130556 low-frequency and 180011 common variants. First, the green dots in Fig 5 show sum-

mary statistics from genotype data and summary statistics imputation. We find that both the

correlation and slope gradually decrease with dropping imputation quality and MAF. For

example, the correlation is 0.91–0.94 for well-imputed, 0.73–0.76 for medium and 0.42–0.66

for badly-imputed SNVs. The blue dots in Fig 5 show the respective results for genotype impu-
tation, which exhibits an almost perfect (> 0.98) slope and correlation.

Effect estimate accuracy and precision. We then compared summary statistics imputa-
tion and genotype imputation in terms of RMSE among associated variants (for the same six

SNV categories), shown in the upper part of Table 1. For all six subgroups, genotype imputation
had a smaller RMSE than summary statistics imputation. The difference between the two meth-

ods in terms of RMSE increases as imputation quality decreases. For the largest SNV subgroup

—well-imputed and common SNVs—summary statistics imputation had a RMSE of 0.33 ver-

sus 0.093 for genotype imputation. In case of summary statistics imputation, the RMSE is more

influenced by a decrease in imputation quality than by a reduction of MAF. For example, the

RMSE for common variants with medium-quality imputation is 1.02 (a 3.1-fold increase),

while the RMSE for low-frequency variants with high-quality imputation is 0.48 (a 1.4-fold

increase). However, for genotype imputation a decrease in MAF or imputation quality seems to

have a similar effect. For example, the RMSE for well-imputed, low-frequency variants is 0.14

for genotype imputation (a 1.5-increase), and the RMSE for medium-imputed, common vari-

ants is 0.19 for genotype imputation (a 2.1-increase) (Fig 6). For null SNVs we observe for sum-
mary statistics imputation a RMSE of 0.38 for well-imputed and common SNVs up to 0.95 for

badly-imputed and low-frequency SNVs (lower part in Table 1). For genotype imputation the

RMSE ranges are much lower, between 0.09 for badly-imputed and common SNVs and 0.19

for badly-imputed and low-frequency SNVs. The bias is very close to zero for both approaches

and for null and associated SNVs, and does not significantly vary with MAF or imputation

quality.
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Fig 4. Summary statistics imputation versus genotype imputation for associated variants. The x-axis shows the Z-statistics of the genotype data

(ground truth), while the y-axis shows the Z-statistics from summary statistics imputation (green) or genotype imputation (blue). Results are grouped

according to MAF (columns) and imputation quality (rows) categories and the numbers top-right in each window refers to the number of SNVs

represented. The identity line is indicated with a dotted line. The estimation for correlation and slope are noted in the bottom-right corner for

summary statistics imputation and in the top-left corner for genotype imputation. Blue dots are plotted over the green ones. S11 and S13 Figs provide

scatterplots with the imputation quality of summary statistics imputation and genotype imputation as colors.

https://doi.org/10.1371/journal.pgen.1007371.g004
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Fig 5. Summary statistics imputation versus genotype imputation for null variants. The x-axis shows the Z-statistics of the genotype data (ground

truth), while the y-axis shows the Z-statistics from summary statistics imputation (green) or genotype imputation (blue). Results are grouped according

to MAF (columns) and imputation quality (rows) categories and the numbers top-right in each window refers to the number of SNVs represented.

The identity line is indicated with a dotted line. The estimation for correlation and slope are noted in the bottom-right corner for summary statistics
imputation and in the top-left corner for genotype imputation. Blue dots are plotted over the green ones. S12 and S14 Figs provide scatterplots with the

imputation quality of summary statistics imputation and genotype imputation as colors.

https://doi.org/10.1371/journal.pgen.1007371.g005
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Summary statistics imputation displays lower false positive rate. Analogous to a

ROC curve Fig 7 presents simultaneously power and false positive rate (FPR) with varying

significance threshold (α from 0 to 1) for simulated phenotypes. As before, we stratified the

results by MAF and imputation quality categories. We observe that for common SNVs with

r̂2
pred;adj > 0:7 the results for genotype imputation and summary statistics imputation are almost

identical in terms of FPR and power. For low-frequency and well-imputed variants, genotype
imputation offers some power advantage compared to summary statistics imputation, in partic-

ular for intermediate FPRs. As we approach lower imputation quality and MAF, genotype
imputation advantage becomes more and more apparent for all range of FPR values. Averaged

over all SNV categories, for false positive rates of 0.001, 0.01, 0.05, summary statistics imputa-
tion yielded a decrease in statistical power by 9, 43 and 35%, respectively.

Summary statistics imputation of the height GWAS of the GIANT

consortium

While previous studies have examined the role of (common) HapMap variants for height [12,

36], the impact of rare coding variants could not be investigated until bespoke genotyping

chips (interrogating low-frequency and rare coding variants) were designed to address this

question in a cost-effective manner. Such an exome chip based study was conducted by the

GIANT consortium in 3810000 individuals and revealed 120 height-associated loci, of which 83

loci were rare or low-frequency [13]. These association results enabled us to compare the use-

fulness of imputation-based inference with direct genotyping done in Wood et al. [12], since

the two studies are highly comparable in terms of ancestry composition and statistical analysis,

evidenced by S6 Fig confirming very high concordance between summary statistics for the sub-

set of 20601 SNVs correlated to a height-associated variant which were available in both studies.

Discovery and replication of 19 new loci. By imputing > 6M additional SNVs sum-

mary statistics using HapMap variants [12] as tag SNPs we were interested in two aspects:

(1) discovering new height-associated candidate loci, and (2) replicating these candidate

Table 1. RMSE for summary statistics imputation and genotype imputation.

MAF r̂ 2
pred;adj SSimp GTimp # SNVs

RMSE Bias RMSE Bias

Associated 1-5% 0-0.3 0.8484 -0.8484 0.0059 -0.0059 1

1-5% 0.3-0.7 1.0120 0.1960 0.2729 0.0170 38

1-5% 0.7-1 0.4785 -0.0137 0.1407 0.0073 262

5-50% 0.3-0.7 1.0266 -0.3455 0.1916 -0.0041 65

5-50% 0.7-1 0.3333 0.0011 0.0929 -0.0023 5714

Null 1-5% 0-0.3 0.9479 -0.0267 0.1944 0.0083 665

1-5% 0.3-0.7 0.7262 0.0006 0.1765 0.0006 7292

1-5% 0.7-1 0.4549 -0.0002 0.1491 0.0022 5599

5-50% 0-0.3 0.8780 0.0057 0.0926 -0.0077 58

5-50% 0.3-0.7 0.6906 -0.0115 0.1445 -0.0013 2397

5-50% 0.7-1 0.3816 -0.0010 0.1022 -0.0004 15556

This table shows RMSE and bias for summary statistics imputation (SSimp) and genotype imputation (GTimp) in each variant subgroup (based on MAF and imputation

quality) for associated SNVs (upper rectangle) and null SNVs (lower rectangle). The rightmost column reports the number of variants in each SNV subgroup. For MAF

and r̂ 2
pred;adj notation, the lower bound is excluded while the upper bound is included. For example, 1 − 5% is equivalent to 1 < MAF� 5. RMSE differences are also

displayed in Fig 6.

https://doi.org/10.1371/journal.pgen.1007371.t001
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loci in the UK Biobank and the GIANT exome chip look-up (Fig 2). We used the HapMap-

based height study and the UK10K reference panel as inputs for summary statistics imputa-
tion and used all HapMap SNVs as tag SNVs. We imputed variants that were available in

UK10K with a MAFUK10K� 0.1%, as well as all reported exome variants in Marouli et al.
[13]. In total we imputed 1009660111 variants, of which 902760018 (84%) had an imputation

quality � 0.3.

We subjected all 902760018 variants with an imputation quality� 0.3 to a scan for novel

candidate loci. A region was defined as a candidate locus if at least one imputed variant was

independent from any reported HapMap variant nearby (conditional P-value� 10−8). We

identified 35 such candidate loci. Within each locus we defined the imputed variant with the

lowest conditional P-value as the top variant. All 35 variants are listed in S1 Table and locus-

zoom plots are provided in S7 Fig.

Fig 6. Visualising RMSE of summary statistics imputation and genotype imputation. This figure uses boxplots to compare the absolute difference |d|

(used for calculation of RMSE) for each variant between Z-statistics of summary statistics imputation (SSimp, green) and genotype imputation (GTimp,

blue) of associated SNVs (left column) and null SNVs (right column). Results are grouped according to MAF (x-axis) and imputation quality (rows)

categories. The numbers printed above the boxplot represents the number of SNVs used for the |d| calculation in that MAF and imputation quality

subgroup. The corresponding RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Pn
i d2

i

q
is shown in Table 1.

https://doi.org/10.1371/journal.pgen.1007371.g006
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Next, we used the UK Biobank to replicate the associations with height of these 35 candi-

date variants and subsequently grouped them into replicating (20 variants) and not replicating

(15 variants) (at α = 0.05/35 level).

An overview of the 20 replicating variants is given in Table 2. One region had already been

discovered in the GIANT exome chip study: rs28929474, located in gene SERPINA1. Fig 8

shows this region as locus-zoom plot with summary statistics from the HapMap study, sum-
mary statistics imputation, and the exome chip study. To annotate these 20 novel candidate

variants further, we investigated whether they are eQTLs or associated with other traits. We

Fig 7. FPR versus power. This figure compares the false positive rate (FPR) (x-axis) versus the power (y-axis) for genotype imputation (blue) and summary
statistics imputation (green) for different significance thresholds (α), including a 95%-confidence interval in both directions (vertically as a ribbon and

horizontally as lines). The vertical, dashed line represents FPR = 0.05. Results are grouped according to MAF (columns) and imputation quality (rows)

categories. A zoom into the area of FPR between 0 and 0.1 can be found in S5 Fig.

https://doi.org/10.1371/journal.pgen.1007371.g007
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report this in Table 3 where we list eQTLs detected by GTEx [27] and Table 4 that presents a

curated association-trait list by Phenoscanner [28]. In the following we describe variants that

replicated in UK Biobank which are either eQTLs or have previously been associated with

another trait.

We can classify the 35 candidate loci into three categories that reflect the type of conditional

analysis performed. Group (i) includes SNVs replicating already published exome chip associ-

ations (one locus), group (ii) includes SNVs that contain no reported HapMap variant nearby

(three loci), and group (iii) includes SNVs that contain one or more reported independent

HapMap variants nearby (31 loci). Replication success with UK Biobank is 1/1 in group (i),

2/3 in group (ii), 17/31 in group (iii). We only term categories (ii) and (iii) as novel candidate

loci, therefore limiting the number of novel candidate loci to 34, with 19 replicating in UK

Biobank.

Although group (ii) only contains loci that had no reported HapMap variants nearby,

three candidate loci (#2, #3, #21 in S1 Table) contain borderline significant HapMap signals

(P-value between 10−6 and 10−8 in [12]).

Table 2. Twenty replicating candidate loci for height.

# SNV Chr Pos Allele Gene(1) MAF(2) SSimp UK Biobank Group

R/E P N P N
1 rs112635299(�) 14 94838142 G/T - 2.33% 4.21E-14 234380 5.16E-77 336474 (i)

2 rs76306191 1 155006451 C/G DCST1 [E] 20.30% 6.51E-10 245908 2.74E-16 336474 (ii)

3 rs73029259 6 164111348 T/A - 12.77% 7.61E-09 251161 1.02E-15 336474 (ii)

4 rs67807996 1 149995265 G/A - 40.16% 1.48E-43 219605 2.75E-102 336474 (iii)

5 rs12795957 11 67242216 G/A - 5.46% 1.52E-24 193457 1.75E-76 336474 (iii)

6 rs503035 5 134353734 A/G - 30.39% 6.34E-24 248110 5.46E-39 336474 (iii)

7 rs568777 6 81809121 C/G - 26.61% 7.08E-24 252456 3.11E-35 336474 (iii)

8 rs75975831 19 17264961 G/C MYO9B [I] 22.52% 3.59E-10 233765 9.19E-22 336474 (iii)

9 rs56006730 12 103132740 G/A - 10.41% 1.80E-09 250070 1.05E-19 336474 (iii)

10 rs35374532 6 26163345 A/AT HIST1H2BD [I] 38.85% 2.97E-27 252327 8.64E-18 120086 (iii)

11 rs80171383 11 46084677 G/A PHF21A [I] 14.72% 3.53E-16 247885 2.05E-16 336474 (iii)

12 rs13108218 4 3443931 A/G HGFAC [I] 39.72% 2.15E-10 222502 5.05E-15 336474 (iii)

13 rs428925 5 173022921 G/A - 27.59% 1.34E-16 206987 4.31E-13 336474 (iii)

14 rs6085649 20 6665532 A/G - 45.61% 1.24E-09 251393 1.65E-12 336474 (iii)

15 rs78566116 6 32396146 G/T - 7.67% 2.74E-19 248592 4.18E-12 336474 (iii)

16 rs350889 19 4118481 A/G MAP2K2 [I] 24.28% 8.17E-10 207571 7.11E-12 336474 (iii)

17 rs7955819 12 20677958 T/C PDE3A [I] 23.23% 6.13E-10 250048 3.25E-08 336474 (iii)

18 rs7971674 12 1513526 A/T ERC1 [I] 14.12% 8.10E-09 240270 2.19E-07 336474 (iii)

19 rs12939056 17 7754993 G/A KDM6B [E] 43.26% 1.09E-12 245015 7.64E-07 336474 (iii)

20 rs58402222 1 46059835 T/TA NASP [I] 45.72% 7.50E-13 252901 1.79E-04 120086 (iii)

This table presents 20 regions that contain at least one imputed variant that is independent from top HapMap variants nearby and that replicated in the UK Biobank (at

α = 0.05/35 level). Each row represents one region (#), indicating the SNV with the lowest conditional P-value. The first seven columns provide general information for

each variant, followed by the P-value and sample size from summary statistics imputation, P-value and sample size from the UK Biobank. The second last column assigns

each of the 35 candidate loci to one of three groups: candidate loci (i) that were reported by [13] already, (ii) that had no reported HapMap variant nearby and (iii) that

had reported HapMap variants nearby. r̂2
pred;adj of all variants listed was greater than or equal to 0.3. We provide a more detailed table for all 35 variants (both replicating

and not replicating) in S1 Table.

(�) rs28929474, exome chip study results: P = 1.39 × 10−45, N = 3650451.
(1) [I] intronic, [E] exonic, - intergenic.
(2) MAF was computed in UK10K.

https://doi.org/10.1371/journal.pgen.1007371.t002
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Fig 8. Replication of exome variant. rs28929474 is a missense variant on chromosome 14 in gene SERPINA1, low-frequency (MAF = 2.3%), imputed summary

statistics (PSSimp = 1.06×−13), replication in the UK Biobank (PUKBB = 6.49×−78). rs112635299 has the strongest signal in this region (P = 4.21 × 10−14), but is highly

correlated to rs28929474 (LD = 0.95). This figure shows three datasets: Results from the HapMap and the exome chip study, and imputed summary statistics. The

top window shows HapMap P-values as orange circles and the imputed P-values (using summary statistics imputation) as solid circles, with the colour representing the

imputation quality (only r̂2
pred;adj � 0:3 shown). The bottom window shows exome chip study results as solid, grey dots. Each dot represents the summary statistics of

one variant. The x-axis shows the position (in Mb) on a� 2 Mb range and the y-axis the −log10(P)-value. The horizontal line shows the P-value threshold of 10−6

(dotted) and 10−8 (dashed). Top and bottom window have annotated summary statistics: In the bottom window we mark dots as black if it is are part of the 122

reported hits of [13]. In the top window we mark the rs-id of variants that are part of the 122 reported variants of [13] in bold black, and if they are part of the 697

variants of [12] in bold orange font. Variants that are black (plain) are imputed variants (that had the lowest conditional P-value). Variants in orange (plain) are
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We observed that variants with higher MAF have higher chance to replicate. Among the

20 candidate variants that did replicate in UK Biobank, 19 were common and one a low-fre-

quency variant (rs112635299, MAF = 2.32%). Conversely, among the 15 candidate variants

that did not replicate in the UK Biobank, 10 are rare, three are low-frequency variants, and

only two are common.

Locus #1: rs112635299 (imputed P-value 4.21 × 10−14), is a proxy of rs28929474
(LD = 0.88), has been associated with alpha-1 globulin [37] and is associated with multiple

lipid metabolites [38]. rs28929474was identified in the GIANT exome chip study to be

height-associated (P = 1.39 × 10−45) [13]. The P-value calculated with summary statistics
imputation was P = 1.06 × 10−13. rs28929474 is a low-frequency variant (MAF = 2.3%)

and replicates in the UK Biobank with P = 1.66 × 10−25.

Locus #2: rs76306191 is a common variant on chromosome 1, located in gene DCST1.

There was no reported HapMap variant nearby to condition on. However, the absolute cor-

relation to the HapMap variant with the lowest P-value (> 10−8) in the same region was 0.8.

One of the 122 variants reported by the exome chip study, rs141845046, was in this

region, but had an imputed P-value > 10−3. rs76306191 replicated in the UK Biobank

with P = 1.09 × 10−7. rs76306191 is an eQTL in artery (tibial) for gene ZBTB7B and in

thyroid gland for gene DCST2.

Locus #5: rs12795957 is a variant on chromosome 11 and an eQTL for gene RAD9A in

artery (tibial).

Locus #6: rs503035 is a variant on chromosome 5. It is an eQTL for gene PITX1 in testis

tissue. rs62623707, one of the 122 reported exome variants, was in this region, but had

an imputed P-value> 10−3.

Locus #15: rs78566116 is a variant on chromosome 6. rs78566116 has been associated

with HPV8 seropositivity in cancer [39], rheumatoid arthritis [40] and ulcerative colitis

[41].

HapMap variants, but were not among the 697 reported hits. Each of the annotated variants is marked for clarity with a bold circle in the respective colour. The genes

annotated in the middle window are printed in grey if the gene has a length< 50000 bp or is an unrecognised gene (RP-).

https://doi.org/10.1371/journal.pgen.1007371.g008

Table 3. GTEx annotation results for variants in eQTLs.

# SNV PSSimp PUKBB GTEx tissue Gene P
2 rs76306191 6.51E-10 1.09E-07 Artery_Tibial ZBTB7B 3.97E-09

Thyroid DCST2 2.41E-08

5 rs12795957 1.52E-24 6.17E-41 Artery_Tibial RAD9A 6.48E-10

6 rs503035 6.34E-24 8.06E-12 Testis PITX1 2.91E-07

20 rs58402222 7.50E-13 1.79E-04 Cells_Transformed_fibroblasts MAST2 8.84E-23

Cells_Transformed_fibroblasts CCDC163P 1.11E-19

Cells_Transformed_fibroblasts TMEM69 2.16E-08

Thyroid GPBP1L1 3.26E-11

This table shows SNVs which are significant eQTLs in GTEx [27]. We only report SNV-gene expression associations where the summary statistics pass the significance

threshold of α = 10−6. The first four columns represent the region number, SNV, P-value from summary statistics imputation and the P-value in the UK Biobank. The

four remaining columns are information extracted from GTEx, with the tissue name, gene name, the P-value of the association between the SNV and the gene

expression, and the gene type. For each region, we only include the tissue with the lowest P-value per SNV-gene associations. The full version of this table is available in

S2 Table. # refers to the region number.

https://doi.org/10.1371/journal.pgen.1007371.t003

Applications of summary statistic imputation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007371 May 21, 2018 20 / 32

https://doi.org/10.1371/journal.pgen.1007371.g008
https://doi.org/10.1371/journal.pgen.1007371.t003
https://doi.org/10.1371/journal.pgen.1007371


Locus #20: rs58402222 is an intronic variant on chromosome 1, located in gene NASP. It is

an eQTL for genes CCDC163P,MAST2 and TMEM69 in cells (transformed fibroblasts); and

for GPBP1L1 in thyroid tissue.

Replication of 55/111 reported GIANT exome chip variants. Next, we focussed on 122

novel variants of Marouli et al. [13]. For this analysis we did not apply any MAF restrictions.

Of these 122 variants, 11 variants were either not referenced in UK10K or on chromosome X,

and were therefore not imputed, limiting the number of loci and variants to 111—78 common,

25 low-frequency, eight variants rare (S3 Table). By grouping results below or above the P-

value threshold of α = 0.05/111 we could classify variants into the ones that replicated and

those that failed replication. This is summarised in Table 5 and S8 Fig, which shows that 55 of

Table 4. Known trait association results for variants in Table 2.

# SNV PSSimp PUKBB Study PMID Ancestry Trait P N
1 rs112635299 4.21E-14 3.52E-25 Wood 23696881 Mixed Alpha 1 globulin 2.51E-12 5278

Kettunen J 27005778 European Glycoprotein acetyls 1.27E-10 17772

mainly a1Lacid glycoprotein

Kettunen J 27005778 European Total cholesterol in small LDL 6.59E-10 20057

Kettunen J 27005778 European M.LDL.C 4.03E-09 20060

Kettunen J 27005778 European Cholesterol esters in medium LDL 6.19E-09 17774

Kettunen J 27005778 European Total lipids in medium LDL 7.26E-09 17774

Kettunen J 27005778 European Total cholesterol in LDL 8.66E-09 20060

Kettunen J 27005778 European Total lipids in small LDL 1.56E-08 17774

Kettunen J 27005778 European Conc. of medium LDL particles 1.67E-08 17774

Kettunen J 27005778 European Conc. of small LDL particles 2.77E-07 17774

Kettunen J 27005778 European Cholesterol esters in large LDL 4.72E-07 17774

Kettunen J 27005778 European Total cholesterol in large LDL 7.36E-07 20053

Kettunen J 27005778 European Total lipids in large LDL 9.86E-07 17774

15 rs78566116 2.74E-19 9.80E-04 Chen D 21896673 Mixed HPV8 seropositivity in cancer 3.30E-16 6885

Okada Y 24390342 European Rheumatoid arthritis 3.80E-94 58284

Okada Y 24390342 Mixed Rheumatoid arthritis 2.30E-90 80799

IBDGC 26192919 European Ulcerative colitis 4.06E-08 27432

This table describes SNVs previously associated with other traits. The search was conducted with Phenoscanner [28]. We only list SNVs for which Phenoscanner had

information available regarding GWAS traits or metabolites. The first four columns specify region, SNV-id, followed by the P-value from summary statistics imputation
and the P-value from the UK Biobank. Column five to ten contain information extracted from Phenoscanner. We report the respective summary statistics that pass the

significance threshold of α = 10−6. # refers to the region number, conc. to concentration.

https://doi.org/10.1371/journal.pgen.1007371.t004

Table 5. 111 variants: Fraction of top variants in exome chip study retrieved with imputation of HapMap study.

r̂ 2
pred;adj MAF

5 − 50% 1 − 5% 0 − 1%

0.7-1 65% (49/75) 50% (4/8) -

0.3-0.7 67% (2/3) 0% (0/17) 0% (0/3)

0-0.3 - - 0% (0/5)

This table presents summary statistics imputation results, limited to 111 variants identified as “novel” by [13]. We

summarised the results according to their allele frequency and imputation quality category. For each subgroup we

calculated the fraction of top exome variants that had a P-value� 0.05/111 with summary statistics imputation.

https://doi.org/10.1371/journal.pgen.1007371.t005

Applications of summary statistic imputation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007371 May 21, 2018 21 / 32

https://doi.org/10.1371/journal.pgen.1007371.t004
https://doi.org/10.1371/journal.pgen.1007371.t005
https://doi.org/10.1371/journal.pgen.1007371


the 111 variants could be retrieved, four of them with MAF� 5%. When looking at imputation

quality, of the 111 top variants 83 variants were imputed with high confidence (r̂2
pred;adj � 0:7).

Of these, 53 were retrieved when using the typical candidate SNV threshold (0.05/111). Details

to the imputation of all 111 variants are listed in S3 Table.

Discussion

In this article, we focussed on the comparison between genotype and summary statistics impu-
tation. In contrast to previous work by others [9, 14], here we systematically assessed the per-

formance and limitations of summary statistics imputation through real data applications for

different SNV subgroups characterised by allele frequency, imputation quality and association

status (null/associated).

First, we adapted the published summary statistics imputation method [9], by allowing

the LD structure to be adaptive according to varying sample size in summary statistics of tag

SNVs. Our simulation study has shown that this version of summary statistics imputation has a

lower MSE in all scenarios. We then evaluated the performance of our improved summary sta-
tistics imputation method in terms of different measures and showed that summary statistics
imputation is a very efficient and fast method to separate null from associated SNVs. However,

genotype imputation outperforms summary statistics imputation by a clear margin in terms of

accuracy of effect size estimation. By imputing GIANT HapMap-based summary statistics we

have demonstrated that summary statistics imputation is a rapid and cost-effective way to dis-

cover novel trait associated loci. We also highlight that the principal limitations of summary
statistics imputation are rooted in the LD estimation and in imputing very rare variants with

sufficient confidence. Finally, we implemented summary statistics imputation that accounts for

varying sample size as a command-line tool [11].

Accounting for varying sample size

Imputation accuracy is affected by the varying sample size across tag SNVs. If two SNVs were

observed in two different samples, the correlation between the summary statistics will decrease

with the number of individuals in common between the two samples. Our approach addresses

this problem by shrinking the correlation matrix according to sample size overlap. We present

two ways of estimating this overlap: D(ind) for independent missingness, which is randomly dis-

tributed; and D(dep) for dependentmissingness, which is highly correlated.

To evaluate the performance ot these two methods we simulated data with two different dis-

tributions of missingness (narrow or wide range of sample sizes) and varying correlation in

missingness between variants (from completely random to maximal overlap, Fig 3). We then

compared the performances of conventional summary statistics imputation and our proposed

dependent (D(dep)) and independent (D(ind)) approaches. Overall, replacing C and c with D
and d yields a lower RMSE. Furthermore, we note that the dependent approach has lower

RMSE when the sample size variance is low and the missingness correlation approaches one.

S15 Fig shows the comparison between the conventional estimation and using D(dep) for

imputing GIANT height association summary statistics.

Ideally, for any pair of SNVs that are in LD with each other, we would know the exact num-

ber of individuals that are in the overlap, i.e. the number of individuals for which both SNVs

were genotyped. Using the individual study missingness and sample sizes from the Genetic

Investigation of ANthropometric Traits (GIANT) consortium, we demonstrate in Fig. S10 Fig

that the size of the overlap is generally larger than would be the case under a strict ‘missing inde-

pendently at random’ assumption. Furthermore, the correlation of missingness is typically posi-

tive (Nk\l >
NkNl
Nmax

) and often approaches the maximum possible overlap (Nk\l = min(Nk, Nl)).
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The reason for this is that SNPs are either entirely missing from a study or being available for all

study participants depending on its genotyping chip or imputation panel, which induces posi-

tive missingness correlation between markers.

Comparison of summary statistics imputation versus genotype imputation
We compared summary statistics imputation and genotype imputation by using individual-

level data from the UK Biobank.

In general, imputation using summary statistics imputation leads to a larger RMSE than

genotype imputation in all twelve SNV subgroups investigated (Fig 6). Among associated

SNVs, summary statistics imputation performs similar to genotype imputation for well-

imputed SNVs, but shows a trend for underestimation of the Z-statistics and lower correla-

tion with the true effect size for medium-imputed SNVs (Fig 4). Conversely, genotype impu-
tation has more consistent results for most of the twelve SNV subgroups (Figs 4 and 5), that

is reflected in a correlation close to one between Z-statistics from genotype data and genotype
imputation data.

When investigating power and FPR for both methods (Fig 7) we observe that for a given

significance threshold, summary statistics imputation has lower power compared to genotype
imputation, an effect that is amplified for SNVs with lower imputation quality (r̂2

pred;adj � 0:7)

and lower MAF (MAF� 5%).

Underestimation for null and associated SNVs

Ultimately, the underestimation of imputed Z-statistics with summary statistics imputation
leads to a lower type I error. This effect is amplified for SNV groups with lower imputation

quality (r̂2
pred;adj < 1). For associated SNVs with r̂2

pred;adj < 1 we expect an underestimation for

associated SNVs due to the fact that we are imputing summary statistics under the null model,

whereas for null SNVs with r̂2
pred;adj < 1 we expect an underestimation due to decreased vari-

ance of the summary statistics imputation estimation.

Ideally, for an unbiased estimation of causal and null SNVs, the imputed Z-statistics (Eq

(2)) should be divided by r̂2. However, as the imputation quality r̂2
pred;adj is noisily estimated

from small reference panels (discussed below) and it is not guaranteed that the SNV we impute

is causal, we risk to overestimate the summary statistics of associated SNVs. This is the reason

why refrain from doing so.

S9 Fig shows the P-value distribution of summary statistics imputation for null SNVs with

an accumulation of low P-values for well-imputed SNVs and an accumulation of high P-val-

ues for badly-imputed SNVs. We think that two factors are in play here. First, mostly due to

polygenicity, the genomic lambda for height is λGC = 1.94, therefore we expect even seem-

ingly null variants to show inflation. Second, for null SNVs, the sample variance of the

imputed Z-statistics should be proportional to the average imputation quality. We calculated

for each of the null SNV subgroups the ratio between the sample variance for Z-statistics

from summary statistics imputation and the sample variance for Z-statistics from genotype

data. For common null SNVs we observe a ratio that gradually decreases with imputation

quality (0.86 for perfectly-, 0.61 for medium- and 0.32 for badly imputed SNVs). For low-fre-

quency null variants the ratio is up to 0.6 lower (0.80 for perfectly-, 0.54 for medium- and

0.30 for badly imputed SNVs). The inflation for well-imputed SNVs can be explained by the

genomic lambda, while for badly-imputed SNVs it is aggravated by the underestimated stan-

dard error.
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Atypical allele frequency distribution and rare variants exclusion

Because the number of associated SNVs with MAF < 1% was too low (13 variants) to draw

any meaningful conclusions, we refrained from analysing this MAF group. One other reason

to exclude rare variants from this analysis is, that the reference panel used (UK10K) contains

30871 individuals and therefore estimations for LD of rare variants are unreliable and rare vari-

ants can (in theory) only be covered down to MAF = 1/(2 � 30871). We believe improving sum-
mary statistics imputation for rare variants will require not only larger reference panels to

allow estimation of LD of rare variants, but also methods which would allow non-linear tag-

ging of variants. It should be kept in mind that, just like for genotype imputation, even with

very large reference panels, one will not be able to impute variants with extremely rare allele

counts. To investigate these SNVs full genome sequencing is indispensable [42].

Imputation quality metric discrepancies

We find that our imputation quality measure r̂2
pred;adj is conservative and probably underesti-

mates the true imputation quality (S4 Fig). To calculate the imputation quality r̂2
pred;adj, we need

—similar to imputing summary statistics in Eq (2)—to compute correlation matrices c and C
estimated from a reference panel (Eq (8)) and therefore encounter similar challenges as sum-

mary statistic imputation itself due to difficulties of reliable LD estimation.

The discrepancy in imputation quality metric between summary statistics imputation and

genotype imputation (S4 Fig) can be explained by the fact that: (1) genotyped variants that were

imputed too, were also used for phasing, (2) it is indeed more difficult to impute summary

statistics using summary statistics imputation, and therefore the imputation quality is shifted

towards zero, and (3) r̂2
pred;adj is an estimation that can either be erroneous due to choosing the

wrong reference panel (and therefore r̂2
pred;adj does not represent the true imputation quality) or

it can be imprecise due to small sample size of the reference panel. For example, UK10K con-

tains 30871 individuals and is too small to precisely estimate these matrices (the standard error

for a correlation estimated from n = 30871 is 0.016), which becomes problematic in cases of

low correlation.

Summary statistics imputation of the height GWAS of the GIANT

consortium

As a showcase of the utility of summary statistics imputation we imputed Wood et al. [12] to

higher genomic resolution (limited to variants with MAF� 0.1% as well as 111 previously

reported exome variants) [13], then selected imputed variants that act independently from all

variants reported in Wood et al. and from each HapMap SNP, we then replicated these using

(independent) UK Biobank data.

While Wood et al. [12] is the largest height study to date in terms of number of markers

(covering HapMap variants in 2530288 individuals), Marouli et al. [13] exceeds their sample

size by more than 1000000 individuals, but is limited to 2410419 exome variants. The similarity

between both GIANT studies made the exome chip study ideal for replication. We chose the

UK Biobank as a second replication dataset, despite its limitation to individuals of British

ancestry, as it covers more variants than the exome chip study.

We identify 35 regions, of which one had already been identified in the recent GIANT

height exome chip study (rs28929474) and 19 replicated in UK Biobank (at α = 0.05/35

level). Two candidate loci (#2, #3 in Table 2) that replicate in UK Biobank have borderline sig-

nificant HapMap signals in close proximity (P-value between 10−6 and 10−8 in [12]) and were

therefore not reported in the study in 2014.
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The 15 non-replicating candidate loci were on average on a lower allele frequency spectrum

(ten are rare, three are low-frequency variants, and two are common). Allele frequency was

higher among the 20 replicating candidate variants (19 were common and one a low-fre-

quency variant).

We also ran an additional approximate conditional analysis, where we conditioned each of

the 35 variants onto their neighbouring HapMap SNP (one-by-one). The resulting maximum

conditional P-value per locus, is provided as an additional column S1 Table. Correcting for the

testing of 529 windows (α = 0.05/529) we find evidence that 18 of the 35 variants are not only

independent from all [12] reported SNPs, but also of each HapMap variant too.

Replicating GIANT exome chip imputation results. We then focussed on the summary
statistics imputation of the the 111 reported exome chip variants [13]. Knowing from our pre-

vious findings that rare variants are challenging to impute due to reference panel size, we

expected to retrieve a larger fraction of common and low-frequency than rare variants.

Among variants with lower imputation quality only two common and medium-imputed vari-

ants could be retrieved. As shown in Figs 4 and 7, the power of summary statistics imputation
decreases with lower MAF and imputation quality.

Limitations

For replication of summary statistics from European individuals we use the UK Biobank,

which represents only a subset of all European ancestries and is genotype-imputed (instead of

sequenced), but on the other hand provides a reliable resource due to its sample size.

Furthermore, in UK Biobank, genotype imputation done for genotyped variants can only

partially be compared to genotype imputation for untyped variants, as genotyped variants were

used for phasing (therefore genotype imputation of genotyped variants is easier and leads

imputation qualities close to one, S4 Fig). Due to the small number of height-associated rare

variants (13) we can not draw meaningful conclusions for this group and hence avoided their

analysis.

The choice of the reference panel to conduct summary statistics imputation depends on the

fine balance between maximising the sample size of the reference panel (which determines

the error in estimated LD) and matching the population diversity of the conducted GWAS. At

the first glance, 1000 Genomes reference panel could have been used to appropriately match

GIANT allele frequencies, however, the 8-fold higher sample size of UK10K panel offers a

larger benefit, ultimately reducing the RMSE [43].

For the simulation study comparing standard summary statistics imputation to our method

taking into account variable missingness, we used an upsampling technique called HAPGEN2

[29], which limits the lower bound of the global allele frequency to 1/(2 � 503). Furthermore,

the outcome used for the simulated GWAS is based on one causal variant with an explained

variance of 0.02, therefore it might not be fully representative for a polygenic phenotype with

more than one causal variant.

The summary statistics imputation method itself has several limitations too.

Due to the size of publicly available sequenced reference panels we can not explore the per-

formance of rare variants (MAF < 1%).

The imputation of summary statistics of an untyped SNV is essentially the linear combina-

tion of the summary statistics of the tag SNVs (Eq (2)). Such a model cannot capture non-lin-

ear dependence between tag- and target SNVs [10], which is often the case for rare variants

[44, 45]. In contrast, genotype imputation is able to capture such non-linear relationships by

estimating the underlying haplotypes (a non-linear combination of tagging alleles). Further-

more, in case of genotype imputation it is sufficient that the relevant haplotypes are present in
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the reference panel, but the overall allele frequency does not need to match the GWAS allele

frequency.

Summary statistics imputation relies on fine tuning of parameters, such as shrinkage of

the correlation matrix. Any λ> 0 will make the correlation matrix invertible, but a stronger

shrinkage can compensate for estimation error. We hypothesised that optimal shrinkage

depends on local LD structure, and sought to optimise λ for each genomic region using the

effect sizes of tag SNVs as training data set in a leave-one-out fashion. When looking at null

variants, however, maximum shrinkage (λ = 1) usually leads to the smallest RMSE. Therefore,

when looking at a region with a mixture of null and associated SNVs, the selected λ will be

shifted towards 1 and shrink the estimation of associated SNVs towards 0, which is not ideal.

The imputation quality metric r̂2
pred;adj tends to be inaccurate in case of small reference pan-

els. The metric is commonly estimated as the total explained variance of a linear model given

the reference panel, where the unmeasured SNV is regressed onto all measured markers in the

reference panel (Eq (7)). We noticed that for reference panel sizes smaller than 1000 individu-

als, the conventional estimation of imputation quality in Eq (7) is biased towards overestima-

tion. We extend the existing imputation quality (Eq (7)) by accounting for sample size and the

effective number of variants (Eq (8)). The most accurate imputation quality estimations are

obtained using an out-of-sample prediction after model selection by fitting a ridge regression

model for each unmeasured SNV (r̂2
ridge). However, due to the computational complexity, the

calculation takes longer than the actual imputation. We provide a more detailed analysis in S2

Appendix.

Supporting information

S1 Fig. UK Biobank: Absolute frequencies of allele frequency and imputation quality of

imputed SNVs. This figure shows how many of the null and associated SNVs were categorised

into common, low-frequency and rare MAF subgroups, and into well-imputed, medium

imputed and badly imputed imputation subgroups. Associated SNVs are presented in the left

window, and null SNVs are presented in the right window. MAF category (x-axis), # of SNVs

on the y-axis, colour refers to imputation quality category.

(PDF)

S2 Fig. UK Biobank: Relative frequencies of imputation quality within each allele fre-

quency group. This figure shows the fraction of badly-, medium- and well-imputed SNVs

within each MAF subgroup. Null and associated SNVs were categorised into common, low-

frequency and rare MAF subgroup, and into well-imputed, medium imputed and badly

imputed imputation subgroup. Associated SNVs are presented in the left window, and null

SNVs are presented in the right window. MAF category (x-axis), fraction of SNVs on the y-

axis, colour refers to imputation quality category. Numbers within the stacked barplot refer to

the number of SNVs imputed in each subgroup.

(PDF)

S3 Fig. UK Biobank: Comparison of imputation quality methods. MACH r̂2 [46] (x-axis) ver-

sus IMPUTE’s info measure used by genotype imputation (y-axis). To avoid clumping of dots,

we used tiles varying from grey (few dots) to black (many dots). The identity line is dotted.

(PDF)

S4 Fig. UK Biobank: Comparison of imputation quality methods. IMPUTE’s info measure

used by genotype imputation (x-axis) vs r̂2
pred;adj used by summary statistics imputation (y-axis).

To avoid clumping of dots, we used tiles varying from grey (few dots) to black (many dots).
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The identity line is dotted.

(PDF)

S5 Fig. UK Biobank (simulation): FPR versus power. This figure compares false positive rate

(FPR) (x-axis on log10-scale) versus power (y-axis) for genotype imputation (blue) and sum-
mary statistics imputation (green) for different significance thresholds (α). It includes 95%-

confidence intervals in both directions (vertically as a ribbon and horizontally as lines). This

figure is a zoom into the bottom-left area of Fig 7 and shows FPR between 0 and 0.1. The col-

oured dots represent the α = 0.05. The vertical, dashed line represents FPR = 0.05. Results are

grouped according to MAF (columns) and imputation quality (rows) categories.

(PDF)

S6 Fig. GIANT: Concordance between genotyping and exome chip results. This graph shows

the Z-statistics of the exome chip study on the x-axis versus the Z-statistics of SNP-array study

on the y-axis. Each dot shows one of the 20601 variants that had LDmax > 0.1 (LD with one of

the top variants in the exome [13] or HapMap study [12]). To make the density more visible,

dots have been made transparent. The solid line indicates a linear regression fit, with the slope

in the top right corner (including the 95%-confidence interval in brackets). The dashed line rep-

resents the ratio between the two median sample sizes 0:82 ¼
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(PDF)

S7 Fig. Locus-zoom plots of all 35 regions. Filename according to column ‘filename’ S1

Table. This figure shows three datasets: Results from the HapMap and the exome chip study,

and imputed summary statistics. The top window shows HapMap P-values as orange circles

and the imputed P-values (using summary statistics imputation) as solid circles, with the col-

our representing the imputation quality (only r̂2
pred;adj � 0:3 shown). The bottom window

shows exome chip study results as solid, grey dots. Each dot represents the summary statistics

of one variant. The x-axis shows the position (in Mb) on a� 2 Mb range and the y-axis the

−log10(P)-value. The horizontal line shows the P-value threshold of 10−6 (dotted) and 10−8

(dashed). Top and bottom window have annotated summary statistics: In the bottom win-

dow we mark dots as black if it is are part of the 122 reported hits of [13]. In the top window

we mark the rs-id of variants that are part of the 122 reported variants of [13] in bold black,

and if they are part of the 697 variants of [12] in bold orange font. Variants that are black

(plain) are imputed variants (that had the lowest conditional P-value). Variants in orange

(plain) are HapMap variants, but were not among the 697 reported hits. Each of the anno-

tated variants is marked for clarity with a bold circle in the respective colour. The genes

annotated in the middle window are printed in grey if the gene has a length < 50000 bp or is

an unrecognised gene (RP-).

(ZIP)

S8 Fig. Summary of exome results replication. This graph shows for all 111 variants the

−log10(p)-value of the exome chip study on the x-axis and the imputed −log10(p)-value on

the y-axis. The first row refers to the highest imputation quality (between 0.7 and 1), with the

columns as the different allele frequency categories. The number of dots in each window is

marked top left. The vertical and horizontal dotted lines mark the significance threshold of

−log10(0.05/111) (dashed). The width of the x-axis is proportional to the range of the y-axis.

For MAF and r̂2
pred;adj notation, the lower bound is excluded while the upper bound is included.

For example, 1 − 5% is equivalent to 1< MAF� 5.

(PDF)
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S9 Fig. UK Biobank: Distribution of P-values from summary statistics imputation. These

QQ-plots show the distribution of p-values resulting from summary statistics imputation, for

associated variants (left window), null variants (right window). The colours refer to the impu-

tation quality categories. Note that the P-value in these plots are not λGC corrected.

(PDF)

S10 Fig. Variable sample size in GIANT. In the GIANT meta-analysis (BMI, women over 50

years of age) the set of SNVs is different in each cohort, allowing us to create a binary ‘missing-

ness’ vector for each SNV recording whether a given individual in the combined population

was genotyped for this SNV. For 100000 randomly selected pairs of nearby SNVs, we compute

the correlation between these missingness vectors and plot the density plot. The correlations

are usually greater than zero, and often quite close to one, confirming that a ‘missing indepen-

dently at random’ assumption is not appropriate.

(PDF)

S11 Fig. Summary statistics imputation versus genotype imputation for associated variants

colored by imputation quality. The x-axis shows the Z-statistics of the genotype imputation
summary statistics, while the y-axis shows the Z-statistics from summary statistics imputation.

The color of each point refers to the imputation quality of summary statistics imputation.

Results are grouped according to MAF (columns) and imputation quality (rows) categories

and the numbers top-right in each window refers to the number of SNVs represented. The

identity line is indicated with a dotted line. The estimation for correlation and slope are noted

in the bottom-right corner.

(PDF)

S12 Fig. Summary statistics imputation versus genotype imputation for non-associated

variants colored by imputation quality. The x-axis shows the Z-statistics of the genotype
imputation summary statistics, while the y-axis shows the Z-statistics from summary statistics
imputation. The color of each point refers to the imputation quality of summary statistics impu-
tation. Results are grouped according to MAF (columns) and imputation quality (rows) cate-

gories and the numbers top-right in each window refers to the number of SNVs represented.

The identity line is indicated with a dotted line. The estimation for correlation and slope are

noted in the bottom-right corner.

(PDF)

S13 Fig. Summary statistics imputation versus genotype imputation for associated variants

colored by info measure. The x-axis shows the Z-statistics of the genotype imputation sum-

mary statistics, while the y-axis shows the Z-statistics from summary statistics imputation. The

color of each point refers to the imputation quality of genotype imputation. Results are grouped

according to MAF (columns) and imputation quality (rows) categories and the numbers top-

right in each window refers to the number of SNVs represented. The identity line is indicated

with a dotted line. The estimation for correlation and slope are noted in the bottom-right cor-

ner.

(PDF)

S14 Fig. Summary statistics imputation versus genotype imputation for non-associated vari-

ants colored by info measure. The x-axis shows the Z-statistics of the genotype imputation
summary statistics, while the y-axis shows the Z-statistics from summary statistics imputation.

The color of each point refers to the imputation quality of genotype imputation. Results are

grouped according to MAF (columns) and imputation quality (rows) categories and the num-

bers top-right in each window refers to the number of SNVs represented. The identity line is
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indicated with a dotted line. The estimation for correlation and slope are noted in the bottom-

right corner.

(PDF)

S15 Fig. Accounting for missingness in GIANT. The x-axis shows the Z-statistics of the con-

ventional estimate, the y-axis the Z-statistics when accounting for missingness (dependent

approach). The dotted line marks the genome-wide threshold. There are 1102000403 variants

displayed in a binned fashion.

(PDF)

S1 Table. GIANT: Detailed results of 35 candidate loci. This table presents details of the

35 candidate loci discovered with summary statistics imputation. Within each candidate

locus, we provide for the top variant the imputation results (.imp), along with conditional

analysis results (.cond), the UK Biobank replication (.ukbb, whether it replicated or not

(replication), and (if available) the exome chip study results (.exome). filename
shows the filename of the locus-zoom plot in S7 Fig. SNP.cond.infopresents each Hap-

Map SNV used for conditional analysis, including its MAF, LD between the HapMap SNV

and the imputed SNV, and a reversed conditional analysis result (HapMap variant condi-

tioned on the imputed SNV). The column Group classifies each row into candidate loci (i)

that were reported by [13] already, (ii) that had no reported HapMap variant nearby, (iii)

that had at least one reported HapMap variants nearby. The column max.P.cond.hm rep-

resents the maximum P-value from a conditional analysis performed with each HapMap

variant nearby. P = P-value, N = sample size, r2 = imputation quality, eff = effect size,

EAF = effect allele frequency, MAF = minor allele frequency. If a candidate locus was not

available in the UK Biobank, we provide a replication for a second variant that is in high LD

with the primary variant, hence duplicated region numbers for some candidate loci.

(CSV)

S2 Table. GTEx annotation results for variants in eQTLs. This table shows SNVs which are

significant eQTLs in GTEx [27]. We only report SNV-gene expression associations where the

summary statistics pass the significance threshold of α = 10−6. The first four columns represent

the region number, SNV, P-value from summary statistics imputation and the P-value in the

UK Biobank. The three remaining columns are information extracted from GTEx, with the

tissue name, gene name and the P-value of the association between the SNV and the gene

expression. For each region, we order SNV-gene-tissue associations according to their P-value.

# refers to the region number.

(CSV)

S3 Table. GIANT: Results of 122 exome variants. This table presents the summary statistics

imputation results (.imp) for all 122 variants shown as “novel” in [13]. The right hand part

of the table shows the original exome chip results for comparison (.exome). P = P-value,

N = sample size, r2 = imputation quality, eff = effect size, EAF = effect allele frequency. 11 vari-

ants were not referenced in UK10K or on chromosome X and therefore not imputed (see col-

umn ‘comment’). The position corresponds to hg19.

(CSV)

S1 Appendix. Simulation framework.

(PDF)

S2 Appendix. Imputation quality.

(PDF)
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S3 Appendix. Summary statistics imputation accounting for varying sample size and miss-

ingness.

(PDF)
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