
i
i

“Template” — 2021/5/5 — 21:31 i
i

i
i

i
i

A Stability Condition for the Numerical Simulation of Poroelastic Systems

Marco Favino1, Alfio Grillo2, and Rolf Krause1

1 Institute of Computational Science,
University of Lugano, via Buffi 13, 6900, Lugano, Switzerland;
PH +41 58 666 4971; email: {marco.favino,rolf.krause}@usi.ch

2 Dipartimento di Scienze Matematiche,
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
email: alfio.grillo@polito.it

ABSTRACT

In the numerical simulation of the Biot model numerical oscillations may occur
if the spatial and discretization parameters are not properly chosen. When the time-
step is too small the grid has to be fine enough to resolve the boundary layers that
appear in the early stages of the simulation. In this work, we extend a strategy that has
been successfully employed in the one-dimensional case for the detection of a critical
time-step below which instabilities appear. The idea is to study under which condition
the Schur complement of the poroelastic system enjoys a discrete maximum principle
property. Differently from the one-dimensional case, in the vectorial case the shear
modulus plays a fundamental role for the computation of the Schur complement and
the maximum principle argument can be applied only for small shear. We will also
investigate the sign of the entries of the Schur complement when the shear and the bulk
modulus are of the same magnitude.

INTRODUCTION

In the field of multiphase continuum mechanics, the Biot theory [Bio41] de-
scribes the motion of a deformable porous medium saturated with a fluid. It was suc-
cessfully employed for the modeling of soils and reservoirs in the field of geome-
chanics. Recently, it has been studied also in case of growth [GFW12] and it has
been applied in bio-mechanics, for example for the modeling of cartilage [FGLR+05],
teeth [FGD+11], and heart walls.

For a poroelastic material, both momentum and mass balances of the mixture
have to be solved and they form a time-dependent system of Partial Differential Equa-
tions (PDEs) whose unknowns are the solid displacement and the pore pressure.

In order to numerically solve the Biot system, it has to be discretized in time
and space. Temporal discretization is usually addressed using θ-methods. At each time-
step, a stationary saddle-point system similar to the Stokes problem has to be solved.
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For its numerical solution, discretization techniques usually employed for the Stokes
problem can be used, such as finite elements (FE) and finite differences.

Several authors observed that numerical simulations of Biot system may exhibit
unphysical oscillations of pressure and displacement [AL92, GLV03, SCF+10] if the
spatial and temporal discretization step-size are not properly chosen. In particular, such
instabilities appear if the time-step τ of the time integration scheme is smaller than a
critical value τcrit that depends on the physical parameters of the problem and on the
spatial discretization step-size h.

The condition of Verruijt and Vermeer (V&V) is often employed to detect the
source of unphysical oscillations [VV81]. The condition is obtained studying a consol-
idation problem in the one-dimensional case employing linear (P1) FE and states that
the problem is stable if

τ > τcrit =
h2

6Pk
, (1)

where P is the P-wave modulus and k the hydraulic conductivity. The proof is based on
the fact that the eigenvalues of the iteration matrix of the time marching scheme must
be smaller than one.

In [GLV03], a critical value for the time-step is found imposing that a maximum
principle holds for the Schur complement for a one-dimensional poroelastic problem.
This strategy provides a limit similar to the V&V condition:

τcrit = K
h2

Bk
, (2)

where K is a constant that depends on the choice of the FE spaces for displacements
and pressure, and B is the bulk modulus in the one-dimensional case. The constant
K is smaller when Taylor-Hood FE are employed allowing for smaller time-steps. In
[AL92], the authors observed that the discretization with Taylor-Hood FE could remove
the oscillations in some cases.

In our contribution, employing a strategy similar to the one presented in
[GLV03], we will find the critical value τcrit for the two-dimensional Biot problem
employing Q2-Q1 and Q1-Q1 FE couples. Differently from the one-dimensional case,
in the 2D case the maximum principle argument holds true only if µ� B. Even if the
maximum principle does not hold when shear modulus is comparable with the bulk,
the critical time-step is still valid. In fact, assuming that τcrit depends on P > B as in
(1), our limit results to be more restrictive and ensures that no oscillations appear in
the numerical solution. Finally, we will present a numerical example that shows that
the limits derived in the one-dimensional case are not strict enough to ensure that no
oscillations appear.
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FINITE ELEMENT FORMULATION OF BIOT PROBLEM

Writing the elasticity tensor employing the deviatoric and volumetric terms, the
Biot model has the following form:{

−div(2µ̂dev(ε(u)) + tr(ε(u))I − pI) = 0

−divu̇ = −div(k̂∇p) (3)

where ε(u) is the linearized strain tensor of the displacement u = u(x, t) ∈ Rd and
p = p(x, t) ∈ R is the pore pressure scaled by the bulk modulus. The parameters
µ̂ = µ/B and k̂ = kB are the scaled shear modulus (dimensionless) and hydraulic per-
meability (m2s−1). The functions u and p are defined over Ω× I , where Ω ∈ Rd is the
reference configuration, I = (0, TFin] is a time interval, and d denotes the dimension
of the problem.

In order for the equation system (3) to be well-posed, it has to be completed
with an initial condition u(x, 0) = u(x) and with suitable boundary conditions:{

u(x, t) = 0 on Γu
D

σ · ν = t on Γu
N

(4)

where

σ = 2µ̂dev(ε(u)) + tr(ε(u))I − pI

is the total stress, and Γu
D and Γu

N provide a partition of the boundary ∂Ω of the domain.
In (4), ν is the outward unit normal vector to ∂Ω and t is a given function that represents
an applied scaled boundary stress.

In principle on the pore pressure no initial condition is needed and the following
boundary conditions are imposed{

p(x, t) = 0 on Γp
D

k̂∇p · ν = 0 on Γp
N .

(5)

In (5), Γp
D and Γp

N provide another partition of the boundary ∂Ω.
The discretization in time of (3) with the implicit Euler method gives rise to a

sequence of stationary problems that have to be solved at every time slice j:{
−div(µ̂dev(ε(uj)) + tr(ε(uj)) − pjI) = 0

−divuj + τdiv(k∇pj) = −divuj−1.
(6)

The FE approximation of (6) is presented in [GGF+12] and it is obtained writing the
weak form of the problem (6), (4), and (5) and substituting the spaces of the unknowns
with suitable interpolation spaces. Neglecting the temporal superscript j, the arising
algebraic formulation is:
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(
A −BT

−B −τ k̂C

)(
uuu
ppp

)
=

(
fff
−ggg

)
, (7)

where A, B, and C are the elastic stiffness matrix, the divergence operator, and the
discrete Laplacian matrix. The continuos problem (6) and its algebraic counterpart (7)
are very similar to the well-known Stokes problem employed for the simulation of
fluids. The main differences are that in Stokes system K = 2µ/d and the matrix C
is vanishing. This latter property distinguishes the biphasic problem from the Stokes
problem.

In the Stokes problem, the FE spaces must satisfy the Brezzi-Babuska-
Ladyzhenskaya (LBB) condition [Bre91] and hence FE spaces of the same order for
uuu and p are not stable. In order to employ FE spaces of the same order, in [BP84], an
h-dependent diffusion matrix similar to C is added in the block (2,2) to remove spu-
rious oscillations. In the biphasic problem, this stabilization effect is already given by
the matrix C that is inherent to the physics of the problem.

At the algebraic level, the LBB condition implies that kerBT = 000 [Bre91].
In the poroelastic case, it is enough for the uniqueness of the solution that kerBT ∩
kerC = 000. This latter condition holds true even employing FE of the same degree for
both displacement and pressure, as the kerBT is given by the spurious modes while
the kerC is constituted by the constant vectors.

The equation system can be written by static condensation of u in an equivalent
problem whose matrix is the pressure Schur complement

S = τ k̂C +BA−1BT . (8)

In the one-dimensional case, the deviatoric part of the elasticty tensor is null, the matrix
A is a Laplacian and the matrix MS := BA−1BT is a mass matrix. In this case, the
matrix S can be seen as the discretization of a diffusion-reaction problem. When the
reactive term dominates the diffusion term, i.e. τ k̂ � 1, the numerical solution may
present unphysical oscillations which disappear for h → 0. In [AL92], the authors
state the hypothesis that the source of the oscillations is due to the loss of the discrete
maximum principle for S. A critical value τcrit can be found by studying for which τ
the M-matrix property of S is lost.

SPECTRAL PROPERTY OF SCHUR COMPLEMENT

The pressure Schur complement is sum of two matrices: a discrete Laplacian
τ k̂C and the matrix MS . The former has a condition number proportional to 1/h2,
while the latter, in the case of Stokes problem, is known to be spectrally equivalent to
the mass matrix M computed on the pressure FE space. Differently from the Stokes
case, the matrix A, and hence the matrix MS , depends on both the mechanical param-
eters µ and K. In order to study the effect of both these parameters, we will explicitly
compute the matrix MS for several µ while keeping K constant, and we will evaluate:
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Figure 1. Representation of the computational domain with N = 4: minimal
boundary conditions (left) and rigid bottom side (right).

• the norm ‖(MS −M)/h2‖max

• the condition number of MS

• the total sum of the entries of MS .

The norm ‖ · ‖max is the so-called uniform norm that corresponds to the maximum of
the absolute values of its entries:

‖A‖max = max
i,j
|Aij|.

The sum of the entries in a mass matrix corresponds to the global mass of the
system which equals the domain size. This further property is used to check on which
parameters the total mass of the system depends on.

Minimal Boundary Condition Experiment

In the first numerical experiment, the domain is the unit square Ω = (0, 1)2 (see
Fig. 1(left)), and it is discretized into N2 elements of side length h = 1/N . We employ
Q2-Q1 FE for displacement and pressure. In this experiment, the minimum number
of boundary conditions to make A invertible is imposed. In the two-dimensional case,
A has three null eigenvalues, corresponding to the three rigid motions of the body
and constraints have to be imposed to make it solvable. In Fig. 1(left), the applied
boundary conditions are reported: we impose Dirichlet conditions in both directions at
point (0, 0) and in one of the two directions at point (1, 1). In Tab. 1, the absolute error
ofN2(M−MS) is reported. In particular, we observe that the error does not depend on
the discretization step-size h, and it is almost constant for µ > 1. For every considered
N , MS converges linearly to a mass matrix when µ tends to zero.

In Tab. 1, also the condition number of the matrix MS is reported. It is increas-
ing when µ or N tends to infinity, while it converges to the condition number of a mass
matrix when µ → 0. In all the numerical tests with minimal boundary conditions the
global mass of the system was 1, corresponding to the domain area.
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µ N = 8 N = 16 N = 32 N = 64

104 4.2·10−1 (0.8·105) 4.3·10−1 (1.1·105) 4.4·10−1 (1.5·105) 4.4·10−1 (2.2·105)
102 4.1·10−1 (0.8·103) 4.3·10−1 (1.1·103) 4.3·10−1 (1.7·103) 4.3·10−1 (2.3·103)
1 1.43·10−1 (26.54) 1.47·10−1 (31.77) 1.48·10−1 (37.74) 1.49·10−1 (44.14)

10−2 2.18·10−3 (22.45) 2.25·10−3 (22.52) 2.27·10−3 (22.61) 2.27·10−3 (22.70)
10−4 2.21·10−5 (22.39) 2.27·10−5 (22.39) 2.29·10−5 (22.39) 2.30·10−5 (22.39)
10−6 2.21·10−7 (22.39) 2.27·10−7 (22.39) 2.29·10−7 (22.39) 2.30·10−7 (22.39)

Table 1. Absolute norm ofN2(M−MS) and, in parenthesis, the condition number
of MS .

Rigid Bottom Side Experiment

In Tabs. 2, numerical results with a rigid bottom side of the domain are reported
(see Fig. 1(right)), i.e. u = 0 on x = 0. We observe that also in this case MS converges
toM for µ tending to zero and a behavior similar to the previous case has been observed
for the condition number, but it is not reported here.

µ N = 8 N = 16 N = 32 N = 64

104 4.4× 10−1 (0.30) 4.4× 10−1 (0.36) 4.4× 10−1 (0.38) 4.4× 10−1 (0.39)
102 4.3× 10−1 (0.62) 4.3× 10−1 (0.63) 4.3× 10−1 (0.63) 4.3× 10−1 (0.63)
1 1.6× 10−1 (0.95) 1.7× 10−1 (0.95) 1.7× 10−1 (0.95) 1.7× 10−1 (0.95)

10−2 2.9× 10−3 (0.99) 3.1× 10−3 (0.99) 3.1× 10−3 (0.99) 3.1× 10−3 (0.99)
10−4 3.0× 10−5 (1.00) 3.1× 10−5 (1.00) 3.2× 10−5 (1.00) 3.2× 10−5 (1.00)
10−6 3.0× 10−7 (1.00) 3.1× 10−7 (1.00) 3.2× 10−7 (1.00) 3.2× 10−7 (1.00)

Table 2. Absolute norm ofN2(M −MS) and, in parenthesis, the sum of the entries
of MS .

The main difference concerns the mass preservation. With these boundary con-
ditions we observe that the total mass is decreasing when µ̂→∞.

Different Boundary Conditions and Finite Element Couples

A similar behavior has been observed in numerical experiments performed on
different boundary conditions, namely rigid bottom and top side and confined compres-
sion.

Employing Q1-Q1 FE spaces, we obtain that the mass is preserved with min-
imal boundary conditions and it is a function of µ̂ when more complicated boundary
conditions are applied. The condition number of MS is infinity since it is singular em-
ploying FE spaces of the same order. When µ̂ → 0, the matrix MS is converging to a
mass matrix whose local matrix built on the reference element is
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M` =
1

48

∣∣∣∣∣∣∣∣
5 3 3 1
3 5 1 3
3 1 5 1
1 3 3 5

∣∣∣∣∣∣∣∣ . (9)

MAXIMUM PRINCIPLE FOR THE SCHUR COMPLEMENT

For µ̂ → 0, the matrix MS tends to a mass matrix and hence S is the dis-
cretization of a two-dimensional diffusion-reaction problem and the argument pre-
sented in [GLV03] can be applied. In order to ensure that S enjoys the M-matrix prop-
erty, the following three conditions are sufficient:

1) Sii > 0

2) Sij ≤ 0 i 6= j

3) Sii ≥
∑i−1

j=1 |Sij|+
∑N+1

j=i+1 |Sij| ∀i

For a matrix derived from a FE discretization, a sufficient condition for being
an M-matrix is that each local matrix enjoys the same property. The local matrix S` is
the sum of a local Laplacian τ k̂C` and a local mass matrix h2M`, where

C` =
1

6

∣∣∣∣∣∣∣∣
4 −1 −1 −2
−1 4 −2 −1
−1 −2 4 −1
−2 −1 −1 4

∣∣∣∣∣∣∣∣ (10)

and

M` =
1

36

∣∣∣∣∣∣∣∣
4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4

∣∣∣∣∣∣∣∣ . (11)

Properties 1) and 3) are trivially satisfied for matrix S`. In order for the property 2) to
hold, the requirement is that

−τ k̂1

6
+ h2

1

18
< 0,

resulting in a lower bound for the discretization step-size

τcrit =
h2

3k̂
=

h2

3kB
(12)

The limit above holds for quadrilateral elements employing Q2-Q1 finite elements.
This formula is the extension of (1) and (2) to the two-dimensional case. As in (2), the
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Figure 2. Pressure distribution after the first time step: N = 16 left and N = 24
right.

limit depends on the bulk modulus B. The limit case for µ̂→ 0 also corresponds to the
limit of V&V but with a larger numerical constant.

In the Q1-Q1 case, the maximum principle argument gives to the following
limit:

τ >
3h2

8k̂
=

3h2

8kB
. (13)

As observed in [AL92], the use of FE spaces of the same order gives rise to a stricter
limit on the time-step.

NUMERICAL TEST

In this section we compare the limit presented in the previous section with the
V&V limit. The domain is the unit square and the physical parameters [GGF+12] are:

• µ = 0.3137 Pa m−2

• B = 0.6703 Pa m−2

• k = 3.6454 m4 Pa−1 s−1

In this numerical experiment, we consider the boundary conditions shown in
Fig. 1(right) for the displacement, while for the pressure we set p = 0 at the bottom
side and p = 0.5 Pa at the top side. Employing a time step τ = 2.5 × 10−4 s, we have
two different limits NV and NF for the V&V condition and our approach, respectively.
Inverting (1) and (13) we find NV = 16 and NF = 24.

In Fig. 2 the numerical results with the two limits are reported. In the left plot,
we can observe that the resolution given by the V&V limit is not enough to detect the
boundary layer while with the limit presented in this paper no instabilities occur.
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Figure 3. Minimum magnitude of the entries in the matrix (triangles) and minimum
magnitude of the entries connected to the boundary (circle).

The M-matrix property ensures that the entries of the inverse Schur comple-
ment are non-negative. The loss of this discrete maximum principle results in negative
entries, especially in the elements near the boundary. A similar effect can be observed
also if µ is of the same order of magnitude of B. In Fig. 3, we plot the minimum entry
of the S−1 and the minimum entries of the nodes that are connected to the boundary.
We observe that both entries become constant when N ≥ 18. This shows that our limit
is strict enough for ensuring that no change of sign of the entries near the boundary
occurs.

CONCLUSIONS

In this work, we presented an approach to study the source of instabilities in the
numerical simulation of the Biot model. Employing a maximum principle argument for
the Schur complement of the system, we obtained a lower bound for τcrit that ensures
that no oscillations occur and that the grid is fine enough to resolve the boundary layer
of the problem. The limit has been found by studying under which condition the Schur
complement of the system is an M-matrix. In the two-dimensional case, this argument
is valid only for µ � B, but the presented limit seems to provide a stricter condition
that ensures that the grid is fine enough. Numerical experiments have been presented
in the two-dimensional case but our methodology is readily applicable for the compu-
tation of the constant in two- and three-dimensional cases, with different FE couples,
and on different element types.
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