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Summary  

Inflammasomes are intracellular multiprotein signaling platforms that initiate 

inflammatory responses in response to pathogens and cellular damage. Active 

inflammasomes induce the enzymatic activity of caspase-1 resulting in the induction of 

inflammatory cell death, pyroptosis, and the maturation and secretion of inflammatory 

cytokines IL-1β and IL-18. Inflammasomes are activated in many inflammatory diseases, 

including autoinflammatory disorders and arthritis, and inflammasome-specific therapies 

are under development for the treatment of inflammatory conditions. In this review, we 

outline the different inflammasome platforms and recent findings contributing to our 

knowledge about inflammasome biology in health and disease. In particular we discuss the 

role of the inflammasome in the pathogenesis of arthritic diseases including rheumatoid 

arthritis, gout, ankylosing spondylitis and juvenile idiopathic arthritis, and the potential of 

newly developed therapies that specifically target the inflammasome or its products for the 

treatment of inflammatory diseases. 
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INTRODUCTION 

Inflammasomes are molecular complexes formed within the cytosol of innate immune cells 

1. Upon activation, these signaling platforms acquire a proteolytic activity that initiates 

inflammatory events such as the maturation of the pro-inflammatory cytokine interleukin 

1β (IL-1β) 2. Inflammasomes can detect various insults including the presence of pathogens 

and tissue damage 3. While the main physiological function of inflammasomes is to elicit 

an immune response and to contribute to the maintenance of tissue homeostasis and repair, 

deregulated inflammasome activation can be harmful. Several inflammasomes are directly 

linked to hereditary and acquired autoinflammatory diseases 4. The clinical importance of 

inflammasomes has also been demonstrated in diseases with a more complex etiology 

characterized by inflammation and tissue damage. Excess inflammasome activation has 

been shown to contribute to cancer, metabolic disorders including type 1 and type 2 

diabetes, neurodegenerative diseases and autoimmunity such as in systemic lupus 

erythematosus (SLE). Increased inflammasome response has also been suggested to be a 

hallmark of the aging process 5.  

Several pathologies of the joint are linked to aberrant inflammasome engagement. This was 

investigated in patients with gout, rheumatoid arthritis (RA), and juvenile idiopathic 

arthritis (JIA) 6.  

Understanding the mechanisms leading to the activation of inflammasomes in 

physiological and pathological conditions, will ameliorate the diagnosis and treatment of 

aberrant inflammation including in diseases with arthritis. Extensive efforts have been 

deployed in the last two decades to characterize how the different inflammasomes are 

activated or regulated. Several key discoveries have dramatically improved our 
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understanding of these pathways and led to the development of new therapeutic strategies 

aimed at targeting downstream mediators. Drugs that could directly target inflammasome 

assembly are being developed and could provide valuable tools to dampen inflammation 

in diseases with aberrant inflammasome activation. In this review we discuss major 

advances that improved our understanding of inflammasomes biology. We will also 

highlight several key questions that are still open. In particular, we will focus on how the 

different inflammasomes contribute to different arthritic disease.  

 

NLRs function as sensors of pathogen and cellular perturbations 

Classical inflammasome pathways are engaged by the oligomerization of pattern-

recognition receptors (PRR) following direct or indirect recognition of pathogen effectors 

or perturbations in cellular homeostasis (Figure 1). Among these receptors, the nucleotide-

binding leucine-rich repeat receptors (NLRs) were among the first characterized. These 

proteins are typical PRR that can assemble signaling platforms with specific enzymatic 

activities, often referred under the generic name of signalosomes 7. Several NLRs such as 

NLRP3 can form molecular structures harboring the enzymatic properties of typical 

inflammasomes. The generic modular organization of NLR proteins is formed by a 

conserved tripartite domain structure consisting of a N-terminal recruiting domain, a 

central nucleotide-binding domain that is capable of oligomerization, and a C-terminal 

leucine rich repeat (LRR) domain that regulates the assembly of the complex. This modular 

organization is found in several innate immune pathways in mammals as well as in plants 

where they form the largest family of defense molecules 8,9. While plant and mammalian 

NLRs are structurally and functionally very similar, they are believed to be the product of 
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convergent evolutions 10, indicating that this successful modular architecture may 

underline a possible conserved strategy of cellular host defenses. 

The central conserved region of plant and mammalian NLRs consists of a NTPase domain. 

This domain is found in a widespread family of signal transduction ATPases with 

numerous functions that includes the apoptosome protein Apaf-1 11.  The NTPase domain 

is believed to function as a very rapid molecular switch`, that cycles between an adenosine 

5′-diphosphate (ADP)–bound inactive state and an adenosine 5′-triphosphate (ATP)–bound 

active state 12. Upon engagement, Apaf-1 oligomerizes to assemble an apoptosome 

complex. Similarly, NLRs assemble specific signalosomes such as inflammasomes. Both 

active inflammasomes and the apoptosome recruit caspases that will provide proteolytic 

effector functions. The apoptosome recruits directly the proapoptotic caspase-9. Similarly, 

the NLRC4 protein recruits directly the inflammatory caspase, caspase-1, while other 

NLRs such as NLRP3 recruit caspase-1 indirectly via the adaptor protein ASC 13 (Figure 

1A).  

The NLRP3 inflammasome can be activated by a wide variety of stimuli, apparently 

unrelated. It can detect pathogens, including bacteria and viruses, as well signals released 

by exposure to damaging particles or drugs thereby eliciting a sterile inflammation. Most 

NLRP3 activators trigger a form of cellular stress that correlates with changes in ion 

content of the cell. A typical hallmark of NLRP3 activation is the efflux of potassium ions 

(K+) 14, a phenomenon that is also required for the assembly of the apoptosome 15.  Another 

feature of NLRP3 activation is the disruption of the trans-Golgi network (TGN) 16. NLRP3 

activation was also observed upon disruption of other organelles such as lysosomal rupture, 

and mitochondrial malfunction (reviewed in 17). In response to various stimuli, NLRP3 
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translocates to disrupted TGN leading to inflammasome formation 16. This, suggests that 

TGN disruption could be the central sensing mechanism of NLRP3 activation possibly 

downstream of signals emerging from damaged mitochondria or lysosomes.  

The pro-inflammatory role of NLRP3 was initially demonstrated by the discovery of its 

role in promoting cryopyrin-associated periodic syndrome (CAPS) 18. CAPS is an inherited 

autoinflammatory disorder characterized by systemic inflammation with fever often 

presenting with skin rashes and central nervous system inflammation. While arthralgia is 

common in patients with CAPS, arthritis is less frequent 19. Inflammation in CAPS is 

caused by gain-of-function mutations in NLRP3 leading to aberrant inflammasome 

activation and direct initiation of an inflammatory cascade20. These findings demonstrated 

that inflammasome activation per se was sufficient to initiate a full-blown systemic 

inflammation in humans. 

The NLRP1 inflammasome differs from other NLRs by the addition of a C-terminal 

extension made of a FIIND domain and a CARD. Caspase-1 is mainly recruited to NLRP1 

through interactions with the C-terminal CARD (Figure 1A). In the process of activation, 

the FIIND undergoes self-cleavage, an event that is required for activation. NLRP1 

responds to the enzymatic activities of pathogen effectors such as the Lethal Toxin (leTox) 

from Bacillus anthracis 21as well as by non-pathogen-associated triggers such as the drug 

Val-boro Pro, an anti-cancer molecule that inhibits the cytosolic serine proteases Dpp8 and 

Dpp9 22,23.  

Gain of function mutations within NLRP1 have bene described in humans to cause 

uncontrolled inflammasome activation promoting a familial autoinflammatory skin disease 

associated with cancer 24. Other mutations within NLRP1 have been linked to 
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autoinflammation with arthritis and dyskeratosis (AIADK) also known as NAIAD 

(NLRP1-associated autoinflammation with arthritis and dyskeratosis)25. Moreover, 

polymorphisms in NLRP1 were found to be associated with immune disorders such as 

vitiligo and rheumatoid arthritis 26, further highlighting the importance of this pathway in 

humans as a host defense pathway whose alteration can predispose to autoimmune or 

autoinflammatory diseases 27.  

CARD8 is a caspase recruitment domain-containing protein, also known as TUCAN or 

Cardinal, which is structurally very similar to NLRP1 Although its N-terminus is much 

shorter than that of NLRP1, CARD8 also contains a FIIND domain and a CARD at its C-

terminus. CARD8 was initially discovered as a 48kDa protein expressed in various tissues 

and cell types 28. To date, up to five mRNA isoforms have been described that encode for 

CARD8 proteins with divergent N-terminal but equal C-terminal regions 29. CARD8 does 

not respond to pathogen effectors including Lethal Toxin therefore CARD8 was considered 

to be a decoy NLR which may inhibit inflammasome activation. Interestingly, CARD8 

inhibits NLRP3 inflammasome activity but not NLRP1. In fact, similar to NLRP1, CARD8 

activates caspase-1 and induces pyroptosis when cells were treated with Val-boro Pro 30.  

CARD8 knock-down resulted in enhanced IL-1β secretion when using NLRP3 activating 

stimuli. Furthermore, CARD8 was unable to bind to CAPS-associated mutant NLRP3 

possibly contributing to the overactive NLRP3 inflammasome in these patients 31. CARD8 

has evolved to play a role in the delicate balance of activating and inhibiting signals that 

determine NLRP3 inflammasome activity. Disturbance of such balance may contribute to 

the development of inflammatory diseases which is probably why CARD8 polymorphisms 

are often associated with risk for arthritic diseases 32-36. 
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Other NLR inflammasomes including the NLRC4 and NLRP12 inflammasome have been 

linked to autoinflammatory diseases (review in13). Inflammasomopathies are defined as 

inflammasome-related diseases. These rare conditions appear to have a wide spectrum of 

phenotypes that make often the diagnosis challenging. Increased awareness of these rare 

diseases has facilitated the identification of several inflammasomes, including some that 

could contribute to inflammation in complex diseases such as arthritis. 

 
Non-NLR inflammasomes  
 
In addition to NLRs other innate immune sensors have evolved to form inflammasomes 

(Figure 1B). Among these, the Pyrin inflammasome is the best understood. Pyrin was 

initially identified as the product of the MEFV gene involved in Familial Mediterranean 

fever (FMF) 37,38. 

FMF is the most frequent monogenic autoinflammatory condition described so far. It 

differs from other inflammasomopathies in that it is inherited mostly in an autosomal 

recessive fashion, despite the fact that in FMF patients, systemic inflammation is caused 

by a gain of function in the pyrin protein causing aberrant activation of the pyrin 

inflammasome 39. It is not known why patients with only one allele mutated only rarely 

show signs of FMF. It could indicate a dose effect of MEFV mutations in FMF or that the 

presence of the natural allele dampens constitutive pyrin inflammasome formation in 

heterozygous carriers. 

Several musculoskeletal symptoms are present in FMF, including arthralgia and arthritis. 

Moreover, in individuals without apparent signs of FMF but harboring a heterozygous 

mutation in the MEFV gene, increased prevalence of seronegative rheumatoid arthritis was 

observed 40. Evidences also indicate that the MEFV gene might participate in the 
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pathogenesis of systemic onset juvenile idiopathic arthritis 41. These findings also revealed 

that gain of function in one of the MEFV alleles is sufficient to increase the risk of 

autoinflammatory arthritis, further indicating that the pyrin inflammasome may contributes 

to joint inflammation.  

The AIM2 inflammasome may also contribute to arthritis. The protein AIM2 detects free 

DNA. It assembles an inflammasome in the context of released viral and bacterial DNA as 

well as self-DNA exposed by damaged cells (review in42). In mice, using a model of 

arthritis caused by deficiency in DNAse II, AIM2 inflammasome activation was found to 

contribute to joint inflammation 43,44. Additional studies are required to investigate whether 

tissue damage or infections in the joint may trigger AIM2, thereby contributing to 

inflammation in human arthropathies. 

 

Inflammatory signals triggered by inflammasomes activation 

Inflammasome assembly originates from the activation of different platforms that respond 

to specific stimuli. Despite this complexity that probably reflect an evolutionary race aimed 

at the sensing of harmful conditions, all inflammasomes converge to the activation of one 

enzymatic function; the activation of inflammatory caspases, mainly caspase-1.  Two main 

consequences result from caspase-1 activation: cell death and cytokine release.  

IL-1β and IL-18 are the two cytokines that rely the most on caspase-1 activation. Both 

these cytokines are synthetized as precursors that require proteolytical cleavage to be fully 

active. Caspase-1 is the main protease for IL-1β and IL-18 maturation, therefore these two 

inflammatory mediators are typical products of inflammasome activation capable of 

communicating the inflammatory signal onto cells harboring IL-1β and/or IL-18 receptors 
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(Figure 2). Several inflammasomopathies can be efficiently treated with drugs that block 

these cytokines, particularly IL-1β. This is particularly evident in CAPS patients, where 

treatment with biologics that block signaling by the IL-1 receptors dampens most signs of 

systemic inflammation 45.  

Another consequence of inflammasome assembly and caspase-1 activation is the induction 

of pyroptosis. Pyroptosis is a pro-inflammatory form of cell death that is associated with 

the disruption of cellular membranes leading to the extracellular release of cytosolic 

content. IL-1β and IL-18 are synthetized in the cytosol and do not carry leader sequences 

to target them to the secretory pathway. These cytokines cannot be released by the 

“classical” pathway of secretion. In contrast the disruption of plasma membrane integrity 

observed upon inflammatory caspase activation may present the main mechanism by which 

these cytokines are released following proteolytic maturation 46. While cell death could be 

a prerequisite for the release of IL-1β and IL-18, not all cells commit to pyroptosis upon 

inflammasome assembly47,48. Therefore, alternative pathways of IL-1β and IL-18 secretion 

may exist. The identification of GSDMD as a cytosolic caspase-1 substrate, has shed some 

light on the process of pyroptosis and cytokine release 49,50. Upon cleavage GSDMD 

releases an N-terminal fragment that oligomerizes and forms pore-like structures within 

the membrane lipid bilayer. These pores have been proposed to function as conduits for 

the release of small proteins including IL-1β and IL-18 51,52. 

The formation of GSDMD pores has also been reported to disrupt membrane integrity49,50, 

a process that can trigger an adaption program aimed at repairing the damage 53. If the 

repair is unsuccessful or the damage too sizeable the GSDMD pores allow for complete 

lysis of the cell and death by pyroptosis 46.  
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While pyroptosis has been studied extensively in mice and in the context of infection with 

intracellular bacteria, its role in human inflammatory and autoimmune diseases is still 

unclear. The identification of markers and assays to monitor key features of pyroptosis in 

human tissues will help address the role of this process in humans. In particular it would 

be of interest to identify proinflammatory mediators released by damaged cells beyond IL-

1β and IL-18. It is likely that additional cytosolic components release during pyroptosis 

may contribute to aspect of inflammation and autoimmunity in damaged tissues.  

 
Cell types competent for inflammasome activation 

Inflammasome activation is a multi-step process that is tightly controlled. Most cell types 

need to be primed to become competent for inflammasome activation in vitro. This 

priming, also known as signal 1, is provided by treatment with strong proinflammatory 

stimui such as lipopolysaccharides (LPS) or phorbol myristate acetate (PMA), two 

molecules that trigger NFκB activation (Figure 2). It was postulated that these signals may 

function by promoting the induction of inflammasome components. Signal 1 may also 

promote postranslational modifications of inflammasome components required for 

activation 17. However, the exact nature of signal 1 and its function is still debated. 

Importantly, little is known about the signals that make cells competent for inflammasome 

activation in vivo in humans. The importance of signal 1 is illustrated in patients with gain 

of function mutations within inflammasome platforms such as in CAPS. While myeloid 

cells from these patients have constitutive activation of the NLRP3 protein, actual 

inflammasome assembly is only observed upon treatment of these cells with LPS 20. In 

these patients, yet unidentified signals may provide the signal 1 that contribute to IL-1β 

mediated systemic inflammation. Because there is no clear evidence that infectious events 
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may initiate inflammatory flares in CAPS, signal 1 may originate from endogenous 

processes such as low-grade inflammation involved tissue repair and homeostasis 54. 

Understanding the exact nature of signal 1 in patients with inflammasomopathies may shed 

some light on the physiological setting that contributes to inflammasome activation 

upstream of its assembly.  

It is likely that the nature of signal 1 will differ between cell types and the different 

inflammasome platforms. The context of inflammasome activation is therefore key and 

may contribute to the development of inflammasome related diseases.  Inflammasomes are 

mostly studied in cells of myeloid origin such as monocytes, macrophages, neutrophils, 

and dendritic cells. These cell types show different responses to inflammasome stimuli, for 

example, neutrophils are less susceptible to pyroptosis than macrophages47. In mice it was 

shown that differentiation protocols used to produce dendritic cells and macrophages 

determine the response to inflammasome inducers, further demonstrating how context 

affects inflammasome activation and the difficulty to extrapolate the nature and 

contribution of signal 1 from in vitro studies to physiological or pathological conditions 55.  

While poorly understood, inflammasome activation can also occur in non-phagocytic cells, 

such as T cells, endothelial cells, and epithelial cells. For example, in immune and non-

immune cells of the gut, inflammasome activation such as the NLRP6 and NLRC4 

inflammasomes contribute to the maintenance of gut microbiota and gut–brain homeostasis 

56. In T cells, the AIM2-like protein IFI16 has been shown to detect products from HIV 

infection to promote T cell pyroptosis 57.  In another study it was proposed that the 

complement cascade can engage the NLRP3 inflammasome in human T cells to direct T 

cells differentiation towards Th1 lineage 58. The T cell inflammasome has also been 
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suggested to contribute to autoimmunity. Studies in mice have shown a role for the 

inflammasome in promoting Th17 differentiation in a mouse model of autoimmune 

encephalomyelitis 59.  

Different inflammasome platforms have evolved to protect against pathogens and 

perturbations of cellular homeostasis. Inflammasomes aim for restoration of damage by 

initiating immune responses and repair mechanisms. When activation of inflammasome 

platforms is not in balance, its inflammatory effects contribute to unwarranted and 

damaging reactions such as the inflammation observed in arthritic diseases including RA 

and gout. 

 

Inflammasome in rheumatoid arthritis 

The systemic autoinflammatory disease characteristic for rheumatoid arthritis (RA) 

primarily affects joints and is driven by chronic synovial inflammation leading to 

irreversible cartilage degradation and joint destruction 60,61. With approximately 1% of the 

population affected worldwide 62, RA is among the most common inflammatory diseases 

and therefore an active topic of investigation. The involvement of inflammasomes in the 

pathogenesis of RA has been demonstrated in various studies in animal models, in genetic 

association studies as well as in samples from patients. 

In search for specific biomarkers for RA, the cytokine levels in sera and synovial fluid of 

RA patients have been investigated. Increased concentrations of many inflammatory 

cytokines were found in RA sera when compared to healthy controls, most prominently 

TNF, IL-6 and IL-1β 63. In particular the IL-1β of both serum and synovial fluid increased 
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in active disease and was associated with higher IL-18 levels in the synovial fluid 63. This 

argues for a prominent role of the inflammasome in the pathogenesis of RA (Table 1). 

Dampening of essentially all canonical inflammasomes, by gene knock-out of ASC, 

protected mice from developing arthritis in a collagen-induced arthritis model 64, and 

attenuated arthritic symptoms in an antigen-induced arthritis model 65. In contrast, gene 

knock-out of either NLRP3 or caspase-1 rendered the mice susceptible to arthritis induction 

in both models. These results are surprising given that in following years multiple studies 

using animal models of arthritis showed a significant role for NLRP3 inflammasome 6. 

These differences may reveal the involvement of multiple inflammasomes in RA whose 

function depends on the context and the presence of specific signal 1 promoting conditions. 

NLRP3 role in RA is supported by several observations. The severity of arthritis clinical 

score showed a positive correlation with NLRP3 levels in synovial tissue 66 and clinical 

features of arthritic disease could be inhibited by suppression of the NLRP3 inflammasome 

in macrophages 67. Furthermore, in an adjuvant-induced arthritis model in rats, 

upregulation of NLRP3 inflammasome components was observed in fibroblast-like cells 

isolated from the synovium 68,69. These results are in line with results obtained in mice 

lacking the A20/Tnfaip3 gene which predispose them to a RA-like disease. In this animal 

model of RA, the expression of NLRP3 inflammasome components are enhanced in 

macrophages and NLRP3 deficiency suppressed arthritis development and cartilage 

destruction 70. In addition, deficiency of caspase-1 or IL-1 receptor diminished RA-

associated inflammation and joint destruction in this study. The importance of IL-1 was 

also demonstrated in a mouse model of chronic arthritis, in which cell wall fragments of 

Streptococcus pyogenes are injected into the joint to induce inflammation 71. Mice deficient 
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for IL-1β were protected from progressing to chronic arthritis 71,72. Moreover, IL-1 

deficiency was shown to protect against antibody-induced arthritis as well 73.  

In human studies, evidence also exists that supports a role for NLRP3 inflammasome 

pathway in RA. Gene expression of NLRP3, ASC, caspase-1, IL-1β and IL-1R were 

significantly higher in PBMCs of RA patients compared to healthy controls 34,74-76 as well 

as the secretion of IL-1β 74,77. Single nucleotide polymorphisms at the NLRP3 locus are 

associated with RA susceptibility 34,75 and correlate with higher disease activity 78. A 

previously found NLRP3 polymorphism was shown not to associate with RA susceptibility 

by itself, however combined with a polymorphism within CARD8, a possible regulator of 

the inflammasome, the NLRP3 polymorphism associated with RA susceptibility and 

severity 33. In addition, CARD8 expression was lower in PBMCs of RA patients compared 

to healthy controls 34. Similar to PBMCs, cells directly isolated from the synovial fluid 

showed increased expression of inflammasome genes 79. In particular myeloid and 

endothelial cells showed enhanced expression of NLRP3, ASC and caspase-1 and were 

proposed to be the primary source of IL-1β secretion in the synovium 80. 

Inflammasome activity results in maturation of IL-1β, a cytokine heavily implicated in RA 

pathogenesis, but also IL-18. High levels of IL-18 in patients sera and synovial fluid have 

been described 63,81,82 and polymorphisms in the IL-18 gene locus were associated with 

increased risk for RA 83. Animal studies suggest that IL-18 contributes to collagen-induced 

arthritis in rats 84 as well as in a mouse models of RA elicited by treatment with the TLR2 

agonist zymosan 85. On a functional level, IL-18 was shown to promote chemotaxis of 

monocytes to the synovium 85 and angiogenesis within the arthritic joint 86. Moreover, IL-
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18 was also able to induce fibroblast-like synoviocytes to secrete pro-osteoclastic cytokines 

suggesting a role in bone resorption 87.  

Finally, a single NLRP1 gene polymorphisms was identified as a risk factor for RA 88. This 

particular polymorphism resulted in increased expression of NLRP1. In an adjuvant-

induced arthritis model in rats increased NLRP1 expression was also observed 89, and 

inhibition of NLRP1 inflammasome ameliorated the symptoms of arthritis in AIA rats as 

well as CIA mice 89-91. The prominent role of NLRP1 inflammasome in CIA mice may 

explain why NLRP3 deficiency had limited effect on arthritis induction in this animal 

mode. While the pathways and mechanisms leading to inflammasome activation is RA are 

still poorly understood, the above studies clearly show the involvement of the 

inflammasome platform and its downstream cytokines IL-1β and IL-18 in RA disease. 

Inflammasome-targeted therapies may therefore benefit RA patients and will be discussed 

below.  

 

Inflammasome in gouty arthritis 

Deposition of monosodium urate (MSU) crystals or calcium pyrophosphate dehydrate 

(CPPD) crystals in the joint underlie the development of gout or pseudogout, respectively. 

Characteristic for these autoinflammatory diseases are the flares of inflammation, causing 

fever as well as severe pain and swelling of the joint(s). Since gout has a clear cause, 

detection of crystals in the synovial fluid is adequate for diagnosis and the demand for large 

studies to identify biomarkers remained inexistent. Rather, studies focused on identifying 

risk factors for the disease and cellular mechanisms by which crystals evoke inflammatory 

reactions.  
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Several SNPs in inflammasome-relates gene loci were identified as risk factor for gout, 

including NLRP3 92, IL-1β 93 and CARD8 36 (Table 1). Moreover, genetic variants of 

PPARGC1B (peroxisome proliferator-activated receptor-y coactivator 1a) that resulted in 

increased expression of NLRP3 and IL-1β in PBMCs were significantly associated with 

gout 94. High levels of NLRP3, caspase-1, IL-1β, and IL-18 were detected in patient sera 

and/or synovial fluid 92,95-97. IL-1 signalling, as a result of inflammasome activation, is a 

very efficient signal 1 that can increase the expression of inflammasome components, 

therefore increased expression of inflammasome components may indicate the presence of 

an active inflammasome in these patients. 

Evidence from inflammasome-deficient mice supports a role for the inflammasome 

complex in gout pathology. Murine models of crystal-induced inflammation mimic the 

complex interplay that occurs between resident and infiltrating immune cells in an inflamed 

joint by injection of MSU crystals into the joint or within the peritoneal cavity 98. 

Accordingly, neutrophil infiltration towards the MSU injection site was reduced in the 

absence of functional NLRP3, ASC, or caspase-199,100. Furthermore, MSU-induced 

secretion of IL-1β was prevented in macrophages lacking NLRP3, ASC or caspase-1 100,101. 

Similar results were obtained using CPPD crystals 100.  Interestingly, inhibition of 

inflammation was observed to be more robust and sustained in IL-1R deficient animals 

compared to ASC or caspase-1 deficient animals 100, indicating that in absence of 

inflammasomes pathogenic microcrystals can activate an alternative pathway of IL-1 

activation. This could be mediated by IL-1α or may involve other proteolytic event that 

could promote IL-1β maturation such as the release of neutrophil serine proteases 72. 
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MSU crystals were found to activate the complement cascade leading to active complement 

subunits C3a and C5a 102,103. Specifically, C5a induced neutrophil infiltration towards the 

site of injection and activated NLRP3 inflammasome in peritoneal macrophages through 

ROS production 103. Inhibition of C5a resulted in diminished IL-1β release 102. 

Interestingly, C5a was also found to promote NLRP3 activation in T cells 58, indicating 

that this mechanism of NLRP3 activation is relevant beyond myeloid cells and 

microcrystal-induced inflammation.  

In vitro, the addition of MSU per se did not induce inflammasome activation in murine 

BMDM or human PBMC 104,105 and was shown to require a prior priming (signal 1) of the 

cells. Various stimuli are able to prime monocytes/macrophages for inflammasome 

activation by pathogenic crystals. Indeed, priming with serum amyloid A (SAA), TLR 

ligands, or TNF warranted the capacity of MSU to activate the inflammasome and induce 

release of IL-1β in human cells 104-108. Of interest, also soluble uric acids were able to 

deliver the priming signal 109,110 however the precipitation of uric acid into MSU crystals 

was necessary for NLRP3 inflammasome activity 110. These results suggest that 

hyperuricemia, the condition of elevated systemic uric acid levels which precedes gout 

pathology, may provide the priming signal that sets of inflammasome activation once MSU 

crystals are formed and deposited. 

 

Inflammasome in spondyloarthritis 

This type of arthritis, often called ankylosing spondylitis (AS), primarily affects the spinal 

and sacroiliac joints and is characterized by vertebral fusions and bone erosions that cause 

severe and chronic pain 111,112. Of the inflammasome-related genes, those belonging to the 
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IL-1 family have been implicated in the pathogenesis of AS. Polymorphisms in the IL-1α 

or IL-1β gene locus associated with susceptibility for AS 113-117. Furthermore, a genetic 

variant of the IL-1RN allele was significantly increased in AS patients compared to healthy 

controls 115. Increased levels of IL-1β were measured in PBMCs of AS patients and active 

caspase-1 could be detected in AS synovial fluid 97,118. Although caspase-1 activity and IL-

1 release suggest a role for the inflammasome in AS, functional data is lacking to determine 

a biological relevant role for the inflammasome in this disease. A recent study comparing 

gene expressions between PBMCs of AS patients and healthy controls showed increased 

expression of NLRP3, ASC, caspase-1 and IL-1β in AS 119, yet polymorphisms in the 

NLRP3 region were not associated with the risk of AS 120. In contrast, the C10X 

polymorphisms of CARD8 was found to be associated with a decreased risk of AS 120. 

 

Inflammasome in pediatric arthritis 

The clinical spectrum of juvenile idiopathic arthritis (JIA) ranges from oligoarthritis with 

four or less joints affected, to polyarticular arthritis having more joints affected and higher 

damage, to systemic arthritis that affects many joints and also includes skin rashes and 

fever attacks (systemic-onset JIA; soJIA). Many genetic studies in JIA have been 

performed, but only a few studies link inflammasome to JIA pathogenesis. In a Taiwanese 

population a polymorphism in NLRP3 was associated with increased risk for 

oligo/polyarticular arthritis 35. A polymorphism in IL-1Ra, a negative regulator if IL-1 

signaling, was found associated with JIA patients in an Iranian population, however it was 

not specified which type of JIA was involved 121. Cytokine profile analysis of blood plasma 

revealed no differences in any of the inflammasome-activated cytokines IL-1α , IL-1β or 
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IL-18 between patients and healthy controls 122 suggesting a modest role for the 

inflammasome in oligo/articular JIA pathology.  

Systemic-onset JIA (soJIA) differs from other JIA types in pathogenesis. Its clinical 

outcome is more severe than other juvenile arthritis types and patients are at additional risk 

for developing macrophage activation syndrome (MAS) 123. Inflammasome-activated 

cytokines IL-1β and IL-18 play a significant role in soJIA. When serum of soJIA patients 

was added to healthy donor PBMCs, upregulated gene expression of IL-1β and IL1R was 

observed and secretion of IL-1β was detected 124. Direct stimulation of patient PBMCs also 

resulted in high levels of IL-1β release which was not observed in healthy donor PBMCs 

124. IL-18 serum as well as synovial fluid levels were markedly increased in soJIA and were 

shown to have a high predictive value for disease activity 122,125. Moreover, IL-18 may be 

indicative of risk to develop MAS 126. 

Because of its atypical clinical presentation, soJIA is classified as an autoinflammatory 

rather than autoimmune disorder. Symptoms of classical autoinflammatory diseases 

including CAPS and FMF overlap with soJIA including recurrent fever episodes, skin 

rashes, joint swelling and systemic inflammation 127. This suggest a possible role for 

inflammasome dysfunction in soJIA.  

Further evidence for the contribution of inflammasome biology in rheumatic diseases 

comes from the efficacy of inflammasome-targeted therapies used in rheumatic patients. 

Over the years, treatment of rheumatic diseases has evolved from complete suppression of 

inflammation with medications like glucosteroids to targeting of specific inflammatory 

pathways using specific pathway inhibitors and refined biological therapies. 
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Inflammasome-targeted therapies in arthritic diseases 

The prominent role for inflammasomes in different diseases including monogenic 

autoinflammatory diseases and more complex inflammatory disorders have provided 

strong interest in the identification and development of strategies to decrease 

inflammasome responses. Two strategies have been considered (Figure 3). The first 

approach aims at targeting the inflammasome specific cytokines IL-1β and IL-18. The 

second strategy aims at directly inhibiting specific inflammasome components.  

IL-1/IL-18 inhibitors 

Anakinra is a recombinant version of the naturally occurring endogenous IL-1ra, which is 

regularly used in the treatment of RA and autoinflammatory diseases. IL-1ra binds to the 

IL-1 receptor complex (IL-1R) without triggering a cellular signaling cascade. This binding 

results in competitive inhibition of the proinflammatory effects of IL-1. Anakinra has been 

used in RA for almost two decades (Table 1). Alternatives to Anakinra include Rilonacept 

a recombinant protein which function as a soluble decoy to prevent activation of IL-1RI 128 

and Canakinumab, a human monoclonal antibody targeting IL-1β. This antibody was 

approved for CAPS ten years ago and turned out to be very effective at inhibiting its target. 

However, in contrast to Anakinra and Rilonacept that block the biological activities of both 

IL-1β and IL-1α, Canakinumab does not block signaling by IL-1α.  

The importance of IL-1β in inflammatory diseases was supported by the results of the 

Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS) 129. This large-

scale trial tested whether decreasing inflammation with Canakinumab reduced the risk of 

a second cardiovascular event in patients who previously experienced a heart attack or 

stroke. The trial demonstrated a benefit of IL-1β inhibition in atherosclerosis. Secondary 
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exploratory analysis of a the CANTOS trial also confirmed that IL-1β blockade is of 

interest in other diseases including gout130-132.   

Other biologics have been developed to block the IL-1 pathway, however are currently not 

(yet?) used in clinics. The monoclonal antibody Lutikizumab (ABT-981) has been 

engineered to target both IL-1α and IL-1β 133. Gevokizumab is an IL-1β antagonistic 

antibody that binds strongly to IL-1β without inhibiting its recruitment to the IL-R. It 

prevents the engagement of the IL-1β-IL-1R signaling complex through its allosteric 

modulation properties134.  Furthermore, reagents inhibiting the IL-1R directly have been 

developed. The AMG108 antibody binds and neutralizes IL-1R, leading to a complete 

abrogation of IL-1β and IL-1α signaling 135.  

Inhibition of IL-1β was found to be very effective in typical autoinflammatory diseases 

such as soJIA 136. Similarly, CAPS patients with gain of function NLRP3 respond 

significantly to IL-1β inhibition137 indicating that this cytokine is the most relevant product 

of NLRP3 activation in humans. 

In contrast, clinical studies suggest that the efficacy of IL-1β inhibition is modest compared 

to strategies targeting TNF in RA 138. This may indicate that beyond inflammasome 

activation, other inflammatory pathways are predominant in RA. Alternatively, this could 

support the hypothesis that other products of inflammasome activation contribute to disease 

pathology. For example, IL-18 or danger signals released during pyroptosis could play a 

proinflammatory role in RA. 

Very few reagents are available to block IL-18 in humans. In a recent clinical trial the use 

of Tadekinig alfa, a recombinant IL-18 binding protein, showed positive results in adult-
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onset Still’s disease 139, supporting the assumption that IL-18 may contribute to 

inflammation and immune deregulation in inflammasomopathies. 

 

Caspase-1 inhibitors 

The enzymatic activity of the inflammasome is executed by caspase-1 proteases. Therefore, 

these enzymes are attractive targets for pharmacological intervention. Despite two decades 

of research no drug based on caspase inhibition has been approved yet140. The main 

challenge is the design of inhibitors that only affect the inflammatory caspases without 

interfering with proapoptotic caspases. In mice, the inhibition of caspase-1 was effective 

in models of rheumatoid arthritis, osteoarthritis and psoriasis 140,141. Vx-740 and Vx-765, 

two caspase 1 inhibitors, reached phase II clinical trials for arthritis, epilepsy and psoriasis 

but were withdrawn, partially due to liver toxicity140. New insight into the mechanisms of 

action of thalidomide, an anti-inflammatory drug that was introduced more than 50 years 

ago, showed its capacity to block caspase-1 activity 142. Thalidomide is currently tested in 

various inflammatory conditions and experimentally used for the treatment of refractory 

ankylosing spondylitis. 

Colchicine  

Colchicine is a widely available, low-cost drug with a range of anti-inflammatory 

properties that has been used in the form of plant extracts as early as 1550 BC to treat joint 

swelling143. Nowadays, colchicine is commonly used for the treatment of two 

inflammasomopathies: FMF and gout 144. Moreover, colchicine anti-inflammatory effects 

have been shown to have potential benefits in other conditions such as Behcet’s disease 
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and pericarditis. Moreover, colchicine is considered in prevention or as an add-on therapy 

to current treatment in a wider spectrum of cardiovascular diseases 145. 

How colchicine inhibits inflammation is still poorly understood. Colchicine inhibits 

microtubule polymerization, a process that is involved in a variety of cellular processes 

including maintenance of cellular integrity, signal transduction, protein traffic, and cellular 

migration. Early studies showed that colchicine treatment of monocytes exposed to gout-

inducing uric acid crystals prevented the activation of the NLRP3 inflammasome 100. It was 

therefore proposed that colchicine may impair microtubule-driven events involved in the 

assembly of the NLRP3 inflammasome upon exposure to crystals or other activating 

agonist such as nigericin 146. In contrast, colchicine has little effect in CAPS patients 

harboring constitutive activation of NLRP3 suggesting that it may impact inflammasome 

activity upstream, or in the early steps, of NLRP3 activation147.  

Colchicine efficacy in FMF has indicated that this compound may also impact the Pyrin 

inflammasome. In line with this possibility, colchicine was found to block the pyrin 

inflammasome activation by bacterial toxins and infection with C. difficile. In contrast, 

monocytes from FMF patients with gain-of -function mutations in pyrin were resistant to 

inflammasome inhibition by colchicine 148. This may suggest an increased efficacy of 

colchicine in vivo compared to in vitro experiments. Alternatively, colchicine may 

modulate an additional mechanism in FMF by targeting a feedback loop or the engagement 

of other inflammasomes such as NLRP3.  

NLRP3 inhibitors  

Increasing evidence for NLRP3 inflammasome involvement in a plethora of inflammatory 

diseases has led to a sustained enthusiasm by the industry towards the development of 
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specific inhibitors.  Development of such drugs is facilitated by studies in CAPS patients 

providing a first and robust testing ground to evaluate the efficacy and specificity of new 

molecules in blocking NLRP3-mediated inflammation in this NLRP3-driven disease. 

NLRP3 inhibition is considered for evaluation in rheumatoid arthritis, atherosclerosis, 

neurodegenerative disorders and obesity-related diseases 149. Several molecules have been 

shown to target NLRP3 150, and a number of these compounds have promising NLRP3 

inhibitory activities. 

The compound MCC950 (also known as CRID3) is the NLRP3 inhibitor that has been the 

most studied to date151,152. MCC950 inhibits NLRP3 by directly interacting with the 

NLRP3 ATPase domain, thereby blocking ATP hydrolysis and NLRP3 oligomerization 

151,153. Several studies have shown therapeutic efficacy of MCC950 in a variety of 

preclinical mouse models, including atherosclerosis, experimental autoimmune 

encephalomyelitis, diabetes, steatohepatitis and colitis 17. First, before its identification as 

a NLRP3 targeting molecule, MCC950 was discovered as an inhibitor of IL-1β activation. 

This led to the initiation of a clinical trial testing its efficacy in rheumatoid arthritis. 

Unfortunately, the trial was suspended due to drug toxicity 17.  

Similar to MCC950, a compound called Tranilast was found to bind to the NACHT domain 

of NLRP3, abolishing its ability to assemble into an inflammasome154. This molecule is an 

analogue of a tryptophan metabolite, that was initially identified as an anti-allergy drug 

and is presently used in several inflammatory and autoimmune conditions155. RA studies 

in mice have shown that treatment with Tranilast reduced disease in models of collagen-

induced arthritis156,157 and in arthritis induced by adjuvant and streptococcal cell wall 

products in rats 158. Its mode of action is still unclear and may not involve inhibition of 
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NLRP3 ATPase activity 154. Tranilast has very low adverse effects, therefore if further 

studies demonstrate its efficacy and specificity at inhibiting NLRP3, its repositioning in 

inflammasomopathies could be of great interest and may provide a new therapeutic tool 

for treating complex diseases with NLRP3 involvement.  

The compound CY-09, an analogue of the inhibitor for cystic fibrosis transmembrane 

conductance regulator channel (CFTR), was recently identified to efficiently inhibit 

NLRP3159. CY-09 specifically binds to the ATPase domain of NLRP3 thereby blocking 

NLRP3 oligomerization. Preclinical studies showed that CY-09 was efficient at decreasing 

inflammation in a mouse model of CAPS. Ex-vivo it was found to decrease IL-1β secretion 

in synovial fluid cells (SFCs) from a patient with gout 159. Therefore, this molecule could 

be a candidate for further studies in human arthritic disease.   

The Isodon plant, Rabdosia rubescens, and its extracts, were shown in East Asian herbal 

medicine to have anti-inflammatory properties.  Oridonin, a bitter tetracycline diterpenoid 

compound, was identified as the active compound of these plants extracts 160. While the 

mechanism of Oridonin is still unclear, it was shown to inhibit the NLRP3 inflammasome 

161. Oridonin decreased the ability of NLRP3 to interact with NEK7, a protein that may 

modulate its activation 161. 

OLT1177 is a small non-lipophilic molecule that was found to inhibit the NLRP3 

inflammasome 162and demonstrated suppressed joint inflammation in murine models of 

acute arthritis163. How OLT1177 blocks NLRP3 engagement is still unclear, however the 

preclinical studies in mice indicate that this molecule could be a promising compound to 

test in patients with joint disorders.  
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Several studies have suggested that certain compounds may function as inflammasome 

inhibitors including Gyburide164, INF39165, BOT-4-one 166, MNS167, Bay 11-7082168 and 

parthenolide 168. The specificity and efficacy in humans of these compounds need to be 

further evaluated. However, it is clear that the collection of putative NLRP3 inhibitors is 

growing fast. The challenge will be to identify the safest and specific compound that will 

provide the most potent therapeutic benefit to patients.  

 

CONCLUSIONS AND PERSPECTIVES 

The importance of the inflammasome in autoinflammatory diseases has become evident 

over the past twenty years. In particular genetic studies revealed a contribution of gene 

variants of inflammasome components to susceptibility for inflammatory diseases 

including RA, gout and AS (Table 1). While the functionality of some gene 

polymorphisms were uncovered, further studies are needed to elucidate the role of 

identified SNPs on inflammasome activity in the context of arthritis. Patients with arthritic 

diseases have greatly benefited from the development of inflammasome-targeting 

biologicals and will continue to do so in upcoming years. Research into the mechanisms of 

different inflammasome activation has spiked, which will fuel the possibility for designing 

highly specific and efficient inhibitors. With the recent discovery of GSDMD as a major 

driver of pyroptosis, small molecule inhibitors that block GSDMD function are expected 

to emerge for possible treatment of inflammatory conditions including arthritis. Moreover, 

clinical efficacy of the diverse selection of NLRP3 inhibitors under development will come 

from trials which are typically performed in CAPS patients. While CAPS is a rare disease, 

these inhibitors could become blockbuster drugs provided that their efficacy will be 
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confirmed in more common inflammatory diseases. To facilitate efficient transition of 

newly discovered inhibitors to (pre)-clinical studies, using human cellular models over 

animal models is imperative. Differences between human and mouse inflammasome 

biology, such as the lack of CARD8 in mice, impacts conclusions about treatment 

efficacies obtained with murine disease models. Through design of relevant cellular models 

incorporating patient mutations or direct use of patient-derived cells we may identify 

clinically beneficial treatments faster and with more certainty.         
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Figure legends:  

Figure 1. Schematic overview of inflammasome platforms. The structure and domain 

interactions of Nod-like receptor (NLR) inflammasomes (A) and non-NLR 

inflammasomes (B) are depicted. NLRP3, Pyrin and AIM2 all contain a N-terminal 

recruitment domain PYD whereas NLRC4 contains a CARD domain at its N-terminus. 

PYD-PYD interactions occur with the adaptor protein ASC which in turn interacts with 

Caspase-1 through CARD-CARD interactions. The N-terminal CARD domain of NLRC4 

directly interacts with Caspase-1. NLRP1 harbors its CARD recruitment domain at the C-

terminus which also directly interacts with Caspase-1.  

 

Figure 2. Local and systemic effects of inflammasome activation. Innate immune cells 

such as monocytes and neutrophils receive priming signals (signal 1) that induce NFκB 

activation. NFκB upregulates gene transcription of inflammasome components NLRP3, 

Caspase-1 and ASC, as well as inflammasome substrates proIL1-β, proIL-18 and GSDMD. 

Upon delivery of inflammasome activation signals (signal 2) assembly of the 

inflammasome complex occurs which results in activation of the caspase1 enzyme now 

able to cleave its substrates. Cleaved GSDMD forms membrane pores through which 

mature cytokines IL-1β and IL-18 are secreted. IL-1β and IL-18 bind to their receptors IL-

1R and IL-18R, respectively. IL-1R/IL-18R signalling drives various local and systemic 

reactions including a positive inflammasome feedback loop by providing signal 1, 

stimulation of many different target cells that promote activating a local inflammatory 
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response, and initiation of systemic inflammatory functions such as neutrophil recruitment, 

fever and production of acute phase proteins. 

 

Figure 3. Inhibitors targeting inflammasome activity. The molecular targets of selected 

anti-inflammatory drugs are depicted. Inhibitors for which inhibition of inflammasome was 

observed, however the molecular target is unknown are listed directly beneath the 

inflammasome complex. Arthritic diseases are commonly treated with Anakinra, 

Rilonacept, Canakinumab, Thalidomide or Colchicine depending on the disease type. 

  



 31 

 

REFERENCES 

1. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform 
triggering activation of inflammatory caspases and processing of proIL-beta. Mol 
Cell. 2002;10(2):417-426. 

2. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. 
Nat Rev Rheumatol. 2019;15(10):612-632. 

3. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and 
signalling. Nat Rev Immunol. 2016;16(7):407-420. 

4. Harapas CR, Steiner A, Davidson S, Masters SL. An Update on 
Autoinflammatory Diseases: Inflammasomopathies. Curr Rheumatol Rep. 
2018;20(7):40. 

5. Latz E, Duewell P. NLRP3 inflammasome activation in inflammaging. Semin 
Immunol. 2018;40:61-73. 

6. Shin JI, Lee KH, Joo YH, et al. Inflammasomes and autoimmune and rheumatic 
diseases: A comprehensive review. J Autoimmun. 2019;103:102299. 

7. Martinon F, Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends 
Immunol. 2005;26(8):447-454. 

8. Burdett H, Bentham AR, Williams SJ, et al. The Plant "Resistosome": Structural 
Insights into Immune Signaling. Cell Host Microbe. 2019;26(2):193-201. 

9. Wang J, Hu M, Wang J, et al. Reconstitution and structure of a plant NLR 
resistosome conferring immunity. Science. 2019;364(6435). 

10. Urbach JM, Ausubel FM. The NBS-LRR architectures of plant R-proteins and 
metazoan NLRs evolved in independent events. Proc Natl Acad Sci U S A. 
2017;114(5):1063-1068. 

11. Leipe DD, Koonin EV, Aravind L. STAND, a class of P-loop NTPases including 
animal and plant regulators of programmed cell death: multiple, complex domain 
architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. 
J Mol Biol. 2004;343(1):1-28. 

12. MacDonald JA, Wijekoon CP, Liao KC, Muruve DA. Biochemical and structural 
aspects of the ATP-binding domain in inflammasome-forming human NLRP 
proteins. IUBMB Life. 2013;65(10):851-862. 

13. Duncan JA, Canna SW. The NLRC4 Inflammasome. Immunol Rev. 
2018;281(1):115-123. 

14. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the 
NALP3 inflammasome is triggered by low intracellular potassium concentration. 
Cell Death Differ. 2007;14(9):1583-1589. 



 32 

15. Karki P, Seong C, Kim JE, et al. Intracellular K(+) inhibits apoptosis by 
suppressing the Apaf-1 apoptosome formation and subsequent downstream 
pathways but not cytochrome c release. Cell Death Differ. 2007;14(12):2068-
2075. 

16. Chen J, Chen ZJ. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 
inflammasome activation. Nature. 2018;564(7734):71-76. 

17. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation 
and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477-489. 

18. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of 
a new gene encoding a putative pyrin-like protein causes familial cold 
autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 
2001;29(3):301-305. 

19. Booshehri LM, Hoffman HM. CAPS and NLRP3. J Clin Immunol. 
2019;39(3):277-286. 

20. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. 
NALP3 forms an IL-1beta-processing inflammasome with increased activity in 
Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319-325. 

21. Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to 
anthrax lethal toxin. Nat Genet. 2006;38(2):240-244. 

22. Okondo MC, Rao SD, Taabazuing CY, et al. Inhibition of Dpp8/9 Activates the 
Nlrp1b Inflammasome. Cell Chem Biol. 2018;25(3):262-267 e265. 

23. Mitchell PS, Sandstrom A, Vance RE. The NLRP1 inflammasome: new 
mechanistic insights and unresolved mysteries. Curr Opin Immunol. 2019;60:37-
45. 

24. Zhong FL, Mamai O, Sborgi L, et al. Germline NLRP1 Mutations Cause Skin 
Inflammatory and Cancer Susceptibility Syndromes via Inflammasome 
Activation. Cell. 2016;167(1):187-202 e117. 

25. Grandemange S, Sanchez E, Louis-Plence P, et al. A new autoinflammatory and 
autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-
associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis. 
2017;76(7):1191-1198. 

26. Jin Y, Mailloux CM, Gowan K, et al. NALP1 in vitiligo-associated multiple 
autoimmune disease. N Engl J Med. 2007;356(12):1216-1225. 

27. Yu CH, Moecking J, Geyer M, Masters SL. Mechanisms of NLRP1-Mediated 
Autoinflammatory Disease in Humans and Mice. J Mol Biol. 2018;430(2):142-
152. 

28. Pathan N, Marusawa H, Krajewska M, et al. TUCAN, an antiapoptotic caspase-
associated recruitment domain family protein overexpressed in cancer. J Biol 
Chem. 2001;276(34):32220-32229. 



 33 

29. Bagnall RD, Roberts RG, Mirza MM, Torigoe T, Prescott NJ, Mathew CG. Novel 
isoforms of the CARD8 (TUCAN) gene evade a nonsense mutation. Eur J Hum 
Genet. 2008;16(5):619-625. 

30. Johnson DC, Taabazuing CY, Okondo MC, et al. DPP8/DPP9 inhibitor-induced 
pyroptosis for treatment of acute myeloid leukemia. Nat Med. 2018;24(8):1151-
1156. 

31. Ito S, Hara Y, Kubota T. CARD8 is a negative regulator for NLRP3 
inflammasome, but mutant NLRP3 in cryopyrin-associated periodic syndromes 
escapes the restriction. Arthritis Res Ther. 2014;16(1):R52. 

32. Fontalba A, Martinez-Taboada V, Gutierrez O, et al. Deficiency of the NF-
kappaB inhibitor caspase activating and recruitment domain 8 in patients with 
rheumatoid arthritis is associated with disease severity. J Immunol. 
2007;179(7):4867-4873. 

33. Kastbom A, Verma D, Eriksson P, Skogh T, Wingren G, Soderkvist P. Genetic 
variation in proteins of the cryopyrin inflammasome influences susceptibility and 
severity of rheumatoid arthritis (the Swedish TIRA project). Rheumatology 
(Oxford). 2008;47(4):415-417. 

34. Mathews RJ, Robinson JI, Battellino M, et al. Evidence of NLRP3-inflammasome 
activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-
inflammasome complex in relation to susceptibility to RA and response to anti-
TNF treatment. Ann Rheum Dis. 2014;73(6):1202-1210. 

35. Yang CA, Huang ST, Chiang BL. Association of NLRP3 and CARD8 genetic 
polymorphisms with juvenile idiopathic arthritis in a Taiwanese population. 
Scand J Rheumatol. 2014;43(2):146-152. 

36. Lee SW, Lee SS, Oh DH, et al. Genetic Association for P2X7R rs3751142 and 
CARD8 rs2043211 Polymorphisms for Susceptibility of Gout in Korean Men: 
Multi-Center Study. J Korean Med Sci. 2016;31(10):1566-1570. 

37. Ancient missense mutations in a new member of the RoRet gene family are likely 
to cause familial Mediterranean fever. The International FMF Consortium. Cell. 
1997;90(4):797-807. 

38. French FMFC. A candidate gene for familial Mediterranean fever. Nat Genet. 
1997;17(1):25-31. 

39. Yang J, Xu H, Shao F. Immunological function of familial Mediterranean fever 
disease protein Pyrin. Sci China Life Sci. 2014;57(12):1156-1161. 

40. Canete JD, Arostegui JI, Queiro R, et al. An unexpectedly high frequency of 
MEFV mutations in patients with anti-citrullinated protein antibody-negative 
palindromic rheumatism. Arthritis Rheum. 2007;56(8):2784-2788. 

41. Ayaz NA, Ozen S, Bilginer Y, et al. MEFV mutations in systemic onset juvenile 
idiopathic arthritis. Rheumatology (Oxford). 2009;48(1):23-25. 

42. Lugrin J, Martinon F. The AIM2 inflammasome: Sensor of pathogens and cellular 
perturbations. Immunol Rev. 2018;281(1):99-114. 



 34 

43. Baum R, Sharma S, Carpenter S, et al. Cutting edge: AIM2 and endosomal TLRs 
differentially regulate arthritis and autoantibody production in DNase II-deficient 
mice. J Immunol. 2015;194(3):873-877. 

44. Jakobs C, Perner S, Hornung V. AIM2 Drives Joint Inflammation in a Self-DNA 
Triggered Model of Chronic Polyarthritis. PLoS One. 2015;10(6):e0131702. 

45. Hawkins PN, Lachmann HJ, McDermott MF. Interleukin-1-receptor antagonist in 
the Muckle-Wells syndrome. N Engl J Med. 2003;348(25):2583-2584. 

46. Orning P, Lien E, Fitzgerald KA. Gasdermins and their role in immunity and 
inflammation. J Exp Med. 2019. 

47. Chen KW, Gross CJ, Sotomayor FV, et al. The neutrophil NLRC4 inflammasome 
selectively promotes IL-1beta maturation without pyroptosis during acute 
Salmonella challenge. Cell Rep. 2014;8(2):570-582. 

48. Gaidt MM, Ebert TS, Chauhan D, et al. Human Monocytes Engage an Alternative 
Inflammasome Pathway. Immunity. 2016;44(4):833-846. 

49. Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-
canonical inflammasome signalling. Nature. 2015;526(7575):666-671. 

50. Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases 
determines pyroptotic cell death. Nature. 2015;526(7575):660-665. 

51. Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC. The Pore-Forming Protein 
Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages. 
Immunity. 2018;48(1):35-44 e36. 

52. Heilig R, Dick MS, Sborgi L, Meunier E, Hiller S, Broz P. The Gasdermin-D pore 
acts as a conduit for IL-1beta secretion in mice. Eur J Immunol. 2018;48(4):584-
592. 

53. Ruhl S, Shkarina K, Demarco B, Heilig R, Santos JC, Broz P. ESCRT-dependent 
membrane repair negatively regulates pyroptosis downstream of GSDMD 
activation. Science. 2018;362(6417):956-960. 

54. Medzhitov R. Origin and physiological roles of inflammation. Nature. 
2008;454(7203):428-435. 

55. Erlich Z, Shlomovitz I, Edry-Botzer L, et al. Macrophages, rather than DCs, are 
responsible for inflammasome activity in the GM-CSF BMDC model. Nat 
Immunol. 2019;20(4):397-406. 

56. Man SM. Inflammasomes in the gastrointestinal tract: infection, cancer and gut 
microbiota homeostasis. Nat Rev Gastroenterol Hepatol. 2018;15(12):721-737. 

57. Monroe KM, Yang Z, Johnson JR, et al. IFI16 DNA sensor is required for death 
of lymphoid CD4 T cells abortively infected with HIV. Science. 
2014;343(6169):428-432. 

58. Arbore G, West EE, Spolski R, et al. T helper 1 immunity requires complement-
driven NLRP3 inflammasome activity in CD4(+) T cells. Science. 
2016;352(6292):aad1210. 



 35 

59. Martin BN, Wang C, Zhang CJ, et al. T cell-intrinsic ASC critically promotes 
T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 
2016;17(5):583-592. 

60. Helmick CG, Felson DT, Lawrence RC, et al. Estimates of the prevalence of 
arthritis and other rheumatic conditions in the United States. Part I. Arthritis 
Rheum. 2008;58(1):15-25. 

61. Scott DL, Symmons DP, Coulton BL, Popert AJ. Long-term outcome of treating 
rheumatoid arthritis: results after 20 years. Lancet. 1987;1(8542):1108-1111. 

62. Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 
2010;376(9746):1094-1108. 

63. Burska A, Boissinot M, Ponchel F. Cytokines as biomarkers in rheumatoid 
arthritis. Mediators Inflamm. 2014;2014:545493. 

64. Ippagunta SK, Brand DD, Luo J, et al. Inflammasome-independent role of 
apoptosis-associated speck-like protein containing a CARD (ASC) in T cell 
priming is critical for collagen-induced arthritis. J Biol Chem. 
2010;285(16):12454-12462. 

65. Kolly L, Karababa M, Joosten LA, et al. Inflammatory role of ASC in antigen-
induced arthritis is independent of caspase-1, NALP-3, and IPAF. J Immunol. 
2009;183(6):4003-4012. 

66. Zhang Y, Zheng Y, Li H. NLRP3 Inflammasome Plays an Important Role in the 
Pathogenesis of Collagen-Induced Arthritis. Mediators Inflamm. 
2016;2016:9656270. 

67. Shin TH, Kim HS, Kang TW, et al. Human umbilical cord blood-stem cells direct 
macrophage polarization and block inflammasome activation to alleviate 
rheumatoid arthritis. Cell Death Dis. 2016;7(12):e2524. 

68. Li XF, Shen WW, Sun YY, et al. MicroRNA-20a negatively regulates expression 
of NLRP3-inflammasome by targeting TXNIP in adjuvant-induced arthritis 
fibroblast-like synoviocytes. Joint Bone Spine. 2016;83(6):695-700. 

69. Li Y, Zheng JY, Liu JQ, et al. Succinate/NLRP3 Inflammasome Induces Synovial 
Fibroblast Activation: Therapeutical Effects of Clematichinenoside AR on 
Arthritis. Front Immunol. 2016;7:532. 

70. Vande Walle L, Van Opdenbosch N, Jacques P, et al. Negative regulation of the 
NLRP3 inflammasome by A20 protects against arthritis. Nature. 
2014;512(7512):69-73. 

71. Joosten LA, Abdollahi-Roodsaz S, Heuvelmans-Jacobs M, et al. T cell 
dependence of chronic destructive murine arthritis induced by repeated local 
activation of Toll-like receptor-driven pathways: crucial role of both interleukin-
1beta and interleukin-17. Arthritis Rheum. 2008;58(1):98-108. 

72. Joosten LA, Netea MG, Fantuzzi G, et al. Inflammatory arthritis in caspase 1 
gene-deficient mice: contribution of proteinase 3 to caspase 1-independent 



 36 

production of bioactive interleukin-1beta. Arthritis Rheum. 2009;60(12):3651-
3662. 

73. Ji H, Pettit A, Ohmura K, et al. Critical roles for interleukin 1 and tumor necrosis 
factor alpha in antibody-induced arthritis. J Exp Med. 2002;196(1):77-85. 

74. Choulaki C, Papadaki G, Repa A, et al. Enhanced activity of NLRP3 
inflammasome in peripheral blood cells of patients with active rheumatoid 
arthritis. Arthritis Res Ther. 2015;17:257. 

75. Addobbati C, da Cruz HLA, Adelino JE, et al. Polymorphisms and expression of 
inflammasome genes are associated with the development and severity of 
rheumatoid arthritis in Brazilian patients. Inflamm Res. 2018;67(3):255-264. 

76. Xie Q, Wei M, Zhang B, et al. MicroRNA33 regulates the NLRP3 inflammasome 
signaling pathway in macrophages. Mol Med Rep. 2018;17(2):3318-3327. 

77. Ruscitti P, Cipriani P, Di Benedetto P, et al. Monocytes from patients with 
rheumatoid arthritis and type 2 diabetes mellitus display an increased production 
of interleukin (IL)-1beta via the nucleotide-binding domain and leucine-rich 
repeat containing family pyrin 3(NLRP3)-inflammasome activation: a possible 
implication for therapeutic decision in these patients. Clin Exp Immunol. 
2015;182(1):35-44. 

78. Jenko B, Praprotnik S, Tomsic M, Dolzan V. NLRP3 and CARD8 
Polymorphisms Influence Higher Disease Activity in Rheumatoid Arthritis. J Med 
Biochem. 2016;35(3):319-323. 

79. Rosengren S, Hoffman HM, Bugbee W, Boyle DL. Expression and regulation of 
cryopyrin and related proteins in rheumatoid arthritis synovium. Ann Rheum Dis. 
2005;64(5):708-714. 

80. Kolly L, Busso N, Palmer G, Talabot-Ayer D, Chobaz V, So A. Expression and 
function of the NALP3 inflammasome in rheumatoid synovium. Immunology. 
2010;129(2):178-185. 

81. Joosten LA, Radstake TR, Lubberts E, et al. Association of interleukin-18 
expression with enhanced levels of both interleukin-1beta and tumor necrosis 
factor alpha in knee synovial tissue of patients with rheumatoid arthritis. Arthritis 
Rheum. 2003;48(2):339-347. 

82. Gouda EA, Aboulata AA, Elharoun AS, et al. Interleukin-18 expression in 
rheumatoid artheritis synovial tissue and its relation to disease activity. Egypt J 
Immunol. 2007;14(2):1-10. 

83. Cai LP, Zhou LJ, Lu SY, et al. Association of IL-18 promoter gene 
polymorphisms with rheumatoid arthritis: a meta-analysis. Mol Biol Rep. 
2014;41(12):8211-8217. 

84. Ye XJ, Tang B, Ma Z, Kang AH, Myers LK, Cremer MA. The roles of 
interleukin-18 in collagen-induced arthritis in the BB rat. Clin Exp Immunol. 
2004;136(3):440-447. 



 37 

85. Ruth JH, Park CC, Amin MA, et al. Interleukin-18 as an in vivo mediator of 
monocyte recruitment in rodent models of rheumatoid arthritis. Arthritis Res Ther. 
2010;12(3):R118. 

86. Amin MA, Rabquer BJ, Mansfield PJ, et al. Interleukin 18 induces angiogenesis 
in vitro and in vivo via Src and Jnk kinases. Ann Rheum Dis. 2010;69(12):2204-
2212. 

87. Zhang W, Cong XL, Qin YH, He ZW, He DY, Dai SM. IL-18 upregulates the 
production of key regulators of osteoclastogenesis from fibroblast-like 
synoviocytes in rheumatoid arthritis. Inflammation. 2013;36(1):103-109. 

88. Sui J, Li H, Fang Y, et al. NLRP1 gene polymorphism influences gene 
transcription and is a risk factor for rheumatoid arthritis in han chinese. Arthritis 
Rheum. 2012;64(3):647-654. 

89. Zhu L, Li J, Guo L, et al. Activation of NALP1 inflammasomes in rats with 
adjuvant arthritis; a novel therapeutic target of carboxyamidotriazole in a model 
of rheumatoid arthritis. Br J Pharmacol. 2015;172(13):3446-3459. 

90. Zhang L, Dong Y, Zou F, Wu M, Fan C, Ding Y. 11beta-Hydroxysteroid 
dehydrogenase 1 inhibition attenuates collagen-induced arthritis. Int 
Immunopharmacol. 2013;17(3):489-494. 

91. Li F, Guo N, Ma Y, Ning B, Wang Y, Kou L. Inhibition of P2X4 suppresses joint 
inflammation and damage in collagen-induced arthritis. Inflammation. 
2014;37(1):146-153. 

92. Zhang QB, Qing YF, He YL, Xie WG, Zhou JG. Association of NLRP3 
polymorphisms with susceptibility to primary gouty arthritis in a Chinese Han 
population. Clin Rheumatol. 2018;37(1):235-244. 

93. McKinney C, Stamp LK, Dalbeth N, et al. Multiplicative interaction of functional 
inflammasome genetic variants in determining the risk of gout. Arthritis Res Ther. 
2015;17:288. 

94. Chang WC, Jan Wu YJ, Chung WH, et al. Genetic variants of PPAR-gamma 
coactivator 1B augment NLRP3-mediated inflammation in gouty arthritis. 
Rheumatology (Oxford). 2017;56(3):457-466. 

95. Choe JY, Kim SK. Clinical significance of serum NLRP3 levels in patients with 
chronic gouty arthritis. Joint Bone Spine. 2018;85(2):257-258. 

96. Cavalcanti NG, Marques CD, Lins ELTU, et al. Cytokine Profile in Gout: 
Inflammation Driven by IL-6 and IL-18? Immunol Invest. 2016;45(5):383-395. 

97. Son CN, Bang SY, Kim JH, Choi CB, Kim TH, Jun JB. Caspase-1 level in 
synovial fluid is high in patients with spondyloarthropathy but not in patients with 
gout. J Korean Med Sci. 2013;28(9):1289-1292. 

98. Busso N, So A. Mechanisms of inflammation in gout. Arthritis Res Ther. 
2010;12(2):206. 



 38 

99. Amaral FA, Costa VV, Tavares LD, et al. NLRP3 inflammasome-mediated 
neutrophil recruitment and hypernociception depend on leukotriene B(4) in a 
murine model of gout. Arthritis Rheum. 2012;64(2):474-484. 

100. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid 
crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237-241. 

101. Hoffman HM, Scott P, Mueller JL, et al. Role of the leucine-rich repeat domain of 
cryopyrin/NALP3 in monosodium urate crystal-induced inflammation in mice. 
Arthritis Rheum. 2010;62(7):2170-2179. 

102. Cumpelik A, Ankli B, Zecher D, Schifferli JA. Neutrophil microvesicles resolve 
gout by inhibiting C5a-mediated priming of the inflammasome. Ann Rheum Dis. 
2016;75(6):1236-1245. 

103. Khameneh HJ, Ho AW, Laudisi F, et al. C5a Regulates IL-1beta Production and 
Leukocyte Recruitment in a Murine Model of Monosodium Urate Crystal-
Induced Peritonitis. Front Pharmacol. 2017;8:10. 

104. Joosten LA, Netea MG, Mylona E, et al. Engagement of fatty acids with Toll-like 
receptor 2 drives interleukin-1beta production via the ASC/caspase 1 pathway in 
monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum. 
2010;62(11):3237-3248. 

105. Mylona EE, Mouktaroudi M, Crisan TO, et al. Enhanced interleukin-1beta 
production of PBMCs from patients with gout after stimulation with Toll-like 
receptor-2 ligands and urate crystals. Arthritis Res Ther. 2012;14(4):R158. 

106. Migita K, Koga T, Satomura K, et al. Serum amyloid A triggers the mosodium 
urate -mediated mature interleukin-1beta production from human synovial 
fibroblasts. Arthritis Res Ther. 2012;14(3):R119. 

107. Riteau N, Baron L, Villeret B, et al. ATP release and purinergic signaling: a 
common pathway for particle-mediated inflammasome activation. Cell Death Dis. 
2012;3:e403. 

108. Yokose K, Sato S, Asano T, et al. TNF-alpha potentiates uric acid-induced 
interleukin-1beta (IL-1beta) secretion in human neutrophils. Mod Rheumatol. 
2018;28(3):513-517. 

109. Xiao J, Zhang XL, Fu C, et al. Soluble uric acid increases NALP3 inflammasome 
and interleukin-1beta expression in human primary renal proximal tubule 
epithelial cells through the Toll-like receptor 4-mediated pathway. Int J Mol Med. 
2015;35(5):1347-1354. 

110. Alberts BM, Barber JS, Sacre SM, Davies KA, Ghezzi P, Mullen LM. 
Precipitation of Soluble Uric Acid Is Necessary for In Vitro Activation of the 
NLRP3 Inflammasome in Primary Human Monocytes. J Rheumatol. 2019. 

111. Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis--
insights into pathogenesis. Nat Rev Rheumatol. 2016;12(2):81-91. 



 39 

112. Ranganathan V, Gracey E, Brown MA, Inman RD, Haroon N. Pathogenesis of 
ankylosing spondylitis - recent advances and future directions. Nat Rev 
Rheumatol. 2017;13(6):359-367. 

113. Maksymowych WP, Rahman P, Reeve JP, Gladman DD, Peddle L, Inman RD. 
Association of the IL1 gene cluster with susceptibility to ankylosing spondylitis: 
an analysis of three Canadian populations. Arthritis Rheum. 2006;54(3):974-985. 

114. Timms AE, Crane AM, Sims AM, et al. The interleukin 1 gene cluster contains a 
major susceptibility locus for ankylosing spondylitis. Am J Hum Genet. 
2004;75(4):587-595. 

115. van der Paardt M, Crusius JB, Garcia-Gonzalez MA, et al. Interleukin-1beta and 
interleukin-1 receptor antagonist gene polymorphisms in ankylosing spondylitis. 
Rheumatology (Oxford). 2002;41(12):1419-1423. 

116. Sims AM, Timms AE, Bruges-Armas J, et al. Prospective meta-analysis of 
interleukin 1 gene complex polymorphisms confirms associations with ankylosing 
spondylitis. Ann Rheum Dis. 2008;67(9):1305-1309. 

117. Monnet D, Kadi A, Izac B, et al. Association between the IL-1 family gene cluster 
and spondyloarthritis. Ann Rheum Dis. 2012;71(6):885-890. 

118. Vazquez-Del Mercado M, Garcia-Gonzalez A, Munoz-Valle JF, et al. Interleukin 
1beta (IL-1beta), IL-10, tumor necrosis factor-alpha, and cellular proliferation 
index in peripheral blood mononuclear cells in patients with ankylosing 
spondylitis. J Rheumatol. 2002;29(3):522-526. 

119. Kim SK, Cho YJ, Choe JY. NLRP3 inflammasomes and NLRP3 inflammasome-
derived proinflammatory cytokines in peripheral blood mononuclear cells of 
patients with ankylosing spondylitis. Clin Chim Acta. 2018;486:269-274. 

120. Kastbom A, Klingberg E, Verma D, et al. Genetic variants in CARD8 but not in 
NLRP3 are associated with ankylosing spondylitis. Scand J Rheumatol. 
2013;42(6):465-468. 

121. Ziaee V, Maddah M, Harsini S, et al. Association of interleukin-1 family gene 
polymorphisms with juvenile idiopathic arthritis in Iranian population. Allergol 
Immunopathol (Madr). 2016;44(6):542-546. 

122. de Jager W, Hoppenreijs EP, Wulffraat NM, Wedderburn LR, Kuis W, Prakken 
BJ. Blood and synovial fluid cytokine signatures in patients with juvenile 
idiopathic arthritis: a cross-sectional study. Ann Rheum Dis. 2007;66(5):589-598. 

123. Sawhney S, Woo P, Murray KJ. Macrophage activation syndrome: a potentially 
fatal complication of rheumatic disorders. Arch Dis Child. 2001;85(5):421-426. 

124. Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. Role of interleukin-1 
(IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and 
clinical response to IL-1 blockade. J Exp Med. 2005;201(9):1479-1486. 

125. Lotito AP, Campa A, Silva CA, Kiss MH, Mello SB. Interleukin 18 as a marker 
of disease activity and severity in patients with juvenile idiopathic arthritis. J 
Rheumatol. 2007;34(4):823-830. 



 40 

126. Shimizu M, Nakagishi Y, Yachie A. Distinct subsets of patients with systemic 
juvenile idiopathic arthritis based on their cytokine profiles. Cytokine. 
2013;61(2):345-348. 

127. Bousfiha A, Jeddane L, Picard C, et al. The 2017 IUIS Phenotypic Classification 
for Primary Immunodeficiencies. J Clin Immunol. 2018;38(1):129-143. 

128. Economides AN, Carpenter LR, Rudge JS, et al. Cytokine traps: multi-
component, high-affinity blockers of cytokine action. Nat Med. 2003;9(1):47-52. 

129. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with 
Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119-
1131. 

130. Schlesinger N, Alten RE, Bardin T, et al. Canakinumab for acute gouty arthritis in 
patients with limited treatment options: results from two randomised, multicentre, 
active-controlled, double-blind trials and their initial extensions. Ann Rheum Dis. 
2012;71(11):1839-1848. 

131. Solomon DH, Glynn RJ, MacFadyen JG, et al. Relationship of Interleukin-1beta 
Blockade With Incident Gout and Serum Uric Acid Levels: Exploratory Analysis 
of a Randomized Controlled Trial. Ann Intern Med. 2018;169(8):535-542. 

132. Lyseng-Williamson KA. Canakinumab: a guide to its use in acute gouty arthritis 
flares. BioDrugs. 2013;27(4):401-406. 

133. Fleischmann RM, Bliddal H, Blanco FJ, et al. A Phase II Trial of Lutikizumab, an 
Anti-Interleukin-1alpha/beta Dual Variable Domain Immunoglobulin, in Knee 
Osteoarthritis Patients With Synovitis. Arthritis Rheumatol. 2019;71(7):1056-
1069. 

134. Geiler J, McDermott MF. Gevokizumab, an anti-IL-1beta mAb for the potential 
treatment of type 1 and 2 diabetes, rheumatoid arthritis and cardiovascular 
disease. Curr Opin Mol Ther. 2010;12(6):755-769. 

135. Cardiel MH, Tak PP, Bensen W, et al. A phase 2 randomized, double-blind study 
of AMG 108, a fully human monoclonal antibody to IL-1R, in patients with 
rheumatoid arthritis. Arthritis Res Ther. 2010;12(5):R192. 

136. Ruperto N, Brunner HI, Quartier P, et al. Two randomized trials of canakinumab 
in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367(25):2396-2406. 

137. Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. 
Annu Rev Med. 2014;65:223-244. 

138. Genovese MC, Cohen S, Moreland L, et al. Combination therapy with etanercept 
and anakinra in the treatment of patients with rheumatoid arthritis who have been 
treated unsuccessfully with methotrexate. Arthritis Rheum. 2004;50(5):1412-
1419. 

139. Kiltz U, Kiefer D, Braun J, Schiffrin EJ, Girard-Guyonvarc'h C, Gabay C. 
Prolonged treatment with Tadekinig alfa in adult-onset Still's disease. Ann Rheum 
Dis. 2018. 



 41 

140. Kudelova J, Fleischmannova J, Adamova E, Matalova E. Pharmacological 
caspase inhibitors: research towards therapeutic perspectives. J Physiol 
Pharmacol. 2015;66(4):473-482. 

141. Rudolphi K, Gerwin N, Verzijl N, van der Kraan P, van den Berg W. Pralnacasan, 
an inhibitor of interleukin-1beta converting enzyme, reduces joint damage in two 
murine models of osteoarthritis. Osteoarthritis Cartilage. 2003;11(10):738-746. 

142. Keller M, Sollberger G, Beer HD. Thalidomide inhibits activation of caspase-1. J 
Immunol. 2009;183(9):5593-5599. 

143. Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Update on colchicine, 
2017. Rheumatology (Oxford). 2018;57(suppl_1):i4-i11. 

144. Leung YY, Yao Hui LL, Kraus VB. Colchicine--Update on mechanisms of action 
and therapeutic uses. Semin Arthritis Rheum. 2015;45(3):341-350. 

145. Nidorf SM, Thompson PL. Why Colchicine Should Be Considered for Secondary 
Prevention of Atherosclerosis: An Overview. Clin Ther. 2019;41(1):41-48. 

146. Misawa T, Takahama M, Kozaki T, et al. Microtubule-driven spatial arrangement 
of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 
2013;14(5):454-460. 

147. Hoss F, Latz E. Inhibitory effects of colchicine on inflammasomes. 
Atherosclerosis. 2018;273:153-154. 

148. Van Gorp H, Saavedra PH, de Vasconcelos NM, et al. Familial Mediterranean 
fever mutations lift the obligatory requirement for microtubules in Pyrin 
inflammasome activation. Proc Natl Acad Sci U S A. 2016;113(50):14384-14389. 

149. Mullard A. NLRP3 inhibitors stoke anti-inflammatory ambitions. Nat Rev Drug 
Discov. 2019;18(6):405-407. 

150. Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms 
of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 
2019;10(2):128. 

151. Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-
hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019;15(6):556-
559. 

152. Perregaux DG, McNiff P, Laliberte R, et al. Identification and characterization of 
a novel class of interleukin-1 post-translational processing inhibitors. J 
Pharmacol Exp Ther. 2001;299(1):187-197. 

153. Tapia-Abellan A, Angosto-Bazarra D, Martinez-Banaclocha H, et al. MCC950 
closes the active conformation of NLRP3 to an inactive state. Nat Chem Biol. 
2019;15(6):560-564. 

154. Huang Y, Jiang H, Chen Y, et al. Tranilast directly targets NLRP3 to treat 
inflammasome-driven diseases. EMBO Mol Med. 2018;10(4). 

155. Darakhshan S, Pour AB. Tranilast: a review of its therapeutic applications. 
Pharmacol Res. 2015;91:15-28. 



 42 

156. Inglis JJ, Criado G, Andrews M, Feldmann M, Williams RO, Selley ML. The 
anti-allergic drug, N-(3',4'-dimethoxycinnamonyl) anthranilic acid, exhibits potent 
anti-inflammatory and analgesic properties in arthritis. Rheumatology (Oxford). 
2007;46(9):1428-1432. 

157. Shiota N, Kovanen PT, Eklund KK, et al. The anti-allergic compound tranilast 
attenuates inflammation and inhibits bone destruction in collagen-induced arthritis 
in mice. Br J Pharmacol. 2010;159(3):626-635. 

158. Nagate T, Tamura T, Sato F, Kuroda J, Nakayama J, Shibata N. Tranilast 
suppresses the disease development of the adjuvant- and streptococcal cell wall-
induced arthritis in rats. J Pharmacol Sci. 2007;105(1):48-56. 

159. Jiang H, He H, Chen Y, et al. Identification of a selective and direct NLRP3 
inhibitor to treat inflammatory disorders. J Exp Med. 2017;214(11):3219-3238. 

160. Xu J, Wold EA, Ding Y, Shen Q, Zhou J. Therapeutic Potential of Oridonin and 
Its Analogs: From Anticancer and Antiinflammation to Neuroprotection. 
Molecules. 2018;23(2). 

161. He HB, Jiang H, Chen Y, et al. Oridonin is a covalent NLRP3 inhibitor with 
strong anti-inflammasome activity. Nat Commun. 2018;9. 

162. Marchetti C, Swartzwelter B, Gamboni F, et al. OLT1177, a beta-sulfonyl nitrile 
compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the 
metabolic cost of inflammation. Proc Natl Acad Sci U S A. 2018;115(7):E1530-
E1539. 

163. Marchetti C, Swartzwelter B, Koenders MI, et al. NLRP3 inflammasome inhibitor 
OLT1177 suppresses joint inflammation in murine models of acute arthritis. 
Arthritis Res Ther. 2018;20(1):169. 

164. Lamkanfi M, Mueller JL, Vitari AC, et al. Glyburide inhibits the Cryopyrin/Nalp3 
inflammasome. J Cell Biol. 2009;187(1):61-70. 

165. Cocco M, Pellegrini C, Martinez-Banaclocha H, et al. Development of an 
Acrylate Derivative Targeting the NLRP3 Inflammasome for the Treatment of 
Inflammatory Bowel Disease. J Med Chem. 2017;60(9):3656-3671. 

166. Shim DW, Shin WY, Yu SH, et al. BOT-4-one attenuates NLRP3 inflammasome 
activation: NLRP3 alkylation leading to the regulation of its ATPase activity and 
ubiquitination. Sci Rep. 2017;7(1):15020. 

167. He Y, Varadarajan S, Munoz-Planillo R, Burberry A, Nakamura Y, Nunez G. 3,4-
methylenedioxy-beta-nitrostyrene inhibits NLRP3 inflammasome activation by 
blocking assembly of the inflammasome. J Biol Chem. 2014;289(2):1142-1150. 

168. Juliana C, Fernandes-Alnemri T, Wu J, et al. Anti-inflammatory compounds 
parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol 
Chem. 2010;285(13):9792-9802. 

 



casp

Figure 1 

PYD NACHT LRR

PYD

CARD

CARD

NLRP3

ASC

Caspase1

NLRP3 inflammasome

NLRP1 inflammasome

NACHT LRR

NLRP1

Caspase1

FIINDCARD

caspCARD

casp

NACHT LRR

CARD

NLRC4

Caspase1

NLRC4 inflammasome

CARD

Pyrin inflammasome

casp

PYD

PYD

CARD

CARD

Pyrin

ASC

Caspase1

BB CC PRY SPRY

AIM2 inflammasome

casp

PYD

PYD

CARD

CARD

AIM2

ASC

Caspase1

HIN200

A B



Figure 2 

Signal 1 
NFκB

proIL-18

proIL-1β

GSDMDPYD NACHT LRR

PYD

CARD

NLRP3

ASC

Caspase1 caspCARD

Inflammasome

Active GSDMD, IL-18, IL-1β

Signal 2 

Signal 1 

IL-18

IL-1β

IL-1R

IL-18R

IL-18R

IL-1R

Target Cell activation  
Macrophages
Neutrophils

Endothelial cells
NK cells

Osteoclasts
Synoviocytes

...

Cytokines & 
Chemokines:

IL-6
TNF

MMPs
PGE2
VEGF

...

- Vasodilatation
- Bone resorbtion
- TH17
- TH2

Fever

Acute Phase 
proteins:
CRP
SAA
...

Neutrophils 
recruitment



PYD NACHT LRR

NLRP3

caspCARD

Caspase1

proIL-1β

IL-1β IL-1R

OLT1177
CY-09
Tranilast
MCC950
Oridonin

Colchicine
Glyburide
INF39
BOT-4-one
MNS
BAY 11-7082
Parthenolide

Vx740
Vx765
Thalidomide

Canakinumab
Gevokizumab
Lutikizumab (also blocks IL-1α)

Anakinra
Rilonacept
Gevokizumab
AMG108

Figure 3

IL-18Tadekinig alfa


	ImmRev2019_Final
	FiguresV1

