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a b s t r a c t 
Understanding macroevolutionary patterns is central to evolutionary biology. This involves the process 
of divergence within a species, which starts at the microevolutionary level, for instance, when two sub- 
populations evolve towards different phenotypic optima. The speed at which these optima are reached is 
controlled by the degree of stabilising selection, which pushes the mean trait towards different optima in 
the different subpopulations, and ongoing migration that pulls the mean phenotype away from that opti- 
mum. Traditionally, macro phenotypic evolution is modelled by directional selection processes, but these 
models usually ignore the role of migration within species. Here, our goal is to reconcile the processes 
of micro and macroevolution by modelling migration as part of the speciation process. More precisely, 
we introduce an Ornstein-Uhlenbeck (OU) model where migration happens between two subpopulations 
within a branch of a phylogeny and this migration decreases over time as it happens during speciation. 
We then use this model to study the evolution of trait means along a phylogeny, as well as the way 
phenotypic disparity between species changes with successive epochs. We show that ignoring the effect 
of migration in sampled time-series data biases significantly the estimation of the selective forces acting 
upon it. We also show that migration decreases the expected phenotypic disparity between species and 
we analyse the effect of migration in the particular case of niche filling. We further introduce a method to 
jointly estimate selection and migration from time-series data. Our model extends traditional quantitative 
genetics results of selection and migration from a microevolutionary time frame to multiple speciation 
events at a macroevolutionary scale. Our results further support that not accounting for gene flow has 
important consequences in inferences at both the micro and macroevolutionary scale. 

© 2019 The Authors. Published by Elsevier Ltd. 
This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 
The study of macroevolution has proven useful in addressing 

key evolutionary questions about the build-up of biodiversity and 
the mechanisms underlying the divergence between populations 
( Stanley, 1979; Lande, 1980b; Futuyma and Agrawal, 2009; Kat- 
zourakis et al., 2009; Campbell and Kessler, 2013 ). These questions 
have been addressed by modelling, across a phylogeny, the changes 
in the rate of evolution of a phenotypic trait (e.g. O’Meara et al., 
2006; Slater et al., 2012 ), the rate of diversification of species (e.g. 
Simpson, 1944; Nee et al., 1992; Jablonski, 2008; Silvestro et al., 
2011; Stadler, 2011; Morlon, 2014 ), or the effect of a phenotypic 
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trait on species diversification (e.g. Rieseberg et al., 2002; Cardillo 
et al., 2005; Clauset and Erwin, 2008; FitzJohn, 2012 ). Although 
applications of macroevolutionary models are firmly grounded in 
evolutionary biology ( Simpson, 1953 ), the recent theoretical devel- 
opments in modelling macroevolution have helped understand the 
mechanisms underlying phenotypic changes across lineages (e.g. 
FitzJohn, 2010; Landis et al., 2012 ). 

One of the earliest and main focus of macroevolution has been 
testing hypotheses about the evolution of quantitative traits among 
related species ( Felsenstein, 1985; 2004 ). Along these lines, neu- 
tral trait evolution has been the standard null model for most 
macroevolutionary studies, and this is typically modelled by Brow- 
nian motion (BM). However, the need to incorporate biologically 
relevant features (e.g. Hansen, 1997; Uyeda et al., 2011 ) has lead to 
large methodological developments ( Edwards et al., 1964; Cavalli- 
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Sforza and Edwards, 1967; Hansen and Martins, 1996; Freckleton, 
2012; Brawand et al., 2011; Duchen et al., 2017; Boucher et al., 
2017 ). One such relevant feature is natural selection, which, in its 
simplest form acts to stabilise traits around an optimum value. In 
the presence of stochastic effects on phenotypic change, stabilis- 
ing natural selection can sometimes be modelled with an Ornstein- 
Uhlenbeck (OU) process (e.g. Lande, 1976 , p. 324), which entails a 
linear transformation of the phenotype making the analysis gen- 
erally tractable ( Gardiner, 2009 ). Modeling stabilising selection us- 
ing an OU process has thus frequently been the standard approach 
in macroevolution ( Felsenstein, 1988; Hansen and Martins, 1996; 
Cooper et al., 2016 ). However, the trait distribution obtained by 
different types of selective processes is varied and the OU process 
is not restricted to modeling stabilising selection ( Hansen, 1997; 
Cooper et al., 2016 ). And even BM can model specific cases of 
trait evolution under selection ( Gillespie, 1973; Hansen and Mar- 
tins, 1996 ). 

However, variation in phenotypic data at the macro scale is 
often difficult to explain with just a one-dimensional OU pro- 
cess representing directional selection ( Pennell et al., 2015 ). Ad- 
ditionally, if datasets contain a small number of species, an 
OU process tends to be incorrectly favoured over simpler sce- 
narios ( Cooper et al., 2016 ). The application of an OU process 
in macroevolution therefore requires further developments and 
finer scrutiny. New theoretical developments should therefore 
start from microevolutionary dynamics, and, from this, try to de- 
rive macroevolutionary dynamics. A theoretical description of cur- 
rent macroevolutionary models showed that interspecific trait- 
covariances depend on microevolutionary forces, such as random 
genetic drift, stabilising selection, and mutation, at each generation 
( Hansen and Martins, 1996 ). 

The model of Hansen and Martins (1996) nevertheless over- 
looked the potential role that migration or gene flow within 
species plays in linking micro and macroevolutionary dynamics, 
and thus a more detailed connection between these processes is 
still needed ( Salamin et al., 2010; Rolland et al., 2018 ). For in- 
stance, migration is determinant in setting the speed of divergence 
between populations, which, in turn, sets the pace at which spe- 
ciation takes place (e.g. Gavrilets, 2004) . And more generally, mi- 
croevolution is fundamentally affected by the interaction between 
selection and migration in populations subject to limited dispersal 
(e.g. Wright, 1931 ; Hartl et al., 1997; Ronce and Kirkpatrick, 2001 ; 
Barton et al., 2007) . Hence, there is a need to study migration 
among subpopulations of a species when modelling macroevolu- 
tion to understand the effects of migration on speciation and its 
interaction with selection. 

In this paper, our goal is to connect the processes of mi- 
cro and macroevolution by modelling migration between two di- 
verging subpopulations. Building on the stabilising selection mod- 
els of Lande (1976) and Ronce and Kirkpatrick (2001) , we intro- 
duce a model of phenotypic trait evolution where migration oc- 
curs between two subpopulations before speciation takes place. 
This model takes the form of an OU process and our approach dif- 
fers from Bartoszek et al. (2017) , who modelled migration between 
branches on a phylogeny, not within each branch, as proposed 
here. Our model lets a specific trait evolve along the branches of a 
phylogeny with migration decreasing the rate of gene flow through 
time until speciation happens. We use this model to study the evo- 
lution of trait means and phenotypic disparity between species at 
a macroevolutionary time scale. Further on, we show the effect of 
migration and phenotypic disparity in the particular case of niche 
filling. Finally, we analyse the effect of migration on the param- 
eter estimates of selection by developing an estimator of the se- 
lection coefficient for cases when migration is present or absent, 
and we assess its accuracy with simulations. We show that not ac- 
counting for migration can drastically affect the estimation of se- 
lection in micro and macroevolutionary models, and our approach 

opens new avenues to better incorporate microevolutionary forces 
in macroevolutionary modelling. 
2. Methods 
2.1. Biological model 

Our aim is to model the evolution of a single quantitative phe- 
notype z along a phylogenetic tree. Such phylogenetic tree will 
consist of several epochs, where one epoch is defined as the time 
span between two successive nodes (see Supplementary Informa- 
tion (SI) Fig. SI-I.1). We first describe the model for one epoch, 
where microevolutionary forces can change the mean phenotype. 
We then extend the model to multiple epochs and derive expres- 
sions for the expectation and variance of the mean phenotype in 
each species at the end of each epoch. 
2.1.1. One epoch 

We assume that each epoch is of length T and that the popula- 
tion forming a species in any epoch is divided into two subpopu- 
lations of equal and constant sizes. 

Microevolutionary time scale. For i = 1 , 2 , let z̄ i (τ ) denote the 
mean phenotype in Subpopulation i at time τ with initial pheno- 
type z = z̄ 1 (0) = z̄ 2 (0) , where z is a normally distributed random 
variable with mean µ and variance σ 2 . The phenotypic evolution 
of the two subpopulations forming one species is assumed to be 
characterised by the system of stochastic differential equations 
d ̄z 1 (τ ) = [ αm (θ1 (τ ) − z̄ 1 (τ )) + m m (τ )( ̄z 2 (τ ) − z̄ 1 (τ ))]d τ

+ βm d w 1 (τ ) 
d ̄z 2 (τ ) = [ αm (θ2 (τ ) − z̄ 2 (τ )) + m m (τ )( ̄z 1 (τ ) − z̄ 2 (τ ))]d τ

+ βm d w 2 (τ ) , (1) 
where θ1 ( τ ) and θ2 ( τ ) are deterministic functions which represent 
the time-dependent phenotypic optima (or the phenotypic value 
targeted by selection) in each subpopulation at time τ (where a 
time unit is a generation), αm is the product of the additive ge- 
netic variance σ 2 and the strength of selection γ on the pheno- 
type, i.e., αm = γ σ 2 ( Lande, 1979; Hansen and Martins, 1996 ), and 
m m ( τ ) is the rate of migration of an individual from one subpopu- 
lation to the other at time τ ∈ [0, T ]. Additionally, w 1 ( τ ) and w 2 ( τ ) 
are two independent Wiener processes (or Brownian motions) with 
variance β2 

m = σ 2 /N e , where N e is the effective population size. As 
such, Eq. (1) combines elements of the quantitative genetics mod- 
els of Lande (1980a , Eqs. (3) and (15) ) and Ronce and Kirkpatrick 
(2001 , Eqs. (2) ), and adds time dependence to the phenotypic op- 
tima and the migration rate. From a stochastic process point of 
view, Eq. (1) is an OU process ( Gardiner, 2009 ), and for a single 
isolated population this model is equivalent to that of Hansen and 
Martins (1996) . The optima and migration functions characterise 
the environment of the focal species and we assume that their dy- 
namics are given by 
d θ1 
d τ = 1 

T c F 1 (θ1 (τ )) with θ1 (0) = θ , 
d θ2 
d τ = 1 

T c F 2 (θ2 (τ )) with θ2 (0) = θ , (2) 
d m m 
d τ = 1 

T c M 1 (m m (τ ) , θ1 (τ ) , θ2 (τ )) with m m (0) = 1 / 2 , (3) 
and where T c is a characteristic time scale over which the optima 
and migration rate change in each subpopulation. 

Eq. (2) describe the change of these optima in each subpop- 
ulation as a consequence of environmental change. The charac- 
teristic time T c will take the value T c = 1 when environmental 
change occurs at the same time scale as the change in phenotype, 
whereas the optimum changes at a slower rate than the phenotype 
if T c ≫ 1. The function m m ( τ ) represents the migration rate be- 
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tween the two subpopulations, and Eq. (3) describes the change of 
migration over time between populations on their way to specia- 
tion. We assume that the time scale over which migration changes 
is the same as that of the optimum functions. 

Macroevolutionary time scale. The process described so far con- 
cerns changes at the microevolutionary scale, that is, changes in 
trait values that we can observe at the level of generations. How- 
ever, if we look at phenotypic change from a macroevolutionary 
perspective (that is, if we look at evolutionary patterns over the 
course of millions of years), we do not necessarily expect the be- 
haviour of each parameter in the model shown in Eq. (2) to be the 
same. For instance, the selection coefficient αm at the microevolu- 
tionary scale (which measures the strength of selection per genera- 
tion) becomes, at the macroevolutionary scale, a cumulative selec- 
tion coefficient over the many generations spanning the new time 
scale. The same will apply to the Brownian variance β2 

m , which be- 
comes the variance over a certain period of time and not per gen- 
eration. Similarly, the microevolutionary (or generational) interpre- 
tation of the evolutionary rate and the migration rate will change 
when looking at the behaviour of this pattern in the long term. To 
formally incorporate the change in time scale from generations to 
thousands or millions of years, we now scale the evolutionary pro- 
cess ( Eqs. (1) –(3) ) to reach a longer, macroevolutionary time scale 
t defined as 
t = 1 

T c · τ . (4) 
with T c being the time scaling factor. 

The rescaling of time in Eqs. (1) –(3) is done with the chain rule 
dx 
dτ = dx 

dt · 1 
T c , where x represents either z̄ i , w i , or θ i . The parameters 

of Eqs. (1) –(3) are also re-scaled such that α = T c αm , β = T c βm , 
and m (t) = T c m m (τ ) to obtain the system of equations 
d ̄z 1 (t) = [ α(θ1 (t) − z̄ 1 (t)) + m (t)( ̄z 2 (t) − z̄ 1 (t))]d t + βd w 1 (t) 
d ̄z 2 (t) = [ α(θ2 (t) − z̄ 2 (t)) + m (t)( ̄z 1 (t) − z̄ 2 (t))]d t + βd w 2 (t) , (5) 
with corresponding phenotypic optima and migration function 
d θ1 
d t = F 1 (θ1 (t)) 

d θ2 
d t = F 2 (θ2 (t)) 
d m 
d t = M 2 (m (t) , θ1 (t) , θ2 (t)) . (6) 

Note that α in Eqs. (5) accumulates the net effect of phenotypic 
change due to selection over multiple generations, and can thus be 
interpreted as a macroevolutionary selection coefficient. Finally, if 
we assume that selection is weak at the microevolutionary time 
scale, and that there is a constant but small input of mutation, 
then the genetic variance can be held at its mutation-drift equilib- 
rium and σ 2 = 2 N e σ 2 

µ, where σ 2 
µ is the mutation variance ( Lande, 

1980a; Hansen and Martins, 1996; Walsh and Lynch, 2018 ). Then, 
α = T c αm = T c N e 2 σ 2 

µγ , (7) 
and the variance of the Wiener process is equal to 
β2 = T 2 c β2 

m = T 2 c 2 σ 2 
µ, (8) 

where, as stated above, β2 
m = σ 2 /N e , and σ 2 = 2 N e σ 2 

µ. 
Dynamics of the environment. From here on we stay only within 

the macroevolutionary scale, and we will refer, for simplicity, to 
the macroevolutionary selection coefficient α simply as the se- 
lection coefficient. We assume that there is random mixing be- 
tween the two subpopulations at the beginning of each epoch. 
Over time, migration decreases and, thus, contributes to popu- 
lation divergence. More specifically, migration between the two 
subpopulations follows a monotonically decreasing migration rate 

function m ( t ) such that m (0) = 1 / 2 (total random mixing) and 
lim t→∞ m (t) = 0 . It is useful to think as a speciation event occurring 
at time T if m ( T ) < ϵ, for a chosen small value ϵ > 0 (i.e. migration 
becomes negligible). Throughout the paper we choose ϵ = 10 −4 . 
Note that speciation is not necessarily required to happen as soon 
as m ( t ) decreases below ϵ, but it is convenient (and biologically 
reasonable) to make this assumption because we are studying the 
effect of migration while two lineages diverge. The time of specia- 
tion can be defined more generally as the maximum between T [ H ] 
and T , where T [ H ] is a predefined time of speciation, and T is the 
smallest value such that m ( T ) < ϵ. In Hansen (1997) , m (t) = 0 (for 
all t ≥ 0), therefore T = 0 , and speciation happens at some prede- 
fined time T [ H ] . 

We assume that the optima in the two subpopulations are ini- 
tially the same, θ1 (0) = θ2 (0) , but then diverge according to the 
differentiation function d(t) := | θ1 (t) − θ2 (t) | . Here, d ( t ) represents 
the change of environments over time, and phenotypes differen- 
tiate as a result of this change in the environment. As a concrete 
application of our model, we consider two simple forms of the dy- 
namics of the optima given by d θi 

d t = a i − θi and d θi 
d t = a i . For the 

initial condition θi (0) = θ (for some initial value θ ), the solution 
to these dynamics are given by the following parametric functions 
θ i ( t ): 
θi (t) = a i + (θ − a i ) e −t , θi (t) → a i as t → ∞ 

( stabilising optimum ) , or (9) 
θi (t) = a i t + θ , θi (t) → ±∞ as t → ∞ 

( di v erging optimum ) . (10) 
We consider migration functions of the following two types: 
m (t) = 0 . 5 1 (t ≤ L ) + 0 . 5 1 (t ≥ L ) exp (−c 1 t) , or (11) 
m (t) = 0 . 5 exp (−c 2 d(t) − c 3 t) , (12) 
where 1 ( ·) is the indicator function, for some constant parame- 
ters L, c 1 , c 2 and c 3 . Parameter L in Eq. (11) controls the length 
of the period during which there is total mixing between the two 
subpopulations before migration starts decreasing exponentially at 
rate c 1 . In Eq. (12) , the differentiation function d ( t ) affects the de- 
crease rate of the migration function. In other words, Eq. (11) takes 
into account extrinsic factors driving divergence, i.e. it can model 
allopatric speciation. Conversely, Eq. (12) directly links gene flow 
with ecological speciation, since the larger the distance d ( t ) be- 
tween two subpopulations, the smaller m ( t ). We present various 
possible trajectories of z̄ 1 (t) and z̄ 2 (t) before the first speciation 
event, with a stabilising optimum in Subpopulation 1 and a diverg- 
ing optimum in Subpopulation 2, for different values of α, β , and 
m ( t ) ( Table 1 , Fig. 1 ). 
2.1.2. Multiple epochs 

We now consider phenotypic dynamics over multiple epochs. 
To deal with this, the optimum functions can vary between dif- 
ferent species and epochs, but we assume the migration function 
does not vary across the epochs and species (an alternative sce- 
nario, with variable migration functions is described in SI-C.2). The 
fact that the migration function is fixed implies that the speciation 
times are deterministic, and so is the number of branches in the 
phylogenetic tree at any given time: if one initially starts with a 
single species, then there are 2 n coexisting species during epoch 
n , corresponding to 2 n +1 subpopulations ( n ≥ 0). Therefore, the 
following calculations are applicable to trees like the one shown 
in Fig. SI-I.1. Equivalent analyses for trees with different branch 
lengths and asynchronous speciation times are shown in section 
SI-C.2 and Figs. I.5 and I.6. 
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Table 1 
Example of parameter combinations in the model: selection coefficient α, standard deviation of the Wiener 
process β , migration parameters c 1 , c 2 , c 3 , and time span L during which there is total mixing ( Eqs. (11) and 
(12) ). We indicate the biological scenarios associated to each parameter combination, and their corresponding 
panel in Fig. 1 . 

α β c 1 c 2 c 3 L Biological scenario Panel in Fig. 1 
0.1 0 - - - - OU, no migration, no noise (a) 
0.1 0 - - 0.01 - OU with migration, no noise (b) 
0.01 0 - - 0.01 - As above with weak selection (c) 
0.1 5 - - 0.01 - OU with migration and noise (d) 
0.1 0 0.025 - - 500 OU with migration, L > 0, no noise (e) 
0.1 0 - 0.015 0.01 - Migration depending on d ( t ), no noise (f) 

Fig. 1. Behaviour of z̄ 1 (t) (blue) ’and z̄ 2 (t) (green) over time t under different values of the selection coefficient α and the migration parameter c x (see Table 1 for details of 
each panel). Actual values of z̄ are depicted with solid lines, whereas optima are displayed with dashed lines. These results are discussed in Section 3.1 . 

For n ≥ 1, we denote by z̄ (n ) = ( ̄z (n ) 
i ) i =1 , ... , 2 n the random vector 

recording the mean phenotype of each species at the end of epoch 
n − 1 , and by ȳ (n ) := (1 / 2 n ) ∑ 2 n 

i =1 ̄z (n ) 
i the scalar random variable 

recording the averaged mean phenotype at the end of epoch n − 1 . 
We show in SI-C that z̄ (n ) follows a multivariate normal distribu- 
tion N ( µ(n ) , !(n ) ) whose mean vector µ( n ) and covariance matrix 
!( n ) of size 2 n satisfy a first order recurrence equation, 
µ(n ) = exp (−αT )[ µ(n −1) ! 1 ] + g (n ) (T ) , (13) 
!(n ) = exp (−2 αT )[ !(n −1) ! 1 · 1 ⊤ ] + I 2 n −1 ! H (T ) , (14) 
for n ≥ 1, with µ(0) = µ and !(0) = σ 2 , and where ! denotes 
the Kronecker product between matrices as defined in SI-A. Here, 
g ( n ) ( T ) ( n ≥ 1) (Eq. (50)) is a sequence of vectors that depend on 
the optimum functions θ i ( t ), and H ( T ) (Eq. (45)) is a matrix that 
takes into account the covariance induced by the Brownian noises 

acting on the mean phenotypes of the two subpopulations, and the 
mass exchange between these subpopulations when m ( t ) > ϵ (see 
Proposition C.1). Note that at every lineage split happening at time 
T the optimum functions θ i ( T ) are duplicated to form the initial 
values of the optimum functions of the two daughter lineages (Eq. 
(49)). 

The vector ȳ (n ) follows a univariate normal distribution with 
mean and variance given in Eqs. (58) and (59) (see SI-C.1.2). As 
we further show in SI-C.2, the formulas for µ( n ) and !( n ) can be 
extended to the case where the migration function m ( t ) is differ- 
ent for each species, leading to branches of different lengths in the 
phylogenetic tree. 

Finally, an important descriptor of the phenotypic joint distri- 
bution is the disparity D ( n ) of z̄ (n ) ( Harmon et al., 2003 ), which is 
a scalar random variable measuring the extent to which the mean 
phenotypes of the species present at the end of epoch n − 1 ( n ≥ 1) 
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differ from each other. We define disparity as 
D (n ) := (1 / 2 n ) 2 n ∑ 

i =1 [ ̄z (n ) 
i − ȳ (n ) ] 2 = (1 / 2 n ) 2 n ∑ 

i =1 ( ̄z (n ) 
i ) 2 − ( ̄y (n ) ) 2 , (15) 

and show in SI-C.1.3 that the first moment of D ( n ) is 
E [ D (n ) ] = (1 / 2 n )[ Tr (!(n ) ) + µ(n ) ⊤ µ(n ) ] 

− (1 / 2 2 n )[ 1 ⊤ 2 n !(n ) 1 2 n + ( 1 ⊤ 2 n µ(n ) ) 2 ] , (16) 
where Tr( !( n ) ) denotes the trace of the covariance matrix !( n ) . 
Hence, we can evaluate the disparity in terms of Eqs. (13) –(89). 
Note that Eq. (15) is similar to sample variance. 
2.2. Estimation of the selection coefficient and the migration 
parameter c 

The applications of OU processes in macroevolution often aim 
at quantifying the amount of selection experienced by different 
species without considering the effects of migration. We general- 
ize this to the case with migration and formulate estimators of α
and the migration parameter c = c 1 in Eq. (11) when L = 0 , that is 
for the case when m (t) = 0 . 5 exp (−ct) . Our model readily lends it- 
self to derive such estimators by assuming fixed optimum trajecto- 
ries, setting β = 0 in Eqs. (5) , approximating these expressions as 
difference equations of the form d ̄z 1 (t) ≈ z̄ 1 (t + n d t) − z̄ 1 (t) , and 
iterating this process n times to obtain 
z̄ 1 (t + n d t) = α n −1 ∑ 

i =0 [ θ1 (t + i d t) − z̄ 1 (t + i d t) 
+ m (t + i d t)( ̄z 2 (t + i d t) − z̄ 1 (t + i d t))]d t + ̄z 1 (t) , (17) 

z̄ 2 (t + n d t) = α n −1 ∑ 
i =0 [ θ2 (t + i d t) − z̄ 2 (t + i d t) 

+ m (t + i d t)( ̄z 1 (t + i d t) − z̄ 2 (t + i d t))]d t + ̄z 2 (t) . (18) 
By summing Eqs. (17) and (18) and rearranging terms, the estima- 
tor of α, denoted ˆ α, can be written as 
ˆ α = z̄ 1 (t + n d t) − z̄ 1 (t) + ̄z 2 (t + n d t) − z̄ 2 (t) 

∑ n −1 
i =0 [ θ1 (t + i d t) − z̄ 1 (t + i d t) ]d t + ∑ n −1 

i =0 [ θ2 (t + i d t) − z̄ 2 (t + i d t) ]d t . 
(19) 

A full step-by-step derivation of Eq. (19) is shown in section SI- 
G. To obtain an estimator for the migration paramter c we simply 
replace α in Eqs. (17) or (18) with the value of Eq. (19) and solve 
numerically for c . If one has data only from a single isolated sub- 
population, then α can be estimated from Eq. (19) using only the 
corresponding subpopulation, say Subpopulation 1, to estimate α: 
ˆ α = z̄ 1 (t + n d t) − z̄ 1 (t) 

∑ n −1 
i =0 [ θ1 (t + i d t) − z̄ 1 (t + i d t) ]d t . (20) 

Here, the data consists first of: z̄ 1 (t + n d t) , which denotes the 
phenotype of the last sampled value, z̄ 1 (t) denoting the first sam- 
pled value, and z̄ 1 (t + i d t) which constitute intermediate sam- 
pled points. Although two sample points would suffice to have a 
first estimate, the larger the sample, the more accurate the es- 
timates (see Results). Finally, concerning the stabilising optimum 
θ1 ( t ), if this value is unknown, it is reasonable to set it to the 
last sampled value of z̄ 1 as an estimator of θ1 ( t ). Since we have 
only two subpopulations we cannot estimate other model param- 
eters (that is, the parameters describing the optimum functions 
θ1 ( t ) and β) with our current setting. However, maximum likeli- 
hood estimations of these parameters are available in Butler and 
King (2004) (see Discussion). 

2.3. Application: niche filling 
An interesting application of the joint phenotypic distribution 

and disparity across epochs concerns niche filling. Ecologically 
speaking, niche filling is a phenomenon by which different popula- 
tions or species “fill” the phenotypic space under two conditions: 
1) the range of values a phenotype can take is bounded, and 2) 
two phenotypes cannot take on the same value. This happens, for 
instance, when there is ecological competition for resources, which 
prevents two populations from evolving towards the same pheno- 
type ( Price et al., 2014 ). As such, niche filling is considered a form 
of adaptive radiation, by which ecologically distinct species gain 
access to novel niche space, contrasted by non-adaptive radiation, 
where new species keep the ancestral niche ( Reaney et al., 2018 ). 
In this section we aim at understanding the effect of decreasing 
migration in niche filling by using our OU model. 

To model niche filling, we first consider the migration function 
given in Eq. (11) with L = 0 , and we assume that the diverging op- 
timum functions corresponding to each subpopulation in succes- 
sive epochs, defined by the sequence θ( n ) ( t ) (see section C.1.1) are 
regularly “filling” the interval [ −A, A ] for some constant A ≥ 0, over 
successive epochs of fixed length T ; that is, for 0 ≤ t ≤ T , 
θ(1) 

(t) = (2 T ) −1 t [ A, −A ] ⊤ (21) 
θ(n ) 

(t) = (2 n −1 T ) −1 t ( 1 2 n −2 ! [ A, −A ] ⊤ ) + ( θ(n −1) 
(T ) ! 1 ) , n ≥ 2 . 

(22) 
We refer to the left panel of Fig. 4 for a representation of the 

optimum functions over the first five epochs. In this particular 
example, if the migration function is the same for each species 
( Eq. (11) ), then the mean disparity E [ D (n ) ] converges to a limiting 
value as n → ∞ , given by 

E [ D (∞ ) ] 
= A 2 

3 + β2 
2 α

{
1 
2 + α ∫ T 

0 exp {−2[ α(T − u ) + 2 ( ̄m (T ) T − m̄ (u ) u )] } du 
1 − exp (−2 αT ) 

}

= A 2 
3 + β2 

2 α
{

1 
2 + α ∫ T 

0 exp {−2 T (α + 2 ̄m (T ) + 2 u (α + 2 ̄m (u )) du 
1 − exp (−2 αT ) 

}
, 

(23) 
where m̄ (t) := 1 

t ∫ t 0 m (u ) du ; see Proposition SI-D.1. Note that 
we slightly abuse notation here, because we use E [ D (∞ ) ] := 
lim n →∞ E [ D (n ) ] . The term A 2 /3 in Eq. (23) corresponds to the vari- 
ance of a uniform random variable in [ −A, A ] , and the factor 
β2 /(2 α) corresponds to the asymptotic variance of an OU process 
with no migration. The factor in the curly bracket accounts for mi- 
gration (it reduces to 1 when there is no migration). 

Next, we consider the case where the migration function de- 
pends on the differentiation function d ( t ) ( Eq. (12) ). If the slopes 
of the optimum functions are kept the same as in the previous 
case, during epoch n − 1 , the differentiation function then takes 
the form d (n ) (t) = A t/ (2 n −1 T ) , and the length of epoch n − 1 is 
T (n ) = − log (2 ε) 

c 2 A 
2 n −1 T + c 3 −→ − log (2 ε) 

c 3 as n → ∞ . (24) 
Hence, the effect of differentiation disappears asymptotically. In 
this case, the optimum functions are not confined within the in- 
terval [ −A, A ] (see top left of Fig. 5 ). The maximum absolute value 
of the optimum functions after n epochs is given by 
u n = n ∑ 

j=1 
A 

2 j T T ( j) , 
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whose limit, as n → ∞ , is finite and given by 
u ∞ = −A 

2 log (2 ε) ∑ 
j≥1 

1 
c 2 A + c 3 2 j−1 T . 

Note that this value can be larger than A (see top left of 
Fig. 5 where it is already above 120 after five epochs while A = 50 ). 
It is much harder to characterize the asymptotic behaviour of the 
mean disparity in this setting. 
3. Results 

Following the same scheme as above we describe the results 
in three sections: results for the model, the estimators, and the 
application to niche filling. We give special attention to the results 
on a single epoch, since they can be directly translated to multiple 
ones. 
3.1. Biological model 

Without migration between the two subpopulations, the mean 
phenotype of each subpopulation reaches the optimum at a speed 
dictated by the selection coefficient α, and a strong α will result 
in a fast convergence of z̄ (t) to θ( t ) ( Fig. 1 a). In the presence of 
migration, however, the speed at which the optimum is reached 
is slower ( Fig. 1 b) and different combinations of selection and mi- 
gration will counteract each other to determine the speed at which 
the optima will be reached ( Fig. 1 c). When β > 0, stochastic fluctu- 
ations alter the path of z̄ (t) , but the overall trend remains ( Fig. 1 d). 
For a period of time L of total mixing, the two subpopulations be- 
have similarly and they remain together even when the two op- 
tima differ greatly (see Eq. (11) ). However, as soon as m ( t ) starts 
decreasing (after time L = 500 in this example), the optima will be 
reached once again ( Fig. 1 e). The latter scenario reflects the intro- 
duction of a reproductive barrier at time L = 500 and constitutes 
an example of allopatric speciation. Finally, if m ( t ) depends also on 
the distance d ( t ) between θ1 and θ2 ( Eq. (12) ), then the initial ap- 
proach to the optimum can be faster than in the case where m ( t ) 
does not depend on d ( t ) ( Fig. 1 f versus 1 b). 
3.2. Estimators 
3.2.1. Joint estimation of α and m ( t ) 

Here, we considered migration functions of the form given in 
Eq. (11) with L = 0 and we let c = c 1 . To validate our estimator ˆ α
and the estimator ˆ c of the migration parameter along one epoch, 
we simulated 100 population trajectories following an OU pro- 
cess with various combinations of the parameters α and c (with 
β = 0 . 01 ) for one epoch of fixed time T and various step sizes dt . 
We used Eq. (19) to compare the estimated α with the true value 
used in the simulation. Likewise, we compared the numerical so- 
lution for c with the true value used for simulations. The accu- 
racy of the parameter estimates is directly related to the number 
of sampling points taken from the population trajectories, that is, 
inversely proportional to dt ( Fig. 2 ). In other words, since T is fixed, 
a smaller dt results in more sampling points, thus increasing the 
accuracy of the estimation. 

We also validated the estimators of α and c using the algorithm 
described in section SI-H, which generates individual phenotypic 
values rather than the mean phenotype. With no data available 
from a second subpopulation, we can use Eq. (20) to estimate α. 
In this case, however, we risk to underestimate α if there is on- 
going migration from an unseen subpopulation with a lower opti- 
mum. Consider the example in Fig. SI-I.2a, where both trajectories 
were simulated using α = 0 . 05 , but the “purple” trajectory experi- 
enced migration from an unseen subpopulation. When estimating 
α using Eq. (20) , we observe that the “black” subpopulation has a 

correct α estimation, whereas we underestimate α for the “purple”
subpopulation (Fig. SI-I.2b). 

Therefore, to disentangle the effects of selection and migration 
when data from a single subpopulation is available, we need to 
look at the actual distribution of phenotypes within the popula- 
tion rather than simply the mean. For instance, the distribution of 
phenotypes leading to the “purple” trajectory is, in fact, bimodal 
(Fig. SI-I.2c). On one hand, we have the bulk of the distribution 
that follows exactly the path of one subpopulation without migra- 
tion, while we also see individuals that migrated from a second 
subpopulation petering out gradually as time passes by. The pa- 
rameter α will be correctly estimated if the data from the bulk 
of the distribution is used, and this estimate will be well approx- 
imated even if only a couple of time points around the conver- 
gence value are considered (Fig. SI-I.2b, blue points). However, the 
robustness of ˆ α decreases as the two optima become closer, since 
it becomes more difficult to tell apart the two subpopulations (Fig. 
SI-I.3a). 

Finally, by taking the difference between the number of individ- 
uals corresponding to both parts of the bimodal distribution shown 
in Figure SI-I.2c, we can approximate the migration function m ( t ) 
with high accuracy, as long as the optima of the two subpopu- 
lations are visibly different from one another (Fig. SI-I.2d, black 
points: actual m ( t ); red points: estimated m ( t )). When the two op- 
tima are more similar, the accuracy of the estimation of m ( t ) de- 
creases (Fig. SI-I.3b). 
3.2.2. Phenotypic disparity across epochs 

We provide an expression for the mean phenotypic disparity 
D ( n ) while taking migration into account ( Eq. (16) ). Using the op- 
tima values shown in Table SI-2, we simulate the behaviour of D ( n ) 
for cases with and without migration for three consecutive epochs 
( Fig. 3 ). We observe that disparity is reduced when migration is 
present and that this difference is bigger towards the beginning of 
an epoch. The value of D ( n ) will however become identical when 
migration vanishes. This behaviour is consistent for both types of 
optima: a stabilising optimum S ( Fig. 3 upper panels) and a diverg- 
ing optimum D ( Fig. 3 lower panels). 
3.3. Application: niche filling 

We use our model to study the filling of an ecological niche 
when phenotypic evolution includes migration. Niche filling oc- 
curs when there is ecological competition for limited amount of 
resources and phenotypes of two competing species cannot evolve 
towards the same optimum value. 

We model niche filling in an interval of phenotypic val- 
ues [ −A, A ] over successive epochs of fixed length T following 
Eqs. (21) and (22) . When A = 0 , we are in the particular case 
where θ(n ) 

(t) = 0 for all n ≥ 1 and t ≥ 0. When A = 50 , we can 
already see the “filling” effect of a niche with optima ranging be- 
tween −50 and 50 ( Fig. 4 left). Over the epochs, the mean dis- 
parity increases to a limit given by Eq. (23) . We investigated the 
role of the migration rate in this limit, assuming that m ( t ) de- 
creases exponentially at a rate c ( Fig. 4 right). We see that there is 
a sharp drop in the asymptotic mean disparity as c increases from 
0, then followed by a slow increase towards the constant value 
A 2 / 3 + β2 / (2 α) (value of E [ D (∞ ) ] when m ( t ) ≡ 0 in Eq. (23) ), 
indicating a larger mean asymptotic disparity when there is less 
mixing in the population. The interpretation of the drop is more 
difficult. 

We also consider the case where the migration function de- 
pends on the differentiation function d ( t ) ( Eq. (12) ). The intervals 
of time between speciation events are thus not constant and de- 
pend on the epochs, but converge to a limit ( Eq. (24) ). The slopes 
of the optimum functions θ( n ) were kept as in Eq. (22) , and their 
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Fig. 2. Empirical properties of the estimators for the selection coefficient α (upper row) and the migration parameter c (lower row). Each boxplot represents parameter 
estimations from 100 simulated phenotypic trajectories for two subpopulations under an OU process with β = 0 . 01 and three different step sizes dt . We performed three 
parameter combinations (corresponding to each column): α = 0 . 01 with c = 0 . 1 , α = 0 . 05 with c = 0 . 05 , and α = 0 . 1 with c = 0 . 01 . 

Fig. 3. Phenotypic disparity D ( n ) ( Eq. (15) ) for three consecutive epochs. Upper panels: disparity for stabilising optima S . Lower panels: disparity for diverging optima D. For 
scenarios with migration, we use c 1 = 0 . 075 in Eq. (11) with L = 0 . Optima per epoch were taken from Table SI-2. β was set to 0. 
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Fig. 4. Left: Optimum functions θ( n ) ( t ) as given by Eq. (22) with A = 50 for n = 1 , . . . , 5 and m (t) = 0 . 5 exp (−ct) , where c is fixed such that T = 15 . Right: asymptotic mean 
disparity as a function of the migration parameter c . 

Fig. 5. Left: Optimum functions as given by Eq. (22) with A = 50 for n = 1 , . . . , 5 , and m (t) = 0 . 5 exp (−0 . 1 d(t) − 0 . 05 t) , where d ( t ) is the differentiation function. Center: 
mean disparity over five epochs for three values of A . Right: mean disparity at the end of five epochs (labeled 1 to 5), as a function of A . 
initial values at the beginning of each new epoch are the con- 
tinuation of their values at the end of the previous epoch. The 
graph of the functions θ( n ) corresponding to A = 50 and m (t) = 
0 . 5 exp (−0 . 1 d(t) − 0 . 05 t) is shown in the left panel of Fig. 5 . The 
central panel of that figure highlights for three values of A the 
logistic increase of the mean disparity as a function of the num- 
ber of epochs n . We see again that there is always a plateau 
and the height of the plateau increases with A , but the limit is 
harder to characterise in this case. Finally, the mean disparity is 
not necessarily monotonically increasing with A when the migra- 
tion function depends on the differentiation function d ( t ) ( Fig. 5 
right panel). Indeed, for each epoch n there is some threshold 
value of A such that the mean disparity increases for A less than 
this threshold due to the fact that the optima are more spread out, 
and it decreases for A larger than the threshold due to the fact 
that the differentiation becomes larger, and therefore the specia- 
tion times are smaller and there is less mixing before speciation. 

Comparison with other macroevolutonary models Using Eqs. (21) , 
(22) , and (1) we generated phenotypic trajectories following the 
optima and time intervals represented in Fig. 4 . We then used the 
tip data from such trajectories and associated tree as input to the 
function dtt from the R package geiger ( Pennell et al., 2014 ) to gen- 
erate disparity-through-time (DTT) plots. These plots show the av- 
erage disparity for every subclade present at any given time, thus, 
as phenotypic distances between sister lineages decrease so will 
disparity. As shown by the DTT plots we found that phenotypic 
data generated under a model with niche filling with migration 

will generate lower disparity when compared to other macroevo- 
lutionary models, such as niche filling without migration (OU), 
bounded BM and late burst (Fig. I,7, a-d). Recall that a similar pat- 
tern is observed when comparing disparity under OU with and 
without migration ( Fig. 3 , where the presence of migration slows 
down the accumulation of disparity). Conversely, early burst mod- 
els (that is, models where the evolutionary rate increases with 
time) can mimic the disparity generated by niche filling with mi- 
gration (Fig. I.7 e,f). 
4. Discussion 

Model . We introduced a model with migration between subpop- 
ulations (of a single species or a single branch on a phylogeny) 
that can be applied to macroevolution and can be represented 
as an OU process. This model combines features of the quanti- 
tative genetic models of Lande (1980a) (see also Lande (1976) ) 
and Ronce and Kirkpatrick (2001) , but allows for decreasing gene 
flow between subpopulations. A similar model but where gene 
flow stays constant has been proposed by Bulmer (1971) , although 
he focused more on the fate of polymorphic alleles under those 
conditions. In our case, we introduced decreasing gene flow to 
capture the initial stages of speciation caused by subpopulations 
tending towards different phenotypic optima as a result of selec- 
tion. We showed that, as expected, migration reduces the speed at 
which speciation takes place (e.g. Gavrilets, 2004) , and we high- 
lighted the counteracting effect of migration on selection (see 
Fig. 1 for an illustration). Additionally, we showed that such effect 
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(also described in e.g. Wright, 1931 ; Ehrlich and Raven, 1969; 
Stanley, 1979; Charlesworth et al., 1982; Hartl et al., 1997; Ronce 
and Kirkpatrick, 2001 ; Gavrilets, 2004) is valid not only for one 
epoch but also for multiple ones and thus crucially extends 
to macroevolutionary levels. For instance, we showed that the 
(macroevolutionary) selection coefficient α can be vastly biased if 
migration is overlooked (a similar conclusion has been reached in 
Bartoszek et al. (2017) ), and migration slows down the speed at 
which phenotypic disparity among species is reached ( Fig. 3 ). 

Migration has also recently been incorporated in macroevolu- 
tion by Bartoszek et al. (2017) . Their approach and ours have in 
common the study of phenotypic evolution under an OU process 
with migration. However, the biological applications, model as- 
sumptions, and mathematical implementations are different. First, 
they introduced migration between branches of a phylogeny, not 
within branches like in our study. A second important difference 
is that they assumed a constant optimum and constant migra- 
tion rates. In our case, optima and migration rates are functions 
of time, where migration decreases over time, as it happens with 
diverging populations. We modeled migration within branches in 
order to capture this process. Constant migration rates between 
branches (even for trees representing populations within a species) 
cannot be linked to speciation. This brings us to a third impor- 
tant difference: in our model we allowed for speciation times to 
be related to migration rates. Therefore, the shape of the phylo- 
genetic tree may depend on the observed phenotypic evolution. 
In Bartoszek et al. (2017) , on the other hand, the authors super- 
imposed their model on a phylogeny assumed to be known. Ad- 
ditionally, our specific setting allowed us to obtain explicit recur- 
sive solutions for the mean and covariance matrices of z̄ (n ) , with- 
out making specific assumptions on the eigenstructure of the mi- 
gration matrix. Lastly, we aimed here at describing a model that 
links micro and macroevolutionary time scales, so that the inter- 
pretation of model parameters has micro foundations. In summary, 
the biological applications of these two models complement each 
other, and the conclusions reached concerning the effect of migra- 
tion on selection estimates are very similar. 

Our model assumes (for simplicity) that the two speciating sub- 
populations have the same size. Since we are mainly studying the 
behaviour of the mean phenotype then the effect of the popula- 
tion size is small, as long as the mean phenotype approximates 
the true population mean. Finally, our model also assumes that the 
differentiation function d ( t ) in Eq. (12) is defined by the difference 
between the optima of each subpopulation. A logical alternative 
for d ( t ) would be to define it as the difference between the phe- 
notypes instead of the optima. However, our biological motivation 
behind d ( t ) was to model changing environments over macroevo- 
lutionary time scales. In this case, it can then be assumed that, 
on the long term, phenotypes will closely follow their respective 
optima. Additionally, if we defined d ( t ) as the difference of pheno- 
types, d ( t ) would become a random variable, Eq. (5) would become 
quadratic, and we would no longer have an OU model. 

Micro and macroevolution. Bridging the micro and macroevolu- 
tionary scales has been a concern for evolutionary biologists since 
Darwin, and different ways of connecting these two levels have 
been proposed ( Arnold et al., 2001; Reznick and Ricklefs, 2009; 
Pennell and Harmon, 2013 ). For instance, natural selection, which 
is a microevolutionary force, has itself an impact on macroevolu- 
tionary patterns. This can be seen in small isolated populations, 
which can experience fast phenotypic change at the microevolu- 
tionary scale if selection on the traits is strong ( Lande, 1980a ), and 
this isolation can eventually turn into cladogenesis. The microevo- 
lutionary parameter that captures the strength of selection is αm 
( Eq. (1) ). While αm is the selection coefficient in each generation, 
its macroevolutionary counterpart α ( Eq. (5) ) is a cumulative selec- 
tion coefficient over thousands of generations. Thus, the biological 

interpretation of the selection coefficient after the time transfor- 
mation is different. The evolutionary rate σ 2 

m at the microevolu- 
tionary scale is also subject to the same time transformation, re- 
sulting in the macroevolutionary σ 2 . In this case, the statistical 
properties of this parameter remain the same after the transfor- 
mation, but the biological interpretation is still unclear. What we 
do know, however, is that σ 2 (in the long term) will depend on 
the influx of new mutations to the populations, as it is shown in 
Eq. (8) (see also Harmon, 2018 ). Other microevolutionary forces, 
such as genetic drift and mutation, can also impact macroevolu- 
tionary patterns ( Hansen and Martins, 1996 ). For instance, under 
drift-mutation balance, the covariance between species phenotypes 
decreases with time and equates 2 G m t z , with G m being the muta- 
tion variance and t z phylogenetic time ( Hansen and Martins, 1996 ), 
which is proportional to our Eq. (7) . However, migration has not 
been considered yet. Gene flow can span over the two time scales 
and constitutes an important link between micro and macroevo- 
lution. Here, we propose that the two time scales are linked by 
the characteristic time T c , which defines the time over which the 
optima change in each subpopulation. A small T c leads to changes 
occurring at a microevolutionary scale, while a large T c indicates 
changes occurring at a macroevolutionary scale. 

One epoch. Our model assumes that a population (or species) 
consists of two subpopulations with initial random mixing. Each 
subpopulation then evolves towards distinct optima and the migra- 
tion rate decreases until it becomes negligible. Speciation can oc- 
cur when migration stops, leading to ecologically dependent repro- 
ductive isolation (EDRI, Hendry, 2004 ). Selection against migrants 
contributes to EDRI, but also a number of other factors including: 
(1) reduced mating between individuals from both subpopulations 
(e.g. Higgie et al., 20 0 0; Kirkpatrick, 20 01; Nosil et al., 20 03 ); (2) 
habitat preferences (e.g. Rice, 1984; Bush, 1994; Via, 1999 ); and (3) 
return to a specific breeding location ( Hendry et al., 2004 ). Our re- 
sults show that migration will slow down the speed at which the 
mean phenotype will reach an optimum value ( Fig. 1 b,c). When 
individuals migrate into a subpopulation, the mean phenotype of 
the latter is pushed towards the phenotype of the new migrants 
( Fig. 1 e). The effect on the population optimum is initially strong, 
but will decrease with the reduced number of migrants over time. 
A similar conclusion was reached when the effect of migration 
rate on two connected populations of equal sizes was studied 
( Ronce and Kirkpatrick, 2001 ). 

Multiple epochs. A similar pattern was observed across multiple 
epochs: the speed at which the different optima are reached de- 
pends on the antagonising effects of the selection coefficient α and 
the migration function m ( t ). Here, we showed that the biased es- 
timation of α also happens across multiple epochs if migration is 
not considered. We observed this while analysing the mean dis- 
parity D ( n ) along successive epochs while accounting for migra- 
tion ( Fig. 3 ). Recall that disparity is an important and widely-used 
statistic in ecology and phylogenetics (e.g. Harmon et al., 2003; 
O’Meara et al., 2006; Slater et al., 2010; Harmon et al., 2010; Lumb- 
sch et al., 2010 ). The lag in D ( n ) due to migration happens be- 
cause gene flow reduces the phenotypic variance, since the ad- 
dition of migrants in the subpopulations will reduce the differ- 
ences between the subpopulation mean phenotypes. Here, let us 
keep in mind that we assume the same migration function m ( t ) 
for all branches and, thus, the tree topology and branch lengths 
are deterministic. We have also studied the case of having differ- 
ent m ( t ) for different lineages, where branches can have different 
lengths within each epoch (section SI-C.2). Although phylogenies 
with different branch lengths are more common in nature, cases of 
synchronous and parallel speciation often arise in adaptive radia- 
tions ( Nagalingum et al., 2011 ), host-parasite co-speciation ( Hoberg 
et al., 1997; Brändle et al., 2005 ), or when strong selective pressure 
affects independent lineages and trigger simultaneous reproductive 
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isolation from their ancestral populations ( Hudson et al., 2010; Os- 
tevik et al., 2012 ). Our model is also flexible regarding the branch 
lengths and asynchrony of speciation times, and it can accommo- 
date different migration rates and differentiation functions, yield- 
ing more realistic phylogenies (Figs. SI-I.5 and (SI-I.6). 

Niche filling. We used the multiple-epoch version of the model 
to study the effect of exponentially decreasing migration (with 
rate c ) on niche filling. Biologically speaking, niche filling con- 
stitutes a case of adaptive radiation where new species will oc- 
cupy novel niches (e.g. Price et al., 2014 ). Conversely, the non- 
adaptive version happens when newly-formed species retain the 
ancestral niche. Both scenarios can be modelled through OU pro- 
cesses (e.g. Reaney et al., 2018 ), and the final disparity can be es- 
timated. In our case, we found a sharp drop and subsequent in- 
crease in the asymptotic mean disparity across increasing values 
of c . While this increase indicates that disparity becomes larger 
with less gene flow, the interpretation of the drop is more diffi- 
cult ( Fig. 4 ). Another interesting pattern arises when introducing 
the differentiation function d ( t ) in the model. Recall that in such 
case, the migration function will depend on the current distance 
between the mean phenotypic values of the two diverging subpop- 
ulations ( Eq. (12) ). Thus, this case relates to ecological speciation, 
which establishes that divergent selection due to different ecologi- 
cal environments (which, in turn increase d ( t )) create reproductive 
barriers. In our case, d ( t ) also affects the rate at which the mean 
asymptotic disparity is reached and it increases the final disparity 
value when compared to a no-differentiation case with the same 
number of species ( Fig. 5 vs. Fig. 4 ). Additionally, we compared 
phenotypic data generated under a niche-filling scenario plus mi- 
gration, with simulated data under BM and other models of adap- 
tive radiation. We found that niche filling with migration generates 
lower disparity values when compared to BM and late burst mod- 
els. The only scenario that has a similar signal than that of niche 
filling would be cases of early burst models, where the evolution- 
ary rate increases with time, thus representing adaptive radiations. 

Estimation of α and migration. Inferring selection and migration 
has been a primary interest for evolutionary biologists (e.g. Lynch, 
1993; Kingsolver et al., 2001; Aitken et al., 2008 ). Our approach to 
inferring the selection coefficient α at the macroevolutionary scale 
takes the phenotype evolutionary trajectory into account, and the 
corresponding estimator ˆ α will be accurate around a time window 
of a couple tens of generations before and after the optimum value 
has been reached (and this approach can also be applied at the 
microevolutionary scale, to infer αm , Eq. (1) ). After that, as we let 
the phenotypes evolve continuously around the same optimum for 
more generations, ˆ α will slowly decrease (Fig. SI-I.2). This means 
that having phenotypic data sampled before or around the opti- 
mum is ideal when estimating selection. In any case, the estimator 
is robust even in cases when only a few data points have been 
sampled along the trajectory, and as few as six time points leads 
to an accurate ˆ α (Fig. SI-I.2b). If there is only data from before or 
after the optimum value has been reached the estimation is still 
accurate, but it will rather reflect an increased (or decreased) se- 
lective strength corresponding to the timing of the sampling, in- 
stead of the overall selection force associated to the entire process. 
Finally, a more robust estimation of α in the presence of migration 
happens when the optima of the two subpopulations are different 
from each other. If they become too close then the estimation ac- 
curacy decreases (Fig. SI-I.3a). A similar case has been reported in 
Bartoszek et al. (2017) where they state that the estimation of α is 
improved when there are multiple optima. 

The migration function is more difficult to estimate unless one 
has time-series data. Such estimation is possible either if data from 
two subpopulations is available ( Eq. (19) ), or from one subpopula- 
tion only ( Eq. (20) ). Estimating migration with data from one sub- 
population is possible because migrating individuals often display 

different phenotypic values if the two subpopulations have been 
already diverging. However, the difference in phenotypic optima 
between the two subpopulations has to be large enough to de- 
tect any effects. If the optima are close or similar to one another, 
an empirical estimation of the migration function becomes more 
difficult (Fig. SI-I.3). Contrary to Bartoszek et al. (2017) we are 
able to disentangle the effects of migration and selection, but only 
as long as time-series data is available. Current methods for esti- 
mating selection and migration jointly apply exclusively to genetic 
data ( Hey and Nielsen, 20 04; Hey, 20 06; Mathieson and McVean, 
2013 ), whereas methods for estimating the selection coefficient α
in phenotypic data do not take the effects of migration into ac- 
count ( Hansen and Martins, 1996; Hansen, 1997 ). Here, we show 
the importance of accounting for this evolutionary force since fail- 
ing to do so results in a biased estimation of the actual selective 
strength (Fig. SI-I.2). 

Finally, in order to estimate θ and β we would need to observe 
more than two populations. An alternative approach was proposed 
by Butler and King (2004) , where they use Hansen’s model to 
compute maximum likelihood estimators of α, θ , and β . However, 
these estimators are based on piecewise constant optimum func- 
tions belonging to a finite set. Also, they assume that phenotypes 
are observed only once, while here we assume the phenotypes 
are observed at multiple regular intervals and, thus, our estimators 
have explicit forms. 

Advantage of OU processes to model phenotypic evolution. A direct 
(mathematical) advantage of our microevolutionary model with se- 
lection is that it is an OU process. Namely, it involves a linear 
phenotypic transformation, which makes the re-scaling of time 
straightforward, keeping the entire structure of the model main- 
tained when we go from the micro to the macroevolutionary time 
scale (compare Eqs. (1) with (5) ). Therefore, the selection coeffi- 
cient at the microevolutionary scale αm becomes a cumulative se- 
lection coefficient α at the macroevolutionary scale, which amalga- 
mates the effects of selection over multiple generations. This gen- 
eralization should be further studied to investigate if the properties 
of the OU model at the microevolutionary scale can be extrapo- 
lated across speciation events and towards macroevolutionary time 
scales. 

Conclusions. We developed a model of phenotypic evolution 
with migration within species, which constitutes an extension of 
the OU model of Hansen and Martins (1996) , and we propose a 
way to link the time scales of micro and macroevolution. We show 
that, as expected at the microevolutionary scale, migration coun- 
teracts selection when populations diverge towards different op- 
tima for the quantitative trait, but our model allows us to ex- 
tend these results across multiple speciation events. The effect of 
migration is, therefore, important even for modelling trait evolu- 
tion at the macroevolutionary scale and not accounting for this 
process can have important consequences for the estimation of 
key parameters such as selection intensities typically considered in 
macroevolution. 
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A Notation

In this paper we make use of the Kronecker product between matrices, which is defined as

follows: if A is an m⇥ n matrix and B is a p⇥ q matrix, then the Kronecker product A⌦B

is the mp⇥ nq block matrix defined by

A⌦B =

2

66664

A11 B · · · A1n B

...
. . .

...

Am1 B · · · Amn B

3

77775
. (25)

The symbol > denotes the matrix transposition. We let 1 := [1, 1]>, J := 1 · 1>, e =

[1,�1]>, and E = e · e>. We denote by I the identity matrix of size two, and we use the

notation 1x for the column vector of 1’s of size x.

B Trait evolution along one epoch

We first focus on the joint evolution of the phenotype of two subpopulations forming one

species between the birth of the species at time t = 0 until the next speciation event.

B.1 Dynamics along a single lineage

The system of stochastic di↵erential equations characterizing the phenotypic evolution of the

two subpopulations forming one species with common initial phenotype, z̄1(0) = z̄2(0) = z, is

given by

dz̄1(t) = [↵(✓1(t)� z̄1(t)) +m(t)(z̄2(t)� z̄1(t))]dt+ �dw1(t), (26)

dz̄2(t) = [↵(✓2(t)� z̄2(t)) +m(t)(z̄1(t)� z̄2(t))]dt+ �dw2(t), (27)

where w1(t), w2(t) are two independent Wiener processes (Brownian motion), ↵ denotes the

strength of selection, and � describes the rate of stochastic evolution away from the optimum.
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Letting

z̄(t) = [z̄1(t), z̄2(t)]
>
, ✓(t) = [✓1(t), ✓2(t)]

>
, and dw(t) = [dw1(t), dw2(t)]

>
, (28)

Eq. (26,27) may be rewritten in matrix form as

z̄(0) = z 1, (29)

dz̄(t) = [↵✓(t)�A(t)z̄(t)]dt+ �dw(t), (30)

where

A(t) = ↵I+m(t)E. (31)

We let ✓(0) = ✓1 for some constant parameter ✓, because the optimum is initially the same

for the two subpopulations forming a new species. Eq. (30) describes a multivariate inhomo-

geneous time-dependent Ornstein-Uhlenbeck (OU) process (Gardiner 2009, Section 4.5).

We now solve (29,30) for t 2 [0, T ] following (Gardiner 2009, Sections 4.5.8 and 4.5.9). The

homogeneous equation corresponding to (30) is the deterministic equation

dz̄(t) = �A(t)z̄(t)dt, (32)

which is soluble since A(t)A(u) = A(u)A(t) for any t, u � 0, and has the solution

z̄(t) = exp[�Ā(t)t]z̄(0), (33)

where Ā(t) is given by

Ā(t) :=
1
t

Z t

0

A(u)du = ↵I+ m̄(t)E, t � 0, (34)

with

m̄(t) :=
1
t

Z t

0

m(u)du. (35)

The general solution of (29,30) is given by

z̄(t) = exp[�Ā(t)t] z 1+ g(t) + � exp[�Ā(t)t]

Z t

0

exp[Ā(u)u]dw(u), t � 0, (36)
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where g(t) is the deterministic 2⇥ 1 vector

g(t) = ↵ exp[�Ā(t)t]

Z t

0

exp[Ā(u)u]✓(u)du, t � 0. (37)

If z is deterministic or normally distributed, then z̄(t) is normally distributed for any t � 0.

Thanks to the particular form (34) of the matrix Ā(t), its exponential can be simplified,

as we show in the next lemma.

Lemma B.1. For any t � 0,

exp[±Ā(t)t] = exp(±↵t)I+ {exp[±↵t± 2m̄(t)t]� exp(±↵t)}(E/2). (38)

In particular, exp[�Ā(t)t]1 = exp(�↵t)1.

Proof. First observe that for k � 1, Ek = 2k�1E. Then, using the binomial theorem for

commuting matrices,

Ān(t) = (↵I+ m̄(t)E)n

=
nX

k=0

 
n

k

!
(↵I)n�k(m̄(t)E)k

= ↵

nI+ 2�1
nX

k=1

 
n

k

!
↵

n�k(2m̄(t))kE

= ↵

nI+ [(↵+ 2m̄(t))n � ↵

n](E/2).

It follows that

exp[±Ā(t)t] =
X

n�0

(±)nĀn(t)tn

n!

=
X

n�0

(±)n{(↵t)nI+ [(↵t+ 2m̄(t)t)n � (↵t)n](E/2)}
n!

= exp(±↵t)I+ {exp[±↵t± 2m̄(t)t]� exp(±↵t)}(E/2),

and since E1 = 0, we obtain the result.

As a consequence of Lemma B.1, the vector g(t) can be rewritten as

g(t) =
↵

2

⇢Z t

0

exp[�↵(t� u)](✓1(u) + ✓2(u)) du1

+

Z t

0

exp[�↵(t� u)] exp[�2(m̄(t)t� m̄(u)u](✓1(u)� ✓2(u)) du e.

�
(39)

This expression can be further simplified if ✓(u) takes some special form. For instance,
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• if ✓(u) = ✓(u)1, that is, if the optimum functions are the same for the two subpopulations

forming a species, then by (39) we obtain

g(t) = ↵

Z t

0

exp[�↵(t� u)]✓(u)du1; (40)

• if ✓1(u) = a + bu and ✓2(u) = a � bu (opposite linear functions with origin a and slope

b), then g(t) simplifies to

g(t) = F (t) a1+ J(t) b e, (41)

where

F (t) := 1�exp(�↵t), J(t) := ↵

Z t

0

exp[�↵(t�u)] exp[�2(m̄(t)t�m̄(u)u]u du. (42)

B.2 Dynamics of the mean and variance

We assume that the common phenotype z at time 0 is normally distributed with mean µ and

variance �

2. We are now in a position to fully characterise the solution z̄(t) of (30).

Proposition B.2. For any time 0  t  T , the random vector of mean phenotypes z̄(t)

follows a multivariate normal distribution N (µ(1)(t),⌃(1)(t)), with 2⇥ 1 mean vector µ(1)(t)

and 2⇥ 2 covariance matrix ⌃(1)(t) given by

µ(1)(t) = µ exp(�↵t)1+ g(t), (43)

⌃(1)(t) = �

2 exp(�2↵t)J+H(t), (44)

where g(t) is given by (39), and

H(t) =
�

2

2

Z t

0

exp[�2↵(t� u)]{J+ exp[�4 (m̄(t)t� m̄(u)u)]E} du. (45)

Proof. To obtain the expression for the mean, we take the expectation of the right-hand-side

of (36), noting that E[dw(t)] = 0. To obtain the covariance matrix, we take the expectation of

z̄(t)z̄(t)> using (36) again, noting that Ā(t) = Ā>(t) and that E[dw(t) dw(s)] = dt1(s = t),

which leads to

⌃(1)(t) = �

2 exp[�Ā(t)t]J exp[�Ā(t)t] +H(t), (46)
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where

H(t) = �

2 exp[�2Ā(t)t]

Z t

0

exp[2Ā(u)u]du. (47)

The final expressions (43) and (44) are then derived after some algebraic manipulations using

Lemma B.1.

The first term in ⌃(1)(t), �2 exp(�2↵t)J, takes into account the covariance induced by the

common initial value z of z̄1(t) and z̄2(t), while the second term, H(t), takes into account the

covariance induced by the Brownian noises acting on the two variables, and the mass exchange

between the branches when m(t) > ✏.

Remark B.3. In this setting we assumed that w1(t) and w2(t) are independent. The result can

be generalized to the case where the two Wiener processes are not independent. In that case,

we define ⇢(t) := Cov(w1(t), w2(t)), and we can show that Cov(w1(t), w2(s)) = ⇢(min(s, t))

for all s, t � 0. The matrix H(t) then becomes

H(t) = �

2
Z t

0

exp[�(Ā(t)t� Ā(u)u)]

2

64
du d⇢(u)

d⇢(u) du

3

75 exp[�(Ā(t)t� Ā(u)u)].

In particular, if w1(t) = w2(t), then ⇢(t) = t, and using Lemma B.1, we obtain

H(t) =
�

2

2↵
(1� e

�2↵t)J. (48)

C Trait evolution along the entire phylogenetic tree

We now consider the full process starting at time t = 0 with one species with mean phenotype

z ⇠ N(µ,�2) that splits into two subpopulations, and where migration occurs at rate m(t). In

our model, each branch segment of the phylogenetic tree corresponds to two subpopulations

evolving according to a two-dimensional OU process. There is a first speciation event at time

T = inf{t : m(t)  ✏}, for a chosen value of ✏. After that time, there is negligible mixing

between the two subpopulations which give rise to two new species evolving independently of

each other, conditionally on their initial mean phenotype z̄1(T ) and z̄2(T ). Again, each new

species is made up of two subpopulations, and the process continues.
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C.1 Constant migration function m(t)

C.1.1 Dynamics of the mean and variance

If the migration function m(t) is deterministic and identical for all species, the next speciation

events will happen at times 2T , 3T , etc. At time nT (corresponding to the end of epoch

n � 1), there will be exactly 2n species in the process (for n � 1). The tree topology and

branch lengths are therefore deterministic. However, the joint phenotypic distribution of the

species at the end of each epoch is random and follows a multivariate normal distribution that

we specify below.

For n � 1, let z̄(n)(t), t 2 [0, T ], be the 2n�dimensional OU process describing the pheno-

typic evolution during epoch n� 1, that is, between time (n� 1)T and time nT . We assume

that we are given a sequence of (deterministic) functional vectors {✓(n)(t)}n�1, of respective

sizes 2n ⇥ 1, defined for t 2 [0, T ], and containing the optimum functions corresponding to

each epoch in the tree. That is, for n � 1, ✓(n)(t) is the vector corresponding to z̄(n)(t). In

order to ensure the continuity of the optimum function along each lineage, the vectors ✓(n)(t)

must satisfy

✓(1)(0) := ✓1

✓(n)(0) = (✓(n�1)(T )⌦ 1) for n � 2. (49)

In addition to the sequence of vectors {✓(n)(t)}n�1, we define the related sequence of

vectors {g(n)(t)}n�1 of size 2n ⇥ 1 as follows:

g(n)(t) = ↵

Z t

0

�
I2n�1 ⌦ exp[Ā(u)u� Ā(t)t]

�
✓(n)(u)du

= I2n�1 ⌦ ↵

2

⇢Z t

0

exp[�↵(t� u)](✓(n)
1 (u) + ✓

(n)
2 (u)) du1

+

Z t

0

exp[�↵(t� u)] exp[�2(m̄(t)t� m̄(u)u](✓(n)
1 (u)� ✓

(n)
2 (u)) du e,

�
(50)

where I2n�1 denotes the identity matrix of size 2n�1.

Let z̄(n) := z̄(n)(T ) denote the random vector of phenotypes at the end of epoch n� 1.

Proposition C.1. For n � 1, z̄(n) follows a multivariate normal distribution N (µ(n)
,⌃(n))

of which the 2n ⇥ 1 mean vector µ(n) and the 2n ⇥ 2n covariance matrix ⌃(n) can be expressed

6



recursively as

µ(n) = exp(�↵T )[µ(n�1) ⌦ 1] + g(n)(T ) (51)

⌃(n) = exp(�2↵T )[⌃(n�1) ⌦ J] + I2n�1 ⌦H(T ), (52)

with µ(0) = µ and ⌃(0) = �

2.

Proof. The recursion works by updating the initial (random) mean phenotype value of each

species at the start of each epoch, which corresponds to the mean phenotype value of each

subpopulation at the end of the previous epoch. The Kronecker products reflect the indepen-

dent evolution of the mean phenotypes along each branch segment of the tree, conditional on

their initial value.

Corollary C.2. For n � 1, µ(n) and ⌃(n) take the following explicit forms

µ(n) = exp(�↵nT )µ12n +
nX

i=1

exp[�↵(n� i)T ] [g(i)(T )⌦ 12n�i ] (53)

⌃(n) = exp(�2↵nT )�2 12n · 1>
2n +

nX

i=1

exp[�2↵(n� i)T ] [I2i�1 ⌦H(T )⌦ 12n�i · 1>
2n�i ]. (54)

C.1.2 Evolution along a random lineage

Recall that each branch segment of the phylogenetic tree corresponds to two subpopulations

evolving according to a two-dimensional OU process. One lineage of length n in the tree

is thus one particular sequence of n branch segments controlled by a bivariate OU process,

where at each branching point an optimum function ✓i(·) (i.e. a direction) is chosen. Picking

one lineage at random in a tree with n epochs is equivalent to selecting one of the 2n leaves

uniformly at random. The phenotype ȳ

(n) of this selected individual at time nT is given by

ȳ

(n) = (1/2n)
2nX

i=1

z̄

(n)
i = (1/2n)1>

2n z̄
(n)

. (55)

The random variable ȳ

(n) is thus simply the average mean phenotype at time nT , and is

normally distributed with mean and variance

µȳ(n) = (1/2n)1>
2nµ

(n) (56)

�

2
ȳ(n) = (1/22n)1>

2n⌃
(n)12n , (57)
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which satisfy a simple recursion: µȳ(0) = µ and �

2
ȳ(0) = �

2, and for n � 1,

µȳ(n) = exp(�↵T )

✓
µȳ(n�1) + ↵

Z T

0

exp(↵u) ✓̄(n)(u)du

◆
(58)

�

2
ȳ(n) = exp(�2↵T )�2

ȳ(n�1) +
�

2

↵ 2n+1
[1� exp(�2↵T )], (59)

where ✓̄

(n)(u) := (1/2n)1>
2n✓

(n)(u) denotes the average optimum function during the nth

epoch.

Asymptotically, as n ! 1, the variance vanishes, �2
ȳ(1) = 0, and ȳ

(n) converges towards

a constant

µȳ(1) =
↵

R T

0
exp[�↵(T � u)] ✓̄(1)(u)du

1� exp(�↵T )
(60)

where ✓̄

(1)(u) = limn!1 ✓̄

(n)(u).

C.1.3 Disparity of the phenotypic distribution

The disparity of the multivariate vector z̄(n), denoted by D

(n), is a scalar random variable

which measures how much the mean phenotypes of the 2n species present at the end of the

nth epoch di↵er from each other. We define it as

D

(n) = (1/2n)
2nX

i=1

[z̄(n)
i � ȳ

(n)]2 (61)

= (1/2n)
2nX

i=1

(z̄(n)
i )2 � (ȳ(n))2, (62)

where ȳ

(n) is given by (55). The disparity D

(n) is not to be confused with the variance of

ȳ

(n), �2
ȳ(n) , which measures the variability of the (random) average phenotype. The disparity

corresponds to the sample variance of the mean phenotypes.

The first moment of D(n) is given by

E[D(n)] = (1/2n)
2nX

i=1

(⌃(n)
ii + E[z̄(n)

i ]2)� (�2
ȳ(n) + µ

2
ȳ(n)) (63)

= (1/2n)[Tr(⌃(n)) + µ(n)>µ(n)]� (1/22n)[1>
2n⌃

(n)12n + (1>
2nµ

(n))2], (64)

where Tr(⌃(n)) denotes the trace of the covariance matrix ⌃(n). In specific cases, such as the

niche filling example, it is possible to characterise the asymptotic mean disparity E[D(1)] :=

limn!1E[D(n)], as we show in section D.
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C.2 Variable migration function m(t)

Here we assume that m(t) is deterministic but potentially di↵erent along each branch segment

of the tree. That is, we define a sequence of functions {m(n)(t)}n�1, where m
(n)(t) is a vector

of size 2n�1 ⇥ 1 that contains the migration functions corresponding to the 2n�1 systems of

OU equations describing the phenotypic evolution during epoch n� 1 in the tree.

The definition of the sequence of migration functions {m(n)(t)}n�1 induces a sequence

of corresponding speciation times {T (n)}n�1 which are such that m

(n)
k (T (n)

k ) = " for k =

1, . . . , 2n�1; the branch segments of the tree can then have di↵erent lengths.

To each function m

(n)
k (t) now corresponds a matrix

Ā
(n)
k (t) := ↵I+ m̄

(n)
k (t)E, (65)

with

m̄

(n)
k (t) :=

1
t

Z t

0

m

(n)
k (u)du. (66)

We define the related sequences of vectors {g(n)}n�1 of size 2n ⇥ 1 and matrices {H(n)}n�1

of size 2n ⇥ 2n as follows:

• g(n) contains 2n�1 block vectors of size 2⇥1, where the kth block vector, g(n)
[k] , is defined

as

g(n)
[k] = ↵ exp[�Ā

(n)
k (T (n)

k )T (n)
k ]

Z T
(n)
k

0

exp[Ā(n)
k (u)u]✓(n)

[k] (u)du, (67)

where ✓(n)
[k] (u) is the kth block-vector of size 2⇥ 1 in the 2n ⇥ 1 vector ✓(n)(u), 1  k 

2n�1;

• H(n) is 2(n�1) ⇥ 2(n�1) block-diagonal, where the kth block matrix of size 2 ⇥ 2 on the

diagonal, H(n)
[k] , is defined as

H
(n)
[k] = �

2 exp[�2Ā(n)
k (T (n)

k )T (n)
k ]

Z T
(n)
k

0

exp[2Ā(n)
k (u)u]du. (68)

Like in (39) and (45), these expressions can be simplified using Lemma B.1. Let Diag[exp(�↵T (n))]

be the 2n�1 ⇥ 2n�1 diagonal matrix whose (i, i)th entry is exp(�↵T

(n)
i ). As before, z̄(n) de-

notes the vector of phenotypes at the end of epoch n � 1. Note however that species in that

epoch may now be born at di↵erent times. The random vector z̄(n) follows a multivariate

normal distribution N (µ(n)
,⌃(n)) of which the mean vector and covariance matrix can be

9



expressed recursively:

µ(n) = {Diag[exp(�↵T (n))]µ(n�1) ⌦ 1}+ g(n) (69)

⌃(n) = {Diag[exp(�↵T (n))]⌃(n�1)Diag[exp(�↵T (n))]⌦ 1 · 1>}+H(n) (70)

for n � 1, with µ(0) = µ and ⌃(0) = �

2.

We refer to Figure I.6 for a simulation of the phenotypic trajectories over the first three

epochs for an example with variable migration functions (Eq. (11), with L = 0) with values

taken from Table 2.

Note that in the setting of variable migration functions, it is not possible to obtain a

recursive expression for the mean and variance of the average mean phenotype ȳ

(n).

D Niche filling

In the niche filling example in the interval [�A,A] with fixed migration function m(t), the

speciation time T is fixed. Let a(n) and b(n) denote the 2n�1⇥1 vectors containing the origins

and slopes of the optimum functions ✓(n), n � 1. These vectors satisfy

a(1) = 0, a(n) = a(n�1) ⌦ 1+
A

2n�1
(12n�2 ⌦ e), and b(n) =

A

2nT
12n�1 .

By (41) and (50), we then have g(n)(T ) = F (T )(a(n) ⌦ 1) + J(T )(b(n) ⌦ e), where F (t) and

J(t) are defined in (42). Therefore, the mean vector and covariance matrix (53) and (54) of

z̄(n) become

µ(n) = exp(�↵T )(µ(n�1) ⌦ 1) + F (T )(a(n) ⌦ 1) + J(T )(b(n) ⌦ e), (71)

⌃(n) = exp(�2↵T )[⌃(n�1) ⌦ 1 · 1>] + I2n�1 ⌦H(T ). (72)

The asymptotic mean disparity takes a simple form, as we now show.

Proposition D.1.

E[D(1)] =
A

2

3
+

�

2

2↵

(
1
2
+

↵

R T

0
exp{�2[↵(T � u) + 2 (m̄(T )T � m̄(u)u)]} du

1� exp(�2↵T )

)
. (73)

Proof. As n ! 1, due to symmetry, we have µȳ(n) ! 0, and we also have �

2
ȳ(n) ! 0.
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Therefore,

E(D(1)) := lim
n!1

E(D(n))

= lim
n!1

(1/2n)Tr(⌃(n)) (74)

+ lim
n!1

(1/2n)µ(n)>µ(n)
. (75)

We first treat (74) and let X := limn!1(1/2n)Tr(⌃(n)). By (72), we have

Tr(⌃(n)) = 2e�2↵TTr(⌃(n�1)) + 2n�1Tr(H(T )).

Dividing both sides by 2n, and taking n ! 1, we get X = e

�2↵T
X +Tr(H(T ))/2, leading to

X = lim
n!1

(1/2n)Tr(⌃(n)) =
Tr(H(T ))

2(1� e

�2↵T )
.

Next, we evaluate (75) and let W := limn!1(1/2n)µ(n)>µ(n). Using (71), and the fact

that 1>1 = e>e = 2, e>1 = 1>e = 0, we get

µ(n)>µ(n) = {e�↵T (µ(n�1)> ⌦ 1>) + F (T )(a(n)> ⌦ 1>) + J(T )(b(n)> ⌦ e>)} (76)

·{e�↵T (µ(n�1) ⌦ 1) + F (T )(a(n) ⌦ 1) + J(T )(b(n) ⌦ e)} (77)

= 2e�2↵Tµ(n�1)>µ(n�1) + 4e�↵T
F (T )µ(n�1)>a(n) (78)

+2F (T )2a(n)>a(n) + 2J(T )2b(n)>b(n)
. (79)

Dividing both sides by 2n, and taking n ! 1, we get

W = e

�2↵T
W

+2e�↵T
F (T ) lim

n!1
(1/2n�1)µ(n�1)>a(n) (80)

+F (T )2 lim
n!1

(1/2n�1)a(n)>a(n) (81)

+J(T )2 lim
n!1

(1/2n�1)b(n)>b(n)
. (82)

It remains to treat (80)–(82), which we do separately.

• Eq. (82): b(n)>b(n) =
A

2
, therefore (82) = 0.
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• Eq. (81): Using the recursion for a(n),

a(n)>a(n) = {a(n�1)> ⌦ 1> +
A

2n�1
(1>

2n�2 ⌦ e>)} (83)

·{a(n�1) ⌦ 1+
A

2n�1
(12n�2 ⌦ e)} (84)

= 2a(n�1)>a(n�1) + 2
A

2

22n�2
2n�2 (85)

= a(n�1)>a(n�1) +
A

2

2n�1
. (86)

This is a first order recurrence equation with a(1)>a(1) = 0 whose solution is

a(n)>a(n) =
A

2

3
(22n�2 � 1)

2n�1
,

so we have

lim
n!1

(1/2n�1)a(n)>a(n) = lim
n!1

A

2

3
(22n�2 � 1)

22n�2
=

A

2

3
,

therefore (81) = F (T )2A2
/3.

• Eq. (80):

µ(n�1)>a(n) = {e�↵T (µ(n�2)> ⌦ 1>) + F (T )(a(n�1)> ⌦ 1>) + J(T )(b(n)> ⌦ e>)}

·{a(n�1) ⌦ 1+
A

2n�1
(12n�2 ⌦ e)}

= 2e�↵Tµ(n�2)>a(n�1) + 2F (T )a(n�1)>a(n�1) + 2
A

2n�1
J(T )b(n)>12n�2

= 2e�↵Tµ(n�2)>a(n�1) + 2F (T )a(n�1)>a(n�1) + J(T )
A

2

2n�1
T

.

Let Z := limn!1(1/2n�1)µ(n�1)>a(n). Dividing both sides by 2n�1, and taking n ! 1,

we get Z = e

�↵T
Z + F (T )A2

/3, therefore

lim
n!1

(1/2n�1)µ(n�1)>a(n) =
F (T )A2

3(1� e

�↵T )
,

and

(80) =
2e�↵T

F (T )2A2

3(1� e

�↵T )
.

Coming back to the equation for W , we therefore have

W = e

�2↵T
W +

2e�↵T
F (T )2A2

3(1� e

�↵T )
+ F (T )2

A

2

3
,

which, using the fact that F (T ) = 1� e

�↵T , simplifies to W = e

�2↵T
W + (A2

/3)(1� e

�2↵T ),
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n = 1 n = 2 n = 3
m(n)(t) c = 0.75 c = 0.4 c = 0.2

c = 0.55 c = 0.3
c = 0.4
c = 0.5

✓(n)(t) S, a1 = 10 S, a1 = 50 D, a1 = 5
D, a2 = �20 D, a2 = �10 S, a2 = 100

D, a3 = 25 S, a3 = �300
S, a4 = �30 D, a4 = �5

D, a5 = 10
D, a6 = 0
S, a7 = �100
S, a8 = 0

Table 2: Variable migration functions: Parameters in the migration vectors m(n)(t) and optimum vectors
✓(n)(t) corresponding to the first three epochs of a phylogenetic tree. In ✓(n)(t), S means stabilising (form (9)),
and D means diverging (form (10)).

giving

W = lim
n!1

(1/2n)µ(n)>µ(n) =
A

2

3
.

Summarizing, we have

E(D(1)) =
Tr(H(T ))

2(1� e

�2↵T )
+

A

2

3
, (87)

where,

Tr(H(T )) = �

2

⇢Z T

0

e

�2↵(T�u)
du+

Z T

0

e

�2[↵(T�u)+2 (m̄(T )T�m̄(u)u)]
du

�

=
�

2

2↵
(1� e

�2↵T ) + �

2
Z T

0

e

�2[↵(T�u)+2 (m̄(T )T�m̄(u)u)]
du,

leading to (73).

E Additional experiment

In this experiment, we fix m(t) = 0.5 exp(�c1t) with c1 = 0.5678 so that T = 15 (with

✏ = 10�4), and we consider the optimum function ✓(n)(t) depending on one parameter 0 

p  5 as given in Table 3. These functions are illustrated in Figure I.4 for the extreme values

p = 0 (Fig. I.4a) and p = 5 (Fig. I.4b). When p = 0 we are in the particular case where

✓

(n)
1 (t) = ✓

(n)
2 (t) for all n � 1 and t � 0. The parameter p controls the percentage of increase

in the parameter a2 of ✓(n)
2 (t) with respect to a1 in ✓

(n)
1 (t). The mean disparity E[D(n)] is

plotted in Figure I.4c as a function of p. As expected, the mean disparity increases with p,

but we also see that there is a threshold value p

⇤ such that E[D(3)] > E[D(2)] for p < p

⇤, and

13



n = 1 n = 2 n = 3

✓(n)(t) D, a1 = 10 S, a1 = �10 D, a1 = 5
D, a2 = 10(1 + p) S, a2 = �10(1 + p) D, a2 = 5(1 + p)

D, a3 = 30 S, a3 = �300
D, a4 = 30(1 + p) S, a4 = �300(1 + p)

D, a5 = �5
D, a6 = �5(1 + p)
S, a7 = 100
S, a8 = 100(1 + p)

Table 3: Parameters in the optimum vectors ✓(n)(t) corresponding to the first three epochs of a phylogenetic tree.
In ✓(n)(t), S means stabilising (form (9)), and D means diverging (form (10)).

E[D(3)] < E[D(2)] for p > p

⇤.

F Comparison with Hansen’s model

The novelty of our model lies in the introduction of the migration function m(t), which itself

determines the speciation times. Other models in the literature, such as for example Hansen’s

model in (Hansen & Martins 1996; Hansen 1997), do not consider any migration function.

In Hansen’s model the phylogenetic tree and all times between speciation events (lengths of

branch segments) are assumed to be known, and the lineage of each species j can then be

described by an univariate OU process Xj(t) with, for instance, a constant optimum function

✓j(t) (Butler & King 2004). Based on the observed phenotypic multivariate distribution at

present time (multivariate normal), the parameters ↵,� and the constant optima along each

branch segment can then be inferred. In contrast, in our model, each branch segment of the

tree corresponds to a bivariate OU process.

In what follows we make a conection between our model and Hansen’s model. The param-

eters of Hansen’s model are:

• ↵,�, µ,�, like in our model;

• a sequence of speciation times {T (n)}n�1, where T (n) if a vector of size 2n�1, like in our

model;

• a sequence of optima {✓(n)[H]}n�1, where ✓(n)[H] is a vector of size 2n�1, while in our

model, the vector ✓(n)(t) is of size 2n. We use the superscript [H] to di↵erentiate Hansen’s

model from ours.

In Hansen’s model, the vector of phenotypes at the end of epoch n � 1, denoted by z̄(n)[H],

is of size 2n�1 (versus 2n in our model), and is distributed according to a multivariate nor-

14



mal distribution N (µ(n)[H]
,⌃(n)[H]) of which the mean vector and covariance matrix can be

expressed recursively:

µ(n)[H] = Diag[exp(�↵T (n))](µ(n�1)[H] ⌦ 1) + Diag[1� exp(�↵T (n))]✓(n)[H] (88)

⌃(n)[H] = Diag[exp(�↵T (n))](⌃(n�1)[H] ⌦ 1 · 1>)Diag[exp(�↵T (n))] (89)

+(�2
/2↵)Diag[[1� exp(�2↵T (n))] (90)

for n � 1, with µ(0)[H] = µ and ⌃(0)[H] = �

2.

To make the comparison between Hansen’s model and ours, we specify the parameters of

our model so that they match Hansen’s model:

• m(t) = 0 for all t, which implies that Ā(t) = ↵I, and the speciation time is obtained

as the maximum between T = 0 and a predefined speciation time T

[H] (see section

Dynamics of the environment in the main text),

• ✓(n)(t) = (✓(n)[H] ⌦ 1) (where 1 is a vector of size 2, and t � 0),

• W1(t) = W2(t) for each species.

Consequently, g(n) and H(n) simplify to

g(n) = {Diag[1� e

�↵T (n)

]✓(n)[H] ⌦ 1} (91)

H(n) =

2

66664

H(T (n)
1 )

. . .

H(T (n)

2n�1)

3

77775
(92)

where H(·) is as in (48). We can then show that

µ(n) = µ(n)[H] ⌦ 1 (93)

⌃(n) = ⌃(n)[H] ⌦ 1 · 1>
, (94)

so that µ(n)[H] and ⌃(n)[H] can be re-obtained from our model as

µ(n)[H] =
1
2
(I ⌦ 1>)µ(n) (95)

⌃(n)[H] =
1
4
(I ⌦ 1>)⌃(n)(I ⌦ 1). (96)
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G Estimation of the selection coe�cient and the mi-

gration rate

As stated before, one of the main goals of this study is to analyze the bias on the estimation of ↵

when failing to account for intraspecific migration. The motivation behind is that standard OU

applications in macroevolution often aim at quantifying the amount of selection experienced

by di↵erent species but they do not consider the e↵ect that intraspecific gene flow has in these

estimations. Therefore, given that in real phenotypic samples the selection coe�cient ↵ is

unknown, we aim here at formulating two estimators: an estimator of ↵ and an estimator of

the migration rate parameter c = c1 in Eq. (11) when L = 0. Our model readily lends itself

to derive such estimators by setting � = 0 in Eq. (5) and approximating these expressions as

di↵erence equations as follows:

z̄1(t+ dt) = [↵(✓1(t)� z̄1(t)) +m(t)(z̄2(t)� z̄1(t))] dt+ z̄1(t), (97)

z̄2(t+ dt) = [↵(✓2(t)� z̄2(t)) +m(t)(z̄1(t)� z̄2(t))] dt+ z̄2(t). (98)

Following the same logic, in a second time step we have

z̄1(t+dt+dt) = [↵(✓1(t+dt)�z̄1(t+dt))+m(t+dt)(z̄2(t+dt)�z̄1(t+dt))] dt+z̄1(t+dt), (99)

where the last term z̄1(t+ dt) is given in Eq. (97). So Eq. (99) becomes

z̄1(t+ 2dt) = [↵(✓1(t+ dt)� z̄1(t+ dt)) +m(t+ dt)(z̄2(t+ dt)� z̄1(t+ dt))] dt+ z̄1(t+ dt)

+[↵(✓1(t)� z̄1(t)) +m(t)(z̄2(t)� z̄1(t))] dt+ z̄1(t).

After n steps, we obtain

z̄1(t+ n dt) = ↵

n�1X

i=0

[✓1(t+ i dt)� z̄1(t+ i dt) +m(t+ i dt)(z̄2(t+ i dt)� z̄1(t+ i dt))] dt+ z̄1(t)

(100)

z̄2(t+ n dt) = ↵

n�1X

i=0

[✓2(t+ i dt)� z̄2(t+ i dt) +m(t+ i dt)(z̄1(t+ i dt)� z̄2(t+ i dt))] dt+ z̄2(t).

(101)
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Adding Eq. (17) and (18) leads to

z̄1(t+ n dt) + z̄2(t+ n dt) = ↵

n�1X

i=0

[✓1(t+ i dt)� z̄1(t+ i dt)] dt+ z̄1(t)

+↵

n�1X

i=0

[✓2(t+ i dt)� z̄2(t+ i dt)] dt+ z̄2(t).

By rearranging terms, an estimator of ↵ can be written in terms of the mean phenotype in

the two subpopulations at times t, t+ dt, . . . , t+ n dt as

↵̂ =
z̄1(t+ n dt)� z̄1(t) + z̄2(t+ n dt)� z̄2(t)Pn�1

i=0 [✓1(t+ i dt)� z̄1(t+ i dt)] dt+
Pn�1

i=0 [✓2(t+ i dt)� z̄2(t+ i dt)] dt
. (102)

To obtain an estimator of the migration rate c we simply replace ↵ in Eq. (17) or Eq. (18)

with the value of Eq. (19) and solve numerically for c.

If there is no data on a possible second subpopulation from which migration could be

taking place then ↵ can be estimated from Eq. (19) using only the terms corresponding to

Subpopulation 1:

↵̂ =
z̄1(t+ n dt)� z̄1(t)Pn�1

i=0 [✓1(t+ i dt)� z̄1(t+ i dt)] dt
. (103)

H Simulations

This subsection describes a simulator that uses a standard OU process to generate individual

phenotype trajectories with known ↵ values. This simulator is used to 1) check the accuracy

of ↵̂, and 2) check the e↵ect of gene flow in the estimation of ↵ (accomplished by adding

migrants from a second population).

Direct OU simulations To check the accuracy of our estimator ↵̂ we simulated full

population phenotype trajectories by using a standard OU process with the following steps:

1. With arbitrary values of z̄(0), ↵, and ✓ (where ✓ is here a constant) we generated a

trajectory of trait means z̄(t) for t = 200 generations using equation dz̄(t) = ↵(✓ �

z̄(t))dt + �dw(t). For the purpose of these simulations we set � = 0 and worked with

the first term of the expression as a di↵erence equation, as it is usually done when

programming di↵erential equations. The chosen parameter values were: z̄(0) = 2, ↵ =

0.05, and ✓ = 10.

2. The vector of phenotype means z̄(t) generated in step 1 for discrete values of t was then

17



used to draw, for each t, 100 values from a normal distribution N (z̄(t), s) with means

z̄(t) and some arbitrary variance (s = 3); these values represent the phenotypes of a

subpopulation of size N = 100 at any given time t. This results in a population with a

known ↵, a step that is necessary to validate the estimator described in Section G. These

values are stored in a matrix with 100 rows and 200 columns (note that since all 100

values were placed randomly in each column, rows of this matrix do not necessarily follow

individual trajectories, but the number of columns still represent the generations). A

plot of the mean value of each column (mean phenotype) can be seen in Fig. I.2a (black

curve).

3. To check for the e↵ect on ↵̂ of migrants from outside we simulated a second subpopulation

with the same parameters, varying only the optimum ✓ = �5. This second simulated

subpopulation is also stored in a 100⇥ 200 matrix. To recreate migration, we exchanged

individuals (phenotypic values) between the two matrices column-wise. That is, for each

column (generation), the two subpopulations exchanged Nm(t) migrants (rounded to the

nearest integer) chosen uniformly at random among the entries of the column. Here, m(t)

is given by Eq. (11) with L = 0, and t here represents the columns of the matrices. Recall

that since m(t) decreases exponentially over time, the number of migrants exchanged in

successive columns is also decreasing. The above procedure does not modify the size of

the matrices of phenotypes. A plot of the mean value of each column (mean phenotype)

can be seen in Fig. I.2a (purple curve), and a plot of the full distribution per column in

Fig. I.2c.
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I Supplementary figures

Figure I.1: Schematic diagram of a phylogenetic (species) tree with three epochs. Here, there are 2n coexisting
species during epoch n, corresponding to 2n+1 subpopulations (n � 0). Thus, in epoch n = 0 there are 20 = 1
species, in epoch n = 1 there are 21 = 2 species, and so on. In our model, within each branch of this tree there are
two subpopulations that exchange migrants at rate m(t) (Eqs. (11) and (12)).
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Figure I.2: Estimation of ↵ and empirical estimation of m(t). a) Trajectory of a mean phenotype Z following an
OU process (simulated following the algorithm of section H) with ↵ = 0.05 without incoming migration (black) and
with migration from a second population (purple). b) ↵ values estimated with Eq. (20) for the trajectory with
migration (purple), without migration (black), and without migration but when data is sampled at only 6 time
points around the convergence value (blue). c) Actual distributions of the “purple” phenotypes shown in panel a);
the red line follows the mean phenotype along the distribution part with the highest density. d) True migration
function of the trajectory shown with the purple circles in panel a) (black), versus the estimated migration function
obtained from the distributions in panel c) (red).
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respectively. Black boxplots represent the mean of ↵̂ after 20 repetitions when accounting for migration. Purple
boxplots represent the mean of ↵̂ after 20 repetitions when not accounting for migration. The black horizontal dashed
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1 and 2, measured as the mean absolute di↵erence between the real an estimated migration function m(t) after 20
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function of p for n = 3 epochs.
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Figure I.5: Optimum functions (a) and phenotypic trajectories (b) (following the optimum functions) for n = 3
epochs, but when m(t) depends on the di↵erentiation function d(t) (Eq. (12)). Given that the optima shown in
panel a) are di↵erent from one another, and that migration rates also di↵er, this results in di↵erent speciation
times. Thus, branch lenghts are di↵erent and epochs are no longer synchronous. Migration rates and optima used
are the following: Epoch 1) c = 0.05, a1 = 20, a2 = �20; Epoch 2) c = [0.055, 0.03], a1 = [40,�40], a2 = [10,�10];
Epoch 3) c = [0.01, 0.051, 0.05, 0.03], a1 = [90, 50,�90,�50], a2 = [30,�5,�30, 5]. All optima were set to mode
“stabilising” (Eq. (9)).

Figure I.6: Phenotypic trajectories simulated with variable migration functions, thus resulting in trees where epochs
are no longer synchronous. Parameter values for the simulation were taken from Table 2.
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Figure I.7: Disparity-through-time (DTT) plots as calculated by the dtt function of the R package geiger. The
dotted line is the expected disparity under BM and the grey area represents the 95% confidence interval on the
disparity (where the dtt argument nsim was set to 100). In Panel a) we depict the DTT for phenotypic data
generated under the niche-filling scenario presented in Fig. 4, with migration rate c = 5.678 ⇥ 10�6. Panel b)
represents also niche filling, but without migration, thus resulting in a standard OU model. Subsequent panels use
the same tree, but with phenotypic data simulated under other macroevolutionary models including BM, late burst,
and early burst. The data simulated under all models is bounded within the range [�A,A] (where A = 50). Late
or early burst models, exponentially decrease or increase the rate of evolution with rate a.
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