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Abstract—We propose a procedure that efficiently adapts a
classifier trained on a source image to a target image with similar
spectral properties. The adaptation is carried out by adding new
relevant training samples with active queries in the target domain
following a strategy specifically designed for the case where
class distributions have shifted between the two acquisitions.
In fact, the procedure consists of two nested algorithms. An
active selection of the pixels to be labeled is performed on
a set of candidates of the target image in order to select
the most informative pixels. Along the inclusion of the pixels
to the training set, the weights associated with these samples
are iteratively updated using different criteria, depending on
their origin (source or target image). We study this adaptation
framework in combination with a SVM classifier accepting
instance weights. Experiments on two VHR QuickBird images
and on a hyperspectral AVIRIS image prove the validity of the
proposed adaptive approach with respect to existing techniques
not involving any adjustments to the target domain.

Index Terms—image classification, active learning, domain
adaptation, TrAdaBoost, instance weights, SVM.

I. INTRODUCTION

When dealing with supervised image classification, the col-
lection of ground truth data is among the key factors influenc-
ing the quality of a land cover map. To be effective, a classifier
needs examples suitably representing the spectral signature
of the various classes found in the scene. Nevertheless, the
sampling process is not a trivial task. The procedure requires
either expensive terrain campaigns (usually when dealing
with hyperspectral data of low spatial resolution) or time-
consuming photo-interpretation analyses (utilized in particular
when coping with very high resolution (VHR) images).

In such a context, active learning (AL) techniques have
been widely studied in the remote sensing community during
the last years [1]–[4]. Indeed, procedures allowing the user to
optimally select the pixels to label can dramatically reduce the
sampling burden. Smartly built training sets yield classification
models efficiently discriminating the land cover classes. AL
methods perfect the passive acquisition of labeled samples by
providing the user with hints about the most informative pixels
in the image. By assigning a label to these uncertain pixels,
the classifier benefits of information where it most needs it for
its direct improvement.
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Besides AL strategies, it has been shown that the labeling
effort could be further reduced by re-utilizing already collected
ground truth associated with images acquired by the same
sensor in a region with comparable characteristics. This is
done through the adaptation of a classifier designed to model a
given image, the source domain, in order to model the image
of interest, the target domain. The target image shares the
same spectral channels and classes to be described but its
pixels are assumed to be drawn from slightly different but
related probability distributions: a dataset shift is said to have
occurred [5].

The study of adaptation algorithms is referred to as domain
adaptation (DA). This research field falls under the broader
field of transfer learning [6]. For its part, the remote sens-
ing community has quickly seen a growing interest in such
procedures allowing to map and update the land cover over
vast geographical areas by reusing existing models and ground
reference data [7]–[14]. In [7], pixels of the target domain
are used to re-estimate parameters of the maximum likelihood
classifier. This way, the Gaussian clusters are matched to
the data observed in the target domain. In [8], ensembles of
classifiers are used to adapt to the target domain. Diversity
in the predictions of the ensemble is used to reduce the
number of trees. Bruzzone and Marconcini, in [9], propose
to deform a SVM classifier by discarding contradictory old
training samples with respect to the distribution observed
in the target domain. At the same time, semi-labeled target
samples are added to the training set. In [10], knowledge
transfer is performed by matching the means of data clusters
in a kernel-induced space. The authors of [11] use manifold
regularization to adapt the model: the proposed algorithm
forces the classification boundary to stay close to the low
density region between two clusters of the target space. Jun
and Ghosh, in [12], use spatial detrending with a Gaussian
Process regression to compensate for spectral shifts that may
have occurred in distinct regions of the image. In [13],
an adaptation procedure aimed at finding a correspondence
between the data manifolds via graph matching is introduced.
Finally, in [14], the authors investigate the feature extraction
framework in order to reduce the divergence between pixel
distributions in the two domains. In both these last two cases
the goal is to allow the direct application of a source classifier
in the transformed target domain.

All the strategies reviewed above, however, assume that the
labeled examples from the target image, when available, are
passively obtained at once. On the contrary, if little resources
can be allocated to the sampling and labeling of a given
amount of new pixels, such sampling must be handled with
care, in order to get maximal information from the limited



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. YY, MONTH ZZ 201X 2

achievable queries. In this sense, the combined use of AL and
DA approaches can be a winning strategy, since AL can be
used to sample where the target image has shifted.

Recent advances in machine learning show that the combi-
nation of these two frameworks is effective: in [15] the authors
proposed a scheme to label the most uncertain samples in
the target domain for video classification. In [16], a principle
apt to reduce the number of examples to be labeled by the
user is outlined. The authors suggest to use the knowledge
transferred from the source domain to label relevant target
instances highlighted using AL. Later on, Rai et al. proposed
a preprocessing step highlighting the interesting regions of the
target domain in order to reduce the size of the set of candidate
samples [17]. Based on this contribution, the same authors
provided a complete framework for AL in a DA setting [18].

The interest of these approaches in remote sensing data
classification is straightforward: a classifier trained on a first
acquisition can be adapted to a new image with minimal effort
by finding the pixels representing the shift between the two
images. Such a principle was firstly explored by Jun and
Ghosh [19]. The authors showed that DA could be achieved
by actively querying, pixel by pixel and using a method
constrained by data normality assumptions, the target samples
necessary to be integrated in the knowledge transfer process.
In [20], Tuia et al. proposed AL for the correction of sample
selection bias when dealing with large images and unknown
classes in the target domain. Successively, other methods
specifically designed to reuse already collected ground truth
information to initialize the AL loop have been advised [21].

In this paper, we propose to efficiently combine the DA
and AL frameworks in the context of Support Vector Ma-
chine (SVM) classification [22], a supervised learner widely
investigated in the recent years by the remote sensing com-
munity [23], [24]. The most informative pixels are sampled
with active queries from the target image while adapting
the obtained classifier using a transfer learning strategy,
TrAdaBoost [25], to leverage the original source data. This
principle, taken as starting point in [19], promotes a re-
weighting of the training instances provided to the classifier
in order to attribute a broader impact to key target domain
samples while decreasing the influence of misleading source
samples. This last step boosts the performance of traditional
AL techniques when asked to intelligently suggest a sampling
scheme in a target image whose class distributions have
shifted.

The present contribution provides a thorough illustration
of the TrAdaBoost algorithm and an analysis of its behavior.
The adaption via this boosting technique is explored when the
latter is run in combination with a classifier not requiring any
assumption for the class-conditional statistical distributions.
Indeed, a version of the SVM classifier integrating weights
for the instances is analyzed by exploring the effectiveness
of its adjustments aimed at meaningfully handling the new
distribution of the data. We study the separate evolution, with
respect to the domain of membership, of the support vectors
and their weights during the AL procedure.

Additionally, we carried out experiments studying the in-
dividual impact of the two approaches combined here: active

queries and samples re-weighting. From the results, we can
appreciate how both approaches are complementary and per-
form differently depending on the degree and complexity of
the shift. Still, in all experiments, their combination resulted
in an improved solution always providing the best results.

The sampling strategies are tested on two datasets. The first
one concerns two QuickBird images of urban scenes while
the second one implies a hyperspectral AVIRIS image of a
natural environment. In both cases, experimental results prove
the efficacy of the technique with respect to traditional non-
adaptive AL approaches.

The proposed methodology is outlined in Section II. Sec-
tion III describes the datasets used and the setup of the ex-
periments, while Section IV reports and discusses the results.
Finally, Section V summarizes the main achievements of this
work.

II. ADAPTIVE ACTIVE LEARNING

This section presents the proposed algorithm, that combines
AL and DA to compensate for a shift occurred between two
image acquisitions. We refer to this framework as adaptive
active learning. The purpose is to build a classifier that is able
to efficiently handle the samples coming from the new image
in order to provide a more accurate and adapted AL criterion.
Such a criterion, inducing the labeling of more informative
target pixels, is thus intended to boost the classification per-
formance in the target domain.

As base AL heuristic we apply the breaking ties strategy
(BT) [26]. BT uses posterior class probabilities to rank the
potential new training samples according to their uncertainty
for the current model. In this contribution SVM posterior
probabilities estimated with the Platt’s method [27] are con-
sidered. We then combine this AL strategy with a transfer
learning technique known as TrAdaBoost, initially presented
in [25]. Such a method achieves the desired adaptation via
instance re-weighting: this paper proposes an analysis of its
performance when combined with a SVM classifier accepting,
in the optimization phase, weights associated with the training
data samples. Note that, however, the choice of the base
classifier is not restricted to SVM. Other classifiers allowing
sample weights (e.g. LDA) can be used. Similarly, the AL
procedure can be run using the sample selection heuristic that
best suits the needs of the user.

A. SVM using Instance Weights

In this section, the base classifier utilized in this AL study is
introduced. As it will be explained next, the proposed boosting
technique requires the training examples to be weighted by the
classifier. Working with SVM, theoretical descriptions of the
implementation accepting these weights are presented in [28]
for classification purposes as well as in [29] for regression
tasks. The main points differentiating it from the standard
version are detailed hereafter.

In the weighted variant of the SVM, during the optimization,
one assigns sample weights w = {wi}ni=1, wi ∈ R+ to all the
n training samples belonging to the training set {(xi, yi)}ni=1.
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Fig. 1. Adaptive AL scheme: the outer AL loop is highlighted in green, while the inner TrAdaBoost loop is highlighted with blue tones.

Then, the training of the weighted SVM implies the solving
of the following primal problem

min
v,b,ξ

{
1

2
‖v‖2 + C

n∑
i=1

wiξi

}
(1)

subject to

yi(v
>xi + b) ≥ 1− ξi , i = 1, . . . , n , (2)

ξi ≥ 0 , i = 1, . . . , n , (3)

where v is the vector defining the separating hyperplane,
b is the associated bias term, ξi are the magnitudes of the
permitted training errors and C is the usual penalty parameter
determining the trade-off between margin maximization and
training error minimization.

The associated dual problem is then set up as

max
α


n∑

i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
>
i xj

 (4)

subject to
n∑

i=1

yiαi = 0 , (5)

0 ≤ αi ≤ wiC , i = 1, . . . , n , (6)

where the αi’s are the Lagrange multipliers related to each
training point in the final (linear) SVM decision function

f(x) =

n∑
i=1

yiαix
>
i x + b . (7)

One can notice the upper-bound for such coefficients defin-
ing the actual influence of the support vectors (training points
with αi > 0) being dependent on the sample weight wi. This
induces an increased flexibility of the method, with samples
allowed to receive αi coefficients larger than the employed

C value when wi > 1. Consequently, particularly relevant
samples could have an additional impact on the classification
system if compared to the usual SVM implementation.

B. TrAdaBoost and Active Learning

To achieve DA through AL, two nested loops are run in
order to i) select the most useful samples in the target image
(outer AL loop) while ii) iteratively adapting the resulting clas-
sifier to the new domain (inner TrAdaBoost loop). The scheme
of Fig. 1 outlines the general procedure while Algorithm 1
provides details about its main steps. In the following, the
two phases of the algorithm are described and their objectives
are highlighted.

Initially, the available labeled training set T is composed
of n source samples only, i.e. T = TS = {(xi, yi)}ni=1.
We provide the active learner with a set of unlabeled target
domain candidates U = {xj}lj=1 among which to choose
interesting samples to be labeled by the user. These examples
progressively extend the set of the m target training instances
TT = {(xi, yi)}n+m

i=n+1 initialized as TT = {}.
Moreover, we start sample weights as wi = 1, ∀ i. We

employ this initialization instead of that with uniform weights
wi = 1

n ,∀ i [25], to let the second term of (1) become
C
∑n

i=1 ξi, as in the usual SVM formulation.

• The outer loop of the adaptation procedure is an AL
routine where, at each iteration, the q most interesting
candidates xj ∈ U are identified using the BT strategy
and, after the assignment of the corresponding true label
yj , added to TT . This heuristic selects the best points
x̂BT according to the following ranking criterion [26]:

x̂BT = arg min
xj∈U

(
max
cl∈Ω

p(y∗j = cl|xj)−

max
cl∈Ω\cl+

p(y∗j = cl|xj)
)
, (8)
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Algorithm 1 Adaptive AL with TrAdaBoost
1: Inputs: initial source training set TS = {(xi, yi)}ni=1, set of

target domain candidates U = {xj}lj=1, number of candidates
to add at each iteration q, number of TrAdaBoost iterations tmax

2: initialize TT = {}, i.e. m = 0
3: initialize T = TS

4: initialize w with equal unit weights wi = 1, ∀ i
5: for each AL iteration do
6: train the SVM using T (weighted by w) as training set
7: compute the SVM test accuracy in the target domain
8: predict the c class probabilities p(y∗j = cl|xj) ∀xj ∈ U
9: compute ranking criterion according to Eq. (8)

10: remove the best q candidates from U and add them to TT

11: set T = TS ∪ TT

12: set νt = ν0 to unit weights νti = ν0i = 1, ∀ i
13: for each TrAdaBoost iteration t = 1, . . . , tmax do
14: train the SVM (weighted by νt) using the extended T
15: repredict the class labels ŷi ∀xi ∈ T
16: calculate the weighted error εt on TT according to Eq. (9)
17: update weights to obtain νt+1 following Eq. (10)
18: end for
19: set w = νtmax

20: end for
21: Outputs: final training set T , test classification accuracy along

the AL iterations

where cl+ = arg maxcl∈Ω

(
p(y∗j = cl|xj)

)
is the class

with the highest probability for pixel xj and Ω =
{cl1, . . . , clc} is the set of c classes. These probabili-
ties are the output of the SVM classifier weighting the
samples by means of vector w = {wi}n+m

i=1 . After the
inclusion of the best candidate points to TT , the complete
training set T is updated as T = TS ∪ TT .

• At each AL iteration, the inner TrAdaBoost loop is run
to reweight the training instances in T . After adding
the new labeled training samples, we initialize a new
weighting vector νt by setting equal weights ν0

i = 1, ∀ i
at the boosting iteration t = 0. Then, for every round
of the inner loop, the labels ŷi predicted by the current
SVM model for the training samples are considered. In
the multi-class case (extension of the binary problem
approached in [25]), the weighted training error on the
target set TT is then computed as:

εt =

n+m∑
i=n+1

νti · ei∑n+m
i=n+1 ν

t
i

(9)

where ei takes a value of 1 if the classifier commits
an error (ŷi 6= yi) when labeling xi and 0 otherwise
(ŷi = yi). Afterwards, the weights νti are updated for
the subsequent boosting iteration in two distinct ways
according to the domain of origin of xi, as proposed in
[25]. In fact, we apply

νt+1
i =

{
νtiβ

ei if xi ∈ TS
νtiβ
−ei
t if xi ∈ TT ,

(10)

where

β = 1/(1 +
√

2 lnn/tmax) , (11)
βt = εt/(1− εt) . (12)

The process is run for tmax iterations and the final
weights νtmax are used to retrain the SVM with instance
weighting (w = νtmax), yielding the predictions in the
target domain (test set and unlabeled candidates set). The
associated estimated class probabilities are subsequently
used by BT to perform the active selection on the pool
of candidates U .

Taking a closer look at the TrAdaBoost loop, in Eq. (10),
one will notice that if the sample is correctly classified the
weight remains unchanged, whereas if the sample is misclas-
sified, two options are possible. If the sample comes from
the source domain, its weight is decreased by a constant
factor (11). On the contrary, if the instance originates from the
domain of interest, the target domain, its weight is increased by
a factor inversely proportional to the target training error (12).
This updating strategy aims at reducing the impact of mis-
leading source examples, supposed to be the most dissimilar
to the target instances the model should focus on. Conversely,
the increase of the influence of misclassified target samples
translates the need to concentrate on the regions of the target
domain in which the class discrimination is harder. In light
of these considerations, the boosting loop could be prone to
overfit potential outliers. However, let us remark that, when the
weighted target training error εt is excessively large (> 0.5),
the reweighting factor βt exceeds the value of 1, allowing
therefore a decrease of the weights for the misclassified target
samples in (10).

This transfer learning approach enables the SVM model
to gradually adjust itself to the new domain. The different
weighting of the examples leads to a boosted decision function
more and more suited to model the input-output relationships
in the target domain. Hence, the benefits of this procedure are
twofold. On the one hand, the quality of the classification on
test data (belonging to the target domain) is improved. On the
other hand, since we are acquiring samples representing the
target distribution, the class membership probabilities for the
unlabeled samples in U are more accurately computed. This
induces a selection criterion better suited to identify candidates
lying in uncertain regions of the extended input space.

III. DATA AND EXPERIMENTAL SETUP

In the following sections, the images considered, as well
as the related setup of the experiments, are described. The
proposed methodology has been tested on two datasets. The
first one represents an urban case study bearing a moderate
shift between the source and target images. On the contrary, in
the second dataset the target domain is represented by a region
showing remarkable differences in the spectral signatures of
the vegetative cover with respect to the source region.

A. VHR QuickBird Images of Zurich

The first dataset consists of two VHR QuickBird images (ac-
quired in 2002 and 2006) of the city of Zurich (Switzerland),
representing two spatially distant neighborhoods. The target
image was acquired in August while the source was acquired
in October. The class-conditional distributions are affected
by three factors: i) differences in illumination conditions, ii)
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seasonal effects affecting vegetation growth and iii) varying
materials composing roofs and roads. Fig. 2 illustrates the two
considered images.

(a) (b)

Fig. 2. False color IR composites (RGB: bands 4-3-2) of the QuickBird
images of the city of Zurich. (a) Source image (301×296 pixels). (b) Target
image (474×482 pixels).

The pansharpened images have a spatial resolution of 0.6 m
and present 4 bands covering the region of the spectrum from
450 to 900 nm. The histograms have first been matched and,
subsequently, textural (3 × 3 data range, mean, homogeneity
and entropy) and morphological (5 × 5 opening and closing,
7×7 and 9×9 opening and closing by reconstruction) features
have been extracted from the panchromatic band to enrich the
ground cover description with spatial information. The total
number of considered features is 15 (4 MS bands, 1 PAN
band, 4 textural, 6 morphological). Prior to the analyses, the
variables have been normalized to have zero mean and unit
variance, based on the source image descriptive statistics.

By visual inspection, we identified and labeled pixels from
5 classes characterizing both images: “Buildings”, “Roads”,
“Grass”, “Vegetation” and “Shadows”. The training set for
the source image is composed of 15’934 pixels while the
unlabeled set of candidates extracted from the target image
includes 22’723 pixels. The generalization ability of the dif-
ferent techniques in the target domain has been assessed on
26’797 test samples issued from spatially separated regions of
the target image.

B. Hyperspectral AVIRIS Image of the KSC

The second case study is composed by two sub-regions of
the same acquisition that has been obtained over the Kennedy
Space Center (KSC), Florida (USA), on March 23, 1996 [1].
The images have been acquired with the AVIRIS hyperspectral
instrument and are composed by 224 bands covering the
region between 400 and 2500 nm. After the removal of water
absorption and low SNR bands, the dataset was counting a
total of 176 bands. The spatial resolution of the images is 18
m.

For the classification task we took into account only the land
cover classes that are found in both images. The list of these
classes, mainly consisting of types of subtropical vegetation,
is given in Tab. I. As depicted by the scatterplots of Fig. 3,
the classes present a rather large spectral variation across the
two retained areas, justifying the definition of a source and

TABLE I
CLASS NAMES AND SIZES (# OF LABELED PIXELS) FOR THE KSC

DATASET.

Class name Source image Target image
Scrub 761 422

Willow swamp 243 180

CP hammock 256 431

CP/Oak hammock 252 132

Slash pine 161 166

Oak/broadleaf hammock 229 274

Hardwood swamp 105 248

Graminoid marsh 431 453

Salt marsh 419 156

Water 927 1392
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Fig. 3. Scatterplots for the two KSC images in the red (AVIRIS band # 29:
≈ 667 nm) VS near-IR (AVIRIS band # 49: ≈ 831 nm) space. The dataset
shift observed from one image to the other is evident (divergence in both
class-conditional and marginal probability distributions). (a) Source training
set. (b) Target test set.

a target domain. After a histogram matching procedure, the
bands have been normalized (zero mean and unit variance)
using source image parameters. A training set made up of
2’522 pixels was then issued from the source image. For
the target image, we partitioned the available dataset into an
unlabeled set of candidates and a test set both including 1’927
pixels. This target test set is then used for the comparison of
the performances of the AL strategies.

C. Experimental Setup

The experiments were conducted with 10 different and
independent initializations of the training sets. For the Zurich
images 1000 randomly selected pixels were retained, while
the set size was fixed to 500 for the KSC dataset. A linear
SVM has been used as supervised learner and a 5-fold cross-
validation has been performed to find the optimal initial C
parameter (extensive search in the space {0.1, . . . , 100000}).
For both datasets and for all the AL methods, q = 10 target
samples per iteration were added to augment the initial source
training set while the AL process was run for 35 iterations.
At each iteration, the performance of the SVM models has
been assessed on the test set extracted from the corresponding
target image.

We compared the proposed adaptive active learning strat-
egy (AdaptiveAL_BT) with the standard BT without in-
stance reweighting (AL_BT) and with a procedure randomly
selecting the pixels to label in the target image while
adapting their weights following the TrAdaBoost scheme
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Fig. 4. Average learning curves (% OA) over 10 runs. Source (dashed red line) = model built using pixels of the source domain only, Target (solid blue
line) = model built using pixels of the target domain only, RandomS (dashed green line with asterisks) = random sampling method, AdaptiveRandomS
(solid brown line with crosses) = random sampling method combined with TrAdaBoost, AL_BT (dashed light blue line with diamonds) = AL via breaking
ties, AdaptiveAL_BT (solid black line with circles) = proposed adaptive AL method. (a) Zurich target image. (b) KSC target image.

(AdaptiveRandomS). Also, in order to provide the usual
AL baseline, the random selection of the samples to label
(RandomS) has been considered. Finally, to set reference
performances for the considered target images, linear SVM
classifiers exclusively trained on target (pixels sampled from
the set of candidates) and source (pixels sampled from the
training set) datasets have been tested (Target and Source
methods, respectively).

Regarding the proposed AdaptiveAL_BT method and
AdaptiveRandomS, at each AL iteration, the weights of
the samples in the training set were updated after 5 iterations
of TrAdaBoost (stabilized νi values). In this sub-routine, the
prediction on the training set was implemented through a 20-
fold cross-validation to avoid overfitting.

The algorithms were implemented in MATLAB us-
ing LIBSVM [30] as library both for the standard
SVM and instance weighting SVM (version available at
http://www.csie.ntu.edu.tw). The computation of class
probabilities to be used by BT is described in the same paper.

IV. RESULTS

A. Learning Curves

Figure 4 summarizes the results for this task of DA through
AL. The performance of the different AL techniques along
the iterations (increasing training set size) has been assessed
in terms of overall classification accuracy (OA). The depicted
learning curves represent the average OA over the 10 experi-
ments.

1) VHR QuickBird Images of Zurich: Analyzing Fig. 4(a),
one can first notice the bad performance achieved by applying
on the target data the source model (Source) without any ad-
justments (OA = 70.07%). The method consisting in randomly
sampling the pool of unlabeled pixels (RandomS), considered
as a baseline for AL, and the standard AL heuristic of BT both
reveal a slow convergence. Nevertheless, the AL_BT method
yields SVM models that are slightly more accurate than those

built by sampling at random, but this happens only from the
10th iteration onwards (approximately +0.5% OA).

The proposed combined methodology integrating the TrAd-
aBoost routine in the AL process (AdaptiveAL_BT) clearly
outperforms these two sampling schemes by sharply increasing
the classification accuracy since the very beginning of the AL
iterations. In fact, already after 14 iterations (140 target pixels
added) the associated curve achieves an OA of 86.2% (+3.4%
with respect to AL_BT). Such a precision is never reached by
the two baseline approaches during the considered first 35 AL
cycles.

Nevertheless, we remark how the other procedure including
the reweighting scheme, AdaptiveRandomS, is yielding a
performance comparable to that of its active counterpart in
the first 7 cycles of the AL routine. Subsequently, after the
addition of 80 samples, the actively guided selection of the
pixels to label provides an average improvement in OA of
1.5%.

It is interesting to note that none of the strategies is able to
reach the Target performance at OA = 87.55%.

2) Hyperspectral AVIRIS Image of the KSC: Figure 4(b)
reveals a similar pattern except for the improved performance
of the AL_BT strategy and a worsen performance of the
AdaptiveRandomS method.

The random sampling of the pixels in the target image
(RandomS) results in poor updates of the initial training set.
In fact, even after the inclusion of 350 samples, the model
still lies 5% OA below the performance of a SVM trained
with pixels from the target image only (Target reference
classification with average OA = 90.35%).

On the other hand, both the AdaptiveAL_BT and the
AL_BT show promising learning curves, eventually reaching
and even exceeding the upper reference accuracy of the same-
domain SVM model. In particular, one can remark the adaptive
AL procedure evolving ≈ 1% OA higher than its non-adaptive
counterpart.

The effect of the intelligent selection of the most informative

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#weights_for_data_instances
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Fig. 5. Histograms showing the distribution of the final TrAdaBoost weights
wi and SVM coefficients αi (normalized by C to account for its different
values in the experiments) for the SVs of the two domains at the AL iteration
#15 for the KSC dataset (frequencies over the 10 experiments). (a) Source
SVs: weights wi. (b) Target SVs: weights wi. (c) Source SVs: αi/C. (d)
Target SVs: αi/C.

pixels, as provided by the BT strategy, when combined with
the TrAdaBoost algorithm is more evident on the KSC dataset.
In fact, the curve associated with the integration of TrAd-
aBoost with the random, passive, sampling in the new image
(AdaptiveRandomS) remains between 4 and 6% OA lower
than the active one from the beginning of the AL process.

B. Analysis of Sample Weights

With the purpose to shed light on the actual effect of
the TrAdaBoost model on the SVM-based AL procedure, it
is worth analyzing the evolution of the weights wi and the
coefficients αi along the AL iterations.

Figure 5 illustrates the distribution of the respective weights
wi and coefficients αi for the support vectors (SVs) of each
domain. Indeed, these are crucial training samples, the only
ones contributing to the final SVM decision function. With this
example concerning the KSC dataset, we focus on the state
of the AdaptiveAL_BT method at the 15th AL iteration.
From Figs. 5(a) and 5(b), one can observe how the weights
of roughly 60% of the training SVs belonging to the source
image are set to very low values (wi < 0.15), whereas more
than half of those of target domain SVs take values larger
than 1. This translates, for the source SVs (Fig. 5(c)), to a
significant amount of alpha coefficients found to be close to 0
and, for the target SVs (Fig. 5(d)), to a non-negligible number
of alpha values that are actually larger than the corresponding
SVM hyper-parameter C, i.e. αi/C > 1.

The highlighted pattern is noticeable since the early stages
of the AL cycle, with more importance given to useful
instances in the target domain and, conversely, with less weight
assigned to misleading source instances. To better perceive the

cited evolution as the AL and TrAdaBoost loops proceed to
the adaptation of the SVM, we resort to Fig. 6.

Figure 6(a) depicts the evolution of the share of training
points that eventually become SVs in the two domains. The
number of such key samples remains stable over the entire AL
procedure for the source training set TS . On the contrary, for
the target training set TT we notice a growth of the considered
ratio of SVs which is especially steep at first (until iteration 4),
and then gradually slows down as the new image is sampled.

In Fig. 6(b), it is insightful to notice how, among the
alpha coefficients (represented by their normalized counter-
parts αi/C) associated with the SVs, there is a consistent
polarization as the AL algorithm runs. In fact, always more and
more of these αi take either high values if corresponding to
target samples, or low values if representing source samples.
This evolution of the alphas is more marked for the target
image, almost doubling the proportion of normalized αi > 0.2
found in the first iterations by the time the AL loop reaches
its end. It is worth pointing out the sheer drop (from 65.2% to
39.7%) in the proportion of source normalized alphas larger
than 0.02 when the first q = 10 target samples are added to
the joint training set T .

C. Discussion

As pointed out in Sect. IV-A, an appropriately designed
weighting scheme for the training instances, as the one pro-
vided by the presented method, ensures an optimal transfer
of the knowledge between the source and the target image. A
direct consequence of this fact, due to the improved posterior
class probability estimates, is the more accurate selection of
samples to be labeled along the AL iterations. We obtain an
improved model, able to outperform in test the one built by
selecting the training instances with the simple BT heuristic,
if the latter is naively applied without any adaptation to the
domain of interest. Moreover, improvements over the simple
application of the TrAdaBoost algorithm in combination with
a random sampling of the new image were observed. This
highlights the impact of the active selection, via BT in this
case, of the most helpful pixels of the target image.

In more detail, we can comment on the influence of the two
qualities an adaptive AL system should possess: the ability to
adapt to the domain of interest and the ability to actively select
the new samples. The experiments we conducted reveal an
opposite trend in the two considered datasets. On the one hand,
on the Zurich images, we notice a higher importance given to
the adaptation to the new domain (superior performance of the
AdaptiveRandomS over the AL_BT method). That could be
linked to the need of downweighting source pixels found in
areas related to the shift, but in a rather stable environment,
in terms of marginal distributions. At the same time, the
misclassified target pixels, lying in a region where the class
boundaries have changed, require more attention (increasing
weights) to adjust the model. On the other hand, when dealing
with the KSC dataset, the effect of the active sampling alone
proves to be more decisive than the simple adaptation of
the weights (superior performance of the AL_BT method).
This behavior can be linked to the larger and nonlinear shift
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observed in this second hyperspectral case, that forces the
algorithm to completely redefine the decision boundaries with
the new queries. These additional samples are extremely useful
to precisely redefine the new distribution of the highly mixed
and overlapping classes that characterize the study area.

Despite the contradictory behavior observed in the case
studies (in the first DA is more beneficial than AL, while in the
second it is the contrary), the proposed method returns the best
results in both cases. First, this illustrates the complementarity
of the AL and DA approaches, that are effective in different
scenarios. Second, this also strengthens the interest of a joint
approach capable of taking the best from both worlds: in the
nested loops of the proposed strategy, AL and DA interact
constantly and can thus provide the relevant samples, while
adapting the model to the new domain. The consequence is
the remarkable gain in classification accuracy during the first
iterations, observed in both case studies when using adaptive
active sampling strategies.

Additionally, it is worth noting that, for the KSC images,
both the active strategies converge to a performance exceeding
that of the model built exclusively on target data. These
superior classification accuracies are obtained with training
sets that required the labeling of 270-290 target pixels only and
thus showing the interest of intelligently built compact models
avoiding the labeling of redundant samples. On the other hand,
this fact indicates that the source data is still relevant and
brings into play universal information that is useful to solve
the problem in target. This accuracy improvement is even
more significant in light of the large shift of the class spectral
signatures existing between the two images, as testified by the
≈ 26.6% OA difference between the Source and Target
models (see also scatterplots of Fig. 3).

Section IV-B instead emphasizes the usefulness and the
impact of the dedicated instance weights included in the
SVM model, core of the proposed adaptive AL approach. As
pointed out in Sect. II-A, the standard kernel learning machine
optimizing the alpha coefficients with an equal upper-bound
(αi ≤ C, ∀ i) is turned into an adaptable learning machine
(αi ≤ wiC, ∀ i). This weighted version of the SVM, as a
matter of fact, is able to accord distinct relevance values to the
training examples following both their domain of origin and
their contribution to the class discrimination task. We draw
the attention on the fact that, since these alpha coefficients
act as sample weights in the SVM final decision function
(7), the predictions are notably affected by the TrAdaBoost
reweighting scheme.

In this sense, the evolution curves of Fig. 6 testify the
increasing influence on the classification system of the pixels
collected in the target image. As batches of these new domain
samples are included in the training set, they quickly display
a higher likelihood to become SVs than the already present
source samples. Furthermore, the magnitude of the associated
alpha coefficients is also increasing, translating the augmented
relevance of the pixels belonging to the target domain we are
interested in. Ultimately, the adjustable instance weights boost
the SVM performance and enable the model to assign tailored
alpha coefficients to its SVs. The AL process efficiently
adapts the classifier by attributing more and more importance
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Fig. 6. Evolution along the AL iterations of the ratio of SVs and magnitude
of the alphas for the two domains of the KSC dataset (percentages over the
10 experiments). (a) Percentage of SVs among source (dashed red line) and
target (solid blue line) training data. (b) Percentage of source (dashed red
line) and target (solid blue line) normalized alphas (αi/C) larger than 0.02
or 0.2, respectively (percentages computed over the total number of alphas
obtained in each domain).

to the target domain while discarding unprofitable source
information. As a result, we obtain an improved discrimination
of the land cover classes in the image for which we need to
produce a new thematic map.

V. CONCLUSIONS

In this paper, an approach to boost the performance of
active learning methods when applied in the context of domain
adaptation has been presented and analyzed. We described a
technique, TrAdaBoost, aimed at properly adapting training
sample weights during the active learning process. Such ad-
justments proved potential in refining the ranking criterion
for the selection of the most informative target pixels to be
manually labeled by the user.

The individual contributions of the smart sampling and of
the adaptive adjustment of sample weights have been assessed,
concluding that the best performances are obtained when the
two approaches are combined.

One of the objectives was also to uncover and better under-
stand the behavior of the proposed reweighting scheme when
integrated with a SVM classifier accepting instance weights
in the training phase. The influence of these weights on the
decision function, conveying the importance and pertinence
to the domain of interest of each pixel, has been highlighted
through the analysis of the evolution of the support vectors
all along the sampling procedure. This way, useful insights
have been provided concerning the significance of the SVM
modification in order to integrate instance weights.

With the presented contribution, we demonstrated that, in a
classification task involving a newly acquired image and when
disposing of already collected ground truth data, the modeling
effort for the target image can be efficiently reduced. In fact, by
means of the proposed adaptive sampling strategy, the operator
will be properly guided in the collection of the labels for
the most useful pixels on the new image. As a consequence,
standard supervised classifiers are supplied with a minimal
and effective training set for a suitable land cover thematic
mapping.
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