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SUMMARY

Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of

inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have

generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible

promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation

of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of

plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of

Pi to the extracellular medium as early as 2–3 h after addition of estradiol. Net Pi export triggered by PHO1

induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl

cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant

revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma

membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated

with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized

vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a

high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells,

strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated

with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport.
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INTRODUCTION

Ion homeostasis in eukaryotes depends on the controlled

flux of ions in between cells and organs as well as across

several subcellular compartments. Both uptake of ions into

cells and their export out of cells are crucial for ion homeo-

stasis in multicellular organisms. This is true for many of the

major macronutrients, including inorganic phosphate (Pi).

Well-known examples where Pi efflux is crucial for plant Pi

homeostasis include the transfer of Pi into the root xylem

from the surrounding vascular cells as well as the release of

Pi at the periarbuscular interface of mycorrhizal roots (Poi-

rier and Bucher, 2002; Bucher, 2006; Bonfante and Genre,

2010). Export of Pi and ions may also be physiologically

relevant to cells that are symplastically isolated from the rest

of the plant tissues, such as the guard cells, embryo and

pollen grains. These cells must be able to acquire nutrients

from the surrounding tissues via the apoplast (McLean et al.,

1997). Despite their importance, relatively little is known

about the genes and proteins involved in mediating ion

efflux, including Pi, in eukaryotic cells.

Only a few proteins have been identified that play an

important role in the export of ions to the root xylem tissues.

SKOR1 is a member of the Shaker family expressed in the

root stelar cells and encoding an outwardly rectifying K+

channel mediating loading of K+ in the xylem vessel

(Gaymard et al., 1998). Similarly, BOR1 encodes a boron

transporter expressed in the root stelar cells and mediating

boron efflux into the xylem vessel (Takano et al., 2002).

NRT1.5 is a bidirectional nitrate transporter and a knockout

nrt1.5 mutant has decreased transfer of nitrate from roots to

shoot, suggesting a role in nitrate efflux to the xylem (Lin

et al., 2008).

The Arabidopsis thaliana pho1 mutant is defective in the

transfer of Pi from root to shoot, resulting in Pi-deficient

shoots but Pi-sufficient roots (Poirier et al., 1991). The PHO1

gene is expressed primarily in the vascular tissue of the root

and hypocotyl (Hamburger et al., 2002) and the correspond-

ing protein shows no homology to members of the plant

PHT family, including the PHT1 H+/Pi co-transporters. PHO1
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contains two domains, named SPX and EXS, that have been

identified in some Saccharomyces cerevisiae and plant

proteins involved in phosphate transport or sensing (Wang

et al., 2004; Chiou and Lin, 2011; Secco et al., 2012). The

PHO1 gene family harbors 11 members in Arabidopsis and

homologs are found throughout the plant kingdom, includ-

ing monocots and mosses (Wang et al., 2004, 2008; Secco

et al., 2010). Proteins homologous to PHO1 are also present

in a large spectrum of eukaryotes, from Caenorhabditis

elegans, to Drosophila, to mammals, but no function for

PHO1 homologs outside the plant kingdom is known

(Hamburger et al., 2002).

No Pi transport activity has yet been demonstrated for

PHO1 via its expression in heterologous non-plant systems

(including Xenopus oocytes, yeast and liposomes). It has

recently been shown that constitutive over-expression of

PHO1 in the vascular cylinder of roots and shoots resulted in

strongly reduced rosette growth, the accumulation of Pi in

leaves and guttation fluid and the release of Pi from leaves

into the perfusion medium (Stefanovic et al., 2011). While

these data strengthened the connection between PHO1 and

Pi loading to the vascular cylinder, it remained unknown

whether the release of Pi to the perfusion medium was

caused by the excessive shoot Pi accumulation and whether

PHO1 could mediate Pi export in ectopic cells with a normal

physiological status.

In the current study, transgenic plants were produced in

which PHO1 was under the control of an inducible promoter

regulated by estradiol. In these transgenic plants, PHO1 could

be over-expressed at determined times in plants that were

phenotypically normal and in tissues other than the vascular

cylinder. It was thus possible to demonstrate that expression

of PHO1 in leaf mesophyll protoplasts, a type of cell that does

not normally express PHO1, leads to rapid and specific Pi

export. Furthermore, transient expression of PHO1 in tobacco

via Agrobacterium tumefaciens infiltration also led to specific

Pi release. Surprisingly, using a functional PHO1-GFP con-

struct, PHO1 was observed primarily in the Golgi and trans-

Golgi network (TGN), as well as uncharacterized vesicular

structures. Partial relocalization of PHO1 to the plasma

membrane (PM) could be induced only by a high level of

phosphate. These data provide strong support that PHO1 is

itself a Pi exporter and highlight a role for the Golgi, TGN and

the endo-trafficking system in Pi export.

RESULTS

Establishment of an estradiol-inducible Pho1 expression

system

The PHO1 gene was put under the control of the OlexA

promoter inducible by the presence of estradiol using the

pMDC221 vector (Figure S1a in Supporting Information)

(Brand et al., 2006). Twelve independent transgenic lines

transformed with the inducible PHO1 construct were shown

by RT-PCR to strongly over-express PHO1 in whole seed-

lings only in the presence of estradiol and not with the mock

control (data not shown). Based on these preliminary anal-

yses, two independent lines with an inducible PHO1

expression were analyzed in more detail, namely lines

inPHO1#1 and inPHO1#2. A control line transformed with an

empty vector was also included (line EVC). Leaves of soil-

grown inPHO1 plants treated with a solution of estradiol

showed a strong increase of PHO1 expression, both at the

mRNA and the protein level, compared either with leaves of

the same plants treated with a mock solution or with leaves

of transgenic EVC (Figure 1a,b). Quantitative RT-PCR

showed that PHO1 was over-expressed several hundred-fold

in shoots treated with estradiol compared with either shoots

treated with a mock solution or with leaves of transgenic

EVC with or without inducer (Figure 1c).

The EVC or inPHO1 transgenic plants were indistinguish-

able from wild type (WT) when grown in soil or in agar-

solidified half-strength Murashige and Skoog (MS) medium

(Figures 1d and Figure S1b and data not shown). However,

germination of seeds on agar-solidified medium containing

estradiol led to a severe reduction in growth of inPHO1#1,

while growth was normal for either the estradiol- or mock-

treated EVC line, or the mock-treated inPHO1#1 lines (Fig-

ure 1d). The poor growth of the inPHO1 lines in the presence

of estradiol was associated with reduced Pi content in shoots

(Figure 1e). Interestingly, rates of both translocation of Pi

from roots to shoots and Pi uptake by the root system were

decreased by the induction of PHO1 expression (Fig-

ure 1f,g). Consequently, accumulation of Pi in the roots as

well as in the shoots was reduced by approximately 40–45%

in inPHO1#1 line but not in the EVC line when grown under

sufficient external Pi (1000 lM) supplemented with 5 lM

estradiol (Figure 1h).

Export of Pi mediated by induction of PHO1 in whole leaves

and mesophyll protoplasts

To examine Pi export in leaves expressing PHO1, rosette

leaves from inPHO1 and EVC plants were first mock-treated or

inducer-treated for 12 h, leaves were then excised, immersed

in a Pi-free solution and the amount of Pi released into the

medium measured between 2 and 16 h. While negligible Pi

release corresponding to less than 5% of the total intracellular

Pi was measured in the induced or non-induced EVC plants as

well as the non-induced inPHO1 plants, Pi release corre-

sponding to 25–30% of the total intracellular Pi was measured

in the induced inPHO1 lines (Figure 2a). Release of Pi in the

perfusion medium was thus dependent on the induction of

PHO1 by estradiol and it was rapid, being clearly measurable

2 h after application of estradiol (Figure 2a). Export of Pi was

also independent of the intracellular Pi level at the time of

immersion in the perfusion medium (Figure 2b). In a separate

experiment, the specificity of Pi export was examined for

leaves that were treated with estradiol for 12 h followed by
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4 h immersion into a Pi- and nitrate-free medium. The strong

Pi export in estradiol-induced inPHO1 plants was not

accompanied by the export of nitrate (Figure 2c).

To test whether PHO1 over-expression could mediate

efflux of Pi from a more uniform population of cells that do

not normally express PHO1, mesophyll protoplasts were

prepared from leaves of inPHO1 and EVC lines, cells were

suspended in a Pi- and nitrate-free medium containing either

mock or estradiol solution and the export of Pi and nitrate was

measured after 4 h. Only the estradiol-treated inPHO1 line

exported Pi into the perfusion medium without any signifi-

cant changes in nitrate export (Figure 3). Altogether, these

results showed that induction of PHO1 expression triggers

specific Pi export even in cells that do not normally express

the gene to a significant extent, such as leaf mesophyll cells.

Influence of the extracellular medium on Pi export mediated

by PHO1

In order to measure the influence of the extracellular med-

ium on Pi export, we developed a simplified system in which

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. Inducible expression of PHO1 and its

effects on seedlings. (a) Western analysis of

leaves of two independent inducible PHO1 lines

(inPHO1#1 and #2). For each line, two leaves of a

soil-grown plant were treated with 5 lM estradiol

(induced) while two other leaves were treated

with mock solution for 12 h. (b) Reverse trans-

criptase-PCR of PHO1 expression. Leaves from

lines inPHO1 #1 and #2 and from an empty vector

control (EVC) line were mock-treated or estradiol-

treated as described in (a). The +PCR control lane

was performed using a plasmid containing full-

length PHO1 genomic fragment. (c) Quantitative

RT-PCR of PHO1 expression in shoots of 10-day-

old seedlings grown on half-strength MS plates

containing 1 mM inorganic phosphate (Pi) and

supplemented either with mock solution (non-

induced) or 5 lM estradiol (induced). Values

represented are mean relative transcript number

of PHO1 normalized against the reference gene

At5g46630 (Czechowski et al., 2005) (n = 3).

(d) Shoot fresh weight and shoot phosphate

content (e) of 10-day-old seedlings grown on

half-strength MS plates containing 1 mM Pi and

supplemented either with mock solution (non-

induced) or 5 lM estradiol (induced). A biological

unit consisted of six or seven seedlings (n = 3).

(f) Root-to-shoot transfer rate and (g) root uptake

capacity. Nine-day-old seedlings grown on 0.5 ·
MS (1 mM Pi) were transferred to 0.5 · MS

(50 lM Pi) supplemented with different concen-

trations of estradiol and grown for an additional

3 days before Pi uptake and transfer assays. A

biological unit consisted of three or four seed-

lings (n = 4). (h) Shoot and root phosphate

content of 10-day-old seedlings grown on half-

strength MS plates containing 1 mM Pi and 5 lM

estradiol. A biological unit consisted of five or six

seedlings (n = 4). For each graph, error bars

represent the standard error.
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whole seedlings were grown for 10 days in MS liquid

medium before being washed and immersed in a Pi- and

nitrate-free medium and either mock-treated or treated with

estradiol. Figure 4 shows the results of such experiment.

While after 2 h the Pi content in the infiltration media repre-

sented approximately 2% of the cellular Pi content for all lines

and treatments, only the inPHO1 line treated with estradiol

showed a steady increase of Pi content in the infiltration

medium from 4 h onwards, reaching approximately 12% of

the total cellular Pi content after 8 h (Figure 4). In contrast, the

nitrate content in the infiltration media for all lines and

treatments decreased with time (Figure 4). Separating shoots

from roots before mock or estradiol treatment revealed that

induction of PHO1 by estradiol resulted in export of Pi from

both shoots and roots (Figure S2).

In a separate experiment, whole seedlings grown for

10 days in complete medium were pre-loaded with radio-

active 33Pi and 35SO4 before being switched to a Pi- and SO4-

free medium and mock or estradiol treatment. After 12 h the

Pi released reached 1.2% and 16% of total cellular 33Pi for

mock- and estradiol-treated plants, respectively, while

released of 35SO4 remained low for both treatments, at

1.4% (Figure 5a). Thus, Pi export mediated by PHO1 induc-

tion is not associated with SO4 export.

The effects of the disruption of the proton gradient across

membranes and of the external Pi concentration on PHO1-

mediated Pi export was measured using whole plants grown

in media with 33Pi. While addition of 20 lM of the proton

ionophore carbonyl cyanide m-chlorophenylhydrazone

(a)

(c)

(b) Figure 2. PHO1-mediated export of inorganic

phosphate (Pi) out of leaves.

(a) Leaves of two independent PHO1-inducible

(inPHO1#1 and #2) and empty vector control

(EVC) lines were treated with 5 lM estradiol

(induced) or mock solution (non-induced), cut

in small pieces and immersed into perfusion

solution for 16 h. The phosphate concentration

in the bathing solution was quantified every 2 h

and expressed as percentage of total Pi con-

tained in the leaf material for each sample.

(b) Average phosphate content in the leaf sam-

ples used in (a) expressed as micromoles of Pi

per gram fresh weight (lmol Pi/gfw).

(c) Four or five leaves of soil-grown plants were

either treated with mock solution or 5 lM estra-

diol on separate rosettes. After 12 h of induction,

the mid-veins of the leaves were removed and

samples were used to measure the Pi and nitrate

released into the perfusion solution after 4 h of

incubation. The Pi (right panel) or nitrate export

(left panel) was expressed as percentage of total

Pi or nitrate, respectively, contained in the leaf

material for each sample. Error bars represent

standard error (n = 6).

Figure 3. PHO1-dependent efflux of inorganic phosphate (Pi) from mesophyll

protoplasts.Mesophyll protoplasts from empty vector control (EVC) and PHO1-

inducible (inPHO1#1) lines were treated with 5 lM estradiol (induced) or mock

solution (non-induced) for 3 h. After induction, Pi and nitrate in the solution

were measured at 0 and 4 h. Efflux was expressed as average percentage of

released Pi and nitrate to total Pi and nitrate, respectively, contained in

protoplasts for each line after correcting for the initial ion concentration in the

solution at 0 h. Error bars represent standard error (n = 4).
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(CCCP) reduced Pi uptake into plants by eight-fold compared

with the control (Figure 5b), the same treatment led to only a

small reduction in PHO1-mediated Pi export (Figure 5c). In

contrast, raising the external Pi concentration from 50 lM Pi

to 10 mM led to a two-fold increase in PHO1-mediated Pi

export (Figure 5C). These results reveal that while Pi import

into cells is highly dependent on the H+ gradient across the

PM and is modulated by external Pi concentration, Pi export

mediated by PHO1 expression is not influenced by these

parameters to the same extent.

PHO1 is primarily localized to the golgi and TGN

A construct fusing GFP to the carboxy terminal end of

PHO1 was made, expressing the hybrid gene under the

control of the endogenous PHO1 promoter. Transforma-

tion of the PHO1-GFP construct in the pho1-4 mutant led

to phenotypic complementation at the level of rosette

appearance, shoot fresh weight, shoot Pi content and

root-to-shoot Pi transfer (Figure S3). The complemented

pho1-4 mutant showed PHO1-GFP expression primarily in

the vascular cylinder of the root, with the strongest

expression in the pericycle and cells associated with the

xylem poles (Figure S4). At the subcellular level, PHO1-

GFP expression was found associated with punctate

bodies, and no fluorescence was found at the PM (Fig-

ure 6a). Two groups of bodies could be distinguished

based on size: larger bodies with an average Feret

diameter of 1.09 lm (SD = 0.16 lm, n = 21), and much

smaller bodies whose size could not determined within

the limits of the microscopy configuration used (Fig-

ure 6a). Attempts to co-localize the fluorescence pattern to

particular subcellular compartments by crossing the

complemented pho1-4 line with various lines expressing

marker protein fused to mCherry failed (Geldner et al.,

2009). This failure was due to the combination of rela-

tively weak expression and fluorescence of these marker–

mCherry fusions in the vascular cylinder and difficulties in

obtaining adequate resolution in a tissue as deep within

the root as the pericycle, even when using a two-photon

confocal microscope (data not shown). As an alternative,

we used co-bombardment of onion epidermal cells with a

combination of C-terminal PHO1-GFP and marker genes–

mCherry fusions under the control of the CaMV35S pro-

moter. Bombardment of the PHO1-GFP construct in onion

cells produced a pattern of GFP expression in punctate

bodies similar to the pattern observed in Arabidopsis

roots (Figure 6b–f). Co-bombardment of the PHO1-GFP

construct with the endoplasmic reticulum (ER) marker

ER-rk-mCherry (Nelson et al., 2007) or the late endosomal

marker RabF2a-mCherry (Geldner et al., 2009) (Fig-

ure 6b,d) did not result in significant overlap between the

green and red fluorescent signals. Co-expression of PHO1-

GFP together with the Golgi markers Got1p-mCherry or

Rab2Db-mCherry revealed co-localization of the red and

green fluorescent signals (Figure 6c,f), while co-bom-

bardment with the TGN marker VTI12-mCherry only

showed partial co-localization (Figure 6e) (Geldner et al.,

2009).

To further assess subcellular localization of PHO1, a

PHO1-GFP construct was co-infiltrated into tobacco leaves

together with markers of the Golgi and TGN using

A. tumefaciens mediated transient expression (Grefen

et al., 2010). We selected the markers VTI12-mCherry and

Syp61-RFP for the TGN, and Got1p-mCherry and Man1-

RFP for the Golgi (Langhans et al., 2011). Transient

expression of PHO1-GFP in tobacco epidermal cells (Fig-

ure 7a,d, g, j) resulted in a punctate mobile pattern of

fluorescent signal similar to that obtained in Arabidopsis

lines functionally expressing PHO1-GFP in vascular tissues

(Figure 6a). Likewise, the presence of both large and small

bodies was observed (Figure 7a,d,g,j). The larger bodies

had a mean Feret diameter of 0.97 lm (SD = 0.13 lm,

n = 21), comparable with the size of larger bodies identi-

fied in Arabidopsis lines expressing PHO1-GFP. In agree-

ment with the results of onion co-bombardment

experiments, a clear overlap between PHO1-GFP expres-

sion in the larger bodies and Golgi-localized markers

Got1p-mCherry and Man1-RFP was observed (Figure 7d–

i). Furthermore, in both approaches, the presence of a

number of bodies that were only expressing PHO1-GFP

and neither of the Golgi markers was notable (Figure 6c

and 7f, i). Compared with Golgi markers, PHO1-GFP

co-localized with TGN markers to a much lesser extent

(Figure 7a–c,j–l). However, it was noticeable that the

Figure 4. Export of inorganic phosphate (Pi) and nitrate in whole plants over-

expressing PHO1.Plants from the empty vector control (EVC, left) and PHO1-

inducible (inPHO1#1, right) lines were grown for 10 days immersed in liquid

medium and then treated with 10 lM estradiol (induced) or mock solution

(non-induced). The Pi (top) and nitrate (bottom) concentrations in the bathing

solution were quantified every 2 h and expressed as percentage of total Pi or

nitrate contained in plant material for each sample. Error bars represent

standard deviation (n = 4).
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co-localized punctate signal corresponded to a fraction of

the small-sized vesicle-like structures rather than the disk-

shaped larger bodies, which are presumably Golgi bodies.

We thus conclude that PHO1 is localized in the Golgi and

extended into the TGN, as well as in vesicular structures of

unknown identity.

Effect of brefeldin A on PHO1-mediated efflux of Pi in

tobacco epidermal cells

Since induction of PHO1 in Arabidopsis leaves and meso-

phyll protoplasts led to specific efflux of Pi out of cells, and

the PHO1-GFP construct was functional in complementing

(a)

(c)

(b)
Figure 5. Dynamic of export of inorganic phos-

phate (33Pi) induced by PHO1.

(a) Plants from the empty vector control (EVC)

and PHO1-inducible (inPHO1#1) lines grown in

liquid medium containing 33Pi and 35SO4 were

treated with 10 lM estradiol and the net amount

of 33Pi and 35SO4 released to the medium was

measured after 12 h.

(b) Measurement of Pi uptake into 10-day-old

inPHO1#1 seedlings treated with or without (Ctrl)

20 lM carbonyl cyanide m-chlorophenylhydraz-

one (CCCP) for 1 h.

(c) Plants from the EVC (right panel) and in-

PHO1#1 (left panel) lines grown in liquid medium

containing 33Pi were induced with 10 lM estra-

diol for 5 h. Plants were then washed, transferred

to medium containing 10 lM estradiol and either

50 lM Pi (Ctrl), 50 lM Pi and 20 lM CCCP, or

10 mM Pi, and net 33Pi export was measured after

1 h. Error bars represent standard deviation

(n = 5). Values marked with a lowercase letter

(a–e) were statistically significantly different

from those for other groups marked with differ-

ent letters (P < 0.05, ANOVA, Tukey–Kramer hon-

estly significant difference test).

(a) (b) (c)

(d) (e) (f)

Figure 6. Subcellular localization of PHO1-GFP

in Arabidopsis and co-expression of PHO1-GFP

with different markers in onion cells.(a) Expres-

sion of PHO1-GFP reporter under the PHO1

promoter in root vascular tissues of 5-day-old

Arabidopsis plants. Pericyle cells show most

fluorescent foci. Open and closed arrowheads

indicate examples of small and large vesicles,

respectively. Onion epidermis was co-bom-

barded with PHO1-GFP (b–e) and endoplasmic

reticulum (ER) marker ER-rk-mCherry (b), Golgi

markers Got1p-mCherry (c) and Rab2Db-mCher-

ry (f), late endosomal marker RabF2a-mCherry

(d) and trans-Golgi network marker VTI12-

mCherry (e). Scale-bars = 10 lm. Intensity corre-

lation coefficients (Pearson) were (Rr � SE ): (b)

0.088 � 0.003; (c) 0.77 � 0.05; (d) 0.134 � 0.008;

(e) 0.183 � 0.006; (f) 0.86 � 0.05.
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the A. thaliana pho1 mutant, we tested whether transient

expression of the PHO1-GFP construct in tobacco leaves

could also induce a similar export of Pi from the leaf tissue.

While disks cut out from leaves expressing PHO1-GFP

exported a large amount of Pi to the bathing medium,

representing 38% of the total internal Pi content, disks cut

out from buffer-infiltrated (control) and GFP-infiltrated

leaves showed only low Pi export, equivalent to approxi-

mately 7% of the total internal Pi content (Figure 8a). The Pi

efflux was specific, as nitrate efflux was essentially the same

for all treatments (Figure 8a), and did not depend on the

initial Pi content of the leaf disks used for efflux assay (Fig-

ure 8b). Thus, transient expression of the PHO-GFP fusion

protein in tobacco led to a specific Pi export out of leaves.

The PHO1-mediated Pi efflux from the tobacco leaves

enabled us to test the effect of drugs inhibiting vesicle

trafficking on the subcellular localization of PHO1-GFP

fusion protein and the Pi efflux. Among such drugs,

wortmannin, a phosphatidylinositol 3-kinase inhibitor (Das-

ilva et al., 2006), as well as tyrphostins A23 and A51,

tyrosine analogs inhibiting the recruitment of endocytic

cargo into the clathrin-mediated pathway (Ortiz-Zapater

et al., 2006; Dhonukshe et al., 2007), did not have any

visible or measurable effect on trafficking of PHO1-GFP or

PHO1-mediated Pi efflux, respectively (data not shown).

Application of the fungal macrocyclic lactone brefeldin A

(BFA), a vesicle trafficking inhibitor, to tobacco leaves leads

to the redistribution of Golgi membranes and luminal

contents into the ER (Nebenfuhr et al., 2002). We pre-

treated the leaves with 70 lM cycloheximide (CHX) for

30 min before treatment with BFA to prevent the accumu-

lation of newly synthesized proteins which cannot exit the

ER (Langhans et al., 2011). Pre-treatment with CHX did not

affect either the localization of fluorescent markers fused to

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7. Co-expression of PHO1-GFP construct

with different subcellular markers in tobacco

epidermis.Tobacco leaves were co-infiltrated

with an Agrobacterium tumefaciens strain har-

boring PHO1-GFP encoding plasmid together

with other containing VTI12-mCherry (a–c),

Got1p-mCherry (d–f), Man1-RFP (g–i) and

Syp61-RFP (j–l). Green and red fluorescence are

displayed at the left and in the middle of the row,

respectively. Green-colored GFP and red-colored

m-Cherry channels are merged at the right. Open

and closed arrowheads indicate examples of

small and large vesicles, respectively. The inset

within (f) depicts an overlay image from another

cell. Scale-bars = 10 lm. Intensity correlation

coefficients (Pearson) were (Rr � SE ): (c)

0.47 � 0.02; (f) 0.71 � 0.02; (i) 0.64 � 0.04; (l)

0.144 � 0.006.
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(a)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(b) (c)

Figure 8. Effect of brefeldin A (BFA) on subcellular localization of PHO1-GFP and PHO1-mediated efflux of inorganic phosphate (Pi). (a) Export of nitrate and

phosphate out of disks cut from tobacco leaves infiltrated with buffer (Control) or Agrobacterium tumefaciens strains containing GFP or PHO1-GFP constructs,

expressed as percentage of total nitrate or phosphate, respectively, contained in the disks. (b) Average phosphate content in the leaf disks used in (a) expressed as

picomoles of Pi/cm2. (c) Effect of 1 h treatment with 50 lM BFA (or DMSO control) following 30-min pre-treatment with 70 lM cycloheximide (CHX) on efflux of

nitrate or phosphate from a disk transiently expressing GFP or PHO1-GFP. Treatments were carried out by infiltrating the solutions into leaves by a syringe, cutting

same sized disks (three or four disks per leaf) and immersing them into treatment buffer. Efflux of ions was measured after incubation in perfusion media for 1 h.

Effect of BFA (d–f) or DMSO (g–i) treatment on subcellular localization of PHO1-GFP (d, g) and Man1-RFP (e, h). Randomly chosen leaf disks from (c) were analyzed

with confocal microscopy. (j)–(l) Effect of 1-h treatment with 50 lM BFA on subcellular localization of PHO1-GFP (j) and VTI12-mCherry (k) in the root vascular tissues

of 3-week-old Arabidopsis plants grown in soil under a day/night cycle of 16 h/ 8 h. Green and red colored signals from GFP and RFP or mCherry, respectively, were

overlaid for comparison (f, i and l). Open and closed arrowheads indicate examples of small and large vesicles, respectively, while chloroplasts are indicated by a V.

Scale-bars represent 10 lm. Intensity correlation coefficients (Pearson) were (Rr � SE): (f) 0.24 � 0.01; (i) 0.77 � 0.03; (k) 0.36 � 0.06.
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PHO1 or Man1 or PHO1-mediated Pi efflux (data not

shown). Application of 50 lM BFA to tobacco leaves co-

infiltrated with PHO1-GFP and Man1-RFP effectively caused

the disappearance of the typical disk-like signal of Golgi-

localized Man1-RFP and completely redistributed it to the

ER (Figure 8e,h). Similarly, most of the PHO1-GFP signal

was also altered by BFA treatment into a diffuse fluores-

cence that co-localized with the Man1-RFP signal that had

been redistributed to the ER (Figure 8d,f), compared with

control treatment (Figure 8g,i). However, some intense

punctate signal remained in the GFP channel corresponding

to small vesicles containing PHO1-GFP but not Man1-RFP

(Figure 8F), revealing a population of vesicles that are

insensitive to BFA. Interestingly, PHO1-mediated Pi efflux

was reduced but remained significantly higher than GFP

control samples after the 1 h treatment with 50 lM BFA that

effectively caused redistribution of Golgi into the ER

(Figure 8c), revealing that Pi export mediated by PHO1

was not strictly dependent on its localization at the Golgi.

The BFA treatment did not alter nitrate efflux in either GFP-

or PHO1-GFP expressing tobacco leaves (Figure 8c).

While co-localization of the PHO1-GFP signal in the roots

of Arabidopsis with Wave markers under a range of different

physiological conditions failed (see above), upon treatment

of 3-week-old Arabidopsis roots co-expressing PHO1-GFP

and VTI12-mCherry chimeric proteins with 50 lM BFA for

1 h, structures marked with both fluorescent proteins started

to aggregate to form the so-called BFA compartments

(Figure 8j–l). While the TGN marker was found predomi-

nantly in the center of the BFA compartments, punctate

signal of PHO1-GFP joined the aggregate mostly peripher-

ally (Figure 8l). This fluorescence pattern is consistent with a

predominant localization of PHO1-GFP in the Golgi (Lan-

ghans et al., 2011). Thus, consistent with the tobacco

epidermis experiments, PHO1-GFP was sensitive to BFA in

Arabidopsis roots.

Plasma membrane localization of PHO1 in transiently

transformed tobacco leaves

The possibility that PHO1, under certain conditions, could

also be localized to the PM was investigated. Since

increasing the external Pi concentration from 50 lM to

10 mM led to a two-fold increase in PHO1-mediated Pi export

(Figure 5c), we tested whether a higher external Pi concen-

tration could affect the dynamics of PHO1 localization. When

tobacco leaves transiently expressing PHO1-GFP were infil-

trated with perfusion media containing 20 mM KH2PO4 for

20 min, a new PHO1-GFP signal emerged overlapping with

the signal from the PM marker CBL1-OFP (Batistič et al.,

2010), but not when KH2PO4 was replaced with KCl to

account for changes in extracellular potassium and ionic

strength (Figure 9d–i). Under the same conditions, cytosolic

GFP expression could be differentiated from the PM signal

(Figure 9a–c). Thus, while PHO1 is largely localized to the

Golgi and TGN under normal Pi status, a significant relo-

calization to the PM can be triggered by high extracellular Pi.

DISCUSSION

We have made use of a construct in which PHO1 expression

is inducible by estradiol in order to study the effect of its

overexpression in ectopic cells that are otherwise in a nor-

mal physiological state before induction. PHO1 expression

in Arabidopsis rosette leaves or in whole seedlings clearly

showed that export of Pi can be initiated in plants that

otherwise have a normal Pi status and growth phenotype.

Similar results were also obtained in tobacco leaves tran-

siently expressing a PHO1-GFP fusion protein. Export of Pi

was not associated with changes in the export of either

nitrate or sulfate. Furthermore, the export of Pi observed

following induction of PHO1 in Arabidopsis leaf mesophyll

protoplasts demonstrates that PHO1-mediated Pi export can

occur in cells that are not typically associated with such

export. Export of Pi triggered by PHO1 expression was rapid,

occurring as early as 2 h after induction, indicating that it is

unlikely to be the result of a secondary transcriptional acti-

vation of other genes. Together, these results strongly

indicate that PHO1 is itself a Pi exporter.

While import of Pi into the cell is tightly coupled to entry of

H+ and dependent on a H+ gradient across the PM, the

relatively weak effect of the proton uncoupler CCCP on

PHO1-mediated Pi export indicates that Pi export is largely

independent of the H+ gradient across the PM. Further

analysis of PHO1-mediated export of Pi is required to

determine whether Pi export is electrogenic and coupled

or not to the movement of other cations to maintain a charge

balance.

Prolonged induction of PHO1 over-expression over sev-

eral days leads to poor growth and an associated reduction

of Pi in tissues. The decrease in shoot Pi content is explained

by the reduction of both root uptake and root-to-shoot

translocation of Pi upon induction of PHO1. The overall

negative effects of PHO1 over-expression are most likely due

to the uncontrolled export of Pi in both roots and shoots and

the resulting metabolic costs of maintaining a futile cycle of

Pi import and export in a broad spectrum of cells. Such

negative effects of uncontrolled PHO1 expression also most

likely explain the failure of previous attempts to establish

lines over-expressing PHO1 using the CaMV35S promoter

(Stefanovic et al., 2011).

The expression in Arabidopsis of a functional PHO1-GFP

construct under the control of the endogenous PHO1

promoter showed that PHO1 was not localized at the PM

but rather in punctate bodies. Similar results were also

obtained in onion cells and tobacco leaves. While technical

limitations made it impossible to identify these structures in

the Arabidopsis root pericycle cells, co-localization per-

formed in onion and tobacco both revealed that PHO1 is

primarily associated with the Golgi and a population of
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small bodies partially overlapping with the TGN. Impor-

tantly, this pattern of PHO1 expression in infiltrated tobacco

leaves was associated with Pi export, indicating that the

PHO1-GFP protein was functional in tobacco and thus

expressed in the proper subcellular compartments required

for Pi export. Interestingly, although treatment of tobacco

leaves with BFA led to the expected inhibition of protein

transit from the ER to the Golgi, Pi export was itself only

weakly reduced by BFA. While the PHO1-GFP signal asso-

ciated with Golgi was redistributed to the ER in BFA-treated

cells, some PHO1-GFP signal associated with small vesicles

still remained after BFA treatment.

The absence of PHO1-GFP at the PM and its presence in

the Golgi and TGN raises interesting questions as to how

PHO1 can mediate the release of Pi to the extracellular space.

It remains possible that, at steady-state level, only a minor

fraction of PHO1 is localized at the PM and that it is this

minor fraction that is responsible for Pi export. While BFA

treatment would reduce the transfer of PHO1 from the

secretory system to the PM, Pi export could be maintained

from the population of PHO1 already present at the PM.

A similar situation has recently been described for IRT1, the

high-affinity iron transporter responsible for the import of

reduced iron from the extracellular space into roots (Barb-

eron et al., 2011). IRT1 is primarily localized in the TGN/early

endosomes of root hair cells and no signal at the PM can be

detected unless recycling of IRT1 from the PM to endosomes

or multi-vesicular bodies was inhibited by tyrphostin A23 or

by blocking monoubiquitination (Barberon et al., 2011).

Interestingly, stabilization of IRT1 at the PM was associated

with severe iron toxicity. Thus while iron uptake occurs at

the PM, the pool of IRT1 located at the PM is very low and

kept under tight control to maintain iron homeostasis.

Although treatment of tobacco leaves with tyrphostin A23

did not lead to a change in PHO1 localization, PHO1 could be

stabilized to the PM by infiltrating high concentration of Pi

into leaves. These results reveal that the distribution of

PHO1 between the secretory system and the PM can be

influenced by Pi homeostasis. Thus, while under most

conditions the proportion of PHO1 at the PM would be kept

very low, conditions that would increase the cytosolic Pi

concentrations, such as those encountered under a high

external Pi supply, would favor PHO1 stabilization at the PM

to ensure greater Pi export. This model would fit with the

observation that high extracellular Pi resulted in increased Pi

export in Arabidopsis plants over-expressing PHO1. The

influence of external Pi on PHO1 localization is reminiscent

of the regulation of the internalization and vacuolar break-

down of the S. cerevisae H+-Pi co-transporter PHO84 by the

Pi concentration of the medium (Lagerstedt et al., 2002).

An alternative hypothesis to explain the lack of PHO1 at

the PM under most conditions is that Pi export would be first

mediated by PHO1 loading Pi into endosomes, followed by

release of Pi to the extracellular space via exocytosis and

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Detection of PHO1-GFP expression at

the plasma membrane (PM). Tobacco leaves

infiltrated with Agrobacterium tumefaciens con-

taining the PM marker CBL1-OFP together with

either GFP (a–c) or PHO1-GFP (d–i) constructs.

After 48 h, leaves were infiltrated with media

containing either 20 mM KH2PO4 (a–c,g–i) or

20 mM KCl (d–f) and examined by confocal

microscopy 20 min later. Green and red colored

signals from GFP and orange fluorescent protein,

respectively, were overlaid for comparison (c,f,i).

Samples were mounted in the same solution

used for treatment (KH2PO4 or KCl solution).

Scale-bars represent 10 lm. Intensity correlation

coefficients (Pearson) were (Rr � SE): (c)

0.38 � 0.02; (f) –0.033 � 0.002; (i) 0.34 � 0.02.
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rapid recycling of PHO1 away from the PM. In this model,

PHO1-mediated Pi transport would essentially occur in

endosomes and not at the PM. Yet, infiltration with high

phosphate may slow down PHO1 recycling, leading to a

greater proportion being retained at the PM. The lack of

strong effect of BFA treatment on Pi export would be

explained by the observation that while BFA treatment

strongly affects protein transit from the ER to Golgi, a

population of vesicles containing PHO1-GFP and capable of

mediating loading of Pi into vesicles was insensitive to BFA

treatment under our experimental conditions. Such a secre-

tory pathway-mediated mechanism for ion export has

previously been hypothesized for the Arabidopsis manga-

nese transporter AtMTP11 (Peiter et al., 2007). AtMTP11 has

been localized to the TGN or pre-vacuolar compartment

(Delhaize et al., 2007; Peiter et al., 2007). AtMTP11 mediates

manganese transport when expressed in yeast and comple-

ments the manganese transport and tolerance phenotype of

the yeast pmr1 mutant, deficient in the Golgi-localized Mn+2

and Ca+2 transporter PMR1 (Lapinskas et al., 1995). The

Arabidopsis mtp11 is hypersensitive to elevated levels of

manganese and accumulates more manganese in its tis-

sues, while plants over-expressing AtMTP11 are hypertoler-

ant to manganese (Delhaize et al., 2007; Peiter et al., 2007).

Thus, although, manganese export mediated by MTP11

overexpression has not yet been demonstrated, data on

AtMTP11 are at least consistent with the action of a

transporter acting to load Mn+2 into a trans-Golgi vesicle.

Whether such Mn+2-containing vesicles release their cargo

to the extracellular and/or vacuolar space via vesicular

fusion remains to be demonstrated.

A growing number of proteins implicated in ion transport

are associated with the Golgi and endosomes, including the

TGN, which is itself an endosomal compartment (Dettmer

et al., 2006). These include AtCLCf and AtCLCd, two mem-

bers of the chloride channel family (von der Fecht-Barten-

bach et al., 2007; Marmagne et al., 2007), the vacuolar

H+-ATPase subunit VHA-a1 (Krebs et al., 2010), the Na+/H+

antiporters LeNHX2, AtNHX5 and AtNHX6 (Venema et al.,

2003; Bassil et al., 2011), the cation/H+ exchangers CHX17,

CHX18 and CHX19 (Chanroj et al., 2011), and the P2A-type

ATPase AtECA3 involved in Mn+2 and Ca+2 transport (Li

et al., 2008; Mills et al., 2008). PHT4;6 is one member of the

PHT4 Pi transporter family that is located in the Golgi, while

others are localized to the plastid (Roth et al., 2004; Guo

et al., 2008; Cubero et al., 2009). It was postulated that

PHT4;6 transport Pi out of the Golgi luminal space for the

recycling of Pi released from nucleotide-diphosphate sugars

used for protein glycosylation in the Golgi apparatus,

although direct evidence for such a function is currently

lacking (Cubero et al., 2009).

Altogether, our results on PHO1-mediated Pi export and

its localization to the Golgi and TGN highlight a role for the

Golgi and associated endosomes in the regulation of Pi

export, an essential component of Pi homeostasis in mul-

ticellular eukaryotes (plants and animals) for which PHO1

remains the only known key contributor so far.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Plants over-expressing PHO1 were in the Landsberg erecta (Ler)
background,whileplantsexpressing thePHO1-GFPconstructwere in
thepho1-2mutantbackground(Columbiaaccession).Plantsgrownin
liquid half-strength MS medium with 1% sucrose were placed on a
shaking platform at 100 r.p.m. in a growth room at 22�C under a con-
tinuous light intensity of 100 lmol m)2 sec)1. Plants in soil were
grown under a day/night cycle of 10 h/14 h or 16 h/8 h with a light
intensity of 150 lmol m)2 sec)1, with day and night temperatures of
22 and 18�C, respectively. Nicotiana benthamiana was grown in a
greenhouse under a 12-h day/night cycle at 28/22�C and 60% air
humidity. Protoplasts were prepared from 4-week-old Arabidopsis
leaves as previously described (Abel and Theologis, 1994). For tran-
sient expression of PHO1 in tobacco, leaves were infiltrated with
A. tumefaciens-carrying clones of interest and the suppressor helper
component–proteinase (Hc-Pro) (Ma et al., 2009; Grefen et al., 2010).

The DNA construct

For the inducible expression of PHO1, the PHO1 genomic coding
region from start to stop was amplified by PCR and the 5.4-kb
amplicon was cloned into pMDC221 using the Gateway technology
(Invitrogen, http://www.invitrogen.com/) (Brand et al., 2006). All
clones were confirmed by sequencing, introduced into A. tum-
efaciens pGV3101 and transformed into the A. thaliana pMDC150-
35S activator line (Brand et al., 2006). Controlled expression of
PHO1 in transgenic plants containing the inducible PHO1 construct
was achieved using 5 lM 17-beta-estradiol (Sigma-Aldrich, http://
www.sigmaaldrich.com/) as described earlier (Brand et al., 2006).

The PHO1-GFP construct used for complementation of the pho1-4
mutant was made by amplifying a fragment encoding 2 kbp of the
PHO1 promoter and the complete genomic region coding for PHO1
without a stop codon. The PCR fragment was cloned into pMDC111
to generate a PHO1-GFP fusion protein (Curtis and Grossniklaus,
2003). For expression of fusion between PHO1 and GFP in onion cells,
the complete genomic region coding for PHO1 was amplified without
a stop codon and inserted into the vector pMDC84 (Curtis and
Grossniklaus, 2003). All T-DNA vectors were transformed into
A. thaliana by the floral dip method (Clough and Bent, 1998).

Quantification of Pi and nitrate and Pi transport assay

For the determination of the Pi and nitrate content in plant tissues and
mesophyll protoplasts, the cellular content of cells were first
released into distilled water or growth media without Pi and/or nitrate
by repeated freeze–thaw cycles followed by incubation at 70�C for
30 min. The concentration of Pi in the solution was then quantified by
the molybdate assay (Ames, 1966). Nitrate was quantified using either
the sulfamic acid method (Carvalho et al., 1998) or according to Bar-
thes et al. (1995) scaling down theassay volume 10-fold for the96-well
plate format. The latter was used for samples containing 0.01% Triton
X-100. Measurement of the rate of 33Pi transfer from root to shoot was
carried out in plants grown in agar-solidified medium essentially as
previously described (Poirier et al., 1991).

Total RNA extraction, RT-PCR and quantitative RT-PCR

The RNA was prepared according to a LiCl protocol (Sambrook and
Russel, 2001). For RT-PCR, the amplification reaction were done
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with the following primer pairs: PHO1, 5¢-TAA GGA GAT GGT GGG
ACG AA-3¢ and 5¢-TTA ACC GTC TGA GTC CCT GTC-3¢; b-tubulin
(TUB6), 5¢-ACC ACT CCT AGC TTT GGT GAT CTG-3¢ and 5¢-AGG TTC
ACT GCG AGC TTC CTC A-3¢. Real-time quantitative RT-PCR (qPCR)
analysis was performed with a Stratagene Mpx3000 instrument
(Stratagene, http://www.genomics.agilent.com/) according to the
standard curve method (Rutledge and Cote, 2003). The PHO1
amplicon was amplified with 5¢-ACA CCA TTC CAG GCA TCC TCC
TC-3¢ and 5¢-ACG GTG AGC AAA CAA TCT TCC GC-3¢ primers. Cal-
culated expression values were normalized against expression
levels of the reference gene At5g46630 (Czechowski et al., 2005).

Protein extracts were prepared from homogenized plant material
by extraction in 80 mM 2-amino-2-(hydroxymethyl)-1,3-propanediol
(TRIS) pH 8.0, 1 mM EDTA, 5 mM DTT, 1% (v/v) Triton X-100, 10%
(v/v) glycerol and 1 mM phenylmethylsulfonyl fluoride (PMSF). For
western blotting analysis, 50 lg of total protein was loaded and run
on the SDS-PAGE and transferred to 0.2 lm nitrocellulose mem-
branes gel according to standard procedures (Sambrook and
Russel, 2001). Blots were developed using the ECL Western Blotting
Detection Kit (GE Healthcare Biosciences, http://www.gelifescien-
ces.com,).

Phosphate, nitrate and sulfate efflux experiments

Efflux of Pi and nitrate from whole leaves was quantified for plants
grown in soil for 3–4 weeks under continuous light. Rosette leaves
were cut and the major vain removed with a razor blade. The leaf
pieces were placed in a tube containing 5 ml of ice-cold medium
with 5 mM glucose, 1 mM KCl, 0.5 mM CaCl2, 0.5 mM MgSO4, 10 lm
Ca(NO3)2 and 20 lM KH2PO4 at pH 5.7 and infiltrated under a mild
vacuum over ice for 30 min. After infiltration, the cold medium was
replaced with the room-temperature medium and samples placed
on the shaker (40 r.p.m.) at 22�C. Aliquots were taken at different
time intervals. For measurements in tobacco plants, leaf disks were
treated similarly with the exception of addition of 0.01% Triton
X-100 to the perfusion media. The phosphate or nitrate content was
calculated as the fraction of Pi or nitrate released in the media over
the total amount of Pi or nitrate contained in the plant tissue at time
zero.

A Pi export assay in whole plants was done with plants grown in
liquid MS medium with 1% sucrose for 10 days, followed by
transfer to a medium containing 1% sucrose, 10 mM KNO3, 0.5 mM

Ca(NO3)2, 0.5 mM MgSO4 and 0.5 g l)1 2-(N-morpholine)-ethane-
sulfonic acid (MES) (final pH 5.6) and adding either 5 lM estradiol or
mock treatment. Experiments done with 33Pi or 35SO4 were
performed similarly, except that 10-day-old plants grown in MS
medium with 1% sucrose were transferred to Pi- or SO4-free media
containing 10 lCi of 33Pi or 10 lCi of 35SO4 for 12 h, followed by a
wash in non-radioactive media before initiating the export assay in
medium containing 1% sucrose, 10 mM KNO3, 0.5 mM Ca(NO3)2,
0.5 mM MgSO4, 0.5 g l)1 MES (final pH 5.6) and either 50 lM or
10 mM of KH2PO4. The proton ionophore CCCP (Sigma) was used at
a final concentration of 20 lM.

Localization of PHO1-GFP

Co-localization of PHO1-GFP with various subcellular markers was
done using constructs and plant lines containing the markers
Got1p-mCherry (Wave18R), Rab2Db-mCherry (Wave33R), RabF2a-
mCherry (Wave7R) and VTI12-mCherry (Wave13R) previously
described (Geldner et al., 2009). Quantification of co-localization
was performed using the intensity correlation analysis method
implemented in the IMAGEJ plugin of the MBF IMAGEJ bun-
dle (http://www.macbiophotonics.ca/imagej/). For this analysis,
regions of interest (ROIs) were selected when necessary to exclude
plastids.

For particle bombardment of onion epidermis, tungsten micro-
carriers (1 lm) coated with plasmid DNA (1.7 lg mg)1 microcarrier)
were bombarded on onion scales using a custom-made ballistic
system. Microscopy was performed using a Zeiss LSM 700 confocal
microscope with a C-Apochromat 63 · /1.20 objective (Zeiss, http://
www.zeiss.co.uk/).
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