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Abstract

The reconstruction of ancestral evolutionary histories is the cornerstone of most phylogenetic
analyses. Many applications are possible once the evolutionary history is unveiled, such as
identifying taxonomically restricted genes (genome barcoding), predicting the function of
unknown genes based on their evolutionary related genes gene ontologies, identifying gene
losses and gene gains among gene families, or pinpointing the time in evolution where particular
gene families emerge (sometimes referred to as “phylostratigraphy”). Typically, the
reconstruction of the evolutionary histories is limited to the inference of evolutionary relationships
(homology, orthology, paralogy) and basic clustering of these orthologs. In this thesis, we
adopted the concept of Hierarchical Orthology Groups (HOGs), introduced a decade ago, and
proposed several improvements both to improve their inference and to use them in biological
analyses such as the aforementioned applications. In addition, HOGs are a powerful framework
to investigate ancestral genomes since HOGs convey information regarding gene family
evolution (gene losses, gene duplications or gene gains). In this thesis, an ancestral genome at a
given taxonomic level denotes the last common ancestor genome for the related taxon and its
hypothetical ancestral gene composition and gene order (synteny). The ancestral genes
composition and ancestral synteny for a given ancestral genome provides valuable information
to study the genome evolution in terms of genomic rearrangement (duplication, translocation,
deletion, inversion) or of gene family evolution (variation of the gene function, accelerate gene
evolution, duplication rich clade). This thesis identifies three major open challenges that
composed my three research arcs. First, inferring HOGs is complex and computationally
demanding meaning that robust and scalable algorithms are mandatory to generate good
quality HOGs in a reasonable time. Second, benchmarking orthology clustering without knowing
the true evolutionary history is a difficult task, which requires appropriate benchmark strategies.

And third, the lack of tools to handle HOGs limits their applications.



In the first arc of the thesis, | proposed two new algorithm refinements to improve orthology
inference in order to produce orthologs less sensitive to gene fragmentations and imbalances in
the rate of evolution among paralogous copies. In addition, | introduced version 2.0 of the
GETHOGs 2.0 algorithm, which infers HOGs in a bottom up fashion, and which has been
shown to be both faster and more accurate.

In the second arc, | proposed new strategies to benchmark the reconstruction of gene families
using detailed cases studies based on evidence from multiple sequence alignments along with
reconstructed gene trees, and to benchmark orthology using a simulation framework that
provides full control of the evolutionary genomic setup. This work highlights the main challenges
in current methods.

Third, | created pyHam (python HOG analysis method), iHam (interactive HOG analysis
method) and GTM (Graph - Tree - Multiple sequence alignment)—a collection of tools to
process, manipulate and visualise HOGs. pyHam offers an easy way to handle and work with
HOGs using simple python coding. Embedded at its heart are two visualisation tools to
synthesise HOG-derived information: iHam that allow interactive browsing of HOG structure and
a tree based visualisation called tree profile that pinpoints evolutionary events induced by the
HOGs on a species tree. In addition, | develop GTM an interactive web based visualisation tool
that combine for a given gene family (or set of genes) the related sequences, gene tree and
orthology graph.

In this thesis, | show that HOGs are a useful framework for phylogenetics, with considerable
work done to produce robust and scalable inferences. Another important aspect is that our
inferences are benchmarked using manual case studies and automated verification using
simulation or reference Quest for Orthologs Benchmarks. Lastly, one of the major advances was
the conception and implementation of tools to manipulate and visualise HOG. Such tools have
already proven useful when investigating HOGs for developmental reasons or for downstream

analysis.



Ultimately, the HOG framework is amenable to integration of all aspects which can reasonably

be expected to have evolved along the history of genes and ancestral genome reconstruction.



Résumé

La reconstruction de I'histoire évolutive ancestrale est la pierre angulaire de la majorité des
analyses phylogénétiques. Nombreuses sont les applications possibles une fois que I'histoire
évolutive est révélée, comme I'identification de genes restreints taxonomiquement (barcoding de
génome), la prédiction de fonction pour les génes inconnus en se basant sur les ontologies des
genes relatifs evolutionnairement, l'identification de la perte ou de I'apparition de géenes au sein
de familles de genes ou encore pour dater au cours de I'évolution I'apparition de famille de
génes (phylostratigraphie). Généralement, la reconstruction de I'histoire évolutive se limite a
I'inférence des relations évolutives (homologie, orthologie, paralogie) ainsi qu'a la construction
de groupes d’orthologues simples. Dans cette thése, nous adoptons le concept des groupes
hiérarchiques d’orthologues (HOGs en anglais pour Hierarchical Orthology Groups), introduit il y
a plus de 10 ans, et proposons plusieurs améliorations tant bien au niveau de leurs inférences
que de leurs utilisations dans les analyses biologiques susmentionnées. Cette thése a pour but
d'identifier les trois problématiques majeures qui composent mes trois axes de recherches.
Premierement, l'inférence des HOGs est complexe et nécessite une puissance
computationnelle importante ce qui rend obligatoire la création d'algorithmes robustes et
efficients dans l'espace temps afin de maintenir une génération de résultats de qualité
rigoureuse dans un temps raisonnable. Deuxiemement, le contrdle de la qualité du groupement
des orthologues est une tache difficile si on ne connait I'histoire évolutive réelle ce qui nécessite
la mise en place de stratégies de contrble de qualité adaptées. Tertio, le manque d'outils pour
manipuler les HOGs limite leur utilisation ainsi que leurs applications.

Dans le premier axe de ma these, je propose deux nouvelles améliorations de I'algorithme pour
l'inférence des orthologues afin de pallier a la sensibilité de l'inférence vis a vis de la

fragmentation des génes et de 'asymétrie du taux d'évolution au sein de paralogues. De plus,



j'introduis la version 2.0 de l'algorithme GETHOGs qui utilise une nouvelle approche de type
'‘bottom-up' afin de produire des résultats plus rapides et plus précis.

Dans le second axe, je propose de nouvelles stratégies pour contrdler la qualité de la
reconstruction des familles de génes en réalisant des études de cas manuels fondés sur des
preuves apportées par des alignement multiples de séquences et des reconstructions d'arbres
géniques, et aussi pour contréler la qualité de I'orthologie en simulant I'évolution de génomes
afin de pouvoir contrdler totalement le matériel génétique produit. Ce travail met en avant les
principales problématiques des méthodes actuelles.

Dans le dernier axe, je montre pyHam, iHam et GTM - une panoplie d'outils que j'ai créée afin
de faciliter la manipulation et la visualisation des HOGs en utilisant un programmation simple en
python. Deux outils de visualisation sont directement intégrés au sein de pyHam afin de pouvoir
synthétiser I'information véhiculée par les HOGs: iHam permet d’interactivement naviguer dans
les HOGs ainsi qu’une autre visualisation appelée “tree profile” utilisant un arbre d'espéeces ou
sont localisés les événements révolutionnaires contenus dans les HOGs. En sus, j'ai développé
GTM un outil interactif web qui combine pour une famille de génes donnée (ou un ensemble de
genes) leurs séquences alignées, leur arbre de géne ainsi que le graphe d'orthologie en relation.
Dans cette these, je montre que le concept des HOGs est utile a la phylogénétique et qu'un
travail considérable a été réalisé dans le but d'améliorer leur inférences de fagon robuste et
rapide. Un autre point important est que la qualité de nos inférences soit contrblée en réalisant
des études de cas manuellement ou en utilisant le Quest for Orthologs Benchmark qui est une
référence dans le contrdle de la qualité de I'orthologie. Dernierement, une des avancée majeure
proposée est la conception et I'implémentation d'outils pour visualiser et manipuler les HOGs.
Ces outils s'averent déja utilisés tant pour I'étude des HOGs dans un but d'amélioration de leur

qualité que pour leur utilisation dans des analyses biologiques.



Pour conclure, on peut noter que tous les aspects qui semblent avoir évolué en relation avec
I'histoire évolutive des génes ou des génomes ancestraux peuvent étre intégrés au concept des

HOGs.
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Chapter 1: Introduction

Investigating the evolutionary history underlying present day organisms is important to
characterise the evolutionary relationships between extant species and to investigate the
evolutionary mechanisms that shape genomes and genes resulting in extant organisms. By
reconstructing the evolutionary histories of gene families between extant species, we aim to
have a better insight of the ancestral states of genomes in terms of gene organisation and to
unravel the phylogenetic complexity underlying current biodiversity. Evolutionary relationships
have been proven to be a very useful resource for many applications such as identifying
taxonomically restricted genes (which are often used for genome barcoding), for identifying
genes related to taxon specific characters and functions, predicting the function of unknown
genes based on their evolutionary related genes gene ontologies, verifying function conservation
across related genes, phylogenetic profiling for groups of genes, identifying gene losses and
gene gains among gene families, or computing phylostratigraphy. The applications that rely on
evolutionary relationships are numerous and diverse and can be affected by spurious or missing

evolutionary pairwise relations (Dalguen and Dessimoz 2013; Moreno-Hagelsieb and Latimer

2008) .

Nevertheless, reconstructing the evolutionary history of genes is not an easy task, many aspects
can compromise and make the reconstruction more complicated . First, the intrinsic complexity

and nesting of genomic events both at chromosomal level (Dalguen et al. 2013) (inversion,

deletion, duplication) and genetic level (varying evolution rates, domain shuffling) can result in
huge and complex gene families. Secondly, the quantity of available genomic information has
exploded thanks to the major breakthrough of the past decades in sequencing technologies
and computational tools, leading to an increase of the scale of genomic set up sizes (up to

thousand of genomes with millions of proteins). The quality of the available genomic data is
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another important aspect. Indeed, sequencing and assembly errors can make the
reconstruction of evolutionary history more complicated due to misleading signal. In order to
reconstruct accurate gene families with their related evolutionary histories, phylogenetic

methods need to be robust and scalable.

Homology

Homology is an important concept in phylogenetics to describe genes that share a common
evolutionary history. As described in (Chothia and Lesk 1986), homologous genes tend to
conserve similar protein folding although the sequence similarity may be decreasing due to
sequence variations (mutation, deletion, insertion) during evolution. Indeed, modifications of the
protein sequences is observed along evolution introducing protein structural and/or functional
changes. These changes can be either deleterious for the organisms reducing their survival and
reproduction by consequence the chance for the mutation to be fixed in a population (negative
selection) or can be either beneficial for organisms meaning the individuals fitness increase in
the population which increase the probability to fix the protein changes (positive selection) in the
population. Nevertheless, mutations does not always have a beneficial or deleterious effect on
protein function but rather are neutral which does not affect the survival and reproduction of the
individuals but still include sequence variations. Neutral theory (Kimura 1983) states that the
fixation of mutant alleles in a population are mostly due to randomness (random genetic drift).
While deleterious mutation are obviously not fixed due to their negative effects on survival and
reproduction of individuals, most of the other changes in protein sequences are not beneficial
but rather neutral. The homologous sequences are composed of variable regions where
sequence variations are more likely to happen and common structural cores with the highest
percentage of sequence identity. The percentage of residue identity in common core regions is
directly correlated with the similarity of the general protein folding, showing that conservation

inside the core regions are playing an active role in maintaining a constant protein folding across

18
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gene family members. Many dynamic programming and heuristic methods have been proposed
in the past decades to infer homology between sequences with their own benefits and
drawbacks.

Dynamic programming approaches perform global (Needleman and Wunsch 1970) or local
(Smith and Waterman 1981) sequence alignments by using a scoring matrix to score match and
mismatch of characters in the alignment, as well as a gap penalty to account for gaps in the
alignment. In protein alignments, amino acid matches and mismatches are scored using a
substitution matrix. For DNA alignments, the use of a positive score for matches and a negative
score for mismatch is commonly used instead of a substitution matrix. In order to reduce the
number of gaps in the final alignment, a scoring variant can be used to increase the cost of gap
opening compared to the cost of extending the gap itself. Even if dynamic programming
approaches return the most optimal alignment, it is highly dependent on the chosen scoring
function. Moreover, dynamic programming approaches may be time consuming for long
proteins or large numbers of proteins.

Heuristics approaches such as BLAST (Altschul et al. 1990) rely on the fact that two sequences
that share more similarities than expected by chance have a common ancestry and did not arise
independently (Wiliam R. Pearson 2013). Contrary to dynamic programming approaches,
heuristics searches are not guaranteed to return the best possible alignment but are faster to
compute. Such methods use a statistical estimator to assess the significance of their search
and the excess of similarity among amino acids. Tools like BLAST (Altschul et al. 1990), FASTA

(Pearson 2000), SSEARCH (W. R. Pearson 2000) use the Expected value or E-value to describe

the number of possible hits in the database that can occur by chance. The E-value is directly
correlated to the size of the database and decreases exponentially with an increasing alignment
score. The bigger the database, the greater the chance of finding a high scoring alignment by

chance.
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Orthology and Paralogy

Evolutionary relationships between homologs (Fitch 1970), can be subclassified into orthologs
or paralogs depending on whether they started diverging by a speciation or a duplication event,
respectively. Determining orthology is a fundamental step in many phylogenetic, functional and
comparative studies. Indeed orthologs, sometimes denoted as “same genes in different
species”, are good candidates to estimate differences and similarities among genomes or genes
since organisms have diverged from one another by speciation. Pairwise orthologous relations
are well suited to understand small genomic comparisons, e.g estimating the amount of shared
orthologs between two genomes, but scale poorly to larger datasets (Gabaldén and Koonin
2013; Sonnhammer et al. 2014). Orthologs and paralogs also diverge regarding their function
evolution; orthologs seems to be more conservative while paralogs are more likely to evolve
freely (Altenhoff et al. 2012). The orthologue conjecture denotes the fact that orthologs tend to
have the same or similar functions. At contrary, paralogs may diverge more regarding gene
functions. Indeed, additional copies of a gene provide supplementary materials where
sequences changes affecting the gene function may be less harmful than if only one gene copy
exists.

Orthology (and paralogy) have been proven to be very useful for a wide range of application as
shown in figure 1:

e Phylogenomics. Since orthologs are related through speciation events, they are good
candidates to investigate species phylogeny. Marker genes, i.e. sets of orthologous
genes highly conserved in a specific clade, can be used as a source of orthology signal
for the inference of species trees. Orthology inference software such as OMA

standalone (Altenhoff et al. 2019) has been used in phylogenomic studies to reconstruct

and elucidate complex phylogenies such as that of centipedes (Fernandez et al. 2014),
arachnids (Prashant P. Sharma et al. 2014; Fernandez and Giribet 2015), assassin flies

(Dikow et al. 2017), scorpions (P. P. Sharma et al. 2015), spiders (Garrison et al. 2016),
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flatworms (Egger et al. 2015; Laumer, Hejnol, and Giribet 2015), tapeworms (Tsai et al.
2013), or Archaea (Williams et al. 2017).

Predicting gene function. Orthologous genes tends to conserve similar function during
evolution (Adrian M. Altenhoff et al. 2012) which is very useful to predict the function of
an unknown gene within an orthologous group. Indeed, if genes within the same
orthologous group have a similar function then it is likely that other unknown genes in
this group have a similar function.

Elucidating gene loss and duplication and finding taxonomically restricted genes. As
shown in the next section, orthologs can be used to reconstruct complete gene families.
Gene families contain all the information about gene duplication, gene loss and the
apparition of new genes. Indeed, once the delimitation of orthologous groups is made at
all levels of a gene family, it is trivial to infer the related gene duplication and gene loss
events. In addition, the root of the gene family may be used to determine when the
ancestral gene initiating this new family arose.

Phylostratigraphy. Orthology may also be useful to investigate how and when genes
arise. For example, genes ages of human proteins can determined as the age of the last

common ancestor for a given orthologous groups (Liebeskind et al. 2016).

Finding the best models systems. Depending on the physiological problem of interest,
specific model systems are more relevant than others. For example, the ferret (Mustela
putorius furo) is a better model organism when studying the human respiratory diseases
than the animal mouse even though they have diverged earlier. Indeed, the protein
divergence for between ferret-human orthologs is smaller than between human-mouse

orthologs (Peng et al. 2014). This relies on the assumption that closely related genes

may conserved more similar physiological processes.
Verification of function conservation. In order to investigate on the orthologue conjecture

stating that orthologs tend to conserve similar functions Edward Marcotte use orthologs


https://paperpile.com/c/NBqywN/Dn95h+4WNjY
https://paperpile.com/c/NBqywN/dqhx7
https://paperpile.com/c/NBqywN/dqhx7
https://paperpile.com/c/NBqywN/Xoh2O
https://paperpile.com/c/NBqywN/bGi8
https://paperpile.com/c/tVlPdD/dsv3
https://paperpile.com/c/tVlPdD/2c6d

to design an in vivo experiment where yeast genes were replaced by their human
orthologs. Results shown that 43% of 414 essential yeast genes can be replaced by

they human orthologs (Kachroo et al. 2015).

e Phylogenetic profiling. Orthology can also be used as a source of signal for phylogenetic
profiles. The ideas is to look if there is a pattern in the presence/absence of genes

between species (Tran et al. 2018).
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Figure 1: Applications of orthology. Orthology inferences can be used for many applications.

Since orthologs shared common evolutionary history, all aspects related to the evolution of
genes may be investigated under the prism of orthology. Kindly provided by (Glover et al.

2019).
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Groups of Orthologs

In contrast to pairwise orthology, groups of orthologs scale better for multispecies comparative

analysis. Such groups concentrate more orthology signal than pairwise orthology by integrating

multiple genes across multiple species. Based on the concept used to define them, there are

several types of orthologous groups (Boeckmann et al. 2011), each with its own particular

structure and implied information.
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Figure 2: Concepts of selected orthology databases. Rows (from top to bottom) indicate

the different database concepts, the structure of orthologous groups, the completeness of

predicted gene relationships and the implied tree structures. The latter visualizes the captured

phylogenetic information. Re-used with permission from (Boeckmann et al. 2011).

As shown in figure 2, we can catalog 6 types of orthologous groups:

- Pure orthologous groups (described in more detail in the next section): The pure

orthologous group is defined as a set of genes in which all genes are orthologous to
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each other. In terms of orthology graphs, such groups are referred to as a clique, where
all nodes (genes) of the clique are connected to each other. Such groups provide a non
exhaustive list of orthologs only and paralogy information is absent. Indeed, they lack
many to many orthologous relations (due to lineage specific duplications) because they
have to choose to conserve only one representative gene per set of inparalogs. In OMA,

this type of group is referred to as OMA Groups (Altenhoff et al. 2019).

Pairwise groups: The pairwise group contains all the genes that descended from a
single ancestral gene at a specific taxonomic range. In terms of labelled genes tree, it is
composed of all the genes within a sub tree rooted by a speciation node of interest. In
this group, the list of orthologs is exhaustive and integrates some paralogy information
for inparalogs (all duplications that may have occurred after the speciation event of
reference).

Hierarchical groups (described in more detail below): These groups are composed of
nested sets of genes, each composed of genes descending from the same speciation
event. Each sub group represents an ancestral gene at a given taxonomic range. The
nested structure of those orthologous groups conveys information about paralogy and
duplications. Indeed, if two subgroups have the same taxonomic range for their related
speciation event, a duplication event prior to this speciation is implied, meaning that the

two sets of genes are paralogous. Hierarchical groups can be found in several publicly

available orthology database such as eggNOG (Huerta-Cepas et al. 2016), OrthoDB

(Waterhouse et al. 2013) and OMA (Roth et al. 2008).

Plain gene tree: Plain trees (or unlabelled gene trees) only convey the exhaustive
topology (or hierarchy) of the gene tree. The lack of duplication and speciation events as
labels for internal nodes make the inference of orthology or paralogy impossible from
these trees without reconciliation. The HOGENOM database is inferring plain trees for

gene family topologies.
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- Reconciled tree: Reconciled trees (or labeled gene trees) are plain trees with internal
nodes labeled as duplication or speciation events. They are the most complete source
of information regarding orthology, paralogy and topology. Several databases use them

to store gene family histories, such as Ensembl Compara (Cunningham et al. 2015) or

Panther (Mi et al. 2016).

- Reference trees and groups: Reference trees are reconciled tree like structures with
strong statistical support at their duplication nodes. Nevertheless, speciation nodes may
not be well supported. To fulfil this lack of confidence about speciation events,
hierarchical reference groups where introduced. They correspond to reference trees with
speciation nodes collapsed after duplication events. References trees and groups can

be used as standard resources for benchmark purposes.

Pure orthologous groups

As described previously, pure orthologous groups are composed of sets of genes, all of which
are orthologous to each other. These groups can be used as marker genes for phylogenetic
reconstruction since they contain strong orthology signal for a given clade. Since orthologs tend
to conserve function, orthologous groups are often used to perform gene orthology enrichment
to investigate clade specific variation of gene functions. However, orthologous groups only
provide rough information about a gene set without any precision about evolutionary events
(e.g. duplications or gene losses) underlying the genes’ evolutionary history. Indeed, only the
information about presence and absence of genes is present. For example, if we observe two
gene copies for two species in a group we cannot state if one ancestral gene duplicated before
their speciation or if there were two species-specific duplications. This is restricting the
downstream processing of orthologous groups to bulk analysis of genes without taking into

account the underlying history the ancestral genes. Furthermore, it is hard or even practically
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impossible to analyse large gene families composed of up to thousands of members, for

example to investigate the number of ancestral genes in mammals for a specific gene family.

Hierarchical Orthologous Groups

In order to tackle this problem, the concept of Hierarchical Orthologous Groups (HOGs) was
introduced (van der Heijden et al. 2007; Jensen et al. 2008; Kriventseva et al. 2008). As
illustrated in figure 3, HOGs can be defined as a set of genes, all descending from a single
common ancestral gene at a given taxonomic range. Represented as a nested structure of
orthologous and paralogous groups related to specific taxonomic ranges, each HOG contains
the complete evolutionary history of a gene family. Such groups provide detailed information
about ancestral gene states (e.g. number of ancestral genes at specific taxonomic ranges) or
evolutionary events (e.g. when duplications or gene losses occurred). A one-to-one
correspondence exists between HOGs and labelled gene trees; both contain the same
information about speciation and duplication events; but they are encoded in different data
structures: labeled gene trees are encoded in tree-like structures while HOGs are encoded in
nested group structures.

In order to facilitate the storage and processing of HOGs, a standard format called OrthoXML is
broadly used across orthology resources. OrthoXML is based on the classic XML format.
OrthoXML is composed of two parts: a first mapping section that contains all genes grouped by
species with related mapping information (uniqgue OrthoXML ID, external ID, database

provenance, etc..) and a second groups section that contains the nested orthologous groups.
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Figure 3: Hierarchical Orthologous Groups. Labeled gene tree (left) and its related species
tree (right) illustrating the evolutionary history of five genes that all descended from a single
common ancestral gene at the tetrapods level. These five genes called homologs can be
classified as orthologs if they start diverging by speciation (human versus dog genes of same
color) or as paralogs if they start diverging by duplication (blue versus red genes). We can
identify in the example HOGs at two taxonomic levels: one larger HOG at the tetrapods level
(dotted-line rectangle) containing all the homologous genes that emerged from the single
tetrapod ancestral gene, and two HOGs at the mammalian level (solid-line rectangles), due to a

duplication of the tetrapod ancestral gene before the mammals speciation.

From HOGs to ancestral genomes and ancestral synteny

When considered separately, HOGs are representing individuals gene families at a given
taxonomic level. If we now consider all HOGs for one specific taxonomic range, we are not
anymore dealing with independent gene families but with a sets of HOGs each representing
ancestral genes that was all contained in a same ancestral genomes at this taxonomic range. In

this thesis, | denote an ancestral genome at a specific taxonomic range by a set of ancestral
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genes (that can be represented by a single HOG at the related level). Ancestral genomes can be
reconstructed at all taxonomic range that the sets of HOGs is covering and may offer a new
source of phylogenetic signal to unveil their related underlying evolutionary history. Ancestral
genomes can be useful in several types of applications. For example to investigate the
evolutionary history of several species, their related ancestral genome may be useful to estimate
when gene duplications, gene losses and gene gains occurred or to infer the number of
ancestral genes each ancestral genome contained and to count the proportion of evolutionary
events occurring between two ancestral genomes.

Ancestral genomes can also be useful for ancestral synteny reconstruction (how ancestral
genes were ordered). The idea is to that knowing how extant genomes are arranged in terms of
genes order (extant synteny) and how the gene families evolved (duplications, losses, gains) we
could infer how the ancestral genes ordering was (ancestral synteny). One example of ancestral
synteny application is the reconstruction of genomic rearrangement history. If the ancestral
synteny is available for a sets of ancestral genomes, we can infer when and how chromosomal
duplications, inventions, insertions and deletions occurred and by consequence reconstructing
the whole genomic history of a group of species.

In this thesis, I'll not investigate on the ancestral genomes and ancestral synteny reconstruction
to rather focus on inferring accurate HOGs that may serve in the future as robust material for

ancestral reconstruction.

Orthology inference

In past decades, the quantity of available genomic data has massively increased due to
improvements in sequencing technologies (Sanger, Nicklen, and Coulson 1977; Margulies et al.
2005; Bennett 2004). Nevertheless, even if the amount of available sequenced genomes is
constantly increasing, their quality is not necessarily improving. This results in a major constraint

for orthology inference (Sonnhammer et al. 2014) and clustering algorithm design: being
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scalable without losing robustness. To meet this need, many orthology inference methods have
been proposed over the last two decades that can be divided into two types of methods:

graph-based and tree-based methods (Altenhoff and Dessimoz 2012).

Pairwise orthology

Graph-based methods

Graph-based methods are designed to deal with the need for efficient methods to detect
orthology on complete gene sets. Graph-based methods are usually composed of two phases:
the graph reconstruction phase, where pairwise relationships are inferred, and the clustering
phase where orthologous groups are constructed. The first step connects orthologous genes
(nodes in the graph) with their related pairwise orthologous relations (edges in the graph) by
inferring orthology considering a species pair at a time. The principle underlying this orthology
inference is that orthologs are the least diverging homologs because speciation is the last event
to distinguish two genes in two different species. BBH (Bidirectional Best Hits) (Overbeek et al.
1999) rely on this principle to infer one-to-one orthology using sequence similarity scores in an
efficient manner (quadratic to the number of genes) and is more robust to gene loss due to
bidirectionality check for symmetric orthology. Nevertheless, lineage specific duplications (that
occurred after speciation) result in more than only one orthologous counterpart, called
in-paralogs or co-orthologs, in the paired species are not identified by the BBH that only
retained the best hit. Inparanoid (Remm, Storm, and Sonnhammer 2001) extends the BBH
method to return a group of best hits for each species, corresponding to the respective
inparalogs. Lineage-specific duplications imply that many pairwise orthologous relations are
found between the in-paralogous genes and their counterparts in the other species. If
inparalogs are connected to a single gene they are referred to as one-to-many orthology while if
they are connected to another group of inparalogs, they are referred to as about many-to-many

orthology. Other methods, such as OMA (A. M. Altenhoff et al. 2011) or OrthoDB (Kriventseva et
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al. 2008), have been designed to use maximum likelihood estimates of the evolutionary distance
of sequence pairs to identify closest genes which can be a better estimate than the highest
scoring alignment (Koski and Brian Golding 2001). OMA introduced a test to detect paralogs
wrongly inferred as orthologs due to asymmetric gene losses (Dessimoz et al. 2006) (only
paralogs remain in the homologous cluster and are wrongly inferred as orthologs). Indeed, if
gene loss occurred in the two genomes, it may be that only two paralogs remain as the closest
pair. To prevent such cases, a third genome where both copies are still present is used as a
“witness of non orthology”.

As seen before, simple pairwise orthology has its limits and integrating multiple species may
help to yield a more powerful signal. COGs (Tatusov 1997) introduced the concept of clusters of
orthologs to denote a group of genes orthologous to each other. The principle is to connect
together triangles of genes in the graph that share pairwise orthologous relations. OrthoMCL (Li
2003) developed another type of clustering based on a Markov Clustering that uses sequences
similarity scores to weight edges and partition the graph in clusters containing orthologs and
recent paralogous genes. The OMA (Dessimoz et al. 2005) strategy is to identify fully connected
components in the graph as a cluster of orthologous genes. In those clusters, all genes are

orthologous to each other and no inparalogs are present.

Tree based methods

Tree based methods rely on building labelled gene trees with duplication and speciation events
and then identifying the inferred orthologs and paralogs. The principle of the tree based method
is to reconcile gene trees with a species tree. The reconciliation is required due to potential
differences between gene and species tree topologies due to evolutionary events such as gene
losses and duplication, incomplete lineage sorting, long branch attraction or lateral gene
transfer. To elucidate which is the best scenario to reconcile the trees, the parsimony principle is

applied to select the case where the minimum number of duplication and losses is required.
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Several methods have been developed in the last two decades to infer orthology from trees
such as PhylomeDB (Huerta-Cepas et al. 2007), LOFT (Levels of Orthology From Trees)

(Huerta-Cepas et al. 2007; van der Heijden et al. 2007), Ensembl/TreeBeST (Vilella et al. 2009).

Inferring Hierarchical Orthologous Groups

Several methods have been proposed in the past decade to infer HOGs. Inconsistencies across
reconstructed levels or poor scalability are the major drawbacks that concern to the following

methods.

EggNOG 4.5

The EggNOG algorithm version 4.5 (Huerta-Cepas et al. 2016) infers nested groups of orthologs
across predefined taxonomic levels, each processed independently from each other. Taxonomic
ranges of interest are chosen according to their coverage for evolutionary relevant orthologous
groups and model organisms. The first step is to fetch genomes and proteomes from public
databases and apply a quality control step to remove draft or partial genomes. To ease
downstreamed analysis, protein sequences and identifiers are synchronized with the STRING
(Szklarczyk et al. 2015) and STITCH (Kuhn et al. 2014) databases. The second step infers
pairwise orthology using Smith Waterman alignments with adjustments to remove spurious hits
with low complexity sequence regions. All hits with a bit score ( the bit score corresponds to a
numerical value that described the general quality of an alignment according to a chosen
substitution matrix and a gap penalty) the greater than 50 are used for the next steps. The third
step aims to build the orthologous groups at the previously selected levels. The algorithm uses
as the basis the Cluster of Orthologous Groups from COGs (universal), KOGs (Eukaryotes) and
arkKOGs (archaea) database. These groups serve as references at each taxonomic range in
eggNOG and are extended with the new proteomes input by the users. The goal is to first

create in-paralog groups, and then to merge them with single genes to create a cluster of
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homologs. The cluster of homologs can later be split back if reciprocal best hits are observed
with clusters from other lineages. Since levels are computed independently, inconsistencies may
occur depending on how duplications are positioned. A post-processing step is then applied to
remove such inconsistencies across levels by merging and splitting spurious groups. The
algorithm uses a bottom-up traversal to target orthologous groups that have divided at their
upper parent level. For each pair of resulting groups, the algorithm determines the species
overlap then decides whether to combine these groups or not. Inconsistencies may remain due
to real gene fusion events or assemblies errors that harder the reconstruction of hierarchical
groups. No information is provided regarding the time performance of the algorithm. The limits
of this algorithm are the narrow catalogs of levels reconstructed, the inconsistency between

levels and probably the time required to perform the whole clustering pipeline.

OrthoDB

The OrthoDB algorithm (Waterhouse et al. 2013) is one of the first methods to infer hierarchical
catalogs of orthologous genes. The HOG inference is performed at every level of interest but
independently, in contrast to eggNOG, resulting in clustering that is not consistent across levels
and inconsistencies are likely to be found. The principle of the OrthoDB algorithm is to cluster
best reciprocal hits between genes of species pairs. It performs Smith-Waterman protein
sequence alignments using SWIPE (Rognes 2011) on the longest transcript for each gene and
only the longest gene copy with a CD HIT (Fu et al. 2012) identity greater than 97%. Clusters of
orthologs are then made iteratively with an e-value threshold of 1e-3 for best reciprocal hit
triangulation and of 1e-6 for pair-only best reciprocal hits. A minimum of 30 amino acids overlap
is required. Once the clusters of best reciprocal hits are built, they are expanded to include
inparalogs by including within-species homologs that are more closely related than the clustered
best reciprocal hits. This clustering phase is applied at selected levels of a given phylogeny

without any cross-level verifications of orthology clustering inconsistency. Levels are not
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necessarily nested to each other, depriving downstream analysis of information regarding

evolution of particular orthologous groups along branches.

Hieranoid 2

The Hieranoid 2 algorithm (Kaduk and Sonnhammer 2017) is a tree guided method to build
hierarchical orthologous groups. It traverses a guide tree to compute sequence similarities and
to reconstruct at each level the related ‘meta-species’ composed of lower orthologous groups
in the tree. By performing only relevant proteome pair comparisons, the time complexity is
reduced to N-1 with N number of proteomes. The Hieranoid 2 algorithm uses as input a fully
bifurcated tree (polytomies need to be expanded) where leaves are composed of complete
proteomes (longest protein representative per gene) and internal nodes representing
‘meta-species’ composed of orthologous groups from lower levels. The algorithm iterates along
genome pairs, starting with the closest pair in the tree and computes at each level the following
4 steps: sequence similarity search, orthologous group inferences, multiple sequence
alignments and consensus sequence building. The search of sequence similarities between the
two proteome pairs is performed using BLAST or USEARCH to yield potential matches. A
filtering step is applied to remove matches that do not fulfil the default InParanoid overlap
criterion that requires that the distance from the first to the last aligned residue must be at least
50% of either protein and the length of the aligned regions must be at least 25% of the length of
either sequences. Orthologous clustering is then performed on those matches using the default
Inparanoid algorithm (Remm, Storm, and Sonnhammer 2001). The third step is to build multiple
sequence alignments from all sequences of orthologous groups in order to capture the
sequence diversity within each group. Once the alignment is built, the consensus sequence is
calculated by using the consensus residue with the highest score in the column using the
BLOSUME2 substitution matrix. Columns in the alignments with more than 50% gaps are

trimmed out. All consensus sequences at a given internal node represent the related
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pseudo-species (ancestral proteome) with one species per representative orthologous group
rooted at this level (ancestral gene). For pseudo-species versus pseudo-species reconstruction
the consensus sequence of each group is used and then recalculated with all original
sequences of the two orthologous groups. Once the algorithm reaches the root of the tree, all

the orthologous clusters at each level are combined to obtain hierarchical orthologous groups.

GETHOGs version 1

The GETHOGs (“Graph-based Efficient Technique for Hierarchical Orthologous Groups”)
algorithm uses a reference species tree (including polytomies) and its related orthology graph to
build HOGs in a time efficient manner. Considering a reconciled gene tree, HOGs at any level of
interest can be easily found by searching for (sub-)gene trees rooted by a speciation at those
levels of interest. Nevertheless, this method requires reconciled gene trees to be built, a step
which is not time efficient, and can be complex or not scalable to large gene families. The idea
of GETHOGs is to use an orthology graph instead of reconciled gene trees; this is
computationally less expensive to build and more scalable for large dataset reconstructions. As
demonstrated in (Altenhoff et al. 2013), a one-to-one correspondence exists between
connected components (set of interconnected nodes) in a perfect—i.e. complete and entirely
correct—orthology graph and HOGs. The algorithm relies on this one-to-one correspondence
to reconstruct the HOG from the orthology graph. The algorithm uses a top-down traversal of
the reference tree and first extracts at each taxonomic range the related sub-orthology graph.
Then, it searches for connecting components in this graph to infer HOGs. Spurious orthologous
relations in the inputed orthology graph may connect unrelated HOGs. In order to prevent
unwanted clustering of HOGs, a Min-Cut algorithm is applied to remove weakly supported

edges in the connected components, e.g a single edge connecting two densely interconnected
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groups of orthologs. The algorithm produces consistent nested HOGs across the whole input

graph (each level is computed and represented in the final form of the HOGs).

OMA

In this project we focus on OMA (“Orthologous MAtrix”), a graph based algorithm and database
for orthology inferences. The OMA algorithm (Roth, Gonnet, and Dessimoz 2008; Dessimoz et
al. 2005) uses protein sequences of multiple genomes to infer pairwise orthologous relations
between genes and produce orthologous groups. There exist two types of orthologous groups
inferred in OMA: the ‘OMA group’ is a set of genes all orthologous to each other, and the
Hierarchical Orthologous Groups, reconstructed using a hierarchical clustering algorithm called
GETHOGs ( Altenhoff et al. 2013). The OMA method shows a high precision (low false-positive
rate) but low recall (high false-negative rate) compared to other orthology inference methods, as
has been shown in several benchmark studies (Altenhoff and Dessimoz 2009; Altenhoff et al.

2016; Boeckmann et al. 2011; Trachana et al. 2011).

Open Challenges

Although building OMA groups can be performed by simply searching for fully-connected
components in the orthology graph, reconstructing HOGs is not a trivial task. Indeed, several
factors can explain the difficulties of HOG reconstruction: the presence of spurious/missing
orthologous relationships that are the building blocks of HOG reconstruction, the complexity in
the evolutionary history of genes and genomes, or the size of genomic datasets used which can
go up to thousands of species. In addition, the current HOGs clustering algorithm (GETHOGS) in
OMA uses a top down approach to reconstruct HOGs that is not scalable to very large datasets
(some gene families contain over 100,000 members in OMA). Designing a hierarchical clustering
algorithm that produces high confidence HOGs on a large scale dataset is now mandatory to

face the current growth of genomic data.
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In addition to the difficulty of reconstructing HOGs, assessing their quality is also a challenging
task. Indeed, even if several orthology benchmarks exist (Linard et al. 2014; Altenhoff et al.
2016) (and can use the HOGs-induced pairwise orthology relations as a proxy to assess the
HOGs quality) no gold standard HOGs reference or quality assessment metrics have been
proposed. Establishing methods and metrics that estimate the quality of HOGs inferences is

now mandatory to assess the performance of newly created HOGs reconstruction algorithms.

Moreover, since HOGs are relatively recent and are restricted to a specific set of analysis, there
are no standard tools available to explore (e.g. retrieving evolutionary-based information) or
visualise them (e.g. visually exploring their structure and capturing the main information at a

glance).

Aims of the thesis and organisation
The aims of this thesis project are:
1. to improve algorithms to infer HOGs in terms of accuracy, scalability and robustness
(chapter 2 & 5),
2. to develop methods and metrics to improve the benchmarking of HOG inference
algorithms (chapter 4),
3. to devise tools for the visualisation of HOGs and to facilitate the application of HOGs to

downstream analyses (chapter 3).

This PhD thesis is organised into 6 chapters.

In the first chapter, | introduce concepts and paradigms of phylogenetics along with orthology

inference and orthology clustering methods with their applications and limits.
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In chapter 2, | describe an improvement of orthology inference in the OMA algorithm and a new

bottom-up variant of the HOGs clustering algorithm in OMA called GETHOGs 2.0.

In chapter 3, | present a new tool to explore HOGs and to facilitate the extraction of the
phylogenetic information they contain. Finally, | will introduce two new visualisation tools to

investigate the HOGs from different angles.

In chapter 4, | discuss the limits and the errors of the new GETHOGs algorithm with a

benchmarking strategy on simulated data and on a real dataset.

In chapter 5, | propose new alternative heuristics to overcome such limits on HOGs inference

algorithms.

Finally, chapter 6 concludes the thesis with a general discussion and perspectives.

In addition, | was involved in several other projects in parallel to the work described in this
thesis, which are not included in this manuscript but are published elsewhere; contribution to
the conception and implementation of the Orthology Benchmark Service web server (Altenhoff
et al. 2016), contribution to the conception and implementation of visualization tools for the
OMA Browser (synteny viewer for chromosome pairs, dynamic table with taxonomy-driven
filtering) (Altenhoff et al. 2017), HOG-based benchmark of a new algorithm to identify fragments

of the same gene in draft-quality assemblies (Pilizota et al. 2018).
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Chapter 2: OMA Algorithm 2.0

This chapter has been published in Clément-Marie Train, Natasha M Glover, Gaston H Gonnet,
Adrian M Altenhoff and Christophe Dessimoz. Orthologous matrix (OMA) algorithm 2.0: more
robust to asymmetric evolutionary rates and more scalable hierarchical orthologous group
inference. Bioinformatics, 2017, i1-i8 (ISMB 2017 proceedings)

In this chapter, we focus on improving the orthology inferences in OMA by accounting for fast
evolving duplicated genes and including an additional control to verify evolutionary distance
additivity (witness of evolutionary distance congruences). Since orthologs are the fundamental
resource to build HOGs, improving ortholog inferences will considerably increase the quality of
HOGs. A second part of this chapter focuses on improving the orthology clustering itself. The
original hierarchical clustering algorithm in OMA called GETHOGs (Altenhoff et al. 2013) uses a
‘top-down’ approach. The algorithm starts the HOGs reconstruction at the most ancestral
taxonomic ranges (where the largest quantity of information is required and where the quality of
information is the lowest due to age) until most recent taxa. In addition, spurious edges and
missing relations highly increase the probability of making clustering mistakes that are vertically
propagated through the whole clustering procedure, considerably affecting the final results. In
this chapter, | introduced a new hierarchical clustering algorithm called GETHOGS 2.0
(‘bottom-up’) with a better scalability to large datasets and an improved robustness of HOGs
inferences. This work was published in ‘Orthologous Matrix (OMA) algorithm 2.0: more robust to
asymmetric evolutionary rates and more scalable hierarchical orthologous group inference’

(Train et al. 2017).

2.1 Abstract
Accurate orthology inference is a fundamental step in many phylogenetics and comparative analysis.

Many methods have been proposed, including OMA (Orthologous MAtrix). Yet substantial challenges
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remain, in particular in coping with fragmented genes or genes evolving at different rates after duplication,
and in scaling to large datasets. With more and more genomes available, it is necessary to improve the
scalability and robustness of orthology inference methods.

We present improvements to the OMA algorithm: (i) refining the pairwise orthology inference
step to account for same-species paralogs evolving at different rates, and (i) minimizing errors in
the pairwise orthology verification step by testing the consistency of pairwise distance
estimates, which can be problematic in the presence of fragmented sequences. In addition we
introduce a more scalable procedure for hierarchical orthologous group (HOG) clustering, which
is several orders of magnitude faster on large datasets. Using the Quest for Orthologs
consortium orthology benchmark service, we show that these changes translate into substantial
improvements on multiple empirical datasets.

This new OMA 2.0 algorithm is used in the OMA database (http://omabrowser.org) from the
March 2017 release onwards, and can be run on custom genomes using OMA standalone

version 2.0 and above (http://omabrowser.org/standalone).

2.2 Introduction

Inferring evolutionary relationships between genes lies at the heart of comparative, phylogenetic,
and functional analyses. Homologs are genes that share a common ancestry (Fitch, 1970). They
can be further classified into: orthologs if they arose by speciation events, or paralogs if they
arose by duplication events (Fitch, 1970; Figure 4). These evolutionary relations are all defined
among pairs of genes and—except for homology —are not transitive. Many orthology inference
methods have been proposed over the years, such as COGs (Tatusov et al., 1997), bidirectional
best hits (Overbeek et al., 1999), Inparanoid (Remm et al., 2001), OrthoMCL (Li et al., 2003),

Ensembl Compara (Vilella et al., 2008) or OrthoDB (Kriventseva et al., 2008).
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Figure 4: Hierarchical Orthologous Groups. Labeled gene tree (left) and its related species
tree (right) illustrating the evolutionary history of five genes all descended from a single common
ancestor at the tetrapods level. Those homologs can be classified as orthologs if they start
diverging by speciation (human versus dog genes of same color) or as paralogs if they start
diverging by duplication (blue versus red genes). We can identify in this example HOGs at two
taxonomic levels: one larger HOG at the tetrapods level (dotted-line rectangle) containing all the
homologous genes that emerged from the single tetrapod ancestral gene, and two HOGs at the
mammalian level (solid-line rectangles), due to a duplication of the tetrapod ancestral gene

before the mammals speciation.

The Orthologous Matrix (OMA) algorithm infers orthologous genes among multiple genomes on
the basis of protein sequences (Dessimoz et al., 2005; Roth et al., 2008). In addition to inferring
such pairwise evolutionary relationships, OMA infers two types of orthologous groups. The first,
called ‘OMA groups’, are sets of genes in which every pair is inferred to be orthologous. The
second, introduced more recently and called ‘hierarchical orthologous groups’ (HOGs), are
defined as a set of genes that have all descended from a single common ancestral gene at a

specific taxonomic range of interest (Altenhoff et al., 2013; Figure 4).
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When compared with most other methods, the OMA algorithm has been shown to have high
precision (i.e. low false-positive rate) but low recall (i.e. high false-negative rate) in several
benchmark studies (Altenhoff and Dessimoz, 2009; Altenhoff et al., 2016; Boeckmann et al.,
2011; Trachana et al., 2011). Even so, predicting correct evolutionary relationships becomes
more difficult due to complex mechanisms such as differential gene loss, asymmetric
evolutionary rates, gene duplications and poor quality genomes. This can lead to spurious or

missing relationships (Dalquen and Dessimoz, 2013).

The final stage of the OMA pipeline infers HOGs from pairwise orthologs (Altenhoff et al., 2013).
Such groups are useful for analyzing multiple genomes or genes, but require scalable clustering

algorithms due to the complexity in reconstructing them.

Here, we present two new improvements to our orthology inference algorithm in order to better
handle rapidly evolving duplicated genes and to improve detection of asymmetric gene loss. In
addition, we introduce a ‘bottom-up’ HOGs clustering algorithm that can scale up to thousands

of genomes.

2.3 Materials and methods
We first provide an overview of the OMA algorithm, then present in detail the three refinements
introduced in this new version, and finally provide methodological details about the

benchmarking.

2.3.1 Overview of the OMA algorithm

The following section provides an overview of the existing OMA algorithm, of which the details
are described in (Roth et al., 2008).
The OMA algorithm infers pairs of orthologous genes from complete genomes in a four-step

process (Figure 5):

41



All pairs of protein sequences
N

[ All-against-all comparison ]

A d
Homologs
(“Candidate Pairs”
~

[ Formation of Stable Pairs ]

N
Putative Orthologs
(“Stable Pairs”)
N
[ Verification of ] )
Stable Pairs

~

Orthologs
(“Vertfied Pairs”)
N N

( Clique search | [ GETHOGs |

~ ~

Differentially lost
paralogs
(“Broken Pairs”)

OMA Groups Hierarchical Orthologous
Groups (HOGs)

Figure 5: Overview of the OMA pipeline. Boxes denote individual steps in the pipeline, while
the text outside boxes denotes the input or output of these processes and their terminology in
OMA.

. Homology inference: Alignments are made with all possible pairs of sequences from
all genomes using local dynamic programming (Smith and Waterman, 1981), and pairs
with sufficient score and overlap are promoted to Candidate Pairs.

ll.  Ortholog and co-ortholog inference: Candidate Pairs that are the mutually
evolutionary closest sequences between a pair of genomes are upgraded to Stable
Pairs. In order to include many-to-many orthologous relationships, Candidate Pairs
found within a confidence interval (corresponding to distance variance) are also
upgraded to Stable Pairs.

. Witness of non-orthology verification: At this point, some pairs of paralogs may still

be misidentified as orthologs due to differential gene loss (Dessimoz et al., 2006a). To
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avoid such cases, a verification step is added to assess the orthologous origin of a
Stable Pair by using a third genome that retained both orthologous copies, which thus
acts as witnesses of non-orthology. Pairs that pass this test are upgraded to Verified
Pairs.

IV.  Ortholog clustering: Once the pairwise orthologs are inferred, a clustering algorithm is
applied to group genes descending from a common ancestral gene into HOGs or using

a clique search algorithm for OMA Groups.

2.3.2 Algorithmic refinements: taking into account fast-evolving duplicated genes in the

orthology inference step

In the current orthology inference step of the OMA algorithm, genes that are mutually the
closest pairs of sequences across genomes are considered as putative orthologs. Due to
lineage-specific duplications, orthology relationships are however not necessarily one-to-one
(e.g. Dalguen and Dessimoz, 2013). Thus, OMA considers a tolerance interval during the
mutually closest gene search to allow for inclusion of potential inparalogs.

Specifically, the criterion originally used in OMA was as follows: a Candidate Pair xy between
genomes X and Y is upgraded to a Stable Pair if for all genes xi from X and for all genes yj from

Y with xi # x and yj # v:

dy —dyy > —k * stdev (d,% = dyy)

and

duy— dyy > —k * stdev (dyy — diy)

where d is the pairwise maximum likelihood distance estimate, k the tolerance parameter of the
standard deviation between the two distances, and where stdev() is the distance standard

deviation of the difference (Dessimoz et al., 2006a,b). This means that a Candidate Pair xy is
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upgraded to a Stable Pair if and only if there are no other pairs xyj or yxi with significantly smaller
evolutionary distances.

So far in the orthology inference step, only the distances between genes from different genomes
are taken into account. However, if a duplicated gene evolved faster than its related in-paralog,
searching for mutually closest genes between genomes can fail to identify it as an ortholog
(Figure 6.A). Because of the distance asymmetry, the original algorithm does not detect the fast
evolving gene as a co-ortholog, thus wrongly implying an ancestral duplication as the origin of

divergence (Figure 6.B).

Lineage specific duplication ‘ Ancestral duplication

A Fa ”\ ------ B

—— Closest genes ¥t Duplication
- Not closest genes @ Speciation
f Gene loss

Figure 6: Putative evolutionary scenario for a gene triplet containing 1 human gene
and 2 asymmetrically evolving dog genes.

A. Reconciled labeled gene tree for the gene triplet where the red dog gene (orthologous to the
human gene) evolved at a faster rate.

B. Reconciled labeled gene tree for the gene triplet where an ancestral duplication gave rise on
one side to the blue dog gene and the black human gene and on the other side only to the red
dog gene, since the related gray human gene had been lost. The red dog gene is thus

paralogous to the black human gene
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The refinement introduced here also takes into account the evolutionary distance between
inparalogs. Inspired by other orthology algorithms detecting co-orthologs on the basis of
alignment scores, such as Inparanoid (Remm et al.,, 2001) or Ortholnspector (Linard et al.,
2011), we added a new check that the distance between the two potential in-paralogous dog
genes is significantly smaller than the distance between the closest genes (black and blue
genes), as illustrated in the Figure 6.A. More precisely, we retain as Stable Pairs all Candidate
Pairs xy between genomes X and Y that were previously discarded during orthology inference if,
for any genes yj from Y with yj # y there exists a gene yi that has a distance to y significantly

closer than the distance between the Candidate Pair genes x and y2:

d

oy —d

¥Yj

> —k * stdev (dxy = d}.}_j)

where d is a pairwise maximum likelihood distance estimate, k the inparalogs tolerance
parameter of the standard deviation between the two distances and where the distance

standard deviation stdev() is computed according to Dessimoz et al. (2006a,b).

2.3.3 Algorithmic refinements: extended witnesses of non-orthology with verification of distance
additivity

As mentioned earlier, the verification step of the OMA algorithm aims to detect paralogs
resulting from differential gene losses (Figure 7.A). Indeed, paralogs can be the only remaining
homologs between two genomes and since they are mutually the closest genes across those
genomes they can be wrongly inferred as orthologs. To prevent such cases, OMA searches for
each pair of putative orthologs (‘Stable Pairs’) whether there might be a third genome that has

retained paralogs that could act as a witness of non-orthology (Dessimoz et al., 2006a,b).
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Figure 7: Hidden paralogs example and witness of non-orthology gene quartet.
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A. Example of labeled gene tree containing hidden paralogs due to asymmetric gene losses
between human and mouse. This can occur when an ancestral duplication is first followed by a
speciation then by asymmetric genes losses. The resulting paralogs are wrongly inferred as
orthologs because they are the mutually closest pairs between two genomes (Human1, Mouse2
sequences). OMA attempts to identify such cases through the use of a third species (here a
monkey) that has retained both copies, which can act as witnesses of non-orthology.

B. The four extant genes form a quartet with branches labeled a—e.

This test is based on pairwise evolutionary distance comparison of the gene quartet, without
reconstructing the underlying gene tree (which, given the very large number of quartets of
homologous genes across many genomes, would be too time consuming). However, direct
comparison of pairwise distances implies that the distances among the four genes are additive,
and by consequence, that a phylogenetic tree can be reconstructed from them. We have found
cases, particularly in the presence of fragmented sequences, where additivity is far from being

met.

To ensure that the evolutionary distances do not depart excessively from additivity, in the
verification of Stable Pair x1,y2 using potential witnesses of non-orthology z1,z2, we test a ‘soft’
variant of the four-point condition (Buneman, 1974), which allows for distance estimation
uncertainty. We check that the sum of the distances d(x1,z2) and d(y2, z1) is approximately
equal to the sum of the distances d(x1, y2) and d(z1, z2). Indeed, considering the branch labels

defined in Figure 7.B, under the model and assuming no error, the following equality holds:
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d+c+b)+(a+c+e)=d+c+a)+(e+c+b)

Taking inference uncertainty into account, we test the equality as follows:

| deZE + d)’zzl —d

X1Y2

2 \/var (dx,z,) + var (d,,;, ) + var (dx,,) + var (d,,,,)

- dZJZZ | <

where x1 and y2 are the Stable Pair genes from genomes X and V, z1 and z2 are the witnesses
of non-orthology in the third genome Z, d is a pairwise maximum likelihood distance estimate,
and var(d(x,y)) is the variance of the distance estimate between sequences x and y. If the test

fails, z1 and z2 are not used as witnesses of non-orthology.

2.3.4 Algorithmic refinements: bottom-up HOG inference

In this section, we present improvements to the hierarchical orthologous group (HOG) clustering
phase (Altenhoff et al., 2013). The work established a one-to-one correspondence between the
connected components of a perfect orthology graph—i.e. containing no false positives or
negatives— and HOGs. Based on this, but allowing for a noisy input, we introduced a heuristic
called GETHOGs (‘Graph-based Efficient Technique for Hierarchical Orthologous Groups’),
which used the min-cut algorithm to break down spurious orthologous relationships before
identifying HOGs as the connected components. This was performed for each taxonomic range
of a reference phylogeny, starting from the root and walking down the tree to the most specific

clades, in a ‘top-down’ fashion.

Nevertheless, inconsistencies in the orthology graph due to spurious inferences or missing
relations increase the probability of making errors during the clustering. Such mistakes in
grouping are then propagated through the entire clustering procedure due to the greedy nature

of the algorithm, and can affect the final result. Furthermore, the original GETHOGs algorithm
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started at the root of the reference phylogeny, where the graph is largest (since it contains pairs

of orthologs between all species instead of subsets of them) and most uncertain (since it also

contains orthologous relationships among the most distant species).

Here, we introduce a ‘bottom-up’ variant of GETHOGSs, which infers HOGs starting with the

most specific taxonomy and incrementally merges them toward the root (Figure 9). More

specifically, the new approach reconstructs HOGs by applying the following procedure with

each speciation node of the species tree as reference, from the leaves to the root;
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Build inter-HOG orthology graph (Figure 8 BuildinterGraph, Figure 9.D left): Define a
graph in which the nodes are the HOGs inferred at the level of each child of the
reference speciation. If a child is a leaf of the species tree (i.e. a child is an extant
species), the HOGs defined at this level are simply the individual sequences of that
species. The edges of the graph represent one or more pairwise orthology relationships
between members of the HOGs, with the number of such relationships recorded as
weights.

Remove spurious edges (Figure 8 BuildinterGraph line 7-9, Figure 9.D middle): Once the
orthology graph is built, we next assess whether each edge is well supported or not. For
each edge, the algorithm computes the ratio of the number of pairwise orthologous
relations (edge weight) to the maximum number of possible pairwise orthologous
relations (equal to the product of the size of the two HOGs connected by the edge). If
the input orthology graph is perfect (i.e. correct and complete), this ratio is one. A cutoff
a (set to 0.8 throughout this article and by default) is then used to remove all edges with
insufficient connections.

Search for connected components (Figure 8 GETHOGSBottomUp line 10-12, Figure
9.D right): The final step searches for connected components inside the graph and

clusters them together as a single HOG at the level of the speciation of reference.



The asymptotic complexity is determined by the complexity of the species tree traversal and the
complexity for the HOG inference at each internal node of the species tree (i.e. inference for
each taxonomic level). Tree traversal has a runtime complexity of O(n) where n is the number of
species, because there are n-1 internal nodes. The runtime of the HOG inference at each level
(steps 1-3 above) primarily depends on the number of pairwise orthology relationships. The total
number of sequences is O(n) because we can expect a natural limit on the size of each
proteomes. Thus, the total number of pairwise relationships is O(n2). Using Union-Find data
structures, finding connected components in a graph of m edges is O(m) (Cormen, 2009). There
are potentially O(n2) edges in each inter-HOG orthology graph, but since each orthology
relationship only needs to be considered once in the entire traversal (at the speciation node
which induces them), the amortized complexity at each internal node is O(n) resulting in a total
complexity of bottom-up GETHOGs of O(n2). This compares favorably to the top-down

GETHOG algorithm, which has complexity O(n3:log4n) (Altenhoff et al., 2013).
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Input: Rooted species tree T, a set of tuples of pairwise orthologs R and cutoff 0 < a <1
1: function GETHOGSBoTTOMUP(T, R, @)
2 OG0

3: if T is not a leaf then

4: children <+ GetChildren(T)

5: for all child in children do

6: OG + OG U GETHOGSBoTTOMUP(child)

7: end for

8: SubHogs + {Vg € OG | TaxRange(g) € children} > direct children HOGs
9: HogGraph <+ BUILDINTERHOGGRAPH(SubHogs, R, a)
10: for all CC in CONNECTEDCOMPONENTS(HogGraph) do
11: OG + OGU (T,CC)
12: end for
13: end if
14: return OG

15: end function
Output: Set of tuples of orthologs groups with their related taxonomic range

Input: A set of HOGs H, a set of tuples of pairwise orthologs R and cutoff 0 < a <1
1: function BUILDINTERHOGGRAPH(H, R, o)
Edges + 0
3 for hi,hyin (¥) do
4 g1 + ExtantGenes(h;) > Set of extant gene in HOG h,,
5 g2 + ExtantGenes(hg)
6: r < FilterOrthologsBetweenGeneSets(R, g1, g2)
7
8
9

if ‘Zﬁ > a then
9192
Edges < Edges U (hy, ha)
end if
10: end for
11: return Graph(H, Edges)
12: end function
Output: Graph composed of HOGs as nodes with edges among them if orthologous at current
taxonomic level.

Figure 8: Pseudocode of bottom-up GETHOGs algorithm.

B D Weighted orthology graph Weighted orthology graph HOGs
before correction after correction
e ®
i == @A ] ® A A® oa
Mammals ; o
[ ) >
B @ B, @ >
- b : 22 ®B
ﬂ\ [}:] ®B 3,8 5@
Ei @ Bi @ 212
l Mammals
\ A®
1
- : P
1n
/ \ B, ® B ® B,® |B @
n 2 1
/\ B ® B, ®
¥ M 1\ (| EEE
A B AB B,

Figure 9: Bottom-up GETHOGs reconstruction example.

A. Orthology graph, where circles represent extant genes with a species-specific color and
edges represent pairwise orthologous relations between genes. The red edge represents a
spurious orthologous relation between the mouse gene A and the monkey gene B1.

B. Reconciled gene trees corresponding to the orthology graph in (A). Extant genes are

represented by squares, speciation events by circles and duplication events by stars.
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C. Corresponding species tree.

D. HOGs reconstruction using bottom-up GETHOGs with a minimal edges removal threshold of
0.8. The algorithm starts by reconstructing HOGs at the level of the primates and finishes at the
level of mammals. The left panel displays the sub-orthology graph composed of HOGs (or
extant genes) as nodes connected by weighted edges according to the number of existing
orthologous relations between HOG genes. In the middle panel, to identify spurious edges,
GETHOGs computes the fraction of orthologous pairs over the maximal number of possible
pairs. The algorithm removes the red edge because the score is smaller than the minimal edge
removal threshold. The right panel depicts the HOGs reconstructed from the connected

component of the corrected graph.

2.3.5 Validation and benchmarking

We used the Quest for Orthologs (QfO) reference proteomes dataset (Altenhoff et al., 2016) to
benchmark our method and to analyze case studies. It consists of 66 (40 eukaryotes, 20
bacteria, 6 archaea) proteomes, and contains more than 750 000 non-redundant protein
sequences. It includes a broad selection of genomes covering the tree of life, including model
organisms of interest and those important in biomedical or phylogeny research. In addition, as a
reference tree we used a manually curated species tree for the 66 organisms contained in the

QfO reference proteomes (Boeckmann et al., 2015).

The orthology benchmarking service (http://orthology.benchmarkservice.org) is an automated
web-based tool for orthology inference quality assessment (Altenhoff et al., 2016). This service
takes ortholog relations inferred on the QfO reference dataset as input, and after running a
broad range of tests, it summarizes and plots the results. We focused on the generalized
species tree discordance test for our benchmark analysis, as it is a robust way to assess the

quality of orthology predictions.
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The generalized species tree discordance test estimates the agreement between orthology
predictions and a reference species tree. Since orthologs originate by speciation, comparing the
similarity of a tree reconstructed using pairwise orthology relations to a reference species tree is
a way to assess the quality of the orthology predictions. We applied this procedure to a subset
of the QfO references proteomes, covering different taxonomic ranges (Last Universal Common
Ancestor, Eukaryotes, Vertebrates and Fungi). The main results provided by this test are the
‘error rate’ (average Robinson-Foulds distance between the reconstructed gene tree and
reference species tree), the ‘number of complete trees sampled’ (number of trees fully
reconstructed out of 50 k trials), and the ‘number of predicted orthologs’.

In the context of HOGs benchmarking, the generalized species tree discordance test is a
valuable metrics to assess two types of quality aspects of the HOGs reconstruction: the
completeness of the HOGs (how much the HOGs are complete and dense) using the recall as a
proxy measure and the quality of the internal genes clustering of each HOGs by estimating the

error rate between the reconstructed gene tree topology and reference gene tree topology.

3 Results

Before presenting aggregate benchmarking results, we first present detailed examples of
improvements obtained by the refinements described in the previous section. We begin with a
case study of a family containing fast-evolving genes, where we recover orthologous relations
and correct the orthology graph. We then present an example of the kind of improvement

obtained by the new additivity test.
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3.1 Fast-evolving duplicated genes case study: the haptoglobin family

The first orthology inference refinement we present aims to include fast evolving duplicated
genes in orthology predictions by not only looking at evolutionary distances between genomes

but also within genomes.

In order to investigate the performance of this refinement, we used the haptoglobin gene family
as an example, which duplicated in the primates (Figure 10.A). One branch of the primate
paralogs evolved at a higher rate than its sister branch, leading to asymmetry in the distance
between the paralogs. As a result, although there is a one-to-many relationship between rodent
haptoglobin and primate haptoglobin, the original OMA algorithm only uncovers the most
conserved ortholog pairs (Figure 10.B). By taking into account the relatively short distance
between the in-paralogous copies (see section 2), the updated OMA algorithm now recovers

both copies as co-orthologs to their rodent counterparts (Figure 10.C).
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Figure 10: Analysis of haptoglobin gene family in mammals.

A. Phylogenetic labeled gene tree of the haptoglobin family built using 6 proteins sequences
from 4 mammals (rat, mouse, human, chimpanzee). The dotted rectangle highlights the fast
evolving primate paralogous genes.

B,C. Orthology graph of the haptoglobin gene family shown in A. Nodes represent extant genes
denoted by a species-specific color and their identifier meanwhile the edges represent pairwise

orthologous relations between genes. The orthology graph in B, relies on the pairwise
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orthologous relations inferred using the classic OMA algorithm, while the orthology graph in C is
built using the orthology relations including the refinement for paralogs evolving at different
rates. (UniProt IDs of the sequences involved Mouse—Q16646, Rat—AOAOH2UHMS,
Human_a—HOY300, Chimpanzee_a—H2RATS, Human_b—P00739,
Chimpanzee_b—H2RB63).

3.2 Additivity of distances in witnesses of non-orthology step

As previously discussed in the section 2, the OMA algorithm attempts to uncover hidden
paralogs (pairs of paralogs resulting from differential gene losses, thus each lacking an ortholog
in the other species). This step compares evolutionary distances among quartets of genes
without explicitly reconstructing their underlying phylogenetic gene tree (for performance

reasons), under the assumption of near additivity of these distances.

However, in some cases—typically in the presence of one or more fragmented sequences —the
assumption of additivity is strongly violated. Figure 10 shows an example of a quartet of genes
with non-additive distances, where a Stable Pair between two mammal genes is erroneously
discarded using two arabidopsi genes as witnesses of non-orthology. The underlying
phylogenetic gene tree (Figure 11.A) indicates that the arabidopsis gene are in fact the result of
a duplication within plants and not an ancestral duplication shared with the mammals in
question. Without resorting to tree inference on a multiple sequence alignment (which would be
prohibitively costly considering the number of quartets needed to verify every putative ortholog),
the non-additivity of the pairwise distances in this quartet (Figure 11.B) can be detected by

applying the new condition (see section 2), which in this case is violated:

a

|191 4192 - 62— 169| 2 2+ 169+ 193 + 120 + 121
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Figure 11: Example of non additivity among gene quartet distances.

A. The two arabidopsi genes arose from a duplication within the plants, which can be inferred
from a tree inferred using a multiple sequence alignment.

B. However, if we consider pairwise distances estimated from independent pairwise alignments,
one arabidopsi gene appears to be closer to the human sequence, while the other appears to
be closer to the opossum gene. In the original OMA algorithm, this would result in these
arabidopsi genes being erroneously used as witnesses of non-orthology; in the new algorithm,
the non additivity of these distances (in Point Accepted Mutation units, with estimator variance
in parentheses) is detected and the Arabidopsis genes are not used. (UniProt IDs of sequence
involved: Human — Q16874, Opossum — F7FI80, arabidopsi a — Q937B2, arabidopsi b —
Q9LNJ4)

The equation does not hold, thus we cannot rely on this pair of arabidopsis gene as witnesses

of non-orthology.

To understand how such non-additivity arises, consider that the evolutionary distances are
computed independently during the all-against-all phase. As a result, the pairs of residues
aligned (thus inferred to be homologous) can be inconsistent across the different sequences
and some inconsistencies can appear within the pairwise alignments (non-conservation of
homologous sites Figure 12). In our example, the additivity test will fail; thus the Arabidopsis
genes will not be used as witnesses of non-orthology, and the orthology inferred between the
human and opossum sequence will stand (unless of course a different pair of witnesses, with

additive distances this time, is found).
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Figure 12: Example of non conservation of homologous sites across independent
pairwise alignments.

A. Excerpts of three pairwise alignments between three sequences.

B. Graph-representation of the three alignments, where lines connect aligned residues. The
lines are depicted as full lines if the characters are aligned consistently—thus forming closed
triangles—and as dotted lines if they are aligned inconsistently—thus forming open triangles.
(Sequence mapping to Uniprot Id: Human — H. sapiens|Q16874, Opossum — M.
domesticalF7FI80, Arabidopsis — A. thaliana|Q937B2.)

3.3 QfO benchmarking results

To quantitatively assess the impact of the changes in the OMA algorithm, we submitted results
obtained with them—individually and in combination—to the QfO orthology benchmark service

(Altenhoff et al., 2016).

We first consider the results at the level of pairwise orthology (‘'OMA Pairs’). Applying the new
handling of asymmetrically evolving paralogs and the additivity test separately, we observe a
significant increase in the number of predicted orthologs while maintaining a similar or even
slightly better precision (Figure 13). Here precision is measured in terms of average topological
distance between the reference species tree and the gene tree reconstructed from the inferred
orthologs (the lower the better). When the two refinements are combined, there is an even

higher increase in the number of predicted orthologs compared with the current OMA
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predictions, while maintaining further the quality of the inferences. Consistent results are
obtained for the different resolutions provided by the QfO benchmark service, though the
increase in the number of inferred pairs is more modest in the fungal dataset
(http://orthology.benchmarkservice.org/cgi-bin/gateway.pl?f=CheckResults&p1=25fe02429dc6

Oc51f81da2de).
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Figure 13: Effect of the refinements on pairwise orthology relationships (OMA Pairs) in
the generalized species tree discordance test at vertebrate level. The asymmetric
paralogs denotes the change in the OMA algorithm aiming to include fast evolving duplicated
genes during orthology inferences. The additivity test denotes the new quartet consistency test

added to the withess of non-orthology step. Error bars denote the 95% CI of the mean.

Next, we turn to the improvements in HOG inference. As described in more detail in section 2,
the new HOG inference approach (‘bottom-up GETHOGS’) implements several modifications
compared with the original version (Altenhoff et al.,, 2013): () The taxonomy is no longer
traversed top-down but from the bottom-up, in a postfix traversal of the species tree; (i) In the
inter-HOG orthology graph considered for each clade, the nodes now represent HOGs instead
of single genes, thereby considerably reducing the complexity of these graphs; (iii) The edges
are weighted according to the number of orthology relations between two clusters of genes; (iv)

Instead of removing spurious edges in the orthologous graph using a minimum cut algorithm,
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the bottom-up HOG inference enables us to assess the support of orthologous relationships
between HOGs in terms of the total number of orthologous relationships that would be

expected given perfect input pairwise orthologs.

To assess the impact of the change, we first compared the top-down and bottom-up variants
on the QfO ortholog benchmark service on the original OMA pairs as input (i.e. without new
asymmetric paralogy and additivity tests). The bottom-up algorithm resulted in a substantial
increase in the number of predicted orthologs, indicating higher recall (Figure 14). On the
Eukaryotic, Vertebrate, and Fungal datasets, the error rate is also markedly lower, while on the
universal dataset (including bacteria, archaea and eukaryotes), the error rate is about the same

(http://orthology.benchmarkservice.org/cgi-bin/gateway.pl?f=CheckResults&p1=98f077d9d00d

3ab0375be957).
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Figure 14: Assessment of HOG inference on the generalized species tree discordance
test (eukaryotic dataset). Error bars denote the 95% CI of the mean. The data points with
‘original OMA’ refer to the algorithm used before this study and ‘new OMA’ refer to the

predictions produced by the refinements introduced in section 2.3.
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Combining the new OMA pair inference with bottom-up HOG inference results in the largest
increase in predicted orthologs. On the Eukaryotic dataset, the number of predicted orthologs

almost triples without negatively affecting precision (Figure 14).

In terms of time requirements, consistent with the asymptotic time complexity analysis (see
section 2), the bottom-up approach is vastly more efficient and scalable (Figure 15). With 100
genomes as input, the bottom up variant is already two orders of magnitude faster. In contrast
to top-down GETHOGs, which is prohibitively expensive on very large protein families (Altenhoff
et al.,, 2013), bottom-up GETHOGs can process the entire public OMA database of 2024

genomes and 10.5M sequences in 9 CPU hours.
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Figure 15: Time performance of GETHOGs algorithm. CPU time to compute the HOGs
reconstruction on datasets of different sizes. The timing is recorded on a single instance running

on a Intel(R) Xeon(R) CPU E5540 2.53GHz

4 Discussion and conclusion
When compared with other methods, the OMA algorithm has often been reported to be

stringent, yielding highly reliable inferences, but suffering from low recall (Altenhoff et al., 2016;
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Ballesteros and Hormiga, 2016; Trachana et al., 2011). This is certainly true of the ‘OMA
groups”, which require fully connected subgraphs of orthologs. For pairs and HOGs, however,
we show with this new version that recall can be considerably improved without negatively

affecting precision.

Indeed, we introduced multiple improvements to the OMA algorithm, both in the inference of
pairwise orthologs and in the inference of HOGs. At the pairwise level, the asymmetric paralogy
test increases the number of one-to-many and many-to-many ortholog relationships recovered
when the paralogous copies evolve at different rates. Furthermore, the new additivity test
reduces errors due to inconsistent distance computations in quartets of sequences (used to
infer differential gene losses in the OMA algorithm). These inconsistent distances often arise due

to fragmented sequences, typical of draft-quality genomes.

The improvements in pairwise orthology are not only useful in and of themselves—they directly
translate into better HOG inference. Combined with the more scalable and accurate bottom-up
GETHOGs, the HOGs inferred by OMA are much more complete, with no or even positive

impact on precision.

Some of the ideas underlying these improvements are not new. Methods such as Inparanoid
(Remm et al., 2001) or Ortholnspector (Linard et al., 2011) have long been exploiting distances
between inparalogs—albeit using alignment score as a proxy—to increase the robustness of
one-to-many or many-to-many orthology inference. Likewise, Hieranoid (Schreiber and

Sonnhammer, 2013) also infers HOGs in a bottom-up fashion.

However, the distinctive feature of the OMA algorithm has been—and continues to be with this

new version—its modular approach, with well-defined and testable objectives at each step of
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the pipeline (e.g. inference of pairwise orthologs, detection of differential gene losses, inference
of HOGs from pairwise orthologs). OMA’s modular approach makes it possible to test and
optimize each step in isolation, and to expect an overall improvement when these are
combined—as the empirical benchmarks reported above clearly support. In contrast, ad hoc
methods can prove difficult to maintain and improve over time, with changes in one part of the

pipeline affecting other parts in unexpected ways.

Looking ahead, we see further opportunities for improvement. Unlike pairs and groups in OMA,
inference of HOGs strongly relies on knowledge of the species tree. However, many parts of the
tree of life remain either poorly resolved or even misleading for some gene families due to
incomplete lineage sorting, horizontal gene transfer or hybridization (Philippe et al., 2011).
Currently, we collapse branches that are uncertain—however this means that gene duplication
occurring within - such multi-furcations (i.e. polytomies) confound the HOG inference.
Approaches taking a more flexible reading of species phylogeny, such as NOTUNG (Durand et
al., 2006) or PHYLDOG (Boussau et al., 2012), may provide a better way forward. We also see
considerable potential in exploiting the paralogy graph to further improve HOG inference (Lafond

and El-Mabrouk, 2014).

Meanwhile, this OMA 2.0 algorithm is used in the public OMA database from the March 2017
release onwards (Altenhoff et al., 2015; http://omabrowser.org), and can be applied to custom
genomes using the open source OMA standalone software version 2.0

(http://omabrowser.org/standalone).
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Chapter 3: Visualisation & Data Exploration

Visual analysis of reconciled gene trees is a cornerstone of gene family evolutionary history
investigation. By pinpointing duplications and speciations in reconciled gene trees, we can
reconstruct the ancestral states of gene families and determine the genomic evolution
underlying homologs. Such investigations can be performed using web based resources such
as Ensembl (Herrero et al. 2016), EggNog (Huerta-Cepas et al. 2016), PhylomeDB
(Huerta-Cepas et al. 2016) or tools such as ETE (Huerta-Cepas, Dopazo, and Gabalddén 2010)
or SylvX (Chevenet et al. 2016). Nevertheless, due to the large genomic setups used or complex
evolutionary histories, hierarchical orthologous groups can be inferred in large quantity and can
be complex to analyse. In a 100 species dataset, there can be approximately 25,000 HOGs
where some can contain up to 100,000 members. Programmatic exploration of such large scale
data is mandatory. | introduce in this chapter two tools | devised to meet this need: ‘pyHam’
(Train et al. 2018) a python library to explore and extract phylogenetic information from
OrthoXML bundled with two HOG based interactive visualisation tools, and ‘GTM’
(Graph-Tree-Multiple sequence alignment) a visualization tool combining an orthology graph

with its related multiple sequence alignment and gene tree.

3.1 Pyham & iHam

This chapter was published in Clément-Marie Train, Miguel Pignatelli, Adrian Altenhoff,
Christophe Dessimoz, iHam and pyHam: visualizing and processing hierarchical orthologous
groups, Bioinformatics (2019) 35:14, pp. 2504-2506.

The evolutionary history of gene families can be complex due to duplications and losses. This
complexity is compounded by the large number of species simultaneously considered in
contemporary comparative genomic analyses. As provided by several orthology databases,

hierarchical orthologous groups (HOGs) are sets of genes that are inferred to have descended
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from a common ancestral gene within a species clade. This implies that the set of HOGs
defined for a particular clade correspond to the ancestral genes found in its last common
ancestor. Furthermore, by keeping track of HOG composition along the species tree, it is
possible to infer the emergence, duplications and losses of genes within a gene family of
interest. However, the lack of tools to manipulate and analyse HOGs has made it difficult to
extract, display and interpret this type of information. To address this, | introduce interactive
HOG analysis method, an interactive JavaScript widget to visualize and explore gene family
history encoded in HOGs and python HOG analysis method, a python library for programmatic
processing of genes families. These complementary open source tools greatly ease adoption of
HOGs as a scalable and interpretable concept to relate genes across multiple species.

iHam’s code is available at https://github.com/DessimozLab/iHam or can be loaded
dynamically. pyHam’s code is available at https://github.com/DessimozlLab/pyHam and or via

the pip package ‘pyham’.

Background

The evolution of a gene family describes the history of all the genes that shared a common
ancestral gene. Those genes called homologs can be distinguished into orthologs if they start
diverging by speciation and paralogs if they start diverging by duplication (Fitch, 1970). In
comparative genomics, gene families are a fundamental resource since they tend to represent
the links between several organisms from a gene centric perspective and allow us to
understand how genes and genomes have evolved over time. In other words, gene families

contain the evolutionary history underlying present day genes and genomes.

The evolutionary history of gene families can be studied by visualizing reconciled gene trees,

using web-based resources such as Ensembl (Herrero et al., 2016), HOGENOM/HOVERGEN
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(Dufayard et al., 2005), EQgNOG (Huerta-Cepas et al., 2016), PhylomeDB (Huerta-Cepas et al.,
2014) or tools such as ETE (Huerta-Cepas et al., 2010) and SylvX (Chevenet et al., 2016).
However, when considering large families across many species, reconciled gene trees can

become prohibitively complex to infer and interpret.

As a scalable alternative to reconciled gene trees, the concept of Hierarchical Orthologous
Groups (HOGs) is increasingly adopted. HOGs generalize Fitch’s definition of orthology to more
than two species, by grouping sequences that have descended from a common ancestral gene
within a clade of interest. Thus, the set of all HOGs defined for a given clade corresponds to the
set of ancestral genes in the common ancestor of that clade. Furthermore, if HOGs are available
for nested clades (e.g. vertebrates versus mammals), the difference between their HOG
repertoires imply gene duplication and loss events on the branch separating them: a HOG split

implies a duplication, while a HOG disappearance implies a loss.

HOGs are inferred by several leading orthology databases such as OrthoDB (Zdobnov et al.,
2017), EggNOG (Huerta-Cepas et al.,, 2016), HieranoidDB (Kaduk et al., 2017) or OMA
(Altenhoff et al., 2018). In OMA, for instance, some HOGs connect large gene families of over
100 000 members across 1000’s of genomes. Because of this complexity, manual exploration
of gene families encoded in HOGs can be challenging. Currently, there is a lack of tools for

visualizing, exploring and processing HOGs to tackle specific biological questions.

In this application note, we introduce two tools to facilitate the visualization and analysis of
HOGs: interactive HOG analysis method (iHam) for web-based interactive visualization and
exploration of individual HOGs and python HOG analysis method (pyHam) to perform aggregate

analyses.
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iHam

iHam is an interactive JavaScript tool to visualize the evolutionary history of a specific gene
family encoded in HOGs. The viewer is composed of two panels (Figure 16.A): a species tree
which lets the user select a node to focus on a particular taxonomic range of interest, and a
matrix that organizes extant genes according to their membership in species (rows) and HOGs
(columns). The tree-guided matrix representation of HOGs facilitates: (i) delineation of
orthologous groups at given taxonomic ranges, (ii) inference of duplication and loss events in the
species tree, (i) gauging the cumulative effect of duplications and losses on gene repertoires
and (iv) identification of potential mistakes in genome assembly, annotation or orthology
inference (e.g. if losses are concentrated on terminal branches—suggestive of incomplete
genomes; or if the species coverage within a HOG looks implausible —suggestive of orthology
inference error).
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Figure 16: iHam and pyHam visualization tools.

A. An iHam excerpt of the Tetraspanin family at the Haplorhini level: the tree depicts
relationships between species, squares depict genes and HOGs are delineated by vertical bars.
B. pyHam can be used to map gene losses, duplications or new appearances (‘gained’) onto

species trees (here, using the NCBI taxonomy tree).

Users can customize the view in different ways. They can color genes according to protein
length or GC-content. Low-confidence HOGs can be masked. Irrelevant species clades can be
collapsed. iHam is a reusable web widget that can be easily embedded into a website; for
instance, it is used to display HOGs in OMA (http://omabrowser.org; Altenhoff et al., 2018).
Implemented as a JavaScript library using the TnT framework (Pignatelli, 2016), iHam merely
requires as input HOGs in the standard OrthoXML format (Schmitt et al., 2011) and the

underlying species tree in newick or PhyloXML format (supported resources listed in Table 1).

Resource Species tree OrthoXML iHam pyHam
format Support Support

OMAbrowser  PhyloXML and AllHOGs,orone HOGata  YES YES
Newick time

OMA PhyloXML and AllHOGs YES YES

standalone Newick

Ensembl Newick One HOG at atime YES YES

HieranoidDB Newick One HOG at a time YES YES

Table 1: Support for iHam and pyHam by various HOG inference resources

pyHam

pyHam makes it possible to extract useful information from HOGs encoded in standard
OrthoXML format. It is available both as a python library and as a set of command-line scripts.
Input HOGs in OrthoXML format are available from multiple bioinformatics resources, including

OMA, Ensembl and HieranoidDB (Table 1).
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The main features of pyHam are: (i) given a clade of interest, extract all the relevant HOGs, each
of which ideally corresponds to a distinct ancestral gene in the last common ancestor of the
clade; (ii) given a branch on the species tree, report the HOGs that duplicated on the branch,
were lost on the branch, first appeared on that branch or were simply retained; (iii) repeat the
previous point along the entire species tree and plot an overview of the gene evolutionary
dynamics along the tree (Figure 16.B) and (iv) given a set of nested HOGs for a specific gene

family of interest, generate a local iHam web page to visualize its evolutionary history.

Conclusion

pyHam and iHam are two complementary tools providing a solution to ease the in depth
exploration and visualisation of large gene families. The combination of iHam and pyHam enable

users to unlock the full potential of HOGs.

3.2GT™M

The analysis of a gene family requires a meticulous investigation of several key taxonomic
ranges to understand the evolutionary history underlying extant genes. | develop a visualisation
tool to facilitate the analysis of a set of genes called GTM (for ‘Graph-Tree-Multiple sequence
alignment’) that combines 3 types of phylogenetic information: an orthology graph, a multiple
sequence alignment and its related phylogenetic gene tree. | developed GTM as an interactive
javascript tool that combines several existing libraries: MSAViewer was developed by (Yachdav

et al. 2016) and the phylo.io was developed by (Robinson et al. 2016) ). As illustrated in figure

17, GTM allows visualisation of the underlying phylogenetic landscape of the genes of interest
for a given gene family (KNOX2) at a specific taxonomic range (Malvids). Indeed, we can easily
hypothesize about the presence of 3 ancestral genes in this family at the Malvids level (grouped

in colored boxs in figure 17.B and 17.C).
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Figure 17: GTM of the KNOX 2 family at Malvids.

A. Multiple sequence alignment panel, using the MSA viewer from github.com/wilzbach/msa.

B. Phylogenetic genes tree, using the phylo.io javascript library from phylo.io.

C. Orthology graph, extant genes are denoted by circles colored by species while lines denote

orthologous relations. Each colored boxe in B,C represent ancestral genes at Malvids levels.

The presented version of GTM (figure 17) has been developed and will be integrated into the
OMA browser in future releases. Several aspects are still under development, such as improving
the interoperability among the different panels (e.g. selected elements in the graph and
highlighting them in the tree and sequence alignment), facilitating the integration of this tool in

websites or custom analysis, and other user interface refinements.
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Chapter 4: Towards a better understanding of HOG inference mistakes

Despite the substantial improvements achieved in Chapter 2, HOG inference is far from being
perfect. The goal of this chapter is to gain insights into the types of errors the GETHOGs
algorithm makes. For this, we use a two-fold strategy: a benchmark on a simulated dataset and

detailed case studies on real data from the Quest for Orthologs dataset.

Simulation study using ALF

The first part of the strategy aims to assess the potential limits of our new GETHOGs 2.0
algorithm to infer HOGs by using simulated data. Indeed, to be able to identify mistakes and to
characterise the proportion of correct assignments in our HOG inferences, we need to know the
true evolutionary history of the gene families inferred. Previous work has been performed by
Dalguen and Dessimoz (Dalquen et al. 2013) using simulated data by the Artificial Life
Framework (ALF) (Dalguen et al. 2012) to evaluate the advantages and limitations of BBH for
pairwise orthology inference under various evolutionary scenarios. However, that work was
limited to pairwise orthology benchmarking and not oriented towards assessing the quality of
gene family reconstruction. Fortunately, ALF provides the following information when simulating
gene family evolution: the reference species phylogeny, the true gene trees, the perfect
orthologous relations and other resources that can be used as references for benchmarking.

In our strategy to benchmark the performance of GETHOGs on simulated data, we simulated
several genomic setups with various parameters to mimic different evolutionary processes: a
first dataset is simulated only with duplications and losses as evolutionary events for each gene
family, while a second dataset uses the same parameters with an additional probability to have

gene fusion/fission occurring after a duplication event. In order to assess the quality of our
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HOGs reconstruction for each of these different simulated datasets, we ran GETHOGs inputting
either the perfect orthology graph provided by ALF or the orthology inferred by running OMA on
the simulated proteomes. We designed 3 measures to assess the quality of our inferences: the
quality of the input orthology graph (Measure A), the completeness of the reconstructed genes

families (Measure B) and the quality of the HOG clustering (Measure C).

Methods

Genome wide simulation

We used the ALF web interface (Dalquen et al. 2012) to build our two simulated genomic
datasets. They both use the same general parameters except one variant contains gene fusion
and fission. The simulation uses as ancestor an ancestral genome of 1000 genes with minimum
50 amino acids per gene with the following default globin family settings : a gene duplication
rate of 0.001, a gene loss rate of 0.001 and, for the fusion and fission simulation variant, a
fission rate for duplicated genes of 0.1 and a fusion rate for duplicated genes of 0.1. Using
these settings, ALF simulates 36 genomes with the related 1000 genes families. Each genome
is represented by 2 FASTA files with the amino or the nucleic acid sequences of all genes. In
addition, ALF outputs the perfect pairwise orthologous relations and the related true gene trees
and multiple sequence alignment for all gene families. For this benchmark, we used the
proteomes, the reference species trees, the true gene trees and the perfect pairwise orthology.
The first simulation with default parameters was denoted as ‘default dataset’ (composed of 993
gene families), while the second dataset variant with fusion and fission was denoted as
‘fusion-fission dataset’ (composed of 1000 gene families with potential fragmented sequences

in order to simulate poor-quality input data).
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Orthology inferences

In real conditions, the orthology calling is not perfect due to orthology inference method
limitations meaning that they can infer spurious (“false-positive”) relations or miss some true
relations (“false-negative”). In this benchmark, we wanted to both assess the quality of the
orthology inference and of the HOG inferred using these orthology relations. We thus used the
amino acid sequences to infer pairwise orthology using OMA standalone version 2.3.1 Adrian

M. Altenhoff et al.) with default parameters on the two simulated datasets.

Measure A: quality assessment of pairwise orthology

The first measure aims to estimate the amount of spurious and missing orthology relations in the
orthology graph inferred by OMA and later used to reconstruct HOGs. Indeed, GETHOGs uses
the pairwise orthologous relations as core data for its HOG inferences, making its performance
highly dependent on the accuracy of the orthology graph. In our analysis, we have two types of
orthology graph per simulation: the ‘perfect orthology graph’ which is directly provided by ALF
based on the true evolutionary history simulated and the ‘inferred orthology graph’ which is
inferred by using OMA standalone. While the perfect orthology graph contains no spurious or
missing pairwise orthology, the inferred orthology graph may contain spurious orthology
relations or lack some expected orthology due to the imperfect nature of orthology inference
algorithms to deal with edge case scenarios (fast evolving genes, fragmented sequences,
domain shuffling, etc...). In order to estimate the percentage of mistakes in the inferred
orthology graph, the first measure takes as input the perfect orthology graph provided by the
simulated framework and the orthology graph inferred using OMA on the simulated proteomes.
Then, a simple pairwise comparison is performed on the two graph edges to detect the edges
only present in the perfect graph (missing orthology) and the ones only present in the inferred
graph (spurious orthology). This measure indicates the percentage of missing (false negative)

and spurious (false positive) pairwise orthology in the inferred orthology graph.
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Measure B: family-level delineation (Broad HOG delineation)

The second measure estimates the completeness of the reconstructed gene families in terms of
gene membership. During the reconstruction of HOGs, the aggregation of orthologous groups
is subject to errors due to the imperfect nature of the orthology graph as discussed in the
previous section. This may result in split gene families if two orthologous groups are not
assigned to the same HOG due to missing orthologous relations between their member genes
or, on the contrary, in orthologous groups wrongly clustered together due to spurious orthology
relations. The idea here is to look for each gene in a gene family to which HOGs it belongs to.
This will help to estimate in how many HOGs each gene family is split. The lower this number is,
the better the reconstruction have been. We can report a few types of scenarios: () a true gene
family from the simulation that overlaps with one or more inferred HOGs, (i) one HOG spanning
over two or more true gene families, or (i) a combination of () and (i) where several gene
families covered by multiple HOGs due to inference errors.

This measure is calculated using as input the true gene trees from the simulation as reference
and the reconstructed HOGs. The goal is to create clusters of connected HOGs and gene trees
according to their gene membership overlap. This is done by building a graph where nodes are
either gene trees or HOGs and edges represent an overlap of one or more genes between the
two nodes. A simple connected component search retrieves the previously described clusters
of gene trees/HOGs.

The measure outputs the amount of true single gene trees that spanned over one or several
HOGs and inversely the number of true genes trees that are connected through HOGs genes

membership.
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Measure C: Accuracy of implied gene tree (Fine HOG delineation)

While the second measure evaluates the completeness of each gene family in terms of gene
membership, it doesn’t bring any information as to how those genes are structured inside the
HOGs. We introduce a third measure to assess the accuracy of the internal structure of the
HOGs and to ensure that nesting of orthologous groups along with their related duplications are
as correct as possible. The principle is to first select gene trees from the second measure that
can be fully sampled with only one HOG at the root level. Then, the idea is to compute the
Robinson-Foulds (RF) distance between the true gene tree provided by the simulation
framework and the gene tree induced by the HOG clustering; as explained in the introduction
there is a one-to-one correspondence between HOG and gene tree. This will provide an
estimator to evaluate how accurate the clustering is in terms of orthologous group delineation
and duplication placement. Since several duplications may occur in between two speciation
events and GETHOGs can only create one between two taxonomic levels, the consecutive

duplicates between two levels in the true gene trees were collapsed and treated as polytomies.

Results

As described in the genome-wide simulation section above, we simulate 2 datasets of
proteomes: the default dataset where no gene fusion and gene fission events are observed and

the fusion-fission dataset where these events are likely to occur after the gene duplication.

HOGs reconstruction performance using perfect orthology graph

The primary aspect we benchmark in this simulation study is the performance of the GETHOGs
algorithm using perfect orthology graph. To proceed, we calculate the family level delineation

(measure B) and accuracy of the implied gene trees (measure C) on the two datasets to assess
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the completeness and the accuracy of the HOGs reconstructed. We obtained the following

results for the two datasets (illustrated in figure 18):
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Family level delineation (measure B): This shows that 99.4% / 99% (default dataset /
fusion-fission dataset) of the gene families have a one-to-one correspondence between
the true gene tree and HOGs. For the rest, we observed that 0.6% / 0.5% (default
dataset / fusion-fission dataset) correspond to gene trees which are split into two HOGs.
Such cases occurred because these gene families start by a duplication event in the
reference gene tree. These scenarios will necessarily be split into different HOGs
because by definition, the deepest event in a HOG is a speciation event. The remaining
0.5% for the fusion-fission dataset represent many-to-many tree-HOGs connections, i.e

trees that are covered by multiple HOGs due to inference errors.

Accuracy of the implied gene trees (measure C): this measure shows that 100% /
100% (defaults dataset / fusion-fission dataset) of the gene families are perfectly

reconstructed with a RF distance of O between the true gene trees and the HOGs.
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Figure 18: Broad HOG delineation and fine HOG delineation using perfect orthology

graph.

Such results are expected from the theory and in agreement with the results of the original
GETHOGs paper (Altenhoff et al. 2013) showing that perfect input data will produce perfect
HOGs due to the absence of mistakes and uncertainty in the orthology graph. This first segment

of the benchmark shows that our implementation of the GETHOGs algorithm is correct.

GETHOGs performance using inferred orthology graph from simple simulation
context
The second aspect of the benchmark strategy is to assess how well the GETHOGs algorithm

performs when we introduce spurious and missing data in the orthology graph in a simple
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evolutionary setup (only gene duplications and gene losses are simulated). To proceed, we

inferred the orthology on the default dataset using OMA standalone version 2.3.1 and we ran

the triplet of measures A, B and C to assess the number of mistakes in the orthology graph, the

completeness of the HOG reconstruction and the accuracy of the gene families, respectively,

when introducing mistakes in the orthology graph. We obtain the following results for the default

dataset on the 3 measures (illustrated in figure 19):
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Quality of the pairwise orthology (measure A): The benchmark shows that 97.6% of
the expected orthologous relations are correctly inferred with 2.4% of the expected
orthology missing. In addition, the test reports that 6.1% of the inferred pairwise
orthologous relations are considered as spurious.

Family level delineation (measure B): The benchmark shows that 98% of the gene
families have a one-to-one correspondence between true gene tree and HOGs. As
described previously, we see that 1.8% of HOGs correspond to gene trees which are
split in two HOGs due to a duplication at the root level; such cases are impossible to
solve for GETHOGs since paralogous groups can only be created between two existing
taxonomic ranges. The remaining 0.2% represents many-to-many gene tree/HOGs
sampling, i.e. several gene trees that were covered by multiple HOGs due to inference
errors.

Accuracy of the implied gene trees (measure C): the benchmark shows that 68.4%
of the gene families are perfectly reconstructed with an RF distance of O between the
true gene trees and the HOGs, and that the remaining 31.6% of the HOGs have an
observed RF ranging from 2 to 101. Such discordance between the true gene trees and
the reconstructed HOGs is due to mistakes in the orthology graph that are wrongly
orienting the placement of gene duplications and ortholog clustering by GETHOGs (as

illustrated in figure 20).
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Figure 20: Example of discordance between perfect gene tree and reconstructed HOG
with a Robinson-Foulds distance of 4. The tree comparison is performed by phylo.io
(Robinson, Dylus, and Dessimoz 2016) where the true gene tree (A) is compared to the gene
tree predicted by the inferred HOG (B). Correct parts of the tree (without discordance) are
collapsed. The three border colored boxes represent the 3 genes involved in a topological
difference between the two trees (green is gene 7 and gene 186 in species 22, yellow is gene 7
in species 24). In the true gene tree (A), we observe that the orange gene (species 24) and the
green genes (species 22) diverge by a speciation event with a later species-specific duplication.
In the reconstructed HOGs using an imperfect orthology graph, we observed that the green
genes are separate. This can be explained by the fact that a missing orthologous relation
between one copy of the green gene and the yellow force the algorithm to cluster the two

connected genes together and later incorporate the second green gene as paralog.

These benchmarks show that, even if the orthology graph contained few mistakes (less than
5%) due to orthology inference methods, GETHOGs still gives good quality reconstruction with
a completeness of 98% and an accuracy of 68.4% perfect reconstruction, and 31.6% of HOGs
correctly sampled but with clustering errors leading to some discordance between perfect gene

trees and HOGs.

HOGs reconstruction performance using inferred orthology graphs from realistic
simulation contexts
The last aspect of this benchmark strategy is to assess the quality of the GETHOGs inferences
when more mistakes are introduced in the orthology due to complex evolutionary scenarios,

such as gene fusion or fission. As in the previous section, we first inferred the orthology on the

fusion-fission dataset using OMA standalone version 2.3.1 and we ran the triplet of measures A,
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B and C on the reconstructed HOGs in order to assess the amount of mistakes in the orthology

graph, the completeness of the HOG reconstruction and the accuracy of the gene families,

respectively. We obtain the following results for the default dataset for the three tests (illustrated

in figure 21):
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Quality of the pairwise orthology (Measure A): The benchmark shows that 96.9% of
the expected orthologous relations are correctly inferred with 3.1% of the expected
orthology missing. In addition, the test reports that 4.8% of the inferred pairwise
orthologous relations are considered spurious.

Family level delineation (measure B): The benchmark shows that 95.3% of the gene
families have a one-to-one correspondence between true gene trees and HOGs. The
4.7% remaining HOGs correspond to gene trees that require several HOGs for a
complete sampling. The number of required HOGs ranges from 2 to 36. In addition, 4
cases where several gene trees were covered by multiple HOGs are reported.
Accuracy of the implied gene trees (measure C): the benchmark shows that 68%
of the gene families are perfectly reconstructed with an RF distance of O between the
true gene trees and the HOGs, and that the remaining 32% of the HOGs have an
observed RF ranging from 2 to 117. Such discordance between the true gene trees and
the reconstructed HOGs is due to mistakes in the orthology graph that are wrongly
placing the gene duplication and interfering with the orthologous clustering of GETHOGs

(as previously illustrated in figure 20).
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Figure 21: Benchmark of the pairwise accuracy, broad HOG delineation and fine HOG
delineation using OMA inferred orthology graphs on complex simulated evolutionary

scenario.

Conclusion

With the first benchmark we observe that perfect orthology relations result in perfect HOGs
when using GETHOGs, in agreement with previously published results (Altenhoff et al. 2013). A
small proportion of mistakes (< 0.2%) are observed (Figure 18) due to families that start with a
duplication event, which is conceptually not possible to reconstruct based on HOGs definition
and OrthoXML format specifications.

If we introduce a small proportion of mistakes in the pairwise relations due to orthology

inference methods (2.4% of missing relations and 6.1% of spurious relations), we observe that
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98% of the family delineation is correct, with the remaining 2% of trees fully sampled with 2 or 3
HOGs. For the implied gene trees quality, we observe that 68.4% of families are perfectly
reconstructed and that the remaining 31.6% have an RF distance ranging between 2 and 101.

If we use a more realistic evolutionary scenario with gene fusion and gene fission with inferred
orthology relations using OMA (3.1% of missing relations and 4.8% of spurious relations), we
observe that 95.3% of the family delineation is correct with the remaining 4.7% trees fully
sampled with the number of HOGs ranging from 2 to 36. For the implied gene trees quality, we
observe that 68% of families are perfectly reconstructed and that the remaining 32% have an
RF distance ranging between 2 and 117. In comparison with the results in the previous section,
we see that adding more realistic constraints to the simulation strongly affects the family level
delineation. Indeed, without gene fusion/fission, the numbers of HOGs required to cover a single
gene family spans from 1 to 3. Here, with gene fusion/fission, the maximum number required
increased to 36. Even though the proportion of mistakes in the orthology graph is very similar,

these changes greatly affect the reconstruction.

Case studies

To complement the simulation-based analysis, we also performed individual case studies of
gene families, on real data, of HOG reconstructed using GETHOGs 2.0. To proceed, we use the
reference proteomes of the Quest for Orthologs initiative (Adrian M. Altenhoff et al. 2016), along
with their related phylogeny (both version of August 2018) as input dataset. We infer pairwise
orthology and HOGs using OMA standalone version 2.3.0 with default parameters. We process
and explore the HOGs using pyHam, visualise HOG structure using iHam and produce
visualization graphs for each family at different levels (orthology graph, gene tree and multiple
sequences alignment) using GTM (see chapter 3). The multiple sequence alignment is
performed using MAFFT version 7.221 with default parameters and the tree building is

performed using Fasttree version 2.1.1 using the default parameters.
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Example HOG #1: YIPF protein and fragmented genes

Description of reference gene family evolutionary history

As illustrated in Figure 22, the YIPF gene family is ubiquitous in the whole Eukaryotic clade but
for the sake of this case study, we will focus our investigation on the Eumetazoa clade. We can
infer from the gene tree topology that a single duplication occurred in this clade at the level of

Euteleostomi (sub mammalian group) resulting in 2 gene copies for all the Euteleostomi species.
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Figure 22: Gene tree of the YIPF protein family.

Characterisation of the HOG reconstruction errors

Nevertheless, the reconstructed HOG observed in figure 23 is not in agreement with the
evolutionary history described previously and supported by the gene tree topology (Figure 22).
We see in panels A and B of figure 23 that the gene family remains single copy until the level of
Euteleostomi where a duplication occurred leading to two gene copies per species, in

agreement with the tree topology. If we now consider panels C and D of figure 23, we can see
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that a duplication has been inferred between the Protostomia and Ecdysozoa level, implying the
existence of two HOGs, albeit with a suspicious complementary pattern. The complementarity
here refers to the non overlapping species coverage inside each orthologous group between the
single tribolium castaneum gene HOG and the other HOG in which only the tribolium castaneum
gene is not represented. The consequence of this duplication placement is that it creates a
spurious duplication along with two paralogous groups where there should be only one HOG
and, importantly, a large number of independent genes losses are wrongly implied. Using the
iHam visualisation, we can see that 4 independent gene losses are required inside the
Ecdysozoa clade to explain such clustering. In addition to the fact that this clustering is not in
agreement with the supported gene tree topology shown in Figure 22, this evolutionary scenario
is not likely to happen due to the large number of independent gene loss events following the
spurious duplication. The most likely scenario would be that these two ‘complementary’
Ecdysozoa HOGs should be combined, firstly removing the wrong duplication at this level, as

well as all the spurious genes losses.
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Figure 23: iHam visualisation of the HOG clustering of the YIPF protein family. A,B,C,D
panels focus the visualisation on the Eumetazoa, Euteleostomi, Protostomia and Ecdysozoa
clade respectively. The semi transparent colored rectangles denote the same genes colored in
figure 22.

Investigation of the orthology graph

In order to understand what happened in such a case, we need to investigate the
reconstruction itself by first establishing if errors arise at the level of pairwise orthology inference

or later, during the HOG reconstruction. To proceed, we plot the related orthology graph at the
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level of the conflict, i.e. that of Protostomia. It is important here to mention that the orthology
graph shown is produced by looking at the pairwise orthology inferred by OMA later used as
input by GETHOGs, and not constructed by the pairwise orthology induced by the HOG
clustering. This is an important point to clarify here because differences may be observed
between the input pairwise orthology inferred by OMA here and the pairwise orthology implied
by the HOG clustering. Indeed, whenever the GETHOGs algorithm clusters or splits groups of
genes due to incomplete orthology (this is where the merge threshold of GETHOGs has an
impact) an orthology discruptcy is created.

As shown in figure 23, the conflicting tribolium castaneum gene highlighted in red is not
connected through orthology to any other gene at the level of Ecdysozoa (the whole graph
except for the Helobdella robusta (HELRO) gene). At the upper level of Protostomia, we see that
the Tribolium castaneum gene is now connected to its counterpart Protostomia. The orthology
graph inferred using OMA is clearly in disagreement with the supported gene tree topology.
Based on this orthology graph, we can understand where the reconstruction is making a
mistake by splitting the supposedly single orthologous group at Ecdysozoa level into two

paralogous groups due to the lack of intra-HOG pairwise orthology.

If we now look at the multiple sequence alignment in Figure 24.A, we can see that the Tribolium
castaneum gene is fragmented. Nearly 40 percent of the aligned sequence is composed of
gaps. This is affecting the orthology calling and results in a lack of orthologous relations with its
closely related sibling Ecdysozoa genes, but when including more distant genes such as the
Protostomia genes, the orthology is finally recovered and the orthology clustering can continue

without problems.
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Figure 24: Orthology graph and multiple sequence alignment of the YIPF protein family
at Protostomia level.

A. Multiple sequence alignment of ecdysozoan proteins. Gap1 and Gap2 denotes the gap
regions specific to the Tribolium castaneum gene. B. Orthology graph at Protostomia with
conflicting Tribolium castaneum gene circled in red.

Conclusion

To summarise, the single Tribolium castaneum gene is fragmented and the orthology calling
failed with the nearest Ecdysozoa genes. Later during the reconstruction the orthology is made
with more distance genes. The lack of orthology results in the clustering algorithm making the
wrong decision to separate the single gene from the orthologous group it belongs to. Once the
orthology is established again with more distant genes, the single Tribolium castaneum gene is

wrongly split from its related orthologs.
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Example HOG #2: forkhead box protein with accelerated rate of evolution

Description of reference gene family evolutionary history

The gene tree reconstructed from the forkhead protein sequences at the level of Tetrapoda
shows that no duplication occurred during this evolutionary time frame for these 10 species.

This tree topology supports a single gene per species for the whole clade.
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Figure 25: Gene tree of the forkhead protein family.

Characterisation of the HOG reconstruction error

However, the reconstructed HOG pictured in figure 26 is not in agreement with the evolutionary
scenario shown in figure 25. We see in panels A and B of figure 26 that a duplication is inferred
between the Amniota and Theria level, implying two HOGs with a suspicious complementary
pattern with the single dog gene (CANLF - canis lupus familiari). This spurious duplication

creates two paralogous groups where there should be only one HOG, as well as a substantial
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number of spurious independent gene losses. We can count using the iHam visualisation that 4
independent gene losses are required within the Theria clade to explain such clustering. The
most likely scenario here is that these two ‘complementary’ Therian HOGs should be combined,

removing the wrong duplication event with all the induced spurious genes losses.
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Figure 26: iHam visualisation of the HOG clustering of the forkhead protein family
along with orthology graph. A,B,C panels focus the visualisation on the Tetrapoda, Theria
and Laurasiatheria clades respectively. D. Orthology graph inferred using OMA on the reference
proteome of QfO 2018. The red circles in B and D highlight the conflicting gene.

Investigation of the orthology graph

To understand why GETHOGs is wrongly clustering this simple gene family, we will look at the
input orthology graph used as orthology reference. We can see in the orthology graph shown in
Figure 26.D a “hairball” of genes all connected to each other, in agreement with the single gene
per species topology supported by the gene tree in figure 25, showing a single dog gene

(circled in red) which is only connected to the chicken gene. This lack of orthology between the
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dog gene and the rest of the family forces the algorithm to separate them during the Theria
HOG reconstruction. Then, when orthology is finally established (here with the frog gene) they
are reunited inside a paralogous group and the upper reconstruction is not affected. The
problem for this case is the lack of orthology. By looking at the gene tree topology in figure 25,
we see that the conflicting dog gene evolved considerably faster than the rest of the family. This
acceleration in the rate of evolution makes the pairwise orthology calling fail except for the

chicken, resulting in missing pairwise orthology.

Conclusion

To conclude, the isolated dog gene has evolved much more quickly than its sibling genes,
resulting in the failure to call the correct orthology. Later, the orthology is made with more
distant species. The lack of orthology makes the clustering algorithm take the wrong decision to
cluster the single gene on its own. Once the orthology is established, the single gene is
clustered in the group it should belong to as paralogous and the rest of the clustering is not

affected.

Example HOG #3: gene PLAGL2 family and misplaced gene duplication

Description of reference gene family evolutionary history

The gene tree of the PLAGL2 gene family shown in figure 27 is covered by the whole
Euteleostomi clade with a Homininae specific duplication. We see that Non-Hominidae species
are represented by a single gene copy where two genes can be found in the Hominidae clade
(except for the human gene where a gene loss seems to have occurred). We can see in the
Euarchontoglires clade that the genes evolved slowly and that the branch lengths are too short
to clearly distinguish the underlying topology. Figure 27.B presents the subgene tree of
Euarchontoglires genes with fixed branch lengths in order to simplify the visualisation and focus

only on the topology.
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Figure 27: Gene tree of the PLAGL2 protein family.

Characterisation of the HOG reconstruction error

If we consider now the gene family reconstructed by GETHOGs in figure 28, we observe a
disagreement with the evolutionary history supported by the gene tree topology (Figure 27). We
see from panels D and C of figure 28 that a duplication occurs between the Amniota and Theria
levels. One of the paralogous groups is fully formed and covers the whole clade, while the other
is only composed of the chimpanzee and gorilla genes. This clustering contains a spurious
duplication, as well as a few spurious gene losses, which are wrongly inferred. This evolutionary

scenario is not likely to happen due to the high number of independent gene losses following
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the spurious duplication. The most likely scenario would be to shift the duplication from the

Theria to the Homininae.
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Figure 28: iHam visualisation of the HOG clustering of the PLAGL2 protein family.
A,B,C,D panels focus the visualisation on the Homininae, Euarchontoglires, Theria and Amniota
clade respectively.

Investigation of the orthology graph

Let us consider the orthology graph plot in figure 29.B to understand why the algorithm failed to
reconstruct the correct gene family clustering. We see that the right Homininae gene cluster in
the orthology graph (Figure 29.B right blue rectangle ) is fully connected to the rest of the therian
genes, while the left Hominiae gene cluster (Figure 29.B left blue rectangle) is not connected to

it; we spot a single edge between the two clusters which is not significant compared to the 10
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expected edges in a correct orthology scenario. This explains why this group of Homininae
genes are isolated all the way up to their level.

If we look higher up in the tree and integrate the paraphyletic non-Amniota Euteleostomi genes
(figure 29.B purple rectangle), we observe that the cluster is connected to all the rest of the
graph. This explains why the duplication is positioned in the branch leading to Theria: the
connection is finally made with the conflicting Homininae cluster and integrated into the HOG.
Nevertheless, the only way to incorporate it is to create the spurious duplication described in
detail previously.

As already pictured in case study #2, the conflicting genes are affected by an acceleration of
their rate of evolution after the Homininae duplication, resulting in a failure in the pairwise

orthology calling.
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Figure 29: Orthology graph of the PLAGL2 protein family level and reference species
tree.

A. Reference species tree of the QfO 2018 proteome at Euteleostomi. B. Orthology graph at
Euteleostomi. The paraphyletic clades are highlighted and are circled genes are colored to show
the correspondence.

Conclusion

To conclude, one of the two Homininae paralogous groups evolved faster than its sibling

paralogs, resulting in a lack of pairwise orthology with a part of the rest of the family. Later the
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orthology is established with more distantly-related genes. The lack of orthology makes the
clustering algorithm decide erroneously to segregate one of the paralogous Homininae groups

for several taxons and wrongly places the Hominiae duplication at the Theria level.

Discussion/conclusions on the case studies

From these case studies, we observe that several recurring abnormal patterns can be observed
in HOGs clustering due to errors in the orthology calling. Indeed, poor-quality genomes or
complex evolutionary scenarios, such as fast evolving genes, impact the orthology inferences. In
our investigation of abnormal HOG reconstruction, we catalog many cases of fragmented genes
(poor genome assembly, sequencing errors, gene annotation errors) and fast evolving genes,
where lack of orthology makes the reconstruction harder. In this chapter, we combine several
visualisation tools (Ham, GTM, phylo.io) to carefully inspect each case from several different
angles to first estimate what is the ground truth regarding the true gene family evolutionary
history, and then to diagnose why the reconstruction by GETHOGs is failing. Such cases are
easy to spot by using the adapted visualisation tools but require additional work on the
algorithm to be overcome. Indeed the greedy nature of the algorithm cannot resolve such cases
because ‘locally’ the decision leading to spurious clustering is the most optimal one.

To prevent such cases, we need to integrate more information than just the level-related
orthology between clusters. The idea would be to make decisions on HOG delineation at each
internal node of the species tree based on pairwise orthology as is currently the case, but also
to integrate information about the internal structure of the subHOGs: (i) before creating a
duplication that may lead to numerous gene loss events, maybe considering placing the
duplication at a lower level will increase the likelihood of the family history, (i) if two
complementary HOGs (based on species coverage) are clustered as paralogous groups, maybe

merging them into one single HOG is the most likely evolutionary scenario.
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Discussion and implications

In this chapter, we observed that the quality of the reconstructed HOGs depends on the quality
of the input orthology graph. In the first part, we see that, as the complexity of the simulated
evolutionary scenario increases, the quality of pairwise orthology inferences decreases, and so
does the HOGs quality. In the second part, the case studies show that abnormal HOG
clustering on real data are caused by missing orthology in the orthology inferences due to
genomes of poor quality or complex evolutionary scenarios. We see that the current greedy
nature of the algorithm which takes decisions at each internal node by simply looking at the
percentage of existing pairwise orthology between gene clusters cannot solve such cases. In
order to solve such cases we also need to consider the general HOG structure and implied
evolutionary scenario, in terms of gene losses and duplications, in the decision process. Indeed,
we see in our case studies that the problems are mainly caused by ‘local’ abnormalities in the
orthology graph which are then diluted when including more distantly related genes. The idea
would be to rely on this distant information when it is integrated in the reconstruction process to

go back to conflicting parts and solve then with a more comprehensive view of the problem.
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Chapter 5: Heuristics to overcome split HOGs (and the limits of the generalised

species discordance test)

In the previous chapter, we illustrated the limitations of the GETHOGs algorithm performance
with a catalog of case studies for different types of reconstruction errors. The algorithm faces
difficulties to correctly infer HOGs when input orthology data is incomplete. These pairwise
orthologous relations missed by the orthology inference methods are due mainly to either
seqguence-centric errors (sequencing, assembling errors) or the evolutionary complexity of the
gene families (fast evolving genes). These missing orthologous relations result in a ‘split-hog’
pattern, where parts of the gene family are wrongly inferred as paralogous due to the lack of
orthology. Nevertheless, the current algorithm cannot resolve such cases because its greedy
nature only considers a local optimisation at each level, restraining the information scope to the
related level-wise information (amount of pairwise orthology between two sets of genes).
Indeed, the algorithm may infer wrong paralogous groups in some part of the family where
pairwise orthology is missing, as shown in chapter 4, but when more distant species are
introduced the orthology calling is performed correctly and the algorithm continues the

clustering normally.

In order to overcome these problems, the idea would be to target such clustering patterns in a
first step, and then to apply a post fix strategy to find a better solution. We observe two types of
abnormal clustering: the ‘complementary’ pattern, where there is no species overlap between
paralogous groups, and the ‘unmerge’ pattern when a HOG is not merged for several
consecutive levels, after which it is finally merged, implying a much deeper duplication than in

reality. In this chapter we present and test two variants of the GETHOGs algorithm to solve
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these two types of conflicting HOGs. The main idea behind the two refinements is that resolving
the conflicting clustering is impossible at the levels where missing orthology are reported, but
when integrating more information at higher levels, a solution can be found to restructure the

erroneous HOG clustering.

In order to evaluate the performance of the two different GETHOGSs variants, we used a set of

custom tests and the orthology benchmark service.

Methods

Heuristic #1: Complementarity

The first GETHOGs variant aims to resolve HOGs with an abnormal clustering pattern denoted
as complementary and shown in chapter 4 with case studies 1 and 2. In this section, we will
first characterise what is the complementary pattern and then propose an algorithmic solution to

resolve such HOG clustering.

Characterisation of complementary HOGs

In order to better understand what is the complementary hogs pattern, let us consider the iHam
visualisation for the YIPF gene family of figure 23.D. Graphically, we can see that each species
(row in the matrix) is only represented in one and only one paralogous group (column). It means
that the two paralogous groups have a species coverage that are not overlapping. In other
words, the intersection of species sets represented in each paralogous group is empty. Such
cases may not be the most likely to happen phylogenetically, because it implies a lot of
independent gene losses and a spurious duplication, which can be evolutionarily less likely. The
most probable scenario in these cases is to have only one orthologous group composed with

genes from the two complementary hogs.
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Detection and resolution of complementary HOGs

The refinement of the GETHOGs algorithm is composed of two steps: identifying clusters of

complementary paralogous HOGs in connected component formation (see Chapter 2 for

connected components description) and resolving these clusters by finding the optimal new

combination of complementary paralogs.
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Identification of complementary paralogous groups: The goal of this step is to
identify paralogous groups with complementary patterns during the HOGs
reconstruction. As presented in Chapter 2, GETHOGs extracts connected components
at each taxonomic range from the related sub-orthology graph. Then, it clusters together
the paralogous groups (all members that belong to the same lower level genome will be
part of a same paralogous groups and will initiate from the same duplication event) and
combines all connected components into a single HOG. The search of complementary
HOGs (and their potential resolution) is performed on connected components before the
paralogy clustering is performed in order to fix potential spurious paralogous groups
(figure 30.D). The complementary criterion is attributed to all pairs of paralogous groups
within a connected component, where no overlap in terms of species coverage is
observed. It results in clusters of paralogous groups connected by their complementary
relations. Nevertheless, complementarity is not transitive inside these clusters and many
scenarios of paralogous ‘combination” may be possible. In order to have the optimal
scenario(s), each possible scenario is considered and scored according to its

phylogenetic likeliness.

Resolving each paralogous cluster: The second step takes each cluster of

paralogous groups, connected through their complementary relations, and generates for



each one all possible scenarios of paralogous combinations. To proceed, GETHOGs wiill
generate all possible combinations by computing all partitions of paralogs in the cluster
(Figure 30.E). The following partitioning criteria are mandatory: a partition can contain
one or more paralogous groups, a paralogous group can stay alone in a partition or can
be added to a partition if, and only if, it is complementary to all the other partition
members. Once the partitioning is carried out, each of the partitions is scored according
to a scoring function. The scoring function aims to capture the most likely phylogenetic
scenario, where the number of gene duplications and gene losses are minimized. For
each partition, a score is attributed based on the number of gene losses and
duplications induced by the new combination of paralogs. Finally, we select the best
combination of paralogs out of all the potential scenarios. To proceed, we have two
variants for the scenario selection method for this heuristic #1:

o The ‘safe’ variants will be limited to select a scenario without introducing any
stochasticity. This means that only the partitions that contain one, and only one,
scenario with the lowest score are going to be selected. Indeed, when only one
best scenario is present the algorithm will always produce the same result out of
two runs and hence not be considered as stochastic.

o The ‘ambitious’ variant aims to resolve more complementary cases by including
during its scenario selection method the partition with co-optimal scenarios. The

choice between the co-optimal scenarios is made randomly.

This refinement aims to resolve only the case of total complementarity between paralogous
groups. The only possible operation is the combination of two HOGs where no species overlap
is observed. A whole set of paralogous groups can be converted into a single HOG composed
of all the paralogs, thereby removing the duplication that initiated them. Furthermore, no

additional duplication is introduced in this process.
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Figure 30: Workflow of the complementary refinement on a toy example.

A. iHam visualisation of the example HOG at root level.

B. iHam visualisation opened at level of interest with complementary paralogs.

C. iHam visualisation opened at same level as in (B) with resolved complementary HOGs.

D. Identification of the complementary paralogs.

E. All possible complementary partitions with their associated number of gene duplications and
losses. The highlighted partition is the optimal combination scenario.

Heuristic #2: Unmerged

The second GETHOGs variant aims to resolve HOGs with an abnormal clustering pattern
denoted as unmerged as illustrated in Chapter 4 with the case study #3. In this section, we will
first characterise what are the ‘unmerged’ HOGs and then propose an algorithmic solution to

resolve this type of HOG clustering problem.

Characterisation of unmerged HOGs

The second GETHOGs variant aims to resolve HOGs, denoted as ‘unmerged’ HOGs, that are
not merged for several consecutive levels due to a lack of orthology relation with any other

HOGs until one orthologous counterpart HOG is found and they re-enter in the HOG merging
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process. Two types of scenarios are then possible: () the ‘unmerged’ HOG is clustered with
another HOG but does not end up in a paralogous group or (i) it goes into a paralogous group.
In case (i), the evolutionary history implied by the HOG clustering can be explained by several
consecutive independent gene losses for each unmerged level. In case (i), the evolutionary
history implied by the HOG clustering is a scenario that is less likely than case (). The
evolutionary history of (i) would be explained by a gene duplication with one of its paralogous
groups followed by several consecutive independent gene losses for each of its unmerged
levels. The case study #3 on PLAGL2 gene family (Chapter 4) shows a typical case (i) example,
where a duplication is placed too high in the gene tree compared to where it should be due to
missing orthology in a lower level, leading to spurious genes losses in one of its paralogous

group and a misplaced duplications event.

Detect and resolve unmerged HOGs

The refinement of the GETHOGs algorithm is composed of two steps: identifying unmerged
HOGs in paralogous clusters inside connected components (see Chapter 2) and resolving these
conflicting paralogous clusters by finding the optimal scenario where the number of spurious

gene duplications and gene losses are minimized.

1. ldentification of unmerged paralogous groups: The goal of this step is to identify, in
a paralogous group, the HOGs that have not been merged for one or several levels. To
proceed, the algorithm keeps track of the number of consecutive levels where a HOG
fails to be merged with an orthologous counterpart HOG (Figure 31.A). This will inform
us that maybe the duplication occurred in lower levels, but a lack of orthology failed to
correctly cluster them. For a single paralogous group, several HOGs can be marked as

unmerged. The rest of the algorithm now needs to decide how to resolve these cases.
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Resolving each paralogous cluster with unmerge HOGs: The second step takes
each paralogous group with unmerged HOGs and tries to find an optimal scenario
where a maximum number of gene losses (unmerged levels) are removed and where
duplications are the most correctly located (Figure 31). The idea here is to restructure
unmerged HOGs by removing all spurious, unmerged levels and drag down the
duplication to the level where the unmerge process initiates. All unmerged HOGs can be
potentially inserted in a HOG fully composed by reducing the number of paralogous
members of the paralogous groups. To some extent, the paralogous group itself can be
removed if only one HOG without the unmerged pattern is observed and all the other
unmerged HOGs are incorporated into it. To proceed, the algorithm will generate all
possible partitions of the paralogous group members where the following condition is
mandatory: one partition may contain one and only one normal HOG without a limit to
the number of unmerged HOGs. Since each partition will correspond to a single paralog
in the final paralogous group, we cannot put two normal HOGs together. For each
partitioning scenario, the number of implied gene losses and gene duplications is
calculated. In order to select the best scenario, we apply the strategy described in the
next paragraph. Similarly to the heuristic variant #1, we have two strategies here:

o The “safe” selection that only works if one, and only one, scenario is the best

scenario score-wise.
o The “ambitious” scenario that selects one scenario out of all the co-optimal
scenarios.

Once a scenario is selected, the algorithm proceeds with the restructuring according to
the partitioning scenario by combining each HOG of a partition into a single HOG. The
HOG combination is made by first pruning all the unmerged levels in each unmerged
HOG. Then, these pruned HOGs are incorporated at the corresponding level into the

unmerged HOG.
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Figure 31: Workflow of the unmerged refinement on a toy example.

A. iHam visualisation of the example HOG opened at several levels.

B. Identification of the unmerged HOG in the paralogous group (here with two consecutive
levels)

C. Trimming of the conflicting unmerged HOG to remove all unmerge levels

D. Shifting of the duplication at the starting level of unmerged process.

E. iHam visualisation of the HOG example once resolve by the unmerged refinements.

This refinement aims to resolve cases where a paralogous group member has not been merged
after the related duplication event for at least one level. In such cases, the algorithm will try to
remove as much as possible the unmerged level in this unmerged HOG and plug it into another

HOG at a level that minimises the total number of gene duplication and gene losses.

Creating/moving duplications is tolerated in this refinement.
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Benchmarking using Quest for Orthologs 2018 dataset and generalised species discordance

test

In order to investigate the impact of the two heuristic refinements of the GETHOGs algorithm on
the HOG inferences we used the Quest for Orthologs Proteomes of 2018 as reference datasets
to perform our quality control analysis. This dataset is composed of 78 complete proteomes
from species gathered from various public databases (UniProtkKB, Ensembl and Ensembl
Genomes). The proteomes dataset is provided with its associated, manually curated reference
species tree. The pairwise orthology inference was performed by OMA Standalone version
2.3.1. The inferred pairwise orthologs and the references species tree were provided as input to
GETHOGS to perform three types of inferences, depending on the algorithm version: (i) the
“default HOG inferences” produced using the normal GETHOGs algorithm, (i) the
“complementary HOG inferences” produced by using the GETHOGs algorithm with the
complementary fix variant (Heuristic #1), (iii) the “unmerged HOG inferences” produced by using

the GETHOGs algorithm with the unmerged fix variant (Heuristic #2).

We benchmark the performance of the two refinements with a two-fold strategy on real data: (i)
first we investigate how the conflicting cases in the default inferences are treated in each of the
two heuristic variants, and then (ii) we use the orthology benchmark service to assess the quality

of our two refinements, as described in Chapter 2.

In order to investigate how the problematic cases are dealt with, we apply the following strategy
for each heuristic refinement to estimate the fraction of resolved cases and characterise
unsolved HOGs. First, we fetch all conflicting HOGs in the default HOGs dataset. Depending on
the heuristic method benchmarked, the selection criterion is not the same. For the

complementary refinement, the HOGs of interest have at least one duplication with two
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complementary paralogous members inside. For the unmerged refinements, the HOGs of
interest have at least one paralogous group not merged in the level above its duplication.
Second, we estimate the total fraction of spurious HOGs for both refinements, and then
estimate the fraction of the affected HOGs that are resolved by the refinement. We show a list of
refined HOGs to illustrate the different kinds of resolution obtained by the algorithm variant.
Third, we catalog the different major types of unresolved HOGs and explain why we can not

deal with them.

The second part of the strategy is to use the orthology benchmark service proposed by the
Quest for Orthologs Consortium to benchmark the quality of the refinements, taking into
account different aspects. As in Chapter 2, we focus on the generalised discordance species
tree to estimate the recall and precision of orthology clustering through the related inferred

pairwise orthology.

Results

Heuristic #1: Complementarity

For this algorithmic variant, we count 3747 HOGs [6.16%)] that have triggered the
complementary criterion out of the 60870 HOGs in the default dataset. However, these 6% of
complementary HOGs encompass 31.6% of the total number of inputted proteins of the
proteomes dataset. If we now consider the HOGs inferred using the heuristic variant #1 to
resolve complementarity, we observe only 1162 HOGs [1.9%] containing 18.95% of the total
number of proteins for the ‘safe’ variant and 304 additional HOGs [0.5%] containing an
additional 11.45% of the total number of proteins for the ‘ambitious’ variant. The percentage of
proteins contained in HOGs affected by one or several complementary patterns only reflects the

size of the whole families, and not the precise number of proteins inside these genes families
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that are actually involved in abnormal clustering. The safe variant resolved 2585 complementary
HOGs where one, and only one, optimal solution was present. In addition to these 2585
resolved cases, the ambitious variant resolved a further 858 complementary HOGs where more

than one optimal solution is observed.

For the safe variant, we obtain a large reduction in the number of complementary HOGs, from
6% of the total number of HOGs to only <2% remaining. The proportion of proteins contained in
these HOGs also drops from 32% to 19% of the total proteins in the dataset. We present in
figure 32 a few cases, which show the same complementary pattern as presented in the cases
studies of Chapter 4, and which are correctly resolved. These 3 cases are representing the
panel of different HOGs present in the 2585 resolved complementary HOGs by the safe variant.
The heuristic #1 safe variant shows improvement regarding complementary cases and provides

a clear solution.
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Figure 32: Complementary HOGs resolved by the GETHOGs algorithm using the
heuristic ‘complementary’ variant in safe mode. For each case (A,B,C), the inferences
using the default GETHOGs variant (left) and the corresponding inferences using the heuristic
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variant (right) are shown.

For the ambitious variant, the number of complementary HOGs is further reduced from 2% of
the total number of HOGs in the safe variant to only 0.5%. The number of proteins contained in
these HOGs also drop from 19% to 11.5% of the total proteins in the dataset. We present in
figure 33 a few cases that are treated by the ambitious variant. These 3 cases are a selection
representing the panel of different HOGs present in the 858 resolved complementary HOGs by
the ambitious variant. We observed that the changes made during the clustering by the heuristic

#1 ambitious variant are globally improving the quality of HOGs by reducing the number of
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misplaced duplications and spurious gene losses. Nevertheless, we observed that around 900
HOGs have a co-optimal solution meaning that we are inferring at minima 450 HOGs with a
wrong restructuring. Indeed, in case there are 2 co-optimal scenarios we randomly pick one
meaning that half of our changes will be spurious. Since there could have more than 2
co-optimal scenario, this number of 450 HOGs may be even bigger. This can be explained by
the stochastic nature of the tie-breaking approach (see Methods). Still, we did not expect such
large variation, and consider that the approach fails to meet the ‘robustness’ requirements we
have established for GETHOGs. The stochasticity observed does not encourage us to use the

ambitious variant to improves the HOGs clustering.
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Figure 33: Complementary HOGs restructured by the GETHOGs algorithm using the
heuristic ‘complementary’ variant in ambitious mode. For each case (A,B,C), the
inferences using the default GETHOGs variant (left) and the corresponding inference using this
heuristic variant (right) are shown. The restructuring is performed by changing randomly one of
the co-optimal scenarios which is not guaranteed to be the most phylogenetically correct one.

Finally, we observed that around 300 HOGs representing roughly 0.5% of the HOGs are not
treated by the safe nor the ambitious variant. This is due to the intrinsic limitation of the heuristic

#1 variant. In order to conserve good scalability, the partitioning is limited to paralogous groups
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with fewer than 10 members. Indeed, the partitioning time grows exponentially with the size of
paralogous groups. Furthermore, a few families are too complex to be resolved by the current

implementation of the algorithmic variant and fall into edge cases that are not possible to solve.

Heuristic #2: Unmerged

For the unmerged algorithmic variant, we count 12,578 HOGs [20.66%)] that have triggered the
unmerged criterion out of the 60,870 HOGs in the default dataset. These 20.66% of unmerged
HOGs represent 61.44% of the total number of proteins of the proteomes dataset. If now we
look at the HOGs inferred using the heuristic variant #1 to resolve unmerged cases, we now
count for the ‘safe’ strategy 1859 HOGs [3.05%] containing 17.6% of the total number of
proteins and for the ‘ambitious’ strategy 813 additional HOGs [1.34%)] containing an additional
11.55% of the total number of proteins. Recall that the percentage of proteins contained in
HOGs shown to be affected by one or several unmerged sub-HOG only reflect the size of the
whole families and not the precise subset of proteins inside these gene families that are involved
in abnormal clustering. We count that the safe variant resolved 10,719 unmerged cases where
one, and only one, optimal solution was present. In addition, the ambitious variant resolved a

further 1046 unmerged HOGs where more than one optimal solution is observed.

For the safe variant, we obtain a consequent reduction in the number of unmerged HOGs from
20% of the total number of HOGs to only 6%. The number of proteins contained in these HOGs
also drops from 61% to 18% of the total proteins in the dataset. We present in figure 34 a few
cases that are correctly resolved, similar to the case studies of Chapter 4 that introduce the
unmerged HOG problem. These 3 cases are an excerpt representing the panel of different
HOGs present in the 10,719 resolved complementary HOGs obtained with the safe variant. The

heuristic #2 safe variant shows improvement regarding unmerged cases with clear solutions.
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Figure 34: Unmerged HOGs resolved by the GETHOGs algorithm using the heuristic
unmerged variant in safe mode. For each case (A,B,C), the inferences using the default
GETHOGs variant (left) and the corresponding inference using the heuristic variant (right) are

shown.

For the ambitious variant, we obtain an additional reduction of the number of unmerged HOGs
from 3% of the total number of HOGs in the safe variant to only 1.34%. The number of proteins
contained in these HOGs also drops from 18% to 11.5% of the total proteins in the dataset. We
present in figure 35 a few cases that are treated by the ambitious variant. These 3 cases are an
excerpt representing the panel of different HOGs present in the 1046 resolved unmerged HOGs

by the ambitious variant. We observed that the changes made during the clustering by the
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heuristic #2 ambitious variant globally improve the quality of HOGs by reducing the number of
misplaced duplications and spurious gene losses. Nevertheless, running twice the algorithm
does not guarantee to observed twice the same HOG reclustering. Indeed, like the heuristic
variant #1 since only one co-optimal solution is chosen among multiple possible solutions we
introduce stochasticity to the HOGs resolution. With only pairwise orthology as the clustering
signal, which in these unmerged cases is incomplete, we cannot decide in all these co-optimal
scenarios which is the correct one. Again, these results are thus not in agreement with our
‘robust’ quality policy. Even though the result seems better in general, the stochasticity

observed does not encourage us to use the ambitious variant to improve the HOGs clustering.
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Figure 35: Unmerged HOGs resolved by the GETHOGs algorithm using the heuristic
‘Unmerged’ variant in ambitious mode. For each case (A,B,C), the inferences using the
default GETHOGs variant (left) and the corresponding inference using this heuristic variant (right)
are shown. The restructuring is performed by changing randomly one of the co-optimal

scenarios which is not guaranteed to be the most phylogenetically correct one.

Finally, we observed that 813 HOGs representing roughly 1.33% of the HOGs are not treated by

the safe nor the ambitious variant. This is due to the intrinsic limitation of the heuristic #2 variant.

In order to conserve good scalability, the partitioning is limited to paralogous groups with fewer
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than 10 members (as in heuristic #1). Indeed, the partitioning time grows exponentially with the
size of paralogous groups. In addition, a few families are either too big or too complex to be
resolved by the current implementation of the algorithmic variant and fall into unresolvable edge

cases.

Orthology benchmark service

In order to assess the impact of our refinements on the orthology clustering, we use the
orthology benchmark service, as in Chapter 2, to evaluate the quality of the pairwise orthology
induced by the HOGs. Using the orthology benchmark web service, we upload the HOGs
inferred using () the default GETHOGs, (i) the GETHOGs variant with complementarity
refinement in safe mode, (iii) the GETHOGs variant with complementarity refinement in ambitious
mode, (iv) the GETHOGs variant with unmerged refinement in safe mode and (v) the GETHOGs
variant with unmerged refinement in ambitious mode. We mainly focus, as discussed in Chapter
2, on the generalised species tree discordance test to evaluate the recall and the precision of
our uploaded pairwise orthology and, by reflection, our orthology clustering. Results are

summarised in figure 36.

If we first look at the difference observed for each variant between its safe mode and its
ambitious mode, we can see that no difference is observed in the recall while the precision of
the inference may differ. Indeed, the fraction of complete trees sampled is similar between safe
and ambitious variant for both heuristic refinements, whereas the average Robinson Foulds

distance is decreased in the safe mode variant.

If we now look at the difference between the two heuristic variants without considering the

safe/ambitious effects, we see that the two refinements increase the number of complete trees
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sampled (recall) but lower the quality of the reconstructed gene trees (precision). Scrutinizing the
results carefully, we see that this trend is proportional to the impact of the refinements on
orthology clustering. Indeed, the larger the refinement effect, the greater this trend will be. The
unmerge process has more impact on orthology clustering—the refinement affected 20% of the
total HOGs which represent 50% of the whole protein dataset compared to 12% of HOGs
representing 30% for the complementary variant. The unmerge process has the biggest recall

but seemingly the worse precision among the three GETHOGS inferences.

This can be explained by the following properties of the refinements and a shortcoming of the
generalized species tree discordance test which | identified in the course of this work. To
recapitulate, the generalized species tree discordance test samples gene families by randomly
selecting a gene and then looking for its ortholog in the sister branch. A valid gene family sample
should have all the species represented. The recall reflects how many full gene families are
sampled, i.e. how many families are complete and well formed. The second part reconstructs
from these sampled genes related gene trees and calculates the Robinson Foulds distance with
the reference QfO species tree. Since orthologs arise from speciation, the topology of the
reconstructed gene tree should be in agreement with the species tree. The precision is
calculated on the average error between reconstructed gene trees and reference phylogeny.
Regarding the two GETHOGs variants, they target ‘abnormal’ genes that have either a
malformed sequence (fragmentation e.g. Chapter 4 case studies) or a complex evolutionary
history (fast evolving gene e.g. Chapter 4 cases studies). Then, it re-clusters with their related
orthologous genes these conflicting genes that were out-clustered due to missing orthology.

All of this can explain why the results shown in the benchmark are not in agreement with the
quality improvement in the HOGs shown previously. In order to understand what happened we

need to decompose the problem into two parts:
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Recall and complete gene tree sampling: we observe that the more the refinement
processes conflicting HOGs, the greater the recall. This is explained by the fact that the
refined GETHOGs variant incorporates conflicting genes inside the ortholog groups they
belong to so the chance of being able to completely sample the gene family is
increased. Indeed, the less the HOGs are sparse (gene losses) the greater the chance to
find orthology.

Precision and gene tree quality: Nevertheless, these conflicting genes may carry
conflicting orthology signal that make the orthology calling fail and, consequently, can
make the tree building complicated. By incorporating them into the sampled gene
family, we add conflicting signal that alters the quality of the reconstructed gene tree

and, consequently, the average RF distance between gene trees and the reference

phylogeny.
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Figure 36: Effect of the two refinements on pairwise orthology relationships in the generalized
species tree discordance test at vertebrate level.

To test our hypothesis on benchmark limitations, | assessed the impact of these conflicting
genes on the generalized species tree discordance test results using simulated genomes. In
order to proceed, | first simulated using AFL an evolutionary scenario with fast evolving genes
(default globin family simulation with default genomic events “max. 5 genes, translocation,
fusion/fission, rate changes”). Then using the true gene trees provided by ALF, | built two
datasets of pairwise orthologs: (i) a first one containing all the orthology induced by the labelled

gene trees (5350140 pairwise orthologous relations) and (i) a second one where orthology was
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inferred from the labelled gene trees where branches with observed acceleration of the rate of
evolution were removed (1821353 pairwise orthologous relations). To proceed, we removed all
branches after duplication where the mean distance between the duplication node and their
leaves were 1.5 greater than their related sister duplication branches. Then, | ran a custom
instance of the Orthology Benchmark Service to evaluate the performance of the two ortholog
datasets on the species tree discordance test. As shown in Figure 37, we observed that the
ortholog dataset with perfect orthology induced from true gene trees have a better recall
(number of complete sampled gene trees) than the ortholog dataset with fast evolving genes
discarded with around 37 000 against 27 000 completely sampled trees respectively. But it has
a worse precision in the benchmark (average Robinson-Foulds distance) than the fast evolving
free dataset that is reduced from around 0.4 to 0.2 respectively. Since only correct orthologs,
known from the simulation, were fed, this illustrates that including more pairs can lead to worse
precision results in the benchmark. This is in agreement with the results observed in this chapter
for the two heuristic refinements and our previous hypothesis (higher recall, but lower precision
when including additional orthologs among fast evolving genes). Therefore, this illustrates the

limitation of assessing HOGs inference quality using the generalised species discordance test.
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Figure 37: Effect of including fast evolving genes in the generalized species tree discordance
test using simulated genomes.

Conclusions

To conclude, we observe that the two new heuristic GETHOGs variants improve the quality of
the HOGs inference when using an incomplete orthology graph. The number of abnormal HOGs
shown in Chapter 4 is considerably reduced with both refinements. The safe variant for both
refinements produces a robust and reliable improvement in the orthology clustering that can be
included in a future version of orthology clustering in OMA. On the contrary, the ambitious
modes do not produce stable results and the stochasticity introduced is not in agreement with
the ‘robustness and scalable’ policy of our inference quality. Even though there are
improvements globally, the ambitious mode will not be used as a standard in our HOGs

inferences pipeline. In addition, a few cases are not solved by our refinements due to their
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complexity - the lack of orthology signal makes the reconstruction impossible without an
additional source of information (synteny, multiple sequence alignments) - or to their size - in
order to conserve scalability we cannot perform the reconstruction on too large a gene family

(i.e. paralogous groups with over 10 paralogs).

We also highlight the limitations of the generalised species discordance test of the orthology
benchmark service. Indeed, our refinements aim to improve the clustering of genes that have
conflicting orthology signal (due to accelerated evolution or fragmentation of their sequences)
which is not captured by the pairwise orthology benchmark. On the contrary, the newly added
genes make the precision of the reconstruction worse in the benchmark because these
conflicting genes are affecting the quality of gene trees reconstructed from the gene families
(that is used as a proxy to assess HOG quality). We test this hypothesis by simulating a
genomic dataset with fast evolving genes and running a custom generalised species tree
discordance test on a full ortholog dataset and on a dataset with fast evolving genes removed.
We observed, in agreement with the rest of the chapter results, that these conflicting fast

evolving genes improve the recall but have a negative impact on the precision.

Future work may focus first on designing a benchmark test specific to orthologous groups that
both assesses the quality of the clustering in terms of membership and in terms of the nested
structure. Secondly, the use of dynamic programming approaches may aid the reconstruction
of HOGs by considering more potential scenarios at each internal node reconstructed. This
could help the algorithm to better select one of the co-optimal scenarios when a conflicting case

is found by integrating more information.

Finally, integrating additional sources of evolutionary signal may greatly help the reconstruction.

Synteny (and ancestral synteny) is a valuable source of information that can be used when
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orthology is impossible to call. Furthermore, investigating the multiple sequence alignment of a
family during the clustering may bring additional information and correct mistakes introduced by

the fact that orthology inference is performed using pairwise protein alignments.
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Chapter 6: Conclusion and new directions

Investigating the evolution of modern-day organisms and understanding their associated
biodiversity through their gene evolutionary histories have proven to be useful in many research
domains. Orthology is a cornerstone of such phylogenetic analysis and has been proven as a
strong source of evolutionary signal. The recent breakthrough in sequencing technologies
provides complete genome sequences with a better resolution of evolutionary signal, but more
available data means dealing with both a large quantity of data (scalability) and potential quality
issues (sequencing errors, wrong assemblies, etc..). To address such challenges, many efforts
have been made in the past decade to develop robust methods for orthology inferences and
HOGs were introduced to meet the need of large scale data structures for phylogenomic
analysis. Nevertheless, inferring robust HOGs on a large scale remains a complex task and their

downstream analysis can be complicated due to their size and complexity.

In this thesis, we addressed the need to develop robust and scalable tools to infer and process
HOGs. My research in this thesis encompasses three subjects: orthology inferences, orthology
clustering, orthology visualisation and processing. First, | presented a refined version of the
OMA algorithm to include fast evolving genes in orthology inferences which improved the recall
and the precision of the method. In addition, | introduced a new version of the OMA HOG
inference algorithm which improves both the robustness and scalability of the algorithm. In
comparison with the previous GETHOGs top down algorithm, the new bottom up version
shows an improved quality of the clusters, in terms of family coverage and orthology inference

from the HOGs reconstruction. In addition to the improved robustness, the scalability of the new
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methods have been reduced from a cubic to quadratic complexity which allows the
reconstruction of HOGs with larger datasets in less time (9 hours for 2 thousand genomes with
a single process). | then presented two additional heuristic refinements of the GETHOGs
algorithm to deal with missing orthology during hierarchical orthology. These new refinements
improved the quality of orthology clustering regarding ‘unmerged’ and ‘complementary’ HOGs,

reducing the amounts of spurious gene losses and misplaced gene duplications.

In addition to all these algorithm refinements, | introduced several new tools to facilitate the
processing and visualisation of HOGs. The lack of existing tools to easily extract, process and
visualise information encoded in HOGs motivated us to develop pyHam and iHam. pyHam has
been shown to ease the programmatic exploration of HOGs by offering many built-in
functionalities to perform not only phylogenetic analysis, but also providing an easy to use
programmatic interface to let users customise their analysis and utilisation of pyHam. iHam is
complementary in that it provides an interface to visualise and explore HOGs in an intuitive and
interactive manner. iHam allows users to fine tune their analysis of a single gene family and to
easily synthesize the related evolutionary history. In addition to these two tools, | developed
GTM, a web based visualisation tool to explore sequence alignments, the phylogenetic tree and
the orthology graph for a given gene family. This tool provides a way to verify that a hypothesis
related to a single gene families evolutionary history can be validated by a phylogenetic signal

from the sequence alignment or orthology graph.

Despite all this progress, the orthology inferences and clustering are not perfect and require
additional improvements. Orthology inference methods are still very sensitive to fragmentary
sequences and fast evolving genes. Further improvements to detect and resolve such

complicated cases would greatly improve the downstream orthology clustering.
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Correspondingly, the orthology clustering quality is highly dependent on the quality of the
pairwise orthology used. | show in this thesis that missing orthology is the main source of
clustering errors. The development of new orthology clustering methods to efficiently deal with
incomplete input data using a dynamic programmatic approach to consider several optimal
clustering scenarios might improve HOG reconstruction. Another alternative would be to include
other sources of evolutionary signal, such as synteny. Indeed if orthology may have failed in
some extent, synteny is a reliable back up source of evidence for evolutionary history
reconstruction. The idea is that genes that failed to be inferred as orthologs with traditional
sequences-based method due to complex evolutionary history (fast evolving genes, domain
shuffling) or due to poor quality assemblies may be saved by their synteny. Indeed, a pair of
genes sharing a conserved synteny (meaning that the neighboring genes are orthologous and

ordered in the same way) can be inferred as orthologous.

Complementary to improving inferences, there is room for improvement in visualisation and
exploration tools of HOGs. For example, integrating more information like Gene Ontology,

synteny or secondary structure could help the investigation of HOGs.

The work presented in this thesis on the reconstruction of the evolutionary histories of gene
families—a problem much more complex than the already challenging problem of
reconstructing species phylogenies—is a resolute step forward toward full ancestral genome

reconstruction.

To go even further, | foresee the possibility of including extant synteny information in the HOG
framework, so as to be able to infer the synteny of ancestral genomes (which would give a
genomic order of HOGs at each level). This ancestral synteny would not only provide additional

information for the HOG inference process itself—as orthologs may be more likely to have kept
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their genomic context than paralogs—but also reveal important genome events occurring over
the course of evolution (deletion, insertion, inversion, duplication). Ultimately, the HOG
framework is amenable to integration of all aspects which can reasonably be expected to have
evolved along the history of genes, such as ancestral alternative splicing, ancestral gene
expression, ancestral molecular function, ancestral protein-protein interaction—bringing us ever
closer to a comprehensive and accurate reconstruction of the molecular history of life in its full

and glorious diversity.
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