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Abstract 

According to associationist models, initial sequential processing of algorithmic steps is 

replaced through learning by single-step access to a memory instance. In an alphabet-

arithmetic task where equations such as C+3=F have to be verified, the shift from algorithmic 

procedures to retrieval would manifest in a transition from steep slopes relating solution times 

to addends at the beginning of learning to a flat function at the end (e.g., Logan & Klapp, 

1991). Nevertheless, we argue that computation of the slopes at the end of training is biased 

by a systematic drop in solution times for the largest addend in the study set. In this paper, 

this drop is observed even when the longest training period in alphabet-arithmetic literature is 

doubled (Experiment 1) and even when the size of the largest addend is increased 

(Experiment 2). We demonstrate that this drop is partly due to end-term effects but remains 

observable even when end-term problems are not considered in the analyses.  As Logan and 

Klapp suggested, we conclude that the drop is partly due to deliberate memorization of the 

problems with the largest addend. In contrast, departing from Logan and Klapp, we 

demonstrate that, when problems with the largest addend are excluded from the analyses, the 

possibility that counting is still used after learning cannot be discarded. This conclusion is 

reached because after this exclusion, the slopes were still significant. To conclude, our results 

advocate that practicing an algorithm leads to its acceleration and not to a shift from 

algorithmic procedures to retrieval.  

Keywords: Numerical cognition; Arithmetic; Strategies; Counting; Automatization 
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Scrutinizing Patterns of Solution Times in Alphabet-arithmetic Tasks  

Favors Counting over Retrieval Models 

One of the fundamental mechanisms of learning is the possibility for basic cognitive 

systems to form associations between different elements in long-term memory. In humans, 

these associations are not only the result of perception but can also be produced by mental 

computation (Thorndike, 1911). These assumptions have guided the influential instance 

theory of automatization formulated by Logan (1988). According to this theory, any mental 

operation initially executed through an algorithm eventually leads to the construction of a 

trace associating the elements of the operation in memory. One additional trace is created 

each time the mental operation is executed. After repeated practice, the number of traces of 

the association is high enough for this association to be retrieved from long-term memory 

without any further recourse to the initial algorithm. For example, repeatedly solving a 

problem would eventually create an association between the question and the answer. Directly 

retrieving this association from long-term memory is viewed as the most efficient solving 

strategy because it is achievable in a single step (Logan, 1988).  

This theoretical framework has found one of its most perfect fields of application in the 

domain of mental arithmetic and simple addition problem solving. In children and in adults, 

solution times increase with the size of the smaller operand involved in the problem. 

However, whereas the slope of the regression line is about 400 ms/increment in 6-year-old 

children, it is only of 20 ms/increment in adults (Groen & Parkman, 1972). The steep slope of 

400 ms/increment undoubtedly reflects counting procedures in children but the authors 

considered that 20 ms/increment was too short to reflect a plausible counting mechanism in 

adults. Therefore, they concluded that adults usually retrieve the answers of simple additions 

from long-term memory but that the retrieval process fails randomly for 5% of the trials. This 

occasional failure would be responsible for the 20-ms/increment slope. In perfect coherence 
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with the associationist theory, and more precisely with the instance theory of automatization, 

the shift from counting to retrieval during the course of development has been interpreted as 

the result of repeated practice of counting procedures, which would ultimately lead to the 

association between the operands and the answers and to the creation of arithmetic facts in 

long-term memory (Geary, 1996; Logan, 1988; Logan & Klapp, 1991; Siegler & Jenkins, 

1989; Siegler & Shipley, 1995; Siegler & Shrager, 1984). Retrieval of arithmetic facts is 

therefore considered as the dominant strategy used to solve simple addition problems in 

adults. Nowadays, increase in solution times is not only viewed as consequences of reversal to 

primitive methods in case of retrieval failures but also as the result of interference and 

frequency effects within a retrieval network (e.g., Ashcraft, 1982; 1992; Campbell, 1995; 

Campbell & Oliphant, 1992; Chen & Campbell, 2018; Siegler, 1996). More precisely, small 

problems would be solved more frequently than larger ones, which would result in higher 

memory access for small problems.  Additionally, large problems share their sums with more 

problems than small ones, which would result in facilitated access to small problems suffering 

from less interference.  

However, recent studies suggest that retrieval of arithmetic facts may not be the 

dominant strategy in adults and that automatized and unconscious procedural counting can 

also account for simple addition problem solving in expert adults. This challenging hypothesis 

was first formulated after it was shown that problem solving is facilitated when the arithmetic 

sign is presented 150 ms before the operands for simple additions but not for multiplications 

(Fayol & Thevenot, 2012). It was inferred from these results that abstract procedures were 

primed by the “+” sign and subsequently used to solve addition problems. Priming effects of 

the “+” sign are observed starting from the age of 12–13 years, which suggests that 

automatized addition procedures would emerge around this developmental point (Mathieu, 

Epinat-Duclos, Léone et al., 2018). Fayol and Thevenot as well as Barrouillet and Thevenot 



COUNTING IN AN ALPHABET-ARITHMETIC TASK 

 

6 

(2013) suggested that these procedures could correspond to quick scrolling of ordered 

numerical representations such as a number line or a verbal number sequence. This 

interpretation finds support in neuroimaging studies showing that multiplications are 

associated with brain regions involved in verbal retrieval, whereas single-digit additions are 

associated with brain regions involved in spatial attentional processing (Mathieu, Epinat-

Duclos, Sigovan et al., 2018; Zhou et al., 2007). At a behavioral level, it has also been shown 

that addition problems are associated with spatial shifts of attention to the right hemifield (Liu 

et al., 2017; Masson et al., 2018; Zhu et al., 2018) whereas no spatial shifts of attention are 

observed for multiplication problems (Li et al., 2018; Mathieu et al., 2016). In fact, these 

different results could rehabilitate an idea that has been virtually abandoned more than 30 

years ago by the research community and according to which arithmetic fluency is not 

necessarily achieved by arithmetic fact retrieval but can also be achieved by the 

automatization of rules and heuristics (Baroody, 1983; 1984; 1994; 2018).  

However, the view that one of the most recurrent mental activities, namely basic 

arithmetic, does not always lead to associations between elements is necessarily at odds with 

the conception that memory retrieval is the process underlying automaticity after extensive 

practice. More precisely, it is in conflict with the conclusion of one of the most influential 

studies in the literature supporting the instance theory of automatization in which Logan and 

Klapp (1991) trained 8 participants on an alphabet-arithmetic task. Over a 12-day period, 

participants learnt to add the digits 2, 3, 4 and 5 either to the letters A to J or to the letters K to 

T. In the 13th session, participants were tested on the untrained set of the alphabet and the 

authors examined transfer of practice to new items. The results showed that participants 

improved their performance drastically from sessions 1 to 12. In the first session, solution 

times increased considerably with the magnitude of the addend. The function was clearly 

linear, with a slope of 486 ms/addend. By the 12th session, the function flattened substantially. 
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The slope was reduced to 45 ms/addend and the linear trend was no longer significant (see the 

top panel of Figure 1).  

The authors concluded that Session 1 was dominated by counting algorithms because 

solution times increased linearly as a function of the addend. On the contrary, the flattened 

slope in Session 12 was thought to reflect memory retrieval. The authors acknowledged that 

their results could be attributable to an improvement in the speed of counting algorithms 

rather than a shift from counting to retrieval but were quick to dismiss this possibility, based 

on the argument that the slope on Session 12 averaged 45 ms/addend, which was viewed as 

too fast to be mediated by sequential access to the alphabet (e.g., C + 3 = D, E, F). However, 

drawing conclusions based on those 45 ms/addend could be questioned.  

In fact, according to the authors, the slope of 45 ms/addend obtained at the end of 

training was the result of two different processes. Whereas the shift from procedure to 

retrieval was progressive across the 12 sessions for problems involving addends 2, 3 and 4, 

the shift was sudden for addend 5 problems between sessions 4 and 5 (see also Logan, 1988). 

More precisely, after only several sessions, solution times for addend 5 problems dropped 

noticeably and the solving process became faster than for problems involving addend 4. The 

decrease in solution times for addend 5 during session 12 is clear on the top panel of Figure 1. 

The authors explained the discontinuity in solution times for +5 problems by the fact that, for 

these problems and from session 4 onwards, their participants chose to use deliberate 

mnemonic encoding strategies. Logan and Klapp (1991) contrasted this deliberate 

memorization for addend 5 problems from “a relatively “automatic” encoding of the counting 

episode” (p. 183) for addends 2, 3 and 4 problems. Therefore, for the authors two different 

mechanisms allow for the shift of strategy from counting to retrieval.  
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Figure 1 

Mean Solution Times as a Function of Addend 

 

Note. Top panel: Mean solution times for Sessions 1 (top lines) and 12 (bottom lines) in 

Logan and Klapp’s (1991) Experiment 1 for true (circles, solid lines) and false (diamonds, 

dotted lines) equations. Bottom panel: Mean solution times for trained (circles, solid line) and 

untrained (diamonds, dotted line) items in Logan and Klapp’s (1991) Experiment 2. Adapted 

from “Automatizing Alphabet Arithmetic: I. Is Extended Practice Necessary to Produce 

Automaticity?”, by G. D. Logan and S. T. Klapp, 1991, Journal of Experimental Psychology: 

Learning, Memory and Cognition, 17, p. 182 (top panel) and p. 186 (bottom panel). Copyright 

1991 by the American Psychological Association. 
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 Nevertheless, the interpretation that the drop in solution times for +5 problems in 

Logan and Klapp’s first experiment (1991) is due to the contrast between automatic encoding 

strategies and deliberate memorization is difficult to reconcile with the results of their second 

experiment. In this experiment, they asked their participants to study alphabet-arithmetic 

problems involving addends from 2 to 4 exclusively by deliberate memorization. 

Nevertheless, a drop in solution times was still observed for the largest addend. Shorter 

solution times were indeed observed for deliberately memorized problems involving the 

highest addend 4 than for deliberately memorized problems with addend 3 (see the bottom 

panel of Figure 1). Thus, the drop in solution times cannot be attributable only to the fact that 

the problems with the highest addend are deliberately memorized. Therefore, another 

explanation of the discontinuity in solution times after extensive training in an alphabet-

arithmetic task might be needed.  

As a matter of fact, end-term effects constitute a potential candidate in order to explain 

that, after training, +5 problems are solved faster than +4 problems. End-term stimuli can be 

processed without having to pay attention to the whole problem because one of their 

components is systematically associated with the same response (Potts et al., 1978). For 

example, in a digit comparison task, the digit 9 is always the largest and the digit 1 is always 

the smallest of the pair of digits to be compared. Then, if the task requires the selection of the 

larger of two digits, 1 is never the appropriate choice but 9 is always the appropriate choice, 

irrespective of the other element in the pair (Moyer & Landauer, 1967). Therefore, when a 

terminal marker is found in an equation or a problem, the decision process terminates without 

the need to examine the other elements of the equation or problem (Foos et al., 1976). Short 

reaction times are therefore expected for stimuli corresponding to endpoints within the study 

set. More concretely in the alphabet-arithmetic task, participants who are trained with letters 

A to J and with addends from 1 to 5 can decide that J + 5 = P is false because whenever P is 
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presented, the response is always “false”. There is therefore no need to examine the first part 

of the equation and the decision is taken very quickly. Note however, as it can be seen on the 

top panel of Figure 1, that the drop in solution times for +5 problems is also observed for 

problems associated with the true answer, for which partial processing is not possible before 

decision. Nevertheless, the answer representing the endpoint within the set of true problems 

also have a special status because it is presented only twice within the whole set of problems 

whereas the true answer for non-end-term problems is presented more than twice. J + 5 is 

associated with the true answer O and the only other occurrence of O is as a false answer (i.e., 

true answer + 1) to the problem J + 4. In contrast, the true answer for C + 4, which is G, 

appears as the true answer also to E + 2, D + 3 and B + 5 as well as a false answer to B + 4, C 

+ 3, C + 5, D + 2, D + 4, E + 3, F + 2. Therefore, the answers to end-term problems suffer 

from less fan effect (Anderson & Reder, 1999) than the answers to non-end-term problems, 

whose multiple associations produce more interference. Stated differently, the answer to end-

term problems is more salient because it is shared by a limited number of problems (Campbell 

et al., 2016). As a consequence, end-term problems should receive more attention and be 

processed quicker than less salient problems.  

If such end-term effects explain why a drop in solution times is associated with the 

largest addend in alphabet-arithmetic tasks, including end-term problems in the estimation of 

the slopes relating solution times to the magnitude of the addends might lead to improper 

conclusions. It is apparent on the top panel of Figure 1 that solution times for addends 2, 3 

and 4 follow a clear linear function. An estimation based on this Figure reveals that a slope of 

about 125 ms/addend is still observable after 12 practice sessions, whereas Logan and Klapp 

(1991) based their conclusions on a much flatter slope of 45 ms/addend when problems with 

addend 5 were included. Interestingly, the slope of 125 ms per letter corresponds to the overt 

or subvocal recitation speed reported by Landauer (1962). In this context, discarding the 
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hypothesis that fast counting is used by participants at the end of the alphabet-arithmetic 

training on the basis of the 45 ms/addend slope might be premature. On a more theoretical 

level, this would be crucial to ensure the credibility of the automatization of counting 

procedure model, according to which expertise in addition results from the acceleration of 

counting rather than a shift from counting to retrieval.  

In order to shed light on this matter, we intended to ensure that the residual slope of 

about 125 ms/addend after 12 training sessions in Logan and Klapp’s experiment (1991) was 

not due to an insufficient number of sessions for a possible shift to retrieval. Therefore, in a 

first experiment, we extended Logan and Klapp’s study over 25 sessions instead of 12, with a 

total of 300 presentations of each problem instead of 144 in the original study. According to 

the authors, increasing the number of problem presentations also increase the degree of 

automaticity at the end of training (Logan & Klapp, Experiment 3). Moreover, in order to 

improve the reliability of our conclusions, 19 participants instead of 8 in the original study 

were involved in the training program. If the drop in solution times for addend 5 problems is 

still observed, we will analyze the results without end-term stimuli or, in other words, without 

solution times related to the equations J + 5 = O and T + 5 = Y. We predict that end-term 

problems are responsible for the drop in solution times.  

 

EXPERIMENT 1 

Method 

Participants. Nineteen students aged between 18 and 35 years were recruited at the 

University of Geneva. They received CHF 200 for their participation. In order to increase 

their motivation, participants were informed that a CHF 50 bonus would be awarded to those 

who obtained the best performance during the training phase. Informed consent was obtained 

for each of the participant.  
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Material and procedure. The experiment was constructed as a training study, similar 

to the one designed by Logan and Klapp (1991). Participants were trained on an alphabet-

arithmetic verification task wherein equations in which digits are added to letters have to be 

verified (e.g., A + 2 = D; FALSE). Half of the presented equations were associated with the 

correct letter (e.g., A + 3 = D) whereas the other half was associated with an incorrect answer 

(e.g., C + 4 = H). Half of the incorrect answers corresponded to the letter preceding the 

correct answer while the other half corresponded to the letter succeeding it. Participants were 

trained on equations with addends from 2 to 5, associated either with the first 10 letters of the 

alphabet (i.e., A to J) or with the next 10 letters (i.e., K to T). Participants were therefore 

trained on 40 problems and were randomly assigned to the first or second part of the alphabet. 

A computerized version of the task was created using E-prime 2.0 software. Material 

was set up on participants’ laptops for home training. The equations were presented 

horizontally in the center of the screen. Each trial began with a fixation point (*) presented for 

500 ms, followed by the equation, which remained on the screen until the participant pressed 

the response key. Participants were required to press the “A” key when the presented equation 

was correct and the “L” key when it was incorrect. Then, the screen remained blank for 1500 

ms until the onset of the next trial. Every combination of letters (A to J or K to T), addends (2 

to 5), and response validity (TRUE or FALSE) was presented six times per session. Thus, 

every session involved 480 trials (i.e., 10 letters x 4 addends x 2 possible answers x 6 

repetitions), which were divided into four blocks separated by a break. At the end of every 

session, the percentage of correct responses was displayed and participants had to note it 

down in a table. Twenty-five training sessions took place over 25 to 30 days because 

participants were allowed to have a one-day break during the week. 
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Results 

 Accuracy. Overall, the percentage of correct responses was of 98% (SD = 2%), 

increasing from 96% in Session 1 to 99% in Session 25. A 2 (Letter Set: A to J vs. K to T) x 

25 (Session: 1 to 25) x 4 (Addend: 2 to 5) mixed-design ANOVA was conducted on correct 

responses with Letter Set as a between measure. There was no effect of Letter Set and this 

variable did not interact with Session or Addend (Fs < 1). Therefore, we collapsed the two 

letter sets and conducted a 25 (Session: 1 to 25) x 4 (Addend: 2 to 5) repeated-measures 

ANOVA, which confirmed that the rates of correct responses increased across sessions (F(24, 

432) = 7.52, ηp2 = .29, p < .001) and revealed that they decreased as a function of addends 

(F(3, 54) = 3.10, ηp2 = .15, p = .03). There was no interaction between Session and Addend (F 

< 1). Because error rates were low, the remainder of the result section will focus on solution 

times.  

 Solution times. We observed that not only were solution times modulated by the 

type of answer presented to participants (i.e., true or false) but also by the type of false answer 

(i.e., +1 or –1 from the correct answer, see Figure 2). Therefore, in order to draw conclusions 

from the cleanest results, our analyses will concern only the true equations correctly solved by 

participants. Before conducting the analyses, 1.3% of the solution times that could not 

correspond realistically to processing time of the whole problem (i.e., shorter than 300 ms) or 

that were too large to correspond to processing time only (i.e., longer than mean + 3 SD per 

participant and per session) were identified as outliers and were discarded from the analyses.  
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Figure 2 

Mean Solution Times as a Function of Addend 

 

Note. Mean solution times as a function of addends for Sessions 1 (circles) and 25 (triangles) 

according to the nature of the presented answer, i.e. true (solid lines), true–1 (dotted lines) and 

true+1 (dashed lines) equations. Error bars represent standard errors. 

 A 2 (Letter Set: A to J vs. K to T) x 25 (Session: 1 to 25) x 4 (Addend: 2 to 5) mixed-

design ANOVA with Letter Set as a between measure was conducted on solution times. There 

was no effect of Letter Set (F(1, 17) = 1.28, p = .27) or interactions between Letter Set and 

Session or Addend (Fs < 1). After collapsing the two letter sets, we conducted a 25 (Session: 

1 to 25) x 4 (Addend: 2 to 5) repeated-measures ANOVA. The mean solution times across 
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sessions was of 1840 ms (SD = 1000 ms) and significantly decreased over sessions, from 

3246 ms to 1547 ms (F(24, 432) = 39.10, ηp2 = .68, p < .001). A main effect of Addend was 

also found (F(3, 54) = 26.22, ηp2 = .59, p < .001), showing that solution times generally 

increased as a function of addends (i.e., 1461, 1821, 2074, and 2035 ms for Addend 2, 3, 4, 

and 5 respectively).  

 More important in our results was the interaction between Session and Addend 

(F(72, 1296) = 8.94, ηp2 = .33, p < .001, see Figure 3) showing that the effect of Addend 

decreased across sessions. Nevertheless, when the slope of solution times as a function of 

addends, hereafter addend slope, was calculated for each participant and each session, it 

remained significant from the beginning to the end of training (Session 1: M = 472 

ms/addend, SE = 41, p < .001; Session 12: M = 163 ms/addend, SE = 42, p = .001; Session 

25: M = 108 ms/addend, SE = 45, p = .03). Whereas the difference in addend slope between 

Session 1 and Session 12 was significant (t(18) = 4.92, p < .001), this was not the case 

between Sessions 12 and 25, (t(18) = 1.85, p =.08).  
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Figure 3 

Mean Solution Times as a Function of Addend 

 

Note. Mean solution times as a function of addends for Sessions 1 (circles, solid line), 5 

(triangles, dotted line), 12 (squares, dashed line), and 25 (diamonds, dot-dashed line) for true 

trials. Error bars represent standard errors. 

 In order to determine whether solution times increased regularly with addends or in 

other words whether the effect of addend on solution times followed a linear trend, we carried 

out a series of contrast with Holm correction. In Session 1, the linear (t(18) = 11.53, p < .001) 

and quadratic (t(18) = –2.57, p = .04) trends were significant whereas in Session 25, the linear 

trend became marginal (t(18) = 2.40, p = .055) but the quadratic trend remained significant 

(t(18) = –2.91, p = .03).  

 In accordance with this quadratic trend and similar to the results of Logan and Klapp 

(1991), we found a discontinuity in solution times at +4 problems. Descriptively, solution 

times increased noticeably from addends 4 to 5 in the first session (+319 ms), but decreased in 
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the middle session (–89 ms), and even more in the last session (–144 ms). As planned and in 

order to investigate the possible explanation of this decrease by end-term effects, we removed 

J + 5 and T + 5 problems from the data set. Even in this case, +5 problems were solved faster 

than +4 problems during session 12 (–44 ms) and session 25 (–92 ms). When we recalculated 

the slopes without J + 5 and T + 5 problems, we found that they reached 180 ms/addend in 

session 12 (against 163 ms/addend when all problems were considered) and 128 ms/addend in 

session 25 (against 108 ms/addend when all problems were considered).  

 In order to further investigate the discontinuity in solution times at +4, we plotted the 

difference in solution times between +5 and +4 problems against sessions (see Figure 4 in 

which negative differences correspond to shorter solution times for +5 than for +4 problems). 

It can be seen that problems with addend 5 were solved faster than problems with addend 4 

from session 6 until the end of the training and for every single session. This was true when 

we included all the problems as well as when we excluded the end-term problems. The 

increasing negative difference in solution times between addends 5 and 4 across sessions 

allows us to explain the increasing importance of the quadratic trend over the linear one.  

 Therefore and obviously, at least from session 6, +5 problems were not processed as 

the other problems. This is the reason why we recalculated the addend slopes from addend 2 

to addend 4 and compared them to the slope when all addends were considered. In Session 1, 

the slope for addends 2 to 4 corresponded to 536 ms/addend and differed significantly from 

the slope of 472 ms/addend for addends 2 to 5 (t(18) = 2.64, p = .02). In Session 12, the slope 

for addends 2 to 4 corresponded to 286 ms/addend and differed significantly from the slope of 

163 ms/addend for addends 2 to 5 (t(18) = 2.75, p = .01). Finally, in Session 25 the slope for 

addends 2 to 4 corresponded to 217 ms/addend and differed significantly from the slope of 

108 ms/addend for addends 2 to 5 (t(18) = 3.37, p = .003). When +5 problems were not 

considered, the difference in addend slope between Session 1 and Session 12 was significant 
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(t(18) = 4.08, p < .001) but this was not the case between Session 12 and 25, (t(18) = 1.82, p = 

.09).  

 

Figure 4 

Difference in Solution Times as a Function of Session 

 

Note. Difference in solution times for true equations between problems with addends 4 and 5 

across the 25 sessions, when all problems are included (circles, solid line) and when the end-

term problems are excluded (triangles, dotted line). Because of large variations and for the 

sake of clarity, error bars are not represented in the Figure.  

 

 Interestingly, scrutinizing the whole data set at an individual level revealed that, 

across training sessions, not all participants showed a break in solution times at addend 4. 

Therefore, based on participants' solution times for +4 and +5 problems, we created two 

groups. Six participants who never showed a break across sessions were classified as non 
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breakers. Six participants who showed a systematic break from one session (from as early as 

in Session 1 to as late as in Session 17) until the end of training were classified as breakers. 

Solution times for these two groups are presented in Figure 5. The 7 remaining participants 

did not show such consistent pattern across sessions, because they presented aberrant 

behaviors with appearance and disappearance of the break across sessions. In order to ensure 

that our categorization into breakers and non breakers was relevant, we conducted a series of 

one-tailed paired-sample t-tests on solution times at Session 25 and showed that, for breakers, 

+4 problems were solved faster than +5 problems, (t(5) = 5.38, p = .001) and that, for non 

breakers, +4 problems were solved slower than +5 problems (t(5) = –3.83, p = .006).  

 

Figure 5 

Mean Solution Times as a Function of Addend 

 

Note. Mean solution times as a function of addends for Sessions 1 (circles, solid line), 5 

(triangles, dotted line), 12 (squares, dashed line), and 25 (diamonds, dot-dashed line) for true 
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trials in non breakers (left panel) and breakers (right panel). Error bars represent standard 

errors. 

 We conducted a 4 (Addend: 2 to 5) x 2 (Group: breakers vs. non breakers) mixed-

design ANOVA on solution times in Session 25, with Group as a between measure. There 

was no effect of Group (F(1, 10) < 1) but the interaction between Group and Addend was 

significant (F(3, 30) = 7.24, ηp2 = .42, p < .001). A series of contrasts with Holm correction 

revealed that for non breakers, the effect of Addend was linear and significant (t(10) = 3.44, p 

= .02) while for the break group, the effect was not linear (t(10) = –0.75, p = 94) but quadratic 

(t(10) = –5.54, p < .001).  

 At a more descriptive level and in regards to Figure 5, it seems that +5 problems are 

not the only problems that are processed differently by the populations of breakers and non 

breakers. Whereas, in non breakers, solution times for +4 problems are consistent with the 

linear trend, in breakers, those problems do not conform to the linear function because they 

are solved quicker (1705 ms) than +3 problems (1771 ms). In order to shed light on this 

matter, we examined the data in breakers at an individual level (Figure 6). Interestingly, 

except for one participant with a peculiar pattern of solution times (i.e., participant 13), two 

different patterns of behavior emerged from the data. Some of the participants showed the 

already described discontinuity at +4 whereas some others presented the discontinuity at +3.  
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Figure 6 

Mean Solution Times as a Function of Addend 

 

Note. Mean solution times as a function of addends for Sessions 1 (circles, solid line), 5 

(triangles, dotted line), 12 (squares, dashed line), and 25 (diamonds, dot-dashed line) for 

participants classified as breakers. Number above each panel indicates participant number. 

Error bars represent standard errors. 

 

Discussion 

 This first experiment was conducted in order to address some issues about the 

conclusions drawn by Logan and Klapp (1991) that individuals retrieve the results of 

alphabet-arithmetic problems after a training experiment. To this aim, we trained 19 

participants using the same material as the authors (i.e., same letters associated with same 
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addends from 2 to 5) over 25 instead of 12 sessions in the original study. After 12 sessions, 

we obtained the same pattern of results as Logan and Klapp, with an increase in response 

times from addends 2 to 4 and a decrease between addends 4 and 5. The same pattern was 

also observed after 25 sessions, which ensures that these results were not due to a lack of 

training. This point is important considering that, from Session 1 onwards, our 19 participants 

were slower than the 8 participants involved in Logan and Klapp’s study. The slope in 

solution times depending on the addends in Session 12 was also steeper in our study (163 ms) 

than in the original one (45 ms). It could have been suggested that after 12 sessions, our 

participants were not trained enough and, consequently, that their behavior could not be 

compared to Logan and Klapp’s results. Nevertheless, a lack of practice cannot explain our 

results because, as attested by the absence of statistical difference between Sessions 12 and 

25, further practice does not seem to impact the solution time pattern observed at mid-

training.  

More central to our study, we questioned the conclusions in relation to the decrease in 

solution times observed for +5 problems in Logan and Klapp’s (1991) study. We suggested 

that this phenomenon could be related to end-term effects, with endpoints in a set of stimuli 

being particularly salient and therefore processed faster. Our results show that removing end-

term problems (i.e., J + 5 and T + 5 for A to J and K to T set of letters, respectively) 

attenuated the discontinuity in solution times but did not make it disappear. As evident in 

Figure 4, this discontinuity appears from Session 6 onwards and remains present until the end 

of training, even when end-term problems were excluded. Therefore, end-term effects cannot 

fully explain the pattern of results observed in alphabet-arithmetic tasks and our results 

support the interpretation of Logan and Klapp (1991) that the discontinuity in solution times 

for +5 problems can be due to deliberate mnemonic encoding strategies for +5 problems.  
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Therefore, +5 problems were not processed as the other problems during the course of 

the training. This is the reason why we recalculated the slopes by excluding those problems. 

Our analysis revealed steep positive slopes of 217 ms and a clear linear pattern of solution 

times as a function of addends (Figure 3). This pattern of results is compatible with the idea 

that participants still scan the letters of the alphabet one by one at the end of training for 

problems involving addends from 2 to 4. Indeed, the mental recitation rate of 115 ms per 

letter measured by Logan and Klapp (1991) at the end of their experiment is considerably 

lower that the addend slope of 217 ms/addend observed in our experiment. This point will be 

taken up in our General Discussion.  

In addition to classical analyses at the sample level, we investigated potential 

differences of behavior between our participants. This approach revealed the existence of two 

contrasted populations. While one third of our participants presented aberrant behaviors with 

appearance and disappearance of the break across sessions, one third of our participants 

presented a break at +4 at one point of the training until the end whereas another third never 

presented this break. Within the breakers group, we went even deeper in individual 

observations and identified a sub-population of 3 participants who presented a break at +3. 

Highly interestingly and as observable in Figure 6, those participants presented the +3 break 

after they presented the +4 break during the course of training. If, as we concluded following 

Logan and Klapp (1991), a break in solution times is the sign of deliberate memorization, our 

results show that some of our participants memorize the material from the largest problems to 

the smallest. As far as non breakers were concerned, the slope relating solution times to 

addends 2 to 5 was of 265 ms/addend. Therefore, one third of participants, even after having 

been exposed to twice the number of problem presentations than in Logan and Klapp’s 

experiment, present a behavior that is perfectly compatible with the idea that they still count 

at the end of training and never deliberately memorize any category of problems. Moreover, 
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at an intra-individual level, we do not exclude the possibility that breakers still count for some 

+ 5 problems. This would explain why solution times for + 5 problems are still higher than for 

+ 2 and + 3 problems (see Figure 2 and 3). In fact, such mixed strategies could also be evoked 

for problems that are solved primarily by counting strategies. We do not exclude the 

possibility that non breakers retrieve the results of a minority of problems. These 

considerations echo Siegler’s overlapping waves model (1996) in which at a given point in 

development, several strategies can be used to solve the same problem.  

All in all, our results do not show evidence against the fact that counting is still the 

dominant strategy at the end of an extensive alphabet-arithmetic training. When retrieval is 

probable, it concerns only some participants and is used preferentially for problems associated 

with the largest addends. A simple test of this interpretation is to present participants with 

problems associated with larger addends than in previous training programs. Therefore, in a 

second experiment, we asked participants to solve alphabet-arithmetic problem with addends 

from 2 to 6 instead of 2 to 5. If our understanding of occasional retrieval during alphabet-

arithmetic training is correct, some participants should present a break in solution times at +5 

problems rather than at +4 as observed in Experiment 1. Alternatively, it is possible that it is 

from +5 problems that participants decide not to count and therefore deliberately memorize 

+5 and +6 problems simultaneously during the course of the experiment. In this case, a 

decrease in solution times should be observable for +5 problems and solution times should be 

similar for +6 and +5 problems. Because in this first experiment, the break in solution times at 

addend 4 was observable from the 6th session, in the second experiment we stuck to the 

original number of 12 sessions used by Logan and Klapp (1991).  

  

EXPERIMENT 2 

Method 
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Participants. Twenty-four students (13 females) aged between 18 and 29 years were 

recruited by means of the student-job websites of the University of Lausanne and the Swiss 

Federal School of Technology in Lausanne. All participants were native French speakers and 

they received CHF 120 for their participation. Informed consent was obtained for each of the 

participant.  

Material and procedure 

Participants were trained on equations with addends from 2 to 6 paired with either 

the first 8 letters of the alphabet (A to H) or the next 8 letters (I to P). The same number of 

problems (i.e., 40), number of trials per session (i.e., 480) as well as number of problem 

presentations per session (i.e., 6 times with TRUE and 6 times with FALSE answers) as in 

Logan and Klapp (1991) and as in our Experiment 1 were kept. The same design as in 

Experiment 1 was used except that we took an additional methodological precaution and 

counterbalanced the response keys across participants. Half of the participants were required 

to press the “A” key when the presented equation was correct and the “L” key when it was 

incorrect while the other half were required to press the opposite keys. Moreover, and in order 

to better control the randomization, the 480 trials per session in the current experiment were 

divided into 3 identical blocks of 160 trials instead of 4 blocks with a different random mix of 

problems in Experiment 1. The presentation of problems was still fully randomized within 

each block.  

In contrast to Experiment 1 and in order to reduce potential experimental noise, 

participants were trained at the laboratory for 12 sessions on 12 consecutive working days. In 

order to maximize the efficiency of training, they were required to train at home during the 

week end by verifying 160 equations presented on paper as quickly as possible. This 

corresponded to one block of the experiment.  

Results 
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Three participants who presented flat addend slopes from the beginning of training 

(i.e., Session 1 or 2) were excluded from our analyses. The results of these participants could 

not be informative concerning our research question, which is related to the evolution of 

counting strategy after extensive training. These participants obviously did not count at the 

beginning of the study and were therefore out of the scope of our purpose.   

Accuracy. Overall, the percentage of correct responses was of 96% (SD = 5%), from 

95% in Session 1 to 96% in Session 12. A 2 (Letter Set: A to H vs. I to P) x 12 (Session: 1 to 

12) x 5 (Addend: 2 to 6) mixed-design ANOVA with Letter Set as between measure was 

conducted on correct responses. The main effect of Letter Set was not significant (F(1, 19) = 

1.01, p = .33) and this variable did not interact with Session or Addend (Fs < 1). Therefore, 

we collapsed the two letter sets and conducted a 12 (Session: 1 to 12) x 5 (Addend: 2 to 6) 

repeated-measures ANOVA. It confirmed that the rates of correct responses increased across 

sessions (F(11, 220) = 2.06, ηp2 = .09, p = .02) and revealed that they decreased as a function 

of addends (F(4, 80) = 9.04, ηp2 = .31, p < .001). The interaction between Session and Addend 

did not reach the .05 significance level (F(44, 880) = 1.33, p = .08). As in the first experiment, 

due to high percentage of correct responses, the remainder of the result section will focus on 

solution times. 

Solution times. As in Experiment 1, we conducted our analyses on true equations only 

and we removed the values shorter than 300 ms and longer than mean + 3 SD per participant 

and per session, which resulted in 1.3% of discarded data.  

 A 2 (Letter Set: A to H vs. I to P) x 12 (Sessions: 1 to 12) x 5 (Addend: 2 to 6) 

mixed-design ANOVA with Letter Set as between measure was conducted on solution times. 

We did not find an effect of Letter Set or an interaction between this variable and Session or 

Addend (all Fs < 1). After collapsing the two letter sets, we conducted a 12 (Session: 1 to 12) 

x 5 (Addend: 2 to 6) repeated-measures ANOVA. The mean solution time across sessions was 
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of 2023 ms (SD = 1056 ms) and significantly decreased over sessions, from 3198 ms in 

Session 1 to 1631 ms in Session 12, F(11, 220) = 93.93, ηp2 = .82, p < .001. A main effect of 

Addend was also found (F(4, 80) = 121.91, ηp2 = .86, p < .001), showing that solution times 

increased as a function of addends (i.e., 1436, 1802, 2085, and 2367, and 2428 ms for Addend 

2, 3, 4, 5, and 6 respectively).  

 More interestingly, the interaction between Session and Addend was significant 

(F(44, 880) = 20.40, ηp2 = .50, p < .001, see Figure 7). Still, when the addend slope was 

calculated for each participant and each session, it remained significant from the beginning 

until the end of the training (Sessions 1: M = 441 ms/addend, SE = 30, p < .001; Session 6: M 

= 243 ms/addend, SE = 20, p < .001; Session 12: M = 163 ms/addend, SE = 24, p < .001). The 

difference in addend slope between Session 1 and Session 12 was significant (t(20) = 7.99, p 

< .001). 
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Figure 7 

Mean Solution Times as a Function of Addend 

 

Note. Mean solution times as a function of addends for Sessions 1 (circles, solid line), 6 

(triangles, dotted line), and 12 (squares, dashed line) for true trials. Error bars represent 

standard errors. 

 In order to determine whether solution times increased regularly with addends or in 

other words whether the effect of addend on solution times followed a linear trend, we carried 

out a series of contrast with Holm correction. In Session 1, the linear (t(20) = 14.62, p < .001) 

and quadratic (t(20) = –3.80, p = .003) trends were significant. In Session 12, both trends 

were still significant (t(20) = 6.80, p < .001 for linear trend and t(20) = –5.27, p < .001 for 

quadratic trend). 

 Highly interestingly and in contrast with Experiment 1, we found a discontinuity in 

solution times at +5 instead of at +4 problems. Stated differently, whereas in Experiment 1, 

solution times decreased from addend 4 to addend 5 problems, solution times in this second 
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experiment decreased from addend 5 to addend 6 problems. Figure 8 shows that descriptively, 

solution times increased noticeably from addends 5 to 6 in the first session (+281 ms) but 

were closer to each other in the middle session (+48 ms) and decreased in the last session (–

112 ms).  

 When the addend slopes were recalculated without the highest addend, we found that 

they were significantly steeper than when all the addends were considered. In Session 1, the 

slope for addends 2 to 5 corresponded to 487 ms/addend and differed significantly from the 

slope of 441 ms/addend for addends 2 to 6 (t(20) = 3.53, p = .002). In Session 6, the slope for 

addends 2 to 5 corresponded to 294 ms/addend and differed significantly from the slope of 

243 ms/addend for addends 2 to 6 (t(20) = 4.44, p < .001). In Session 12, the slope for 

addends 2 to 5 corresponded to 236 ms/addend and differed significantly from the slope of 

163 ms/addend for addends 2 to 6 (t(20) = 5.03, p < .001). When +6 problems were not 

considered, the difference in addend slope between Session 1 and Session 12 was significant 

(t(20) = 6.18, p < .001). 
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Figure 8 

Difference in Solution Times as a Function of Session 

 

Note. Difference in solution times between problems with addends 5 and 6 across the 12 

sessions for true equations. Error bars represent standard errors. 

 

 Similar to Experiment 1, a closer look at the data at individual level showed that not 

all participants showed a discontinuity in solution times. Therefore, based on participants' 

solution times for +5 and +6 problems, we created two groups. Four participants who never 

showed a break were classified as non breakers. Seven participants who showed a systematic 

break from one session (from as early as in Session 1 to as late as in Session 12) until the end 

were classified as breakers (Figure 9). The 10 remaining participants did not show such 

consistent pattern across sessions. In order to ensure that our categorization into breakers and 

non breakers was relevant, we conducted a series of one-tailed paired-sample t-tests on 

solution times at Session 12 and showed that, for breakers, +5 problems were solved faster 

than +6 problems, (t(6) = 5.96, p < .001) and that, for non breakers, +5 problems were solved 

slower than +6 problems (t(3) = –1.92, p = .08).  
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Figure 9 

Mean Solution Times as a Function of Addend 

 

Note. Mean solution times as a function of addends for Sessions 1 (circles, solid line), 6 

(triangles, dotted line), and 12 (squares, dashed line) for true trials for non breakers (left 

panel) and breakers (right panel) Error bars represent standard errors. 

Discussion 

This second experiment was carried out in order to better understand the fact that, at 

the end of an alphabet-arithmetic task training involving addends from 2 to 5, solution times 

associated with +5 problems are shorter than for +4 problems. The results of our first 

experiment confirmed Logan and Klapp’s (1991) interpretation that this decrease in solution 

times is due, at least in part, to deliberate mnemonic encoding of +5 problems. Logan and 

Klapp’s point of view was that retrieval for +2 to +4 problems would be possible after 

repetitive practice consisting in one-unit steps counting. In contrast for the same authors, 

some participants could consider that counting one by one for +5 problems is too demanding 
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and too long and would decide to directly commit their answers to long-term memory shortly 

after the beginning of the experiment. In order to examine this interpretation, we asked the 

participants of this second experiment to solve problems with addends 2 to 6 and showed that 

the decrease in solution times was shifted from +5 to +6 problems. Therefore, if we stick to 

the interpretation that a break in solution times is the sign of deliberate memorization, we can 

conclude that, as in the first experiment, some of the participants in this second experiment 

have deliberately used mnemonic strategy to learn the alphabet-arithmetic facts associated 

with the highest addend in the study set.  

 

GENERAL DISCUSSION 

Automaticity in the instance theory of automatization consists in a shift from 

algorithmic procedures to retrieval of instances from long-term memory (Logan, 1988). 

Learning would consist in a transition from time-consuming processing of each of the 

algorithmic steps to rapid single-step access to the instances. In an alphabet-arithmetic task, 

this would appear in a shift from a steep linear function relating solution times to the addends 

at the beginning of learning to a flat function at the end of learning. In this paper, we have 

questioned this conclusion because we argue that, in previous studies, the computation of the 

slope of the function at the end of learning was biased by a drop in solution times for the 

largest addend.  

We have shown here that the systematic drop of solution times for the largest addend 

was reduced but still present when end-term problems were excluded from the analyses. Then, 

following Logan and Klapp (1991), we concluded that the residual drop in solution times 

could be due to deliberate memorization of problems associated with the largest addend. 

Therefore, the problems that would be memorized first by individuals would be those 

requiring the highest number of counting steps. Our first experiment conducted over 25 
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sessions instead of 12 showed that amongst the 6 out of 19 participants who memorized the 

problems with the largest addend, half of them also started to memorize problems associated 

with the second-largest operand. In the second experiment, conducted over 12 sessions using 

addends from 2 to 6 instead of 2 to 5, we showed that the decrease in solution times after 

training was, again, observed for the largest addend. This pattern of results was caused by 7 

participants out of 21.   

Because problems associated with the highest addend were obviously processed 

differently from other problems, we recalculated the slopes associating solution times with 

addends excluding the highest one. Both in Experiments 1 and 2, these slopes were not at all 

negligible at the end of training (217 and 235 ms/addend, respectively) and their sizes were 

higher than the subvocal or overt alphabet recitation time per letter (125 ms/letter in 

Landauer, 1962 and 115 ms/letter after training in Logan & Klapp, 1991). Therefore and 

contrary to Logan and Klapp’s previous conclusions, it is impossible from these results to 

exclude the possibility that individuals are still counting for most of the problems after 

extensive practice. This leaves room to the possibility that training in an alphabet-arithmetic 

task simply increases the speed of execution of the counting steps, except for a very specific 

category of problems that are processed differently by a minority of participants.  

The fact that repeated practice of an algorithmic procedure finally results in an 

increased counting speed echoes the conclusions formulated in the more-ecological context of 

mental arithmetic.  For example, Svenson (1985) argued that simple arithmetic problems with 

a sum inferior to 10 and involving either 1 or 2 as addends could be solved by a counting 

procedure whereas larger problems could be solved by retrieval. Interestingly, this conclusion 

that very-small problems are solved using counting procedures whereas the answers to larger 

problems can be retrieved has also been reached by Uittenhove et al. (2016). These authors 

revealed that adults present a linear and monotonic increase in solution times for very-small 
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non-tie additions involving operands from 1 to 4, whereas there was no increase in solution 

times for problems with a sum from 7 to 10 when one of the operands exceeded 4. The 

conclusion of the authors was that very-small problems could be solved by very-quick and 

unconscious automated one-unit step procedures, as long as the operands were not too high. 

When operands are too high or perceived as such by individuals, the counting procedure could 

appear as too demanding, long and possibly prone to errors and retrieval would be favored. 

These conclusions perfectly fit the conclusions formulated in the present paper. In an 

alphabet-arithmetic task, practice would lead to an acceleration of procedures for problems 

requiring a minimum number of steps, whereas the answers to problems with numerous steps 

could be strategically committed to memory. This interpretation echoes the conclusion of 

Compton and Logan (1991) that the effects observed in alphabet-arithmetic tasks fit well with 

a race model (Logan & Cowan, 1984) in which memory traces race against the algorithms. 

When the algorithm is slow, as for large problems, the memory traces are more likely to win 

than when the algorithm is fast, as for small problems.  

Svenson and Uittenhove et al. found that each automated step takes approximately 45 

ms, which is far from the average slope of 250 ms that we found after 12 sessions in the 

present experiments. Therefore, it is very unlikely that the counting procedures used by our 

participants are already automated. Our hypothesis is that automatization would occur after a 

much longer training period than what could reasonably be done in a laboratory. Indeed, a 

slope of 45 ms is observable after many years of practice. As a matter of fact, even at the age 

of 10 years, after about 4 years of practice, children do not seem to have already automatized 

counting procedures (390ms/increment when the minimum addend is considered, Thevenot et 

al., 2016).  

Of course, another possibility in the alphabet-arithmetic task would be that after many 

years of practice, the answers to all problems are retrieved from long-term memory. 
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Nevertheless, in this case, the evolution pattern of retrieval that we observed is in conflict 

with the current models of retrieval in arithmetic.  Indeed, within these models, the answers to 

small problems are assumed to be retrieved before the answers to large problems during the 

course of development (e.g., Ashcraft, 1982; 1992; Campbell, 1995; Campbell & Oliphant, 

1992; Chen & Campbell, 2018; Siegler, 1996). Several arguments support this assumption. 

First, associations between operands and results are easier when the number of steps to reach 

the correct answer is small than when it is large (Thevenot et al., 2001). Second, the 

associations between operands and answers are stronger when problems are less error prone 

and therefore stronger for small than larger problems (Siegler & Shrager, 1984). Third, the 

probability of associations between operands and answers is higher for problems that are 

encountered more often and earlier during development, that is higher for small than large 

problems (Ashcraft & Christy, 1995; Hamman & Ashcraft, 1986). Therefore, because we 

show here that the answers to large problems, and not to small problems, are retrieved first 

during practice, even if we speculate that counting procedures will eventually disappear, most 

of the retrieval models need to be revised.  

To conclude, the results of the present paper challenge the conclusion that the pattern 

of solution times after extensive alphabet-arithmetic training rules out the possibility that fast 

counting cannot be the dominant strategy. In other words, we have dethroned one of the main 

arguments that procedures are taken over by memory retrieval after repeated practice by 

showing that the slopes relating solution times to addends are still not negligible after 12 or 

even 25 sessions of training. Of course, this does not question the whole instance theory put 

forward by Logan (1988), according to which extensive practice eventually allows the 

retrieval of associations between operands and answers. First, we have seen that, in 

accordance with the original conclusions drawn by Logan and Klapp, the answers to some 
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problems associated with the highest operands can be deliberately committed to memory by a 

minority of participants.  

Second, in addition to the pattern of solution times after alphabet-arithmetic training, 

several other arguments were put forward by Logan and his colleagues. Zbrodoff (1999) 

revealed the existence of what she called the opportunistic-stopping phenomenon. This 

phenomenon supposes that when an incorrect equation is presented and that the proposed 

answer corresponds to a letter preceding the correct answer, individuals would not count up to 

the correct answer but only up to the proposed one. Consequently, verification times of such 

equations should be shorter than when the proposed answer follows the right answer. 

Accordingly, the author observed at the beginning of an alphabet-arithmetic task that True–2 

problems (e.g., A + 4 = C) were rejected faster than True–1 problems (e.g., A + 4 = D) 

whereas at the end of training, this opportunity stopping phenomenon was no longer observed. 

Zbrodoff naturally concluded that retrieval instead of counting became the dominant strategy. 

Nevertheless, this phenomenon will need to be investigated further because in her experiment, 

and in sharp contrast with what could be predicted from the opportunity stopping 

phenomenon, True–1 problems were not rejected faster than True problems. In fact, only 

True–2 problems were processed quicker than True problems. Obviously, these inconsistent 

results relative to the opportunistic-stopping phenomenon will need to studied further. This is 

precisely what we aim at doing in a future research wherein opportunistic stopping effects 

will be examined as a function of the addends involved in the problems. Specifically, these 

effects need to be scrutinized in light of the results of the present paper by taking into account 

the influence of the largest addend.  

Next, in order to strengthen our position that fast counting procedures are still used by 

adults after extensive practice, our future research will need to address the question of transfer 

of practice. Logan and Klapp (1991) showed poor transfer of knowledge to an untrained part 



COUNTING IN AN ALPHABET-ARITHMETIC TASK 

 

37 

of the alphabet and therefore concluded that learning is item specific. Stated differently, 

according to the authors, a general procedure should have been transferred to new problems 

and the lack of transfer constituted evidence that counting was no longer used at the end of 

training. However, we suggest that possible transfer of practice should be examined in the 

future without considering the problems that are responsible for the break in solution times 

because they probably do not rely on counting procedures any longer.  

Finally, in Compton and Logan (1991), participants verbally reported that they 

increasingly relied on retrieval over the course of training. Moreover, participants reported 

more retrieval strategies for problems with larger addends than smaller addends. However, the 

evolution of strategies during the course of learning was not considered for each of the 

addend. This is unfortunate because, even if verbal reports are not always trustworthy (e.g., 

Kirk & Ashcraft, 2001; Thevenot et al., 2010), deliberate mnemonic strategies should be 

associated with an abrupt shift from reported counting to reported retrieval. Therefore, asking 

participants how they think they solve the problem in each session for each addend could be 

valuable in future experiments.    
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