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ABSTRACT
Seismic attenuation mechanisms receive increasing attention for the characterization
of fractured formations because of their inherent sensitivity to the hydraulic and elas-
tic properties of the probed media. Attenuation has been successfully inferred from
seismic data in the past, but linking these estimates to intrinsic rock physical prop-
erties remains challenging. A reason for these difficulties in fluid-saturated fractured
porous media is that several mechanisms can cause attenuation and may interfere
with each other. These mechanisms notably comprise pressure diffusion phenomena
and dynamic effects, such as scattering, as well as Biot’s so-called intrinsic attenuation
mechanism. Understanding the interplay between these mechanisms is therefore an
essential step for estimating fracture properties from seismic measurements. In order
to do this, we perform a comparative study involving wave propagation modelling
in a transmission set-up based on Biot’s low-frequency dynamic equations and nu-
merical upscaling based on Biot’s consolidation equations. The former captures all
aforementioned attenuation mechanisms and their interference, whereas the latter
only accounts for pressure diffusion phenomena. A comparison of the results from
both methods therefore allows to distinguish between dynamic and pressure diffusion
phenomena and to shed light on their interference. To this end, we consider a range
of canonical models with randomly distributed vertical and/or horizontal fractures.
We observe that scattering attenuation strongly interferes with pressure diffusion
phenomena, since the latter affect the elastic contrasts between fractures and their
embedding background. Our results also demonstrate that it is essential to account
for amplitude reductions due to transmission losses to allow for an adequate esti-
mation of the intrinsic attenuation of fractured media. The effects of Biot’s intrinsic
mechanism are rather small for the models considered in this study.
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1 INTRODUCTI ON

Fractures are of great interest in earth sciences and in civil
engineering since they significantly influence the elastic

∗E-mail: Eva.Caspari@unil.ch

and hydraulic properties of geological formations. Seismic
attributes are commonly used to detect and characterize
fracture zones (Liu and Martinez 2012). An attribute, which
recently gained increased attention for this purpose is seismic
attenuation. Seismic attenuation can be broadly divided into
intrinsic and apparent attenuation mechanisms. The former
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results in seismic energy loss, whereas the latter redistributes
seismic energy. Several attempts have been undertaken to
estimate seismic attenuation as well as the respective contri-
butions of intrinsic and apparent attenuation from real data
(e.g. Daley, Majer and Peterson 2004; Mangriotis et al. 2013;
Alasbali et al. 2016). However, linking these attenuation es-
timates to intrinsic properties of the rock remains challenging
and requires an understanding of the contributions of the
different phenomena and their interference.

In fractured fluid saturated porous media, intrinsic and
apparent mechanisms which can contribute to wave attenua-
tion and velocity dispersion comprise pressure diffusion phe-
nomena (intrinsic) and dynamic effects such as scattering (ap-
parent) as well as Biot’s so-called intrinsic mechanism. In a
poroelastic framework, pressure diffusion phenomena, such
as wave-induced fluid flow and squirt flow, have been stud-
ied numerically (e.g. Rubino et al. 2013, 2014, 2017; Quintal
et al. 2014; Vinci, Renner and Steeb 2014; Hunziker et al.

2018) and analytically (e.g. Chapman 2003; Gurevich et al.

2009; Guo et al. 2016), whereas scattering in fractured me-
dia is commonly studied in an elastic context (e.g. Saenger,
Krüger and Shapiro 2004; Murai 2007; Vlastos et al. 2007)
and Biot’s intrinsic mechanism only for simple geometries of
a single fracture (Wenzlau and Müller 2009; Barbosa et al.

2016). Depending on the frequency regime, the characteris-
tic length scales, and the physical properties of the medium,
all of them may contribute to the observed attenuation in a
medium containing several fractures. A favourable framework
to investigate most of the aforementioned attenuation mech-
anisms is Biot’s theory of poroelasticity (Biot 1941, 1956,
1962a, 1962b), which will be utilized in this study. A mech-
anism which is not taken into account in this framework is
squirt flow, which occurs at the microscopic scale. The con-
sidered attenuation mechanisms are described briefly in the
following.

In the framework of this study, Biot’s intrinsic mecha-
nism refers to the classical Biot relaxation process (Biot 1956,
1962a), which arises at the wavelength scale (Pride 2005) in
response to the combined effects of the fluid pressure gradients
between the peaks and troughs of the wave and the acceler-
ations induced by the propagating wave. In the remainder of
the paper, we refer to this mechanism as Biot global flow. The
development of viscous boundary layers at the pore scale due
to the dominance of inertial forces over viscous forces is not
taken into account as well as the associated relaxation process
(Biot 1962b; Johnson, Koplik and Dashen 1987). Thus, the
flow in the pore space is governed by Poiseuille flow and we
are within the framework of Biot’s low-frequency dynamic

equations. In the high-frequency regime of these equations,
the slow P-wave is a propagating wave.

Scattering attenuation is caused by the finite size of frac-
tures and their elastic contrast with respect to the host rock.
Depending on the size of the scatterer with respect to the
seismic wavelength, scattering can be divided into three dif-
ferent regimes: Rayleigh, Mie and diffusion scattering. The
scenarios considered in this study can be attributed to the
Rayleigh scattering regime, where the wavelength is larger
than the size of a single fracture. Previous studies (Main,
Peacock and Meredith 1990; Vlastos et al. 2007) have shown
that the magnitude of scattering depends on multiple factors:
the elastic contrast of the scatterer with respect to the host
medium, the volume fraction of the scatterers, the path length
of the seismic wave and geometrical aspects, such as the size,
the orientation and distribution of scatterers.

In a fractured fluid-saturated porous medium pressure
diffusion phenomena manifest in two ways (e.g. Gurevich
et al. 2009; Müller, Gurevich and Lebedev 2010; Rubino
et al. 2013): fracture-to-background wave-induced fluid flow
(FB-WIFF) and fracture-to-fracture wave-induced flow (FF-
WIFF). As in the case of scattering, both are caused by large
compressibility contrasts between fractures and their host
rocks. These compressibility contrasts result in pressure gra-
dients between fractures and stiff pores of the embedding host
rock as well as between intersecting fractures of different ori-
entations upon the incidence of a seismic wave and the relax-
ation of these pressure gradients is responsible for the energy
loss of the seismic wave. For these two mechanisms, the slow
P-wave is diffusive. Energy dissipation due to FB-WIFF pre-
dominantly occurs in the host rock, whereas FF-WIFF takes
place within fractures. Hence, the characteristic time scale
for FB-WIFF depends on the hydraulic diffusivity of the host
rock (Gurevich et al. 2009). For FF-WIFF, the characteristic
time-scale depends on an effective hydraulic diffusivity of the
fractures and the host rock (Guo et al. 2016) and the distance
between the tip of the fracture and its intersection with an
adjacent fracture.

Understanding the interplay between these mechanisms
is an essential first step for estimating fracture properties from
seismic measurements. To analyse the interference of attenu-
ation phenomena, we follow an approach similar to the ones
Gurevich, Zyrianov and Lopatnikov (1997) applied to the
scenario of a layered medium and Wenzlau and Müller (2009)
applied to a single inclusion or infinite fracture. As in Wenzlau
and Müller (2009), our study is based on wave propagation
simulations of Biot’s low-frequency dynamic equations
(Biot 1956, 1962a). Although there have been several finite
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Figure 1 Stochastic realization of the fracture
models for (a) parallel, (b) perpendicular and
(c) intersecting fractures. The red arrow denotes
the direction of wave propagation.

difference schemes developed over the last years to perform
such simulations, there is a lack of studies for more complex
media. One reason is certainly that wave propagation
studies of diffusion processes are computationally expensive.
Another reason is that the resulting attenuation estimates also
tend to be difficult to interpret when various mechanisms
interfere with each other. Here, we utilize our finite difference
code, (Novikov et al. 2017a, b) which is based on the imple-
mentation of Masson, Pride and Nihei (2006). We consider
numerical models with randomly distributed horizontal and
vertical fractures in a 2D fluid-saturated porous medium and
run simulations over a relatively broad frequency range to cap-
ture dynamic and diffusion attenuation processes. To guide
the interpretation of the attenuation estimates from the wave
propagation results, which capture all three processes, we
utilize a complementary numerical upscaling technique based
on the quasi-static poroelastic equations (Biot 1941). Such
upscaling methods have become popular for estimating atten-
uation caused by pressure diffusion effects (e.g. Masson and
Pride 2007; Rubino, Ravazzoli and Santos 2009; Wenzlau and
Müller 2009; Quintal et al. 2011; Jänicke, Quintal and Steeb
2015). Thus, a comparison of the results from both methods
allows to distinguish pressure diffusion phenomena and
dynamic effects, as has been shown in our preliminary study
for fractured media (Novikov et al. 2017a, b). The aim of this
study is to analyse the effects of various attenuation mecha-
nisms in a fractured medium on the seismic waveforms and to
shed a light on their interference and impact on the attenuation
estimates.

The paper is structured as follows. We first present the
numerical fracture models considered in this study. Then, we
briefly describe the numerical methods and their set-ups for
the simulations. The modelling results are shown next and
the effects of attenuation on the recorded waveforms are dis-
cussed. Finally, we compare the attenuation estimates of both
methods. In order to do this, we also have to take transmis-
sion losses into account, which occur in the wave propagation
simulations. Finally, we discuss the interplay between these
attenuation mechanisms.

2 FR A C T U R E D M E D I U M

The 2D numerical models considered in this study consist of a
water-saturated porous medium containing uniform random
distributions of fractures. To explore the effects of the var-
ious attenuation mechanisms on the seismic wavefields, we
consider three scenarios: a fracture set parallel to wave propa-
gation, one perpendicular to wave propagation and one with
intersecting fractures (Fig. 1). The size of a single fracture is
30 mm by 4 mm and the fracture density, defined as the area
covered by fractures per unit area, is 6.25% for all models.
Although the relative large aspect ratio is not realistic for nat-
ural fractures, it still captures the main features of a fractured
medium, while making the wave propagation simulations fea-
sible. The fractures themselves are considered to be part of
the poroelastic continuum with very high porosity, low ma-
trix stiffness moduli and a tortuosity close to 1. A tortuosity
of 1 represents the case of freely flowing fluid between two
plates, a slightly higher value accounts in our case for the
porous nature of the fractures. The host rock is modelled as a
stiff low-porosity medium. To limit the frequency range in the
wave propagation simulations, we study various effects of the
diffusion mechanisms and their interference with scattering at-
tenuation by varying the permeability and thus the hydraulic
diffusivity of the fractures and host rock over several orders
of magnitude for a variety of hypothetical scenarios. All rock
and fluid properties are listed in Table 1.

3 M ETHODS

We consider two complementary numerical methods to
distinguish between dynamic and diffusion-based attenuation
mechanisms. On the one hand, we employ wave propagation
simulations based on a finite difference solution of Biot’s dy-
namic equations (Biot 1956, 1962a) and, on the other hand,
a numerical upscaling technique based on the quasi-static
poroelastic equations (Biot 1941). The former accounts for
both types of attenuation mechanisms, whereas the latter
takes only diffusion processes into consideration. Thus, a
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Table 1 Rock and fluid properties

Property Symbol Unit Background Fracture

Bulk modulus of solid grains Ks GPa 37 37
Shear modulus of solid grains μs GPa 44 44
Density of solid grains ρs kg/m3 2650 2650
Bulk modulus of fluid K f GPa 2.25 2.25
Fluid viscosity η Pa·s 10−3 10−3

Density of fluid ρ f kg/m3 1090 1090
Shear modulus of dry frame μ GPa 31 0.01
Bulk modulus of dry frame Kb GPa 26 0.02
Porosity φ – 0.1 0.9
Tortuosity τ – 1.83 1.1

Property Unit Perpendicular Parallel Intersecting

Background permeability m2 10−10 − 10−17 10−17 10−17

Fracture permeability m2 10−9 10−8 − 10−14 10−9 − 10−14

comparison of the results from both methods allows for
distinguishing between pressure diffusion phenomena and
dynamic effects.

3.1 Poroelastic wave propagation modelling

In the framework of Biot’s theory (Biot 1956, 1962a), a fluid-
saturated porous medium consists of a porous elastic solid
saturated with a viscous and compressible fluid. In such a
medium, S- and P-waves as well as can exist. The fast S- and
P-waves correspond to classical body waves in an isotropic
elastic or viscoelastic medium, whereas the slow P-wave de-
velops due to the fluid in the pore space. A seismic wave
travelling through such a fluid-saturated porous medium cre-
ates a relative fluid-solid displacement, which is dominated by
viscous forces in the low-frequency regime, resulting in a dif-
fusive slow P-wave (pressure diffusion wave), and by inertial
forces in the high-frequency regime, resulting in a propagating
slow P-wave. This relative fluid movement in the pore space
can be described by

−∇ p = ηY ∗ q − ρ f
∂v
∂t
, (1)

where v, q = φ(vf − v), vf are the solid phase, the relative fluid-
solid phase and fluid phase displacement velocities, respec-
tively, and p, ρ f and η denote the fluid pressure, density and
viscosity, respectively. A problem of this formulation for nu-
merical simulations of wave propagation in the time domain
is the time convolution-like non-local pseudo-differential op-
erator Y ∗ q, where Y denotes the viscodynamic operator. The
reason is that it requires the storage of the wavefield at all-time

instants. There are several ways to overcome this drawback
(Carcione 1996; Masson et al. 2006; Carcione and Davide
2009; Carcione, Morency and Santos 2010; Masson and Pride
2010). Here, we utilize the approach of Masson et al. (2006),
which yields a low-frequency generalized Darcy’s law

−∇ p = ρ f
τ

φ

∂q
∂t

+ ρ f
∂v
∂t

+ η

k0
q. (2)

Following Carcione et al. (2010), we retained all the coeffi-
cients which can be experimentally measured, that is, tortu-
osity τ , porosity φ, and fluid density ρ f . This low-frequency
approximation does not account for effects due to the devel-
opment of viscous boundary layers at the pore scale, which
would require the concept of a dynamic permeability to be
accounted for (Johnson et al. 1987). Therefore, the corre-
sponding relaxation process is not captured in our study and
the flow in the pore space is governed by Poiseuille flow. For
a detailed discussion of this topic, we refer to Masson et al.

(2006) and Pride (2005). However, Biot’s classical relaxation
mechanism (Biot global flow) due to the combined effects of
fluid pressure gradients between peaks and troughs of the
wave and the accelerations induced by the propagating wave
is taken into account.

The final dynamic equations for an isotropic, homo-
geneous poroelastic medium in the space–time domain are
given by

∇ · σ = ρ f
∂q
∂t

+ ρ
∂v
∂t
, (3)

− ∇ p = ρ f
τ

φ

∂q
∂t

+ ρ f
∂v
∂t

+ η

k0
q, (4)
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Figure 2 Schematic illustration of the computational
domain. The red line corresponds to the source posi-
tions, green lines represent the receiver positions. At
the left and right boundary perfectly matched layers
(PML) are implemented.

where σ denotes the total stress tensor and equation (4) is the
total balance of forces acting on the fluid–solid system. The
density of the saturated rock is given by ρ = (1 − φ)ρs + φρf ,
where φ is the porosity and ρs is the solid density. The
constitutive equations are

∂σ

∂t
= (λu∇ · v + αM∇ · q) I + μ

[∇v + (∇vT)]
, (5)

− ∂p
∂t

= M(α∇ · v + ∇ · q), (6)

where λu is the Lamé parameter of the undrained rock and μ
is the shear modulus. The Biot–Willis coefficient α and fluid
storage modulus M are defined as

α = 1 − Kd/Ks (7)

M = BKu/α, (8)

B = 1/Kd − 1/Ks

1/Kd − 1/Ks + φ(1/K f − 1/Ks)
, (9)

Ku = Kd

1 − B(1 − Kd/Ks)
, (10)

where Kd, Ku, and Ks are the bulk moduli of the drained and
undrained rock and of the solid constituents, respectively.
Details of the implemented finite difference approximation
are given in Appendix A.

3.1.1 Numerical set-up

The wave propagation simulations are performed for a 2D
transmission set-up shown in Fig. 2. The fractured medium is
embedded in a homogeneous background medium, which has
the same properties as the host rock (Table 1). A plane P-wave
is generated by a line of point sources in the homogeneous part
of the model and the wavefields are recorded at two receiver
lines, one located before and one after the fractured medium.
To obtain the frequency-dependent energy dissipation in such
a transmission set-up over a relative broad frequency range,

we employ band-limited Ricker wavelets with a compact time
history at different central frequencies. The thickness of the
fractured layer varies with the central frequency of the wavelet
so that the layer thickness corresponds to two to five wave-
lengths. The minimum layer thickness is at least 20 times the
correlation length of the heterogeneity (fracture) distribution
and the height of the model domain is 1 m. The central fre-
quencies and layer thicknesses are listed in Table 2. To avoid
a reduction of fracture concentrations at the top and bot-
tom of the 2D modelling domain, the geometry of the frac-
tured medium is periodic along these boundaries and periodic
boundary conditions are applied. At the left and right bound-
aries, complex frequency-shifted perfectly matched layers
(PML) (Berenger 1994; Drossaert and Giannopoulos 2007)
are implemented to prevent artificial reflections. The model
is discretized on a regular grid with a grid spacing of 1 mm,
which results in four grid cells within the fractures and is
sufficient to capture the diffusion processes appropriately.

The recorded traces at each receiver line are stacked to a
single trace. The incoming signal of the plane P-wave (receiver
line 1) and the transmitted P-wave signal (receiver line 2) are
separated from the other arrivals, for example coda waves by
a tapered time window. For each central frequency of these
recordings, the phase velocity and attenuation are estimated
by the spectral ratio technique (Gurevich and Pevzner 2015).
The details are given in Appendix B.

3.2 Quasi-static numerical upscaling

We apply the numerical upscaling scheme of Rubino et al.

(2016) for anisotropic 2D media in the frequency domain,
which is based on a finite element solution of Biot’s consoli-
dation equations (Biot 1941). By neglecting all inertia-related
terms and transforming equations (3–4) into the space-
frequency domain, we obtain the following coupled system
of the total stress equilibrium and Darcy’s law expressed in
displacements

∇ · σ = 0, (11)
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Table 2 Set up parameters for the transmission experiment

Frequency (kHz) Domain length (m) Source line (m) Receiver line 1 (m) Receiver line 2 (m) Fractured domain (m)

0.5 110 15 25 95 45–85
1 60 10 15 50 25–45
2 35 7.5 10 27.5 15–25
3 26.7 6.67 8.34 20.03 11.68–18.36
4 22.5 6.25 7.5 16.25 10–15
5 20 6 7 14 9–13
6 18.4 5.84 6.68 12.56 8.36–11.72
7 17.2 5.72 6.44 11.48 7.88–10.76
8 16.3 5.63 6.26 10.67 7.52–10.04
9 15.6 5.56 6.12 10.04 7.24–9.48
10 15 5.5 6 9.5 7–9

− ∇ p = iω
η

κo
w. (12)

The relative fluid-solid displacement is given by w =
φ(U − u), where U and u are the macroscopic fluid and solid
displacements, respectively. The constitutive equations (5–6)
of the poroelastic medium in space-frequency domain are

σ = [λu∇ · u + αM∇ · w]I + μ[∇u + (∇u)T] (13)

− p = M(α∇ · u + ∇ · w). (14)

3.2.1 Numerical set-up

Three oscillatory relaxation tests, comprising two compres-
sional tests and one shear test, are applied to a 1 m by 1 m
square sample of the fractured domain utilized in the wave
propagation modelling. The model is discretized on a regu-
lar mesh and the same grid spacing of 1 mm as in the wave
propagation simulations is used. The two compressional tests
are performed by applying a time-harmonic vertical displace-
ment at the top and bottom of the sample for test one and a
horizontal displacement at the lateral boundaries for test two.
Along the remaining boundaries the sample is fixed. The third
test is a simple shear test. In all tests, the sample is hydrauli-
cally sealed so that the fluid is not allowed to flow in or out.
The mathematical expressions of the boundary conditions are
given in Appendix C.

From the spatially averaged complex-valued stress and
strain fields of the three tests, we obtain a frequency-
dependent complex valued 2D stiffness matrix in Voigt no-
tation by applying a least square procedure (Rubino et al.

2016). The following relation holds

⎛
⎜⎝

〈σ11(ω)〉
〈σ22(ω)〉
〈σ12(ω)〉

⎞
⎟⎠ =

⎛
⎜⎝

C11 C12 C16

C12 C22 C26

C16 C26 C66

⎞
⎟⎠

⎛
⎜⎝

〈ε11(ω)〉
〈ε22(ω)〉
〈2ε12(ω)〉

⎞
⎟⎠ , (15)

where the stiffness coefficients Cij describe an effective
anisotropic viscoelastic behaviour of the fractured poroelastic
medium, provided that the sub-sample has the size of a
representative elementary volume (REV). The 1 m by 1 m
samples are assumed to be sufficiently close to the REV size.
From the complex-valued coefficients, the phase velocity
and attenuation of P- and S-waves as function of frequency
and incidence angle are determined by solving a plane
wave problem for a viscoelastic medium. The procedure is
described in detail in Rubino et al. (2016). Here, we only
focus on the P-wave velocity and attenuation for horizontal
incidence, which is given by:

Vp(ω, θ ) = ω

�(l p(ω, θ ))
. (16)

Q−1
p (ω, θ ) = � (

l p(ω, θ )2
)

� (
l p(ω, θ )2

) , (17)

where l p is the effective P-wave number of the fractured
medium. Setting the incidence angle as θ = 0, we obtain the
P-wave attenuation and velocity of a horizontally incident
wave, which corresponds to the set-up of the transmission
experiment.

4 M ODELLING R ESULTS

To illustrate how fluid-saturated fractures affect the wave-
forms in a transmission experiment, traces recorded at the
two receiver lines for different central frequencies are shown
in the following for the three scenarios of a fractured medium
at selected permeabilities and frequencies. The permeabilities,
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which in turn determine the hydraulic diffusivities of the host
rock and fractures, are chosen so that the fracture models
capture FB WIFF in the perpendicular case and FF-WIFF
in the intersecting case while none of the two mechanisms
plays a significant role in the parallel case. The corresponding
attenuation and phase velocities from the oscillatory test,
which capture the diffusion mechanisms (FB-WIFF and
FF-WIFF), are shown as functions of frequency alongside
the waveforms. The central frequencies are selected so
that waveforms correspond to a regime with and without
scattering. The recorded traces correspond to the velocity of
the solid phase, since we are interested in the attenuation of
the fast P-wave. A propagating slow P-wave cannot be clearly
identified for this wavefield. Furthermore, at the first receiver
line, apart from the incoming signal, a reflection from the
fractured zone is recorded for all cases and frequencies.
This in turn indicates that not only the former mentioned
attenuation mechanisms will lead to an amplitude reduction,
but that some of the reduction is caused by transmission
losses between the two receiver lines. In the numerical set-up
of this study, transmission losses comprise the reflections of
the fast and slow P-wave and transmitted slow P-waves at the
interfaces between the embedding background and fractured
domain.

4.1 Perpendicular case

The results of the transmission experiment are shown in
Fig. 3(a) for three permeabilities which correspond to the
cases of the low-frequency regime (κb = 10−10 m2), the high-
frequency regime (κb = 10−17 m2) and the regime of FB-WIFF
(κb = 10−13 m2) with respect to the considered diffusion mech-
anism. At a central frequency of 500 Hz, the stiffening effect
of the rock from the low-frequency regime (κb = 10−10 m2),
where the induced fluid pressure gradients have time to equi-
librate during the half cycle of the wave, to the high-frequency
regime (κb = 10−17 m2), where the induced pressure within the
fractures reduces their compliance, can be clearly observed by
the faster arrival of the transmitted signal in the latter case.
The corresponding effective velocities of the oscillatory test are
shown in Fig. 3(c). In both, low- and high-frequency regime,
the attenuation due to FB-WIFF is close to zero as evidenced
in Fig. 3(b). Nevertheless, there is a slight amplitude difference
between the two cases (Fig. 3a, R2). One explanation might be
the occurrence of a propagating slow P-wave at the permeabil-
ity of κb = 10−10 m2 and associated losses due to conversion
of fast waves to slow P-waves at the interfaces between the
fractures and the matrix. Another reason is the difference in
transmission losses for the two media. An indication of the
latter is the slightly smaller amplitude of the reflected wave

(a) (b)

(c)

Figure 3 (a) Transmission experiment for the perpendicular case: Recorded averaged waveforms at receiver line 1 and receiver line 2 for
three different central frequencies and permeabilities. The black dashed line separates the two recordings. Oscillatory test: (b) resulting P-wave
attenuation and (c) phase velocities as function of frequency for the same permeabilities. The black lines correspond to the central frequencies
of the signals shown in (a).
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for κb = 10−17 m2 compared to the case with κb = 10−10 m2.
For the third permeability (κb = 10−13 m2), noticeable attenu-
ation and dispersion occurs due to FB-WIFF at the considered
frequency of 500 Hz as indicated by the oscillatory test. The
attenuation is reflected by the strong amplitude reduction of
the transmitted signal and the corresponding positive disper-
sion by a change of shape of the signal pulse, which undergoes
a phase shift compared to the two non-dispersive signals at re-
ceiver 2 and the incoming signal at receiver 1 (Fig. 3a, 500 Hz).

At the two higher central frequencies of 3 and 10 kHz
scattering starts to affect the response (Fig. 3a). At these fre-
quencies coda waves are recorded for all three permeabilities
and marked by the black box in Fig. 3(a). The transmitted sig-
nals recorded at receiver 2 experience a phase shift opposite
in sign compared to those associated with the diffusion pro-
cesses. The reason is that Rayleigh scattering is governed by
negative dispersion. The amplitude loss is more significant for
the two cases with relatively high permeabilities and lower ef-
fective velocities compared to the one for the low-permeability
medium, for which the effective velocity is high and the con-
trast between fractures and host rock is reduced due to the
stiffening of the fractures (Fig. 3c).

4.2 Intersecting case

As for the perpendicular fracture case, the transmission results
are shown for three permeabilities and frequencies (Fig. 4a).

As expected from the oscillatory tests (Fig. 4b and c), the
effects of attenuation and dispersion due to pressure diffusion
on the seismic waveforms are smaller than in the perpendic-
ular fracture scenario. The main reason is that the amount
of perpendicular fractures, which contribute to the stiffening
effect from low to high frequencies, is reduced by 50%. The
other 50% are parallel fractures, since we kept the fracture
density constant for all three scenarios. Parallel fractures do
not experience a noticeable compression during the passage
of the seismic wave and thus do not experience significant
induced fluid pressures. For the considered frequency regime,
the pressure diffusion takes place between connected fractures
(FF-WIFF), where the parallel fractures act as fluid storage
volume and not the host rock as in the previous scenario. At
a central frequency of 1000 Hz, we observe small differences
for the three permeabilities with respect to the arrival times
of the transmitted signals and their amplitudes, which are in
agreement with the pressure diffusion mechanism (Fig. 4b and
c), that is the signal corresponding to the case with the highest
permeability arrives later than the signal corresponding to the
case with a low permeability. The shape of the transmitted
signal at a 1000 Hz for a permeability of κ f rac = 10−13 m2,
at which FF-WIFF causes the strongest attenuation (Fig. 4b)
experiences a slight phase shift in sign opposite to the phase
shift of the signals for the other two permeabilities. The for-
mer is indicative of the diffusion process (positive dispersion),
whereas the latter indicates scattering (negative dispersion).

(a) (b)

(c)

Figure 4 (a) Transmission experiment for the intersecting case: recorded averaged waveforms at receiver line 1 and receiver line 2 for three
different central frequencies and selected permeabilities. The black dashed line separates the two recordings. (b) Oscillatory test: resulting P-wave
attenuation and (c) phase velocities as function of frequency for the same selected permeabilities. The black lines correspond to the central
frequencies of the signals shown in (a).
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Figure 5 (a) Transmission experiment for the parallel case: Recorded averaged waveforms at receiver line 1 and receiver line 2 for three different
central frequencies and permeabilities. The black dashed line separates the two recordings. (b) Effective phase velocity of the fractured zone
obtained from the oscillatory test and the phase velocity of the surrounding homogeneous medium.

A closer inspection of the traces confirms that scattering
affects the seismic signal at this frequency, as indicated by
the small amplitude coda waves (visible for the red and blue
curves in Fig. 4a). At the two higher central frequencies,
scattering starts to dominate the response of the transmitted
signals and correspondingly all signals show similar phase
shifts.

4.3 Parallel case

The transmission experiments for the two lower central
frequencies do not show noticeable amplitude or wavelet
changes (Fig. 5a) for the different permeabilities. Since
all fractures are parallel with respect to the direction of
wave propagation, pressure diffusion effects are very small.
Furthermore, due to the choice of the low permeability host
medium as in the case for intersecting fractures, FB-WIFF
falls outside of the considered frequency range. Such a low
background permeability also prevents a slow propagating
P-wave in the host rock, although the fracture properties
would theoretically support slow waves. The fractures still
sufficiently lower the impedance of the medium to create
a reflection at the interface between the homogenous and
fractured zone (Fig. 5a), which is recorded at receiver line 1.
In addition to the effective velocity of the fractured domain

obtained from the oscillatory test, we plot the velocity of
the homogeneous medium surrounding the fractured zone
(Fig. 5b), which confirms a non-negligible velocity contrast
between the two zones. Furthermore, scattering can be clearly
observed for the highest displayed central frequency.

5 C OMPARISON OF ATTENUATION AND
VELOCITY ESTIMATES

In the transmission experiment, the wave travels between
the two receiver lines through a three-layer medium (homo-
geneous – fractured – homogeneous) of length L (Fig. 2),
whereas the oscillatory test accounts only for the fractured
domain of length Lfrac. In order to compare the resulting at-
tenuation and velocity estimations for the two complemen-
tary numerical methods, we have to either correct the wave
propagation results for the additional travel distance in the
homogeneous medium or the results of the oscillatory test for
a three-layer case.

5.1 Effective velocities

Since we know the velocities in the homogeneous embedding
medium, it is straightforward to correct the velocity estimates

C© 2018 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 935–955



944 E. Caspari et al.

Frequency [Hz]
102 103 104 105

A
tte

nu
at

io
n 

(1
/Q

)

0

0.02

0.04

0.06

0.08

0.1

0.12

Attenuation correction

QS:fractured domain
WP:fractured domain
Qs:fractured domain + transmission

Frequency [Hz]
102 103 104 105

P
-w

av
e 

ve
lo

ci
ty

 [m
/s

]

3800

3900

4000

4100

4200

4300

4400

4500
Velocity correction(a) (b)

QS:fractured domain
QS:three layer
WP:three layer
WP:fractured domain

Figure 6 (a) Effective velocities for the fractured domain and the three-layer case and their corresponding corrections (blue lines) for the
transmission experiment (WP) and oscillatory tests (QS). The two solid green lines correspond to two sub-samples of the fractured medium.
The black line indicates the onset of scattering. (b) Attenuation estimates for the fractured domain from the transmission experiment (WP) and
oscillatory tests (QS) with and without transmission losses.

of the two numerical methods. The effective P-wave velocity
V∗(three)

p for the three-layer case and fractured domain V∗(frac)
p

are given by:

V∗(three)
p = L

ttotal
, ttotal = Lfrac

Vvisco
p

+ L − Lfrac

Vhomo
p

, (18)

V∗(frac)
p = Lfrac

tfrac
, tfrac = Lfrac

Vvisco
p

, (19)

where ttotal and L are the total travel time and distance be-
tween the two receiver lines, respectively and Lfrac, tfrac, Vvisco

p

and Vhomo
p denote the length, travel time and velocity of the

Figure 7 Effective velocities for the fractured domain (bottom set of
curves) and the three-layer case (top set of curves) and their corre-
sponding corrections for four different permeabilities. The solid lines
correspond to the oscillatory test and the squares to the wave propa-
gation results.

fractured domain and velocity of the homogeneous domain,
respectively. Figure 6(a) displays the resulting velocities for
the fractured domain and three-layer case for the perpendicu-
lar scenario for which fracture-to-background wave-induced
fluid flow (FB-WIFF) (κb = 10−13 m2) occurs. The velocities
show a very good agreement between the two methods until
scattering starts to dominate the wave propagation response
(indicated by the black line in Fig. 6a). The two velocity esti-
mates of the oscillatory test correspond to two sub-samples of
the fractured domain. The velocity difference can be attributed
to slight variabilities of fracture density of the subsamples and
to the fact that at a domain size of 1 x 1m the representative
elementary volume (REV) size has not yet been fully reached.
However, the perpendicular scenario, comparing the velocities
for different permeabilities to the wave propagation results,
indicates that the overall agreement is still good (Fig. 7). The
REV issue is most severe for the perpendicular case, for which
the fractures have the largest impact on the effective velocities
due to pressure diffusion (Caspari et al. 2016).

5.2 Attenuation and transmission losses

Contrary to the velocities, applying corresponding corrections
to the attenuation is more difficult due to the additional
amplitude reduction caused by transmission losses. To
estimate transmission losses, we perform a 2D plane-wave
amplitude analysis for an anisotropic viscoelastic layer
embedded in an isotropic elastic medium. We use an elastic
approximation for the embedding homogeneous poroelastic
medium, since the attenuation due to Biot global flow is
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(a) (b)

Figure 8 Perpendicular case: (a) Attenuation estimates for four different permeabilities. The black solid line indicates the onset of scattering. (b)
Corresponding P-wave velocity estimate from the oscillatory test. The black dashed lines indicate the frequency range of the wave propagation
simulations.

negligibly small. Furthermore, transmission losses due to
reflected and transmitted slow P-waves are not considered
at the interface between the embedding and fractured
domain. The viscoelastic layer properties are given by the
Cij coefficients of the oscillatory test. The details are given
in Appendix D. Once the amplitudes of all generated wave
modes are known, the displacement fields of the normally
incident and transmitted waves can be obtained. Assuming
that the decay in the P-wave solid displacement is due to the
viscoelastic layer with frequency-dependent attenuation and
dispersion equal to that of the fractured medium, the effective
P-wave number of the three-layer case as function of the
homogeneous layer properties and the transmission losses is
given by

leff
p = −ilpL + ln(At)

−iL
, (20)

where l p and At are the P-wave number of the homogeneous
domain and the amplitude of the transmitted wave, respec-
tively. From the effective P-wave number, the attenuation can
then be computed as follows:

Q−1
p =

�
((

leff
p

)2
)

�
((

leff
p

)2
) . (21)

By interchanging L with Lfrac in equation (20), the effective
P-wave number for the fractured domain can be retrieved.
Figure 6(b) shows the attenuation estimates for the fractured
domain of the oscillatory test with and without trans-
mission losses compared to the wave propagation results.
As for the velocities, we observe an excellent agreement

till scattering attenuation starts to play a role. In the
following, we focus on the attenuation in the fractured
domain and show the wave propagation results, the quasi-
static results and the transmission-corrected quasi-static
results.

5.3 Perpendicular case: FB-WIFF

Figure 8(a) shows the attenuation for four different per-
meabilities of the host rock at which FB-WIFF occurs. At
frequencies below 2 kHz, this pressure diffusion mechanism
is predominant as evidenced by the good agreement between
the oscillatory test and transmission experiment. This also
confirms that the wave propagation modelling adequately
captures the diffusion process in the host rock. Above 2 kHz,
scattering attenuation starts to affect the response of the
transmission experiment and we observe a difference in the
attenuation estimates with respect to the oscillatory test.
Correspondingly, pressure diffusion effects become more
difficult to observe at high frequencies. Nevertheless, the mag-
nitude of the scattering attenuation strongly varies between
the four cases, since the effective compliance of a fracture
in a fluid-saturated porous medium is influenced by the
diffusion process. Depending on the frequency and hydraulic
diffusivity, the latter varying with the permeability of the host
rock, induced pressure gradients either relax during the wave
cycle (low-frequency regime) and fractures behave more
compressible, are unrelaxed (high-frequency regime) and
the fluid pressure stiffens the fractures, or resume an inter-
mediate state. The effective velocities (Fig. 8b) illustrate the
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(a) (b)

Figure 9 Intersecting case: (a) Attenuation estimates for four different permeabilities. The black solid line indicates the onset of scattering.
(b) Corresponding P-wave velocity estimate from the oscillatory test. The black dashed lines indicate the frequency range of the wave propagation
simulations.

stiffening of the medium from low to high frequencies and are
an indicator of the fracture stiffness. The largest contrast be-
tween fractures and their host rock occurs in the relaxed state
and thus we expect the strongest scattering attenuation for
this scenario. For all other scenarios the scattering attenuation
will be smaller. The attenuation curves in Fig. 8(a) correspond
to the intermediate states. As expected, we do indeed observe
a clear increase in attenuation with hydraulic diffusivity
(permeability), since we are approaching the relaxed state
(Fig. 8b).

5.4 Intersecting case: FF-WIFF

Figure 9(a) shows the attenuation for four different perme-
abilities of the fractured medium at which FF-WIFF occurs.
As in the perpendicular scenario below 2 kHz, the results
of the oscillatory test and transmission experiment are in
good agreement, and, thus at these frequencies FF-WIFF
dominates, whereas at higher frequencies strong scattering
attenuation controls the response of the transmission ex-
periment. Accounting for transmission losses improves the
agreement between the two numerical methods in some cases
indicating that they are not negligible (Fig. 10). However,
for the two lowest permeabilities, we overestimate the
transmission losses. This might be due to REV issues in the
oscillatory test or uncertainties in the estimation of quite
small attenuation values for the transmission experiment.
Nevertheless, the difference in the magnitude of scattering
attenuation (Fig. 9a) can be attributed to fracture-to-fracture
pressure diffusion, which determines the effective compliance
of the fractures and thus their contrast with respect to the

host rock. The process is the same as for the perpendicular
scenario, except that the diffusion process occurs within the
fractures and not in the host medium. The increase of the
effective velocities (Fig. 9b) from low to high frequencies
are again an indicator of the change in fracture compliance.
The overall dispersion for FF-WIFF compared to FB-WIFF
is smaller since, as discussed in Section 4.2, only fractures
perpendicular to the wave propagation experience an induced
fluid pressure upon the incidence of the seismic wave, whereas
fractures parallel to the wave propagation direction act as the
storage volume for this diffusion process. This is also reflected
in the smaller attenuation magnitude caused by pressure
diffusion for intersecting fractures compared to perpendicular
fractures.

Figure 10 Zoom of Fig. 9(a): Comparison of attenuation estimates
from the transmission experiment and the oscillatory test with and
without correction for transmission losses.
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(a) (b)

Figure 11 Scattering: (a) Comparison of scattering attenuation in the low-frequency (LF) and high-frequency (HF) regimes for the perpendicular,
intersecting and parallel scenarios. (b) Comparison of scattering attenuation in the HF regime with an analytical solution of Rytov et al. (1988).

5.5 Scattering attenuation

As discussed in the previous sections, scattering attenuation
affects the response of the transmission experiments above a
frequency of 2 kHz for the perpendicular and the intersecting
scenarios. The magnitude of the scattering attenuation for
each type of fractured medium varies considerably depending
on the effective compliance of the fractures, which in turn
is determined by the prevailing pressure diffusion process.
The largest difference in terms of fracture compliance occurs
between the low- and high-frequency regimes (Barbosa et al.

2016), at which attenuation due to pressure diffusion pro-
cesses does not occur. A comparison of scattering attenuation
estimates in these two regimes is shown in Fig. 11(a) for all
three fractured media and for permeabilities corresponding to
low- and high-frequency regimes, respectively. As expected,

the attenuation in the low-frequency regimes is larger than
in the high-frequency regimes for all scenarios. Despite the
contrast between fractures and the host rock, scattering
attenuation is influenced by the geometry of the fracture
arrangement. The geometrical influence can be illustrated
by the classical scattering theory of Rytov, Kravtsov and
Tatarskii (1988) and is detailed in Appendix E. This theory
accounts for geometrical factors, such as, in our case, the
distance between fractures as well as their orientation and
connectivity in terms of the spectral density of the slowness
fluctuations of the medium. The spectral densities for the
perpendicular and intersecting cases are shown in Fig. 12.
Their intensities are indicative for the scattering strength. We
observe clear differences in the shape as well as their intensity.
The resulting attenuation estimates are shown in Fig. 11(b).
They capture the main trend and confirm that the difference

Figure 12 (a) Spectral density for the intersecting (b) and perpendicular scenario. The colour code is indicative of the scattering strength of the
medium.
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(a) (b)

Figure 13 Perpendicular scenario at κb = 10−10 and 10−11m2: (a) Attenuation estimates for the transmission experiment (WP), the oscillatory
test including transmission losses (QS + trans.), Biot global flow of the host rock properties (BG background) and of the effective fractured
medium properties (BG fractured domain) and (b) corresponding velocities. Note that the legends of the subplots are valid for both of them.

in scattering between the perpendicular and intersecting cases
is governed by the geometry of the scatterers. However, the
absolute values are not precisely reproduced, since the theory
is based on the assumption of an acoustic medium.

5.6 Biot global flow

So far, we have focused on diffusion processes and their
interaction with scattering attenuation. However, the trans-
mission experiments also account for Biot global flow. For
the perpendicular scenario, this mechanism occurs in the host
rock at permeabilities of 10−10 − 10−12m2. The correspond-
ing attenuation for the transmission experiment is plotted in
Fig. 13(a) for κb = 10−10 and 10−11m2. At frequencies below
3 kHz, we observe clear differences between these two cases.
A comparison to attenuation estimates from the oscillatory
test including transmission losses (Fig. 13a, Qs + trans)
cannot fully explain this difference. Moreover, the difference
in transmission losses for the cases is expected to be small
as indicated by the corresponding velocities (Fig. 13b). This
suggests that Biot global flow might play a role. To analyse
this further, we estimate the attenuation and velocities
corresponding to Biot global flow for the host rock properties
(Fig. 13, BG background) and for the effective properties of
the fractured medium (Fig. 13, BG fracture). In the latter case,
the effective permeability and tortuosity are approximated
by a simple harmonic average of the fracture and host rock
properties and the dry properties are obtained from the
oscillatory test. Note that the estimation of Biot global flow
for the fractured domain is a first-order approximation,
since it does not take the anisotropic nature of the fractured

medium into account (Milani et al. 2016). Nevertheless, the
resulting attenuations of the two analytical Biot global flow
estimates for the two background premeabilities (κb = 10−10

and κb = 10−11m2) show differences of similar magnitude
as the transmission experiment at low frequencies. This
indicates that at κb = 10−11m2 Biot global flow is likely to
contribute. At higher frequencies, the differences between the
two cases in the transmission experiment disappear and the
response seems to be solely governed by scattering. Although
there are observable differences in the attenuation estimates
from the oscillatory test, they seem to play not a role in the
transmission experiments. The reason may be that the slow
P-wave is no longer a diffusive wave but a propagating wave.
In this regime, the quasi-static equations of the oscillatory
test are strictly not valid. For the intersecting and parallel
scenarios, the medium properties within the fractures would
theoretically support Biot global flow, but we do not observe
any corresponding evidence in the resulting attenuation
estimates. This is not surprising since the wavelength of the
slow P-wave only becomes comparable to the aperture and
length of the fractures for frequencies above 10 kHz which are
not considered in this study and for which we would expect
similar effects as those observed for a single infinite fracture
embedded in a poroelastic medium (Barbosa et al. 2016).

6 C ONCLUSIONS

In this study, we applied two complementary numerical meth-
ods, wave propagation simulations in form of transmission
experiments and a numerical upscaling scheme based on os-
cillatory relaxation tests, to analyse attenuation mechanisms
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and their interference in fluid-saturated fractured media.
Very good agreement between attenuation estimates from the
transmission experiments and the corresponding estimates
from the oscillatory relaxation tests at low frequencies is
observed for most scenarios after correcting for transmission
losses. This verifies that the attenuation behaviour caused by
pressure diffusion phenomena at low frequencies is properly
captured by both numerical methods. We also observe that
it is crucial to account for the travel path of the wave and
amplitude reductions due to transmission losses, if one
wants to obtain the intrinsic attenuation of the fractured
medium.

While attenuation is governed by pressure diffusion
at low frequencies, attenuation due to scattering increases
rapidly at higher frequencies, which makes the observa-
tion of WIFF effects more difficult. The strong scattering
attenuation is the result of the chosen fracture apertures,
which lead to aspect ratios that are not representative for
natural fractures, but make the wave propagation simulations
feasible. Nevertheless, the results clearly indicate that scat-
tering attenuation is strongly affected by pressure diffusion
phenomena, since they determine the effective compliance
of the fractures and thus the contrast between fractures and
host rock. Another important aspect which controls the
magnitude of scattering is the geometrical arrangement of
fractures. Although the fracture density is the same for all
three types of the fractured media considered in this study,
the scattering magnitudes differ. As expected, scattering
is lowest for fractures parallel to the direction of wave
propagation. The highest scattering attenuation occurs for
intersecting fractures, even though the compliance contrast in
this case is smaller than for the perpendicular arrangement,
as the cross-section of the scatter is the determining factor
here.

The effects of Biot global flow are rather small for the
considered models and can be only clearly identified for the
two lowest host rock permeabilities in the perpendicular sce-
nario. Interestingly, scattering attenuation at higher frequen-
cies does not seem to be affected when the slow P-wave is
propagating.
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APPENDIX A: F INITE DIFFERENCE
APPROXIMATIONS

For the wave propagation simulation in fluid-saturated porous
media, we utilize the standard staggered grid finite difference
scheme to approximate the system of equations (3)–(6). Fol-
lowing, Virieux (1986), Masson et al. (2006) and Masson
and Pride (2010), a grid with integer and half-integer nodes
is introduced; that is tn = nτ , tn+1/2 = (n + 1/2)τ , xi = ihx,
xi+1/2 = (i + 1/2)hx, zj = jhz, zj+1/2 = ( j + 1/2)hz, where n,
i and j are integers and τ , hx and hz are the grid steps along
the temporal and spatial directions. We use the second-order
centred finite difference operators

Dt[ f ]n
i, j = f n+1/2

i, j − f n−1/2
i, j

τ
, At[ f ]n

i, j = f n+1/2
i, j + f n−1/2

i, j

2
,

Dx[ f ]n
i, j =

f n
i+ 1

2 , j
− f n

i− 1
2 , j

hx
, Dz[ f ]n

i, j =
f n
i, j+ 1

2
− f n

i, j− 1
2

hz
,

(A1)

where f n
i, j = f (tn, xi , zj ) denotes a grid function defined

at described points. To construct the finite difference scheme,
the wavefield components are defined at different grid

nodes (Fig. 14), assuming that the model parameters are
constant within each grid cell; that is inside the rectangles
[xi−1/2, xi+1/2] × [zj−1/2, zj+1/2]. The model interfaces are
aligned with the grid lines, ensuring the second-order of
convergence even for discontinuous coefficients as discussed
in, for example Moczo et al. (2002); Lisitsa, Podgornova
and Tcheverda (2010); Vishnevsky et al. (2014). To do
so, we apply the balance technique or the finite-volume
approximation on a rectangular mesh (Samarskii 2001) to
equation (3)–(6):〈
ρ f

T
φ

〉
i+1/2, j

Dt[qx]n+1/2
i+1/2, j + 〈ρ f 〉i+1/2, j Dt[ux]n+1/2

i+1/2, j

+
〈
η

k0

〉
i+1/2, j

At[qx]n+1/2
i+1/2, j = −Dx[p]n+1/2

i+1/2 ,

〈
ρ f

T
φ

〉
i, j+1/2

Dt[qz]
n+1/2
i, j+1/2 + 〈ρ f 〉i, j+1/2 Dt[uz]

n+1/2
i, j+1/2

+
〈
η

k0

〉
i, j+1/2

At[qx]n+1/2
i, j+1/2 = −Dz[p]n+1/2

i, j+1/2,

〈ρ f 〉i+1/2, j Dt[qx]n+1/2
i+1/2, j + 〈ρ〉i+1/2, j Dt[ux]n+1/2

i+1/2, j

= Dx[σxx]n+1/2
i+1/2, j + Dz[σxz]

n+1/2
i+1/2, j ,

〈ρ f 〉i, j+1/2 Dt[qz]
n+1/2
i, j+1/2 + 〈ρ〉i, j+1/2 Dt[uz]

n+1/2
i, j+1/2

= Dx[σxz]
n+1/2
i, j+1/2 + Dz[σzz]

n+1/2
i, j+1/2,

Dt[σxx]n
i, j = (λ+ 2μ)i, j Dx[ux]n

i, j + (λ)i, j Dz[uz]
n
i, j

+(αM)i, j

(
Dx[qx]n

i, j + Dz[qz]
n
i, j

)
,

Dt[σzz]
n
i, j = (λ)i, j Dx[ux]n

i, j + (λ+ 2μ)i, j Dz[uz]
n
i, j

+(αM)i, j

(
Dx[qx]n

i, j + Dz[qz]
n
i, j

)
,

Dt[σxz]
n
i+1/2, j+1/2

= {μ}i+1/2, j+1/2

(
Dz[ux]n

i+1/2, j+1/2 + Dx[uz]
n
i+1/2, j+1/2

)
,

Figure 14 Schematic illustration of a staggered
finite difference grid cell with the associated
wave field components and material properties.
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Dt[p]n
i, j = −(αM)i, j

(
Dx[vx]n

i, j + Dz[vz]
n
i, j

)
+ (M)i, j

(
Dx[qx]n

i, j + Dz[qz]
n
i, j

)
, (A2)

where for any grid function fi, j

〈 f 〉i+1/2, j = 0.5( fi, j + fi+1, j ),

〈 f 〉i, j+1/2 = 0.5( fi, j + fi, j+1),

{ f }i+1/2, j+1/2 = 4
(

1
fi, j

+ 1
fi+1, j

+ 1
fi, j+1

+ 1
fi+1, j+1

)−1

.

(A3)

Following Masson et al. (2006), the Courant stability
condition for the considered scheme is

τVmax
p

√
1
h2

x
+ 1

h2
z

≤ 1, (A4)

where Vmax
p = maxχ,ω �(Vp), Vp is fast P-wave phase velocity,

and χ = η/k0. Note that in this study, we use the second-
order approximation in space. The approximation can be
easily improved by using higher order operators. However,
we consider the case where heterogeneities, and thus the grid
steps, are much smaller than the wavelength, thus the nu-
merical dispersion is negligible even for the low-order ap-
proximations. Moreover, the formal increase of the order of
the approximation does not improve the convergence rate
of the solution in inhomogeneous media (Vishnevsky et al.

2014).

APPENDIX B: SPE C T R A L R A T I O M E T HOD –
PHASE VELOCI T Y A N D QUA LI T Y FA C TOR

Let us consider a plane wave propagating in z-direction
through the fractured medium

v(t, z) = v0eiω(t−z/c(ω)), (B1)

where c(ω) is the complex frequency-dependent phase velocity
of the medium. The plane wave amplitude v0 in the transmis-
sion experiment depends on the attenuation in the fractured
domain and on the transmission losses across the fractured
domain, but remains constant in the homogeneous medium.
Let z = z1 and z = z2 = z1 + L be the two receiver positions.
Then the average of the signals recorded at the two receiver
positions is given by

〈v(t, x, z1)〉x = v(t, z1) = v0eiω(t−z1/c(ω)), (B2)

〈v(t, x, z2)〉x = v(t, z2) = v0eiω(t−(z1+L)/c(ω))

= v(t, z1)e−iωL/c(ω). (B3)

The same relations hold in the frequency domain and equation
B3 can be written as

v(ω, z2) = v(ω, z1)e−iωL�(s)eωL�(s), (B4)

where s(ω) is the inverse of the complex valued phase velocity.
From this, one can easily obtain the imaginary part of s(ω) as
follows:

�(s) = 1
ωL

log
|v(ω, z2)|
|v(ω, z1)| . (B5)

The real part of s(ω) is the argument of the ratio
|v(ω, z2)|/|v(ω, z1)| and thus is not single-valued. To deter-
mine the phase uniquely, we pick the travel times t1 and t2
at the maximum amplitude of the two signals for the two
receiver positions, which provides an approximation for the
phase velocity

V0
p = L

t2 − t1
. (B6)

Then, the phase is chosen so that the following condition is
fulfilled∣∣∣∣�(s(ω))
ωL

− ωL
V0

p

∣∣∣∣ < π. (B7)

From the resulting real and imaginary parts of the complex-
valued slowness, the real-valued phase velocity and the quality
factor can be reconstructed as

vp = 1
�(s(ω))

, (B8)

Q−1
p = −�(s2(ω))

�(s2(ω))
. (B9)

APPENDIX C: BOUNDARY CONDITIONS OF
T H E OS C I L L A T O R Y T E S T S

To estimate the frequency-dependent stiffness coefficients, we
solve Biot’s (1941) quasi-static poroelastic equations (11)–
(13) for the following displacement boundary conditions. The
computational domain is given by � = [0, Lx] × [0, Lz] with
the boundary � = �L ∪ �B ∪ �R ∪ �T, where

�L = {(x, z) ∈ � : x = 0}, (C1)

�R = {(x, z) ∈ � : x = Lx}, (C2)

�B = {(x, z) ∈ � : z = 0}, (C3)

�T = {(x, z) ∈ � : z = Lz}. (C4)
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The boundary conditions for the two compressional tests are
given by

u · ν = −�u, (x, z) ∈ �T ∪ �B,

u · ν = 0, (x, z) ∈ �L ∪ �R (Test 1), (C5)

u · ν = −�u, (x, z) ∈ �R ∪ �L,

u · ν = 0, (x, z) ∈ �T ∪ �B (Test 2), (C6)

w · ν = 0, (x, z) ∈ �, (σν) · χ = 0, (x, z) ∈ �,
(C7)

where ν and χ denote the unit outer normal and unit tan-
gent on � so that {ν,χ} is an orthonormal system on �. The
third test is a simple shear test with the following boundary
conditions

u · χ = �u, (x, z) ∈ �T ∪ �B, (C8)

u · χ = 0, (x, z) ∈ �L ∪ �R, (C9)

w · ν = 0, (x, z) ∈ �, (σν) · χ = 0, (x, z) ∈ �.
(C10)

APPENDIX D: T R A N SMI S I ON LOSSES –
PLANE WAVE A MPLI T UDE A N A LY SI S

To estimate transmission losses, we perform a 2D plane wave
amplitude analysis for an anisotropic viscoelastic layer �M

embedded in an isotropic elastic medium (�U and �L). For
a general anisotropic case under plane strain conditions, the
properties of a 2D viscoelastic layer can be obtained from the
oscillatory test (Rubino et al. 2016). The constitutive relations
in the domain �M are given by:

σ11 = C11ε11 + C12ε22 + 2C16ε12, (D1)

σ22 = C12ε11 + C22ε22 + 2C26ε12, (D2)

σ12 = C16ε11 + C26ε22 + 2C66ε12, (D3)

where the stress σij, the strain, εij, and the coefficients Cij,
are complex-valued and frequency-dependent. The isotropic
constitutive relations in the upper �U and lower domain �L

are

σij = 2μεij + δi jλ∇u (D4)

where μ, λ and u are the shear modulus, Lamé parameter and
displacement, respectively. For plane waves the expressions
of the potentials in each layer are known (Dutta and Odé
1983; Barbosa et al. 2016). Further, assuming the following
set of conditions at the upper �1 and lower boundary �2 of
the viscoelastic layer

u
�U
1 = u

�M
1 in �1 and u

�M
1 = u

�L
1 in �2 (D5)

u
�U
2 = u

�M
2 in �1 and u

�M
2 = u

�L
2 in �2 (D6)

σ
�U
12 = σ

�M
12 in �1 and σ

�M
12 = σ

�L
12 in �2 (D7)

σ
�U
22 = σ

�M
22 in �1 and σ

�M
22 = σ

�L
22 in �2 (D8)

we can construct a linear system of equations for the
potential amplitudes. Let us denote a wave vector k = (m, l),
where the horizontal m and vertical component l are
given by

m = kU
p sin(θi ), (D9)

lr
n =

√
(kr

n)2 − m2 n = P, S and r = �U, �M, �L. (D10)

The horizontal component is constant for all wave modes,
whereas the vertical component depends on the wave type
denoted here by P and S for the P- and S-waves, respectively.
Assuming that the incident wave is homogeneous with
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an incident angle θi , the linear system can be written as
follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−m lU
p 2mμlM

p −2μ
(
lU

p

)2 − λ
(
kU

p

)2
0 0

−lU
s −m

((
lU
s

)2 − m2
)
μ 2μmlUs 0 0

m −lM
p m2C16 + (

lM
p

)2
C26 − 2mlM

p C66 m2C12 + (
lM

p

)2
C22 − 2mlM

p C26 −meilMp H lM
p eilMp H

lM
s m mlM

s C16 − mlM
s C26 −

((
lM
s

)2 − m2
)

C66 mlM
s C12 − mlM

s C22 −
((

lM
s

)2 − m2
)

C26 −lM
s eilMs H −meilMs H

m lM
p m2C16 + (

lM
p

)2
C26 + 2mlM

p C66 m2C12 + (
lM

p

)2
C22 + 2mlM

p C26 −me−ilMp H −lM
p e−ilMp H

−lM
s m −mlM

s C16 + mlM
s C26 −

((
lM
s

)2 − m2
)

C66 −mlM
s C12 + mlM

s C22 −
((

lM
s

)2 − m2
)

C26 lM
s e−ilMs H −me−ilM

s H

0 0 0 0 me−ilLp H lL
p e−ilLp H

0 0 0 0 −l L
s e−ilLs H me−ilLs H

0 0

0 0(−m2C16 − lM
p

)2
C26 + 2mlM

p C66

)
eilMp H (−m2C12 − lM

p

)2
C22 + 2mlM

p C26

)
eilMp H(

−mlM
s C16 + mlM

s C26 +
((

lM
s

)2 − m2
)

C66

)
eilMs H

(
−mlM

s C12 + mlM
s C22 +

((
lM
s

)2 − m2
)

C26

)
eilMs H(

−m2C16 − (
lM

p

)2
C26 − 2mlM

p C66

)
e−ilMp H

(
−m2C12 − (

lM
p

)2
C22 − 2mlM

p C26

)
e−ilMp H(

mlM
s C16 − mlM

s C26 +
((

lM
s

)2 − m2
)

C66

)
e−ilMs H

(
mlM

s C12 − mlM
s C22 +

((
lM
s

)2 − m2
)

C26

)
e−ilMs H

2mlL
pμe−ilLp H

(
2μ

(
l L

p

)2 + λk2
p

)
e−ilLp H

−
((

lM
s

)2 − m2
)
μe−ilLs H 2mlL

s μe−ilLs H

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ar

Br

Au

Bu

Ad

Bd

At

Bt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m

lU
p

2mμlU
p

2μ
(
lU

p

)2 + λk2
p

0

0

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(D11)

where Ar , Br , Au, Bu, Ad, Bd, At, Bt are the potential ampli-
tudes of the reflected, the up-going, the down-going and
the transmitted P- and S-waves. Here, we only retrieve
the amplitudes for an incidence angle of θi = 0, since this
corresponds to the set-up of the transmission experiment.
Once we have solved the linear system for these potential

amplitudes, we can compute the solid displacement field of
the incident ui and transmitted wave uT

ui (y1) = −ilpe−ilpy1 Ai ,

ut(y2) = −ilpe−ilpy2 At, (D12)
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where the incident amplitude Ai is assumed to be 1. Assuming
that the decay of the amplitude is caused by the viscoelastic
layer, we can alternatively express the two displacement fields
similar to Appendix B in terms of an effective wavenumber
(leff )

ui (y1) = −ileff
p e−ileff

p y1

ut(y2) = −ileff
p e−ileff

p y2 , (D13)

where l p is the P-wave number of the embedding homogeneous
background. Combing these two sets of expressions leads to
the relation for the effective P-wavenumber

leff
p = −ilpL + ln(At)

−i L
, (D14)

where L = y2 + y1 and y2 and y1 are the positions of the sec-
ond and first receiver line, respectively. This effective P-wave
number describes the three-layer case. By replacing in equa-
tion (D13) y1 and y2 with the interfaces of the viscoelastic layer
leads to the effective wavenumber of the fractured medium

leff
p = −ilpLfrac + ln(At)

−iL
. (D15)

APPENDIX E : ESTIMATION OF
A T T E N U A T I O N D U E T O S C A T T E R I N G

To estimate the energy dissipation caused by scattering
for a system of randomly distributed heterogeneities in a

2D acoustic medium, we compute the effective scattering
cross-section after Rytov et al. (1988):

σ (φ) = 1
2

k3π�S( Q(φ)) with Q(φ) = k(ns(φ) − n), (E1)

where k = ω/〈v〉 is the modulus of the wave vector and ns(φ)
the vector that defines the direction of the scattered waves.
The vector n defines the direction of the incident plane wave.
The spectral density function�S( Q(φ)) is the frequency coun-
terpart of the correlation function of the slowness fluctuations
S̃ = (Vp(r))−1 − 〈(Vp(r))−1〉 of the fractured domain. Vp is the
P-wave phase velocity. As we consider a uniform distribu-
tion of fractures, the slowness fluctuation field is statistically
quasi-homogeneous. Hence, its correlation function can be
represented as

ψS(r1, r2) = 〈S̃(r1)S̃(r2)〉 = ψS(ρ, R), (E2)

where ρ = r1 − r2, R = (r1 + r2)/2, and ψS(ρ, R) slowly
vary with R. Thus, the spectral density can be obtained
from

�S(κ, R) = 1
(2π )2

∫
ψS(ρ, R)e−iκρdρ, (E3)

and the scattering attenuation is given by

1
Q(ω)

= 〈Vp(r)〉 ∫ 2π
0 σ (φ)dφ

ωπ
, (E4)

where 〈Vp(r)〉 is the average P-wave phase velocity.
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