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ABSTRACT

The petrological evolution of magmatic rocks associated with porphyry-related Cu deposits is

thought to exert a first-order control on ore genesis. It is therefore critical to understand and recog-

nize petrological processes favourable to the genesis of porphyry systems. In this study we present
new petrographic, geochemical (whole-rock and mineral), and isotopic (Pb, Sr, Nd) data for rocks

from the magmatic suite associated with the Eocene Coroccohuayco porphyry–skarn deposit, south-

ern Peru. Previously determined radiometric ages on these rocks provide the temporal framework

for interpretation of the data. Arc-style magmatic activity started at Coroccohuayco with the emplace-

ment of a composite precursor gabbrodiorite complex at c. 40�4 Ma. After a nearly 5 Myr lull, mag-

matic activity resumed at c. 35�6 Ma with the rapid emplacement of three dacitic porphyries associ-

ated with mineralization. However, zircon antecrysts in the porphyries show that intra-crustal
magmatic activity started c. 2 Myr before porphyry emplacement and probably built a large intra-

crustal magmatic body with an associated large thermal anomaly. Our data suggest that all magmas

underwent a period of evolution in the deep crust before transfer and further evolution in the upper

crust. The gabbrodiorite complex was sourced from a heterogeneous deep crustal reservoir and was

emplaced at a pressure of 100–250 MPa where it underwent a limited amount of fractionation and

formed a chemically zoned pluton. Its initial water content and oxygen fugacity were estimated to be
around 3 wt % H2O and NNO 6 1 (where NNO is the nickel–nickel oxide buffer), respectively. The

deep crustal source of the porphyries appears to have been more homogeneous. The porphyries are

interpreted to be the product of advanced differentiation of a parental magma similar to the gabbro-

diorite. Most of this evolution occurred at deep crustal levels (around 800 MPa) through fractionation

of amphiboleþpyroxeneþplagioclase 6 garnet, leading to the development of a high Sr/Y signature

characteristic of porphyry-related magmatism worldwide. Subsequent upper crustal evolution

(100–250 MPa) was dominated by crustal assimilation, cannibalism of previously emplaced magma
batches (proto-plutons) and magma recharge. Water content and oxygen fugacity were estimated to

be around 5 wt % H2O and NNOþ1 to NNOþ2, respectively, at the end of the period of upper crustal

evolution. This high oxygen fugacity is inferred to have favoured sulphur and metal enrichment in

the melt. The high thermal regime generated through 2 Myr of sustained magmatism in the upper

crust favoured crustal assimilation, proto-pluton cannibalism, and efficient metal extraction upon

fluid exsolution. The Coroccohuayco magmatic suite appears to have acquired its metallogenic
potential (high fO2, high Sr/Y) through several million years of deep crustal evolution.
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INTRODUCTION

Porphyry systems (porphyry Cu–Mo–Au, Cu–Zn–Pb–Au

skarn, Cu–Zn–Pb–Au–Ag epithermal) result from the

focused release of saline metal- and sulphur-bearing

hydrothermal fluids from a cooling upper crustal

magma chamber (e.g. Sillitoe, 2010). These systems are

regarded as the result of the positive interplay between

tectonic, magmatic and hydrothermal processes

(Tosdal & Richards, 2001; Richards, 2013). They com-

monly occur in Cenozoic to Mesozoic fossil magmatic

arcs, although some older examples are also found.

Because magmas are recognized as the source of most

of the metals and fluids (Hedenquist & Lowenstern,

1994; Dreher et al., 2005; Pettke et al., 2010; Simon &

Ripley, 2011; Stern et al., 2011) it is critical to under-

stand how a magmatic system will become productive

and ultimately favour the genesis of economic mineral-

ization. The common association of high Sr/Y magma

with porphyry systems (Sr/Y> 20–40; Thiéblemont

et al., 1997; Sajona & Maury, 1998; Oyarzun et al., 2001;

Rohrlach & Loucks, 2005; Richards & Kerrich, 2007;

Shafiei et al., 2008; Chiaradia et al., 2009a; Hou et al.,

2009; Shen et al., 2009; Schütte et al., 2010; Richards

et al., 2012; Loucks, 2014) suggests that specific petro-

logical processes play a key role in the genesis of

economic mineralization.

Many studies have highlighted the importance of

deep crustal petrological processes in producing hy-

drous, oxidized, S-rich, metal-rich and high Sr/Y mag-

mas associated with porphyry systems (e.g. Richards,

2011a, 2011b, and references therein). However, others

have proposed that petrological processes happening

in an upper to mid-crustal magma chamber may be of

primary importance. Such processes may involve the

following: (1) mafic magma underplating and degassing

significant amounts of sulphur- and metal-rich mag-

matic fluids into an overlying felsic magma (Keith et al.,

1997; Hattori & Keith, 2001; de Hoog et al., 2004; Blundy

et al., 2015); (2) saturation of magmatic sulphides fol-

lowed by remobilization through their destabilization by

magmatic–hydrothermal fluids (Keith et al., 1997; Halter

et al., 2002, 2005; Nadeau et al., 2010; Wilkinson, 2013).

Here we present a detailed petrological study of the

Eocene magmatic suite associated with the

Coroccohuayco porphyry–skarn Cu(–Au–Fe) deposit,

southern Peru. Studies of magmatic systems associated

with porphyry ore deposits aim at reconstructing the

depth- and time-integrated evolutionary path (in terms

of pressure, temperature and chemical composition) of

magma from genesis to emplacement. However, at

most fossil porphyry systems (such as Coroccohuayco)

the available part of the magmatic system (porphyry

stocks and dykes) represents only a very small window

to study petrological processes through the entire

continental crust. Indeed, porphyritic rocks at ore depth

typically represent small apophyses episodically

extruded from a much larger pluton lying at greater

depth.

At Coroccohuayco magmatism spans nearly 5 Myr

and temporally evolves from basic to silicic, although

only the late silicic stages are directly linked to ore gen-

esis (Chelle-Michou et al., 2014, 2015). Such a long-lived

system offers the opportunity to provide a time-
constrained perspective on the petrological evolution of

a porphyry system. We use petrographic observations,

major and trace element geochemistry of minerals and

whole-rocks, radiogenic isotopes of whole-rocks (Pb,

Sr, Nd), trace element modelling, and previously pub-

lished ages (Chelle-Michou et al., 2014, 2015) to provide

a time-resolved reconstruction of the evolution of inten-
sive parameters (P–T–H2O–fO2) and the geochemistry

of the magmatic system. Ultimately, we aim to con-

strain the locus and processes of magma generation

and evolution and to understand their impact on

the genesis of the Cu(–Au–Fe) porphyry–skarn

mineralization.

EOCENE GEODYNAMIC SETTING, ARC
MAGMATISM AND PORPHYRY SYSTEMS
IN SOUTHERN PERU

The Coroccohuayco porphyry–skarn deposit is part of
the Tintaya mining district (which also includes the de-

posits of Tintaya and Antapaccay) located at the south-

ern edge of the Eocene Andahuaylas–Yauri batholith in

southern Peru (inset Fig. 1; Perelló et al., 2003; Maher,

2010). This batholith has recently emerged as an

important metallogenic belt, owing to major discoveries
of world-class porphyry copper systems (e.g.

Antapaccay, Las Bambas).

During the Eocene period flattening of the subduct-

ing Nazca slab in the Central Andean Zone resulted in a

northeastward inland migration (up to 200 km) of the

magmatic arc compared with its previous positions (in-

set Fig. 1; Mamani et al., 2010). This timing also corres-
ponds to the Incaic compressional event that initiated

crustal-scale thickening and shortening in the central

Andes (Sandeman et al., 1995; Carlotto, 1998; Mamani

et al., 2010), oroclinal bending (Roperch et al., 2006,

2011; Arriagada et al., 2008) and the initial phase of

building of the Altiplano (McQuarrie et al., 2005). As
crustal thickening, shortening, bending and uplift con-

tinued in the central Andes, the Nazca plate motion vec-

tor changed at c. 28–25 Ma to become normal and the

convergence rate increased (Somoza & Ghidella, 2012).

The angle of subduction has steepened and the mag-

matic arc has slowly migrated trenchward from then on

(inset Fig. 1; Mamani et al., 2010).
The Andahuaylas–Yauri batholith is the plutonic rem-

nant of this Eocene calc-alkaline magmatic arc (Mamani

et al., 2010), and is continuous to the south with the

Chilean Eocene magmatic arc along the Cordillera de

Domeyco that hosts some of the largest porphyry sys-

tems in the world (Perelló et al., 2003). It now forms a
300 km long and up to 130 km wide batholith emplaced

into Mesozoic to early Cenozoic marine sedimentary
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sequences. In a regional study, Perelló et al. (2003) iden-

tified an early dominantly mafic phase of magmatism

followed by a dominantly felsic one, the latest being lo-

cally associated with porphyry systems.

The Tintaya district represents a tectonically uplifted
window of Mesozoic basement surrounded by

Cenozoic volcano-sedimentary basins. It was affected

by two phases of Eocene magmatic activity that

intruded Cretaceous sandstones and limestones. Cu–

Fe-rich skarn-type mineralization is commonly found at

the contact between the felsic porphyritic rocks and the

Cretaceous limestone (Ferrobamba formation) through-

out the district.

GEOLOGY OF COROCCOHUAYCO AND ITS
MAGMATIC SUITE

Like porphyry-related magmatism elsewhere (Sillitoe,
2010), Coroccohuayco records poly-phasic magmatic

activity (Fig. 1 and Fig. 2). From �40�4 Ma to 40�2 Ma a

Fig. 1. Geological map of the Coroccohuayco prospect. Inset shows the location of the Andahuaylas–Yauri Batholith and the south-
ward extension of the Eocene arc in Chile.
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heterogeneous, dominantly mafic complex termed the

gabbrodiorite complex (GDC) was emplaced (Chelle-

Michou et al., 2014). It is mainly composed of horn-

blende gabbro and diorite with subordinate amounts of

their leucocratic equivalents and very minor anortho-
site. The GDC crops out continuously over an area of

�10 km2. Drill-hole intersections show that, at least just

above the Coroccohuayco skarn ore body, it is

emplaced as an �250 m thick sill-like intrusion capping

Cretaceous limestones, with local deeper roots

(Chelle-Michou et al., 2015). The total preserved volume

of this complex is estimated to be in the range of 3–10
km3.

After a nearly 5 Myr lull, magmatism resumed with

the sequential intrusion of three porphyries of dacitic to

rhyodacitic composition at around 35�6 Ma (Chelle-

Michou et al., 2014). This started with the emplacement

of stocks and NW–SE- and ENE–WSW-trending dykes
of hornblende-bearing porphyry, closely followed by a

hornblende- and biotite-bearing porphyry. On the basis

of high-precision U–Pb geochronology, Chelle-Michou

et al. (2014) estimated that the porphyries were

emplaced in less than 86 kyr. They are temporally and

genetically related to the ore-forming hydrothermal
event (Chelle-Michou et al., 2015). These first two por-

phyries were subsequently crosscut by subvolcanic

NW–SE-trending rhyodacite porphyry dykes marking

the end of the Eocene magmatism at Coroccohuayco.

Although the rhyodacite commonly displays pervasive

hydrothermal alteration, it postdates the main ore

stage. Its emplacement age could not be resolved pre-
cisely, but it is believed to have intruded in the 35�6–

35�0 Ma time interval (Chelle-Michou et al., 2014). Zircon

antecrysts in the three porphyries indicate that deep-

seated magmatism had actually resumed by �37�5 Ma,

and continued until the emplacement of the rhyodacite

at upper crustal levels (Chelle-Michou et al., 2014). This
sustained 2 Myr period of intra-crustal magmatic activ-

ity led to the building of a stable thermal anomaly that

may have favoured cannibalization of previously

emplaced magma batches (proto-plutons) and crustal

assimilation (Chelle-Michou et al., 2014). Using the zir-

con Ce/Nd ratio as a proxy for magma oxidation state

(similar to the zircon Ce anomaly or zircon Ce4þ/Ce3þ

ratio), Chelle-Michou et al. (2014) showed that the por-

phyries (Ce/Nd of 9–46) are significantly more oxidized

than the GDC (Ce/Nd of 2–12). For Eocene zircons from

the porphyries (autocrysts and antecrysts spanning the

c. 37�5–35�6 Ma age interval), they also noted an ab-

sence of correlation between zircon Ce/Nd and age,
suggesting that the oxidized character of the magma

was already established at 37�5 Ma and persisted until

the emplacement of the porphyries at 35�6 Ma.

Magmatism at Coroccohuayco finally terminated at

�26�6 Ma with the intrusion of north–south-trending

dykes of clinopyroxene-bearing alkali basalt (Chelle-

Michou et al., 2015). Because of its temporal relation-
ship with the other magmatic rock, the alkali basalt is

not considered to be part of the Coroccohuayco

magmatic suite. Instead, it is temporally related to the

Tacaza arc that marked the beginning of the trenchward

migration of arc magmatism in southern Peru (see

Mamani et al., 2010).

SAMPLES AND ANALYTICAL METHODS

Rock samples were collected from both outcrops and

drillcore. Only the least hydrothermally altered samples

of each rock type were selected for geochemical

and isotopic analysis on the basis of hand lens and thin

section observations. However, all samples of the rhyo-
dacite display extensive alteration of mafic minerals

and moderate to pervasive sericitization of plagioclase

and groundmass. To constrain crustal assimilation, we

also included three Triassic red-bed samples of the Mitu

group from the Mamuera section (60 km NE of

Coroccohuayco; Reitsma, 2012). On the basis of xeno-
crystic zircon age distribution and Hf isotopes, such

sediments have been proposed as assimilants for the

porphyries (Chelle-Michou et al., 2014).

Approximate modal mineral abundances were ob-

tained from image analysis of scanned thin sections

with an estimated uncertainty of <1% (>1000 points).

Microprobe analysis of amphibole, pyroxene, plagio-
clase and K-feldspar [Supplementary Data (SD) Tables

1–4; supplementary data are available for downloading

at http://www.petrology.oxfordjournals.org] were car-

ried out at the University of Lausanne on a JEOL 8200

electron microprobe equipped with five wavelength-dis-

persive spectrometers. We employed an accelerating
voltage of 15 kV, a beam current of 15 nA, a spot size of

3 mm and measuring time of 10–30 s on peak and half

this time on the respective backgrounds before and

after the peak depending on the element and the min-

eral analysed. Both natural and synthetic silicates,

oxides and sulphate standards were used for external

calibration.
In situ trace element abundances in amphibole,

plagioclase and pyroxenes (SD Tables 1–4) were deter-

mined on polished thin sections by laser ablation in-

ductively coupled plasma mass spectrometry (LA-ICP-

MS) using a Thermo ELEMENT XR sector-field ICP-MS

system interfaced to a UP-193FX ArF excimer laser ab-
lation system at the Institute of Earth Sciences of the

University of Lausanne. The mass spectrometer opti-

mization was similar to that described by Ulianov et al.

(2012). Operating conditions of the ablation system

included a repetition rate of 12 Hz, a pit size of 35–50mm

and an on-sample energy density of 5�0 J cm–2. The

NIST standard glass SRM 612 was employed for exter-
nal standardization. SiO2 and CaO determined by elec-

tron microprobe analysis on the same spot as

subsequent ablation served as an internal standard for

feldspars (plagioclase, K-feldspar)þorthopyroxene and

amphiboleþ clinopyroxene, respectively. Raw data

were reduced off-line using the LAMTRACE software
(Jackson, 2008). The reproducibility (1r) of the meas-

ured trace element abundances in the SRM 612 glass
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standard generally range from <1 relative % (rel. %) to

<10 rel. %, depending on the element and the analytical

list (feldspar or amphibole).

Whole-rock samples were crushed using a steel jaw

crusher and powdered with an agate mill (<70 mm).
Fused glass beads (fluxed with Li2B4O7) and pressed

powder pellets from whole-rock powders were ana-

lysed for major, minor and some trace elements by X-

ray fluorescence (XRF) at the University of Lausanne

(Table 2, SD Table 5). Data quality was controlled with

the BHVO, NIM-N, NIM-G, SY-2, SDC-1 and QLO stand-

ards. Average reproducibility (1r) of major and trace
elements on these standards is <1 rel. % for all major

elements (except for MgO and K2O, <3 rel. %) and <10

rel. % for trace elements (<0�3 rel. % for Sr). Rare earth

elements (REE) and additional trace elements were ana-

lysed by LA-ICP-MS on fused glass bead (Table 2, SD

Table 5) fragments previously used for XRF analysis.
Analysis were carried out at the University of Lausanne

either on a Thermo ELEMENT XR sector-field ICP-MS

system interfaced to an UP-193FX ArF excimer laser

ablation system or a Perkin–Elmer ELAN 6100 DRC

quadrupole ICP-MS system interfaced to a GeoLas

200M 193 nm Lambda Physik excimer laser ablation
system. Operating conditions of the ablation systems

included a repetition rate of 15 or 10 Hz, a pit size of 100

or 120 lm and an on-sample energy density of 5�0 or

16�8 J cm–2 depending on the equipment used. The

NIST standard glass SRM 612 was employed for exter-

nal standardization and the Sr content determined by

XRF for each sample served as an internal standard.
Raw data were reduced off-line using the LAMTRACE

software (Jackson, 2008). For each sample three points

were measured and results were averaged. The repro-

ducibility (1r) of the measured trace element abun-

dances in the SRM 612 glass standard was <3 rel. %

for all elements whereas reproducibilities of repeated
analysis on the same sample are <10% for all elem-

ents (decreasing uncertainty with increasing element

content).

Selected whole-rock samples were analysed for

their Sr, Nd and Pb isotopic composition (Table 2;

SD Table 5) at the University of Geneva. About

120 mg of powdered rock was dissolved over 7 days
using a mixture of 4 ml conc. HF and 1 ml 15M HNO3

in Teflon vials on a hot plate (140�C). The sample

was then dried on a hot plate, dissolved again in

3 ml of 15M HNO3 in closed Teflon vials at 140�C

and dried down again. Sr, Nd and Pb separation

was carried out using cascade columns with Sr-spec,
TRU-spec and Ln-spec resins following a modified

method after Pin et al. (1994). Pb was further puri-

fied with an AG-MP1-M anion exchange resin in a

hydrobromic medium. Pb, Sr and Nd isotope ratios

were measured either on a Thermo TRITON mass

spectrometer or on a Thermo NEPTUNE Plus mass

spectrometer at the University of Geneva, following
methods described by Chiaradia et al. (2014) and

Béguelin et al. (2015), respectively.

PETROGRAPHY AND MINERAL CHEMISTRY

Gabbrodiorite complex (GDC)
Rocks from the GDC are mainly composed of plagio-
clase, calcic amphibole, Fe–Ti oxides and minor

amounts of clinopyroxene and/or orthopyroxene with

variable mineral proportions and grain sizes (Fig. 2).

Accessory phases include quartz, K-feldspar, zircon,

apatite, and minor titanite and biotite. Plagioclase is eu-

hedral to subhedral and normally zoned, with Ca-richer

cores and Ca-poorer rims (Fig. 3a and b). Amphibole
crystals are commonly overgrown on a resorbed core

of either clinopyroxene or orthopyroxene (Fig. 3c and

d). Clinopyroxene cores tend to be more resorbed and

skeletal than orthopyroxene cores and are sometimes

hydrated and replaced by tremolite–actinolite.

Amphibole is always poikilitic and encloses plagioclase
and Fe–Ti oxides (Fig. 3b–e). Quartz, sodic plagioclase,

Fe–Ti oxides (magnetite and ilmenite), K-feldspar, apa-

tite, zircon and sparse interstitial titanite and biotite fill

the inter-mineral spaces (Fig. 3a and b).

The modal mineralogy of each sample (SD Table 5)

highlights the diversity of the GDC. Modal amphibole

and plagioclase contents are inversely correlated and
vary from 58�1 to 13�7 vol. % and from 78�0 to 37�2 vol.

%, respectively. The textural and mineralogical hetero-

geneity of the gabbrodiorite complex is also observed

at the hand sample scale. For example, clinopyroxene-

and orthopyroxene-bearing (in the core of amphiboles)

zones locally form banded textures (Fig. 3e). Similarly,
coarser grained zones and finer grained zones or zones

richer or poorer in mafic minerals are locally observed

next to each other, with sharp and sinuous contacts

(Fig. 3f).

On the basis of modal abundances of plagioclase

and amphibole (Table 1) as well as whole-rock Eu
anomalies (see below), we have subdivided the GDC

into three units: (1) ‘gabbrodiorite cumulate’ (the cumu-

late nature of this unit is discussed below) characterized

by positive Eu anomalies and an amphibole-rich min-

eralogy (>31 vol. %); (2) ‘gabbrodiorite’ sensu stricto,

defined by the absence of Eu anomalies and a modal

amphibole content of 28–33 vol. %; (3) ‘leuco-
gabbrodiorite’, with no Eu anomaly and modal

amphibole content of 10–20 vol. %. Contacts between

the gabbrodiorite ‘cumulate’ and the gabbrodiorite

were not observed in the field and their respective dis-

tribution could not be clearly established. However, the

gabbrodiorite ‘cumulate’ appears to be dominant to-
ward the southern part of Coroccohuayco. The bodies

of leuco-gabbrodiorite are typically small (10 m2 in out-

crop area) and their 3D geometry is unclear. They in-

trude the gabbrodiorite and gabbrodiorite ‘cumulates’

with all of which they display sharp contacts.

Plagioclase
At the hand sample scale plagioclase displays a wide
range of compositions from An90 in some cores to as

low as An15 in the inter-mineral space (Fig. 4b–g). Most
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plagioclase crystals are normally zoned with a broad
homogeneous core and relatively thin rims of increas-

ingly albitic composition. The few anorthite-rich cores

(>An85) are rounded and overgrown with sharp con-

tacts by lower An rims. In each sample, plagioclase dis-

plays one or two dominant compositional modes with

higher and lower An contents corresponding to the

inner core(s) and the rim(s), respectively (Fig. 4b–g).
The plagioclase composition in the gabbrodiorite ‘cu-

mulates’ is mostly An75–70 and An60–55, whereas

plagioclase in the gabbrodiorite is mostly An60–55

(with some deviation towards higher and lower values).

Plagioclases in the leuco-gabbrodiorite are the most

evolved with a compositional mode at An35–30.
On trace element profiles, the REE (in particular La)

are inversely correlated with An content (Fig. 4b–g).

Hornblende
Amphiboles of the GDC are Mg-rich [Mg#> 0�5, where

Mg#¼Mg/(MgþFe2þ)] and calcic (CaB� 1�5). In the

classification scheme of Leake et al. (1997), most amphi-

boles are magnesio-hornblendes [6�5<Si< 7�5;

(NaþK)A< 0�5], with a few outliers lying in the fields
of tschermakite [5�5<Si< 6�5; (NaþK)A<0�5] and

less commonly magnesio-hastingsite [6�5<Si< 7�5;

(NaþK)A� 0�5; VIAl< Fe3þ; Fig. 5a and b]. Slightly fluid-
altered hornblendes have bleached colors and their

composition shifts toward the field of actinolite and

tremolite (Si>7�5) as a result of Fe depletion and Ca

and Si addition.

For ‘fresh’ amphiboles, Mg# varies from 0�94 to

0�64; AlT varies from 0�8 to 2�0 p.f.u. and correlates

positively with (NaþK)A (r¼ 0�89), AlVI (r¼ 0�70; Fig.
5a–c) and most compatible and incompatible trace

elements including Sr, Ba, Y, Ta and REE (Fig. 6a–e).

In detail, some trace elements (e.g. Zr) define at

least two groups of amphiboles at the sample (thin

section) scale (Fig. 6c). Hornblendes from the gab-

brodiorite exhibit slightly lower Sr/Y values (�0�7)
than amphiboles from the gabbrodiorite ‘cumulate’

(�1�5), and both have (La/Yb)N values around unity

(Fig. 6d and e).

Pyroxene
Clinopyroxene hosted in the core of amphibole plots at

the diopside–augite boundary and has Mg# [Mg#¼Mg/

(Mgþ Fetot)] of 0�73–0�79; AlT varies from 0�014 to

0�056 p.f.u. (SD Table 3). Orthopyroxene hosted in
the core of amphibole has a composition ranging

from En54 to En63, Mg# of 0�57–0�66 and AlT of

Fig. 2. Photographs of the magmatic rock types encountered at Coroccohuayco. bt, biotite; cum, cumulate; hbl, hornblende; Kfs,
K-feldspar.
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0�027–0�088 p.f.u. (SD Table 4). Both pyroxenes display

a negative Eu anomaly in chondrite-normalized REE

patterns (Fig. 7). Clinopyroxene is characterized by de-

pletion of light REE (LREE) compared with middle REE

(MREE) and heavy REE (HREE).

Porphyries
The three types of porphyritic rock are distinguished on
the basis of phenocryst content and groundmass–

phenocryst proportions (Table 1, Fig. 2). The ground-

mass consists of a microcrystalline patchwork of quartz,

Fig. 3. Photomicrographs of samples from the gabbrodiorite complex. (a) Back-scattered electron (BSE) image of zoned plagioclase
with an anorthite-rich core overgrown by more sodic plagioclase. Hornblende, K-feldspar, quartz and Fe–Ti oxides are interstitial
between the plagioclase crystals. (b) BSE image of plagioclase with slightly more sodic rim compared with the core, enclosed in a
hornblende oikocryst. (c) Amphibole oikocryst with resorbed skeletal clinopyroxene in the core (cross-polarized light).
(d) Amphibole oikocryst containing resorbed orthopyroxene and clinopyroxene (plane-polarized light). (e) Orthopyroxene-rich
and -poor zones displaying banding (thin section scan). (f) Sharp contact between fine- and coarse-grained gabbrodiorite. cpx,
clinopyroxene; hbl, hornblende; Kfs, K-feldspar; opx, orthopyroxene; pl, plagioclase; qtz, quartz.
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albitic plagioclase and K-feldspar. The main mineral

phases are hornblende, plagioclase, magnetite, biotite

and K-feldspar. Zircon and apatite are common acces-

sory minerals in all three porphyries, whereas titanite is

observed only in the hornblende and hornblende–bio-
tite porphyries.

In the hornblende porphyry, phenocrysts consist of

euhedral to subhedral plagioclase (�37�5 vol. %),

amphibole (�9�9 vol. %) and magnetite (�1�4 vol. %,

with common maghemitization at its rim), with occa-

sional ‘book biotite’ and K-feldspar. The hornblende–

biotite porphyry has more abundant magmatic ‘book’
biotite (�1�2 vol. %), K-feldspar (�1�2 vol. %), plagio-

clase (�43�6 vol. %) and a lesser amount of amphibole

(�6�1 vol. %). Euhedral, wedge-shaped titanite is very

common (up to 0�9 vol. %) in both of these porphyries.

Locally, chilled margins of the hornblende–biotite por-

phyry were found to contain as much as 10 vol. % more
groundmass than its more crystalline equivalent and

consequently a lesser amount of phenocrysts (except

magnetite). The rhyodacite is pervasively altered and

amphibole is replaced by chlorite and clay minerals.

Magnetite is not preserved and is replaced by hematite.

However, it is still possible to estimate the pre-alteration
modal mineralogy of this rock, although with a higher

uncertainty. The rhyodacite contains more groundmass

(�56�2 vol. %) and ‘book biotite’ (�1�7 vol. %), and less

amphibole (�2�8 vol. %) than the other porphyries.

Titanite was not observed in this rock. Neither mag-

matic anhydrite nor sulphides were observed in the un-

altered porphyries.

Plagioclase
Plagioclase phenocrysts in the porphyries are mostly

unzoned in backscattered electron (BSE) images and

are albite rich (Figs. 8b, 4h–j). Only few crystals display

dissolution–recrystallization textures with a slightly
more albitic overgrowth compared with the dissolved

core (Fig. 8c). However, oscillatory zoning is sometimes

observed under the optical microscope (Fig. 8d).

Plagioclase composition is very restricted within a sin-

gle rock type and becomes increasingly albitic from the

hornblende porphyry (median �An20) to the horn-

blende–biotite porphyry (median �An15) and the rhyo-
dacite (�An12; Fig. 4h–j). In each porphyry fine spongy

cellular rings commonly separate the homogeneous

core of plagioclases from their thin overgrowth rims

(Fig. 8a–d). In the hornblende porphyry, plagioclase

rims are compositionally more diverse (An20-40) than

the cores (An18-26; Fig. 4j).

Trace element profiles in plagioclase show very scat-
tered trends in contrast with the relatively homoge-

neous anorthite composition (Fig. 4h–j). In some grains,

La exhibits inverse zoning, sometimes with a relatively

abrupt (over<50 mm) contact between a low-La core

and a high-La rim (Fig. 4h and i).

Hornblende
Amphiboles may lack zoning or may display oscillatory

or patchy zoning (Fig. 8e–g). It is common to find zon-

ing-free cores grading out to faint oscillatory zoned

rims (Fig. 8e and f). In such cases, both the broad core

and the oscillatory-zoned rim may exhibit superim-
posed patchy zoning.

Amphiboles in the porphyries have slightly lower

Mg# [0�60–0�75; Mg#¼Mg/(MgþFe2þ)] than those from

the gabbrodiorite complex. In the classification scheme

of Leake et al. (1997), most are magnesio-hornblendes

and less commonly edenite [6�5<Si< 7�5; (NaþK)A

�0�5; Fig. 5d and e]. A few high-AlT (>1�8 p.f.u.) crystals
plot in the field of magnesio-hastingsite. Slightly altered

amphiboles have bleached colors and exhibit compos-

ition shifts toward the field of actinolite as a result of Fe

depletion and Ca and Si addition. This bleaching mostly

corresponds to the patchy zoning observed in BSE

images (Fig. 8f and g).
AlT ranges from 0�8 to 1�7 p.f.u. for the main amphi-

bole population and from 1�8 to 2�4 for the high-Al

Table 1: Average modal composition (vol. %) of rocks units from the Coroccohuayco magmatic suite

Gabbrodiorite complex Porphyries

Rock type: Gabbro- Gabbro- Leuco- hbl hbl–bio hbl–bio Rhyodacite
diorite diorite gabbro- porphyry porphyry porphyry (n ¼ 4)
cumulate (n ¼ 5) diorite chilled
(n ¼ 6) (n ¼ 2) (n ¼ 7) (n ¼ 4) margin (n ¼ 2)

Groundmass/ �1�0 �1�0 �1�0 49�8 (1�5) 46�5 (1�5) 55�8 (0�8) 56�2 (2�3)
interstitial pockets
Hornblende 38�1 (9�9) 30�4 (1�8) 15�9 (2�1) 9�9 (2�9) 6�1 (2�1) 4�6 (0�9) 2�8 (0�8)
Biotite 0�6 (0�8) 0�4 (0�4) 1�2 (0�4) 1�0 (0�2) 1�7 (0�5)
Clinopyroxene/ 0�7 (0�0) 0�5 (0�0)
actinolite
Orthopyroxene 2�2 (2�9) 2�8 (2�9)
Plagioclase 53�7 (9�1) 62�7 (1�6) 77�8 (0�3) 37�5 (3�6) 43�6 (1�3) 36�3 (1�8) 37�4 (1�9)
K-feldspar 0�2 (0�1) 1�4 (0�8) 0�9 (0�1) 0�9 (0�9)
Fe–Ti oxides 4�3 (0�5) 4�7 (1�3) 2�6 (0�5) 1�4 (0�2) 0�8 (0�2) 0�9 (0�1) 0�7 (0�2)
Titanite 0�1 (0�2) 0�6 (0�2) 0�3 (0�0) 0�3 (0�0)
Apatite 0�2 (0�1) 0�1 (0�0) 0�2 (0�1) 0�3 (0�1)

Values in parentheses are 1SD.
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Fig. 4. Plagioclase composition in (a–g) the GDC and (h–j) the porphyries. Left column: density distribution of plagioclase anorthite
content. Grey shaded bars in samples of the GDC correspond to average plagioclase populations as defined by their anorthite con-
tent (see text for discussion). The red curves corresponds to the density distribution of plagioclase anorthite content theoretically in
equilibrium with hornblende as calculated using the formulation of Holland & Blundy (1994) using the reaction edeniteþalb-
ite¼ richteriteþanorthite. P and T required for the calculation were obtained by the hornblende-only thermobarometric formula-
tion of Ridolfi & Renzulli (2012). In (i) and (j) the continuous line is without Na-correction, short-dashed line is with an Na – 0�1 p.f.u.
correction and long-dashed line is with an Na – 0�2 p.f.u. correction (see text for discussion). Right column: rim (distance¼0mm) to
core An and La zoning profiles of plagioclases.
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group. For the main amphibole group, AlT correlates
positively with (NaþK)A (r¼ 0�84), and shows a poor

correlation with AlVI (r¼ 0�40; Fig. 5e and f). For a given

AlT, amphiboles from the hornblende–biotite porphyry

systematically have NaA 0�1 p.f.u. higher than amphi-

boles from the hornblende porphyry (Fig. 5e). No other

systematic difference between amphiboles from the

two rock types was observed.
Trace element contents of most amphiboles are

broadly constant at any given AlT and are typically

more homogeneous that in the GDC (Fig. 6). In the horn-

blende porphyry, some amphibole cores plot outside

the main group and define a high-MREE–HREE–Y–Ta

group with a more pronounced negative Eu anomaly
(Eu/Eu*¼ 0�5–0�6 versus 0�6–0�8 for the main group of

hornblendes) at AlT� 1�4 p.f.u. (circled points in Fig. 6g,

i and j). The high-Al amphiboles are notably enriched in

Sr (�300 ppm) and Ba (�150 ppm) and have a high Ba/

La ratio (�40) compared with the main amphibole

group (Sr¼ 50 ppm, Ba¼ 20–120 ppm, Ba/La¼ 10).
Amphiboles from the porphyries have Sr/Y and (La/

Yb)N values of 1–4, which is higher than amphiboles

from the GDC.

Titanite
Titanite in the hornblende and hornblende–biotite por-

phyries is euhedral to subhedral and occurs alone or as

inclusions in plagioclase, amphibole or biotite. Its in-

ternal texture can be variable, but it commonly shows

dissolution–overgrowth textures (Fig. 8h). It may con-
tain ilmenite–hematite inclusions sometimes aligned

along what could be a growth surface.

K-feldspar
K-feldspars from the hornblende–biotite porphyry and

the rhyodacite are Or60–70. They usually occur as inde-
pendent phenocrysts, which incorporate earlier formed

plagioclase and hornblende (Figs 2 and 8i), but can also

overgrow an earlier plagioclase (Fig. 8j). Both types

commonly have high Ba contents ranging from 1�6 to

2�8 wt % BaO. Barium displays complex concentric zon-

ing in BSE images (Fig. 8i) with, from core to rim, a
smooth BaO decrease in each zone and a sharp BaO in-

crease in the outer rim. K-feldspar overgrown over

plagioclase crystals commonly displays a sieve texture

similar to the outer rim of K-feldspar phenocrysts (Fig.

8i and j).

WHOLE-ROCK GEOCHEMISTRY

The Coroccohuayco magmatic suite displays a wide

range in composition from SiO2¼48�9 to 69�6 wt % with

a compositional gap from SiO2¼ 52 to 62 wt % bridged

by only two volumetrically minor leuco-gabbrodiorite

samples (Table 2, Fig. 9). This chemical evolution is cor-

related with age, with the more basic compositions

being older (i.e. the GDC at c. 40�4 Ma) and the more sili-
cic being younger (i.e. the rhyodacite at c. 35�0 Ma). The

compositional gap also corresponds to the magmatic

lull evidenced by radiometric dating (Chelle-Michou

et al., 2014) from 40�2 to 35�6 Ma. Overall, the magmatic

suite falls within the calc-alkaline field and extends into

the high-K calc-alkaline field (Fig. 9g). TiO2, Fe2O3[Tot],
MgO, MnO, CaO and the high field strength elements

(HFSE) display negative correlations with SiO2, whereas

Fig. 4. Continued

1838 Journal of Petrology, 2015, Vol. 56, No. 9



K2O and NaO show a positive correlation (Fig. 9a–e, g

and h). Al2O3 contents are generally high and range

from �19 wt % for the GDC to �17 wt % for the porphy-

ries (Fig 9f). With increasing SiO2 content P2O5, Ta and

Y contents increase in the GDC and decrease in the por-

phyries (Fig. 9i, k and l). Zr, Sr and Th are positively cor-
related with SiO2 but are depleted in the rhyodacite

compared with the other porphyries (Fig. 9j, m and n).

Over time the magmatic suite exhibits an increase in Sr/

Y (c. 20–130) and Zr/Y (c. 2–15) from the gabbrodiorite

to the rhyodacite (Fig. 10c and d).

Compared with primitive mantle compositions all
the magmatic rocks at Coroccohuayco display promin-

ent negative Nb and Ta anomalies and an enrichment

of large ion lithophile elements (LILE) over HFSE, typical

of arc magmas (Fig. 10b); Pb and Sr exhibit positive

anomalies. Samples from the GDC are slightly enriched

in LREE over HREE. Gabbrodiorite and leuco-gabbro-

diorite samples display a range of overlapping

chondrite-normalized REE patterns and no Eu anoma-

lies (Fig. 10a). The P2O5, Zr and REEþY contents of the

gabbrodiorite ‘cumulate’ are typically characterized by

lower values (by 30–50%) but similar ratios (e.g. La/Yb,

Zr/Y) and a positive Eu anomaly (Figs 9i, j, l and 10).

Compared with the GDC, the porphyries are more en-
riched in LILE and LREE, and depleted in HFSE and

HREE (Fig. 10b). They show slightly more significant

negative Eu and Ti anomalies. REE patterns display a

listric shape for all the porphyries, and total REE content

decreases from the hornblende porphyry to the rhyoda-

cite (Fig. 10a).
Isotopic compositions of Sr and Nd are variable for

samples of the GDC but are relatively well correlated for

the porphyries (Fig. 11a). The GDC yields higher eNd36

Ma values (þ2�6 to þ0�9) than the porphyries (þ0�3 to –

1�3) but similar 87Sr/86Sr36 Ma values (0�7048–0�7057). In

a Sr vs Nd isotope plot, there is a clear temporal trend

toward increasingly crustal isotopic composition from

Fig. 5. Amphibole compositions illustrating (a, d) their classification and (b, c, e, f) substitution mechanisms. Colored symbols indi-
cate amphiboles that match the compositional calibration range of the thermobarometric formulations of Ridolfi & Renzulli (2012).
Greyscale symbols correspond to amphiboles that plot outside this compositional range, many of which show clear signs of hydro-
thermal alteration.
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the GDC to the rhyodacite (Fig. 11a). The Pb isotopic val-

ues of the gabbrodiorite complex and the porphyries,

corrected for U and Th decay, overlap (206Pb/204Pb¼
18�35–18�62, 207Pb/204Pb¼15�58–15�64, 208Pb/204Pb¼ 38�
37–38�61; SD Table 5); the porphyries have more radio-

genic present-day values compared with the GDC

(Fig. 11b). All the magmatic rocks at Coroccohuayco

have transitional values between the Paracas Paleozoic

basement block and the Arequipa basement block

(Fig. 11b), consistent with the geographical location of
the Tintaya District at the border between the two

blocks (see Mamani et al., 2010).

INTENSIVE PARAMETERS OF MAGMA
EVOLUTION (P–T– H2O–fO2)

To determine intensive parameters for the magmas
(pressure, temperature, melt H2O concentration and

oxygen fugacity) we used the empirical formulation of

Ridolfi & Renzulli (2012). This formulation has the ad-

vantage of being based on amphibole-only compos-

itions, provided that their chemistry matches those of

the amphiboles used for the calibration and that they
grow in equilibrium with their parent melt. However,

despite these obvious advantages, much debate

surrounds the accuracy of the calculated intensive vari-

ables (e.g. Walker et al., 2013; Erdmann et al., 2014).

Therefore, we also indirectly compare the pressure and
temperature outputs of this empirical formulation with

the hornblende–plagioclase thermodynamic formula-

tion of Holland & Blundy (1994; based on the reaction

edeniteþalbite¼ richteriteþ anorthite). Plagioclase–

hornblende equilibrium (necessary for the application

of Holland & Blundy’s formulation) can be difficult to

evaluate on a thin section scale. Therefore, we have cal-
culated the composition of plagioclase that would the-

oretically be in equilibrium with amphibole at the

pressure and temperature values calculated using the

formulation of Ridolfi & Renzulli (2012), leaving the

plagioclase anorthite composition as the only unknown

variable. This calculated plagioclase composition is
subsequently compared with the analysed one.

Application of empirical calibrations for
amphibole
The determination of intensive parameters has been

conducted on amphiboles that match the compositional
field used for the calibration of the equations (coloured

symbols in Figs 5, 6 and 12; Ridolfi & Renzulli, 2012).

Fig. 6. Trace element composition of amphiboles. (a, f) Ba, (b, g) Ta, (c, h) Zr, (d, i) Sr/Y, and (e, j) (La/Yb)N vs AlT. The two groups of
amphiboles best defined in the Zr plots for a given AlT in samples of the gabbrodiorite should be noted; also the high Ta content
and low (La/Yb)N of some amphiboles in the hornblende-porphyry [circled points in (g and j)]. These hornblendes also have high
REE contents (see text for discussion). Legend is the same as in Fig. 5.
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Amphiboles from both the GDC and the porphyries

yield very similar P, T and H2Omelt values (Fig. 12).

Profiles within single crystals often result in variable P
(and T to a lesser extent), by as much as �200 MPa, with

no systematic changes from core to rim. These apparent

magmatic condition changes are unrealistic and may re-

sult from the kinetics of amphibole growth where amphi-

bole chemistry is not at equilibrium with the melt (Costa

et al., 2013). A more limited range of pressure is also

supported by a lack of significant pressure-sensitive sub-
stitutions (e.g. Al-Tschermak; Fig. 5c and f). However,

clear evidence for edenite exchange (Fig. 5b and e) sup-

ports the temperature-controlled compositional variabil-

ity of the hornblendes. Therefore, we argue that, with the

exception of some anomalous values, our large dataset

(�400 points) captures the main features of the mag-
matic conditions at Coroccohuayco.

The main amphibole population (for both the GDC

and the porphyries) yields pressures between 250 and

100 MPa (median at 147 MPa), temperatures from 900 to

750�C (median at 833�C) and H2Omelt around 5 6 1 wt %

(Fig. 12). For the high-Al amphiboles in the hornblende
porphyry, calculated pressures vary from 1600 to

1200 MPa, temperatures range from 1100 to 960�C and

the melt water content is around 11 wt %.

The fO2 determinations from amphiboles of the GDC

yield values of DNNO 6 1 (where NNO is the nickel–

nickel oxide oxygen buffer, Fig. 12c). In contrast, amphi-

boles from the porphyries give a higher fO2 from
NNOþ 1�5 to NNOþ 3. At a given pressure, values from

the hornblende–biotite porphyry are systematically

�0�5 log unit higher than those from the hornblende

porphyry (Fig. 12f). High-Al amphiboles give high fO2

around NNOþ3�5.

Plagioclase composition theoretically in
equilibrium with hornblende
For the GDC, our calculations show that amphiboles

should be in equilibrium with slightly more sodic

plagioclase than the majority of that observed in these

samples (Fig. 4a–g). In most cases this corresponds to

the actual composition of plagioclase rims. This is con-

sistent with the observation that amphibole crystals are

oikocrysts that grew incorporating previously formed
euhedral plagioclase. Interestingly, for most samples of

the GDC, our calculations show the presence of two

plagioclase populations that are in equilibrium with the

distinct amphibole populations found in these samples

(Fig. 4c–e and g).

Assuming that P and T were correctly estimated for

the porphyries, the plagioclase composition in equilib-
rium with amphibole should be �An30–70 (Fig. 4h–j).

Such compositions are rarely found in the porphyries at

Coroccohuayco. However, the albitic compositions

observed in plagioclase from the porphyries are not

common for water-rich magmas (e.g. Lange et al.,

2009). Considering a plagioclase composition of �20%
An (i.e. the composition of most plagioclases in the

hornblende porphyry), we also calculated P and T using

the thermobarometric formulation of Holland & Blundy

(1994) in conjunction with the Al-in-hornblende barom-

eter of Anderson & Smith (1995) to allow for simultan-

eous determination of P and T (see Anderson et al.,
2008). We obtained a range of P and T of 400–100 MPa

and 750–650�C, respectively. Although this pressure

range seems reasonable, such a low temperature range

(around the water-saturated granitic solidus) is unlikely

to represent the crystallization temperature of all the

amphiboles in the porphyries. This analysis shows that,

in the porphyries, plagioclase and hornblende are no
longer in magmatic equilibrium, which prevents the use

of thermodynamically based thermobarometers for

these rocks.

We conclude that for both the GDC and the porphy-

ries, intensive parameters estimated with the calibrations

of Ridolfi & Renzulli (2012) overall provide reasonable es-
timates for the Coroccohuayco magmatic suite.

Influence of post-crystallization Na addition in
amphibole on calculated intensive parameters
for the porphyries
Several lines of evidence suggest that sodium was
added to plagioclase and amphibole after the porphy-

ries crystallized: (1) plagioclase found in these rocks es-

sentially lacks anorthite zoning, is significantly more

albitic than plagioclase theoretically in equilibrium with

amphibole, and displays zoning of La that is not corre-

lated with plagioclase composition in contrast to plagio-

clase from the GDC (Fig. 4); (2) the three porphyries
exhibit high Na2O content (5–6 wt %), above the com-

positional range of magmatic rocks of the Eocene Anta

arc (Fig. 9h); (3) within a single rock type, plagioclase

composition is relatively homogeneous and becomes

increasingly albitic from the hornblende porphyry to the

hornblende–biotite porphyry and the rhyodacite (Fig.
4h–j); (4) for a given amphibole AlT, NaA is systematic-

ally �0�1 p.f.u. higher in the hornblende–biotite

Fig. 7. Clinopyroxene and orthopyroxene chondrite-normalized
REE patterns [normalizing values from McDonough & Sun
(1995)].
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Fig. 8. Photomicrographs of samples from the porphyries. (a) Amphibole and plagioclase phenocrysts (plane-polarized light). The
irregular spongy cellular ring in the plagioclase should be noted. (b) Plagioclase aggregate with weak zoning (BSE image). (c)
Zoned plagioclase with dissolution texture and overgrowth of a slightly less albitic rim (BSE image). (d) Oscillatory zoning plagio-
clase with spongy cellular ring between core and rim (cross-polarized light). This type of zoning is never observed in BSE images.
(e, f) Amphiboles with broad core and fine oscillatory zoning toward the rim (BSE images). (g) Zoned high-Al amphiboles; darker
zones represent actinolite alteration (BSE image). (h) Titanite (BSE image). ttn-1 has a dissolution–overgrowth texture; ttn-2 has il-
menite–hematite drop-like inclusions. (i) Zoned K-feldspar phenocryst in the hornblende–biotite porphyry (BSE image). Microprobe
analyses of Ba (white circles, spot location; orange circles, BaO content) illustrate this zoning. (j) Plagioclase with K-feldspar over-
growth (BSE image). An, plagioclase anorthite content; ap, apatite; pl, plagioclase; ttn, titanite;.
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porphyry relative to the hornblende porphyry (Fig. 5e).

This Na addition could result from high-temperature
sodic alteration that is well documented in porphyry

systems (e.g. Seedorff et al., 2005, 2008) and has been

shown experimentally to occur rapidly on short time-

scales (Hövelmann et al., 2010). However, such alter-

ation usually results in dusty and porous plagioclase

(Engvik et al., 2008; Plümper & Putnis, 2009; Hövelmann
et al., 2010) and in albite rims around magmatic K-feld-

spar (Norberg et al., 2011), which are not observed at

Coroccohuayco. Instead, the optical zoning of plagio-

clase appears to be preserved (Fig. 8d).

Regardless of the actual process responsible for this

Na addition, the impact of post-crystallization incorpor-

ation of Na in the A site of the amphibole on the deter-
mination of the intensive parameters need to be

evaluated. We have recalculated the intensive param-

eters by artificially decreasing NaA by 0�1 p.f.u (�0�35 wt

% Na2O) and 0�2 p.f.u. (�0�70 wt % Na2O; Fig. 13) for all

amphiboles from the porphyries. Subtracting 0�2 p.f.u

Na corresponds to removing all NaA from the low-Al
amphiboles, and is therefore considered to be a max-

imum correction. For the main amphibole population,

pressure is found to change relatively by –6 6 14% and

–4 6 15% (1SD) when removing 0�1 and 0�2 p.f.u. Na,

respectively. For high-Al amphiboles, the effect of the

Na-correction is much larger with –47% and –64% for

Na – 0�1 and Na – 0�2, respectively. For the main group
of low-Al amphiboles, the Na-correction tends to reduce

the scatter in the calculated pressure (Fig. 13a). For tem-

perature, Na-corrections yield values 2�7 6 0�4% and

5�1 6 0�5% lower than without correction. At 800�C, this

corresponds to a temperature decrease of 22�C and

41�C, respectively (Fig. 13b). Melt water content calcu-
lated with Na-correction is mostly within the model un-

certainty of 60�78 wt % H2O (Fig. 13c; Ridolfi & Renzulli,

2012). Only for the high-Al amphiboles do Na-correc-

tions yield water contents 2�1 wt % and 3�0 wt % lower

than those without correction. Na-corrections induce

the most significant changes on the determination of
the oxygen fugacity. Reduction of Na of 0�1 p.f.u and

0�2 p.f.u yields oxygen fugacities lower by 0�6 log unit

and 1�2 log units, respectively (Fig. 13d). Importantly, it

shows that even applying Na-corrections to the data,

the oxygen fugacity of the porphyry is �NNOþ 1, which

is higher than the average oxygen fugacity of the gab-
brodiorite complex (Figs 12c, f and 13d). Finally, the ef-

fect of these corrections on the calculation of the

plagioclase composition theoretically in equilibrium

with amphibole is negligible (Fig. 4h–j).

Influence of the presence of S in the magma on
calculated intensive parameters for the porphyries
The equations of Ridolfi & Renzulli (2012) were cali-
brated with data from a set of S-free experiments.

However, the genetic link between the porphyries and

the mineralization suggests that the magmatic system

may have been S-rich at the time of porphyry emplace-

ment. The presence of S in a water-saturated dacitic

magma has been experimentally shown to increase the
Mg# [calculated as Mg/(Mgþ Fe)] of amphibole by up to

0�1 for oxygen fugacities in the field of sulfide stability

(<NNOþ 1; Scaillet & Evans, 1999). In contrast, no sig-

nificant difference in amphibole chemistry for S-free

and S-bearing experiments was detected above

NNOþ 1�5 (Scaillet & Evans 1999; Costa et al., 2004).

Compared with the gabbrodiorite complex, the pres-
ence of titanite relative to ilmenite in the porphyries

(Wones, 1989; Nakada, 1991; Xirouchakis & Lindsley,

1998; Frost et al., 2001; McLeod et al., 2011) and the

higher Ce/Nd in zircon from the porphyries (used as a

proxy for the zircon Ce anomaly and magma oxidation

state; Chelle-Michou et al., 2014) suggest that the oxy-
gen fugacity of the porphyries is higher than that of the

GDC; that is, above NNOþ 1. Consequently, the likely

Fig. 8. Continued

Journal of Petrology, 2015, Vol. 56, No. 9 1843



Table 2: Representative geochemical and isotopic data for the Coroccohuayco magmatic suite

Rock type: Gabbrodiorite
‘cumulate’

Gabbrodiorite Leuco-
gabbrodiorite

Hornblende
porphyry

Hornblende–
biotiteporphyry

Rhyodacite

Sample no.: 10CC61 10CC09 10CC55 10CC16 10CC22 10CC94 10CC40
Sample type: Outcrop Outcrop Outcrop Outcrop Outcrop Drillcore Outcrop
Coord E/DDH#: 256574 256706 256812 256546 257328 A400-19�9 257497
Coord N/depth: 8344662 8346226 8345420 8345406 8344904 31�7 m 8345019

Major elements (wt %)
SiO2 47�26 52�09 49�15 54�83 63�18 65�56 69�60
TiO2 0�96 0�93 1�00 0�68 0�54 0�36 0�21
Al2O3 19�58 17�76 19�09 19�26 16�94 17�17 17�17
Fe2O3 (tot) 12�17 10�34 11�43 6�06 4�50 2�87 1�69
MnO 0�21 0�16 0�16 0�08 0�04 0�03 0�03
MgO 5�25 4�49 4�18 3�55 1�60 0�85 0�36
CaO 11�49 8�96 9�63 9�08 3�52 2�83 1�00
Na2O 1�75 2�74 3�12 4�46 5�39 5�95 5�68
K2O 0�28 0�77 0�70 0�63 2�73 2�63 2�88
P2O5 0�12 0�11 0�20 0�18 0�21 0�14 0�08
LOI 0�43 0�70 0�54 0�45 0�53 1�37 1�09
Total 99�50 99�05 99�19 99�26 99�17 99�75 99�80
Mg# 0�46 0�46 0�42 0�54 0�41 0�37 0�30
Trace elements (ppm)
Sr 429 345 428 416 794 877 612
Ga 19 19 21 19 20 21 21
Cu 72 43 304 21 361 5 6
Cr 14 11 12 11 16 8 6
Ba 77 226 168 236 1029 1172 2339
Sc 31�43 39�91 33�70 26�10 11�26 6�49 3�00
V 335 351 283 209 130 86 50
Co 37�3 29�9 27�0 12�5 11�3 5�3 2�4
Ni 15�1 7�7 16�3 11�1 9�3 n.d. 5�5
Zn 73�2 52�4 41�3 21�8 16�4 24�0 193�1
As 0�90 0�86 0�98 0�96 0�69 1�31 1�20
Rb 6�8 21�1 15�0 8�6 41�1 56�6 75�4
Y 11�81 19�81 17�84 17�71 15�46 9�27 6�13
Zr 26�7 75�9 44�9 33�5 121�3 134�3 101�6
Nb 0�98 2�45 1�58 1�72 4�93 4�18 3�04
Mo 0�91 0�32 0�31 0�21 0�63 0�26 0�72
Sb n.d. 0�22 0�09 0�23 0�23 0�21 0�24
Cs 0�26 0�80 0�17 0�36 0�15 0�67 1�80
La 4�09 7�55 6�27 7�42 16�91 14�28 6�20
Ce 9�80 17�93 15�08 15�53 34�23 29�10 10�18
Pr 1�35 2�39 2�08 2�30 4�25 3�46 1�65
Nd 6�64 11�19 10�40 10�72 17�63 13�88 6�79
Sm 1�86 2�96 2�74 3�00 3�51 2�76 1�37
Eu 0�74 1�02 0�96 1�08 0�85 0�60 0�31
Gd 2�15 3�43 3�38 3�20 3�07 2�07 1�31
Tb 0�327 0�520 0�502 0�548 0�436 0�296 0�189
Dy 2�33 3�81 3�34 3�56 2�89 1�54 1�13
Ho 0�431 0�726 0�693 0�725 0�546 0�310 0�223
Er 1�30 1�94 1�76 1�89 1�60 0�91 0�63
Tm 0�177 0�324 0�257 0�275 0�247 0�147 0�101
Yb 1�23 2�09 1�80 1�80 1�58 0�95 0�73
Lu 0�169 0�317 0�269 0�245 0�264 0�177 0�106
Hf 0�94 2�10 1�34 1�06 3�30 4�03 3�12
Ta 0�072 0�149 0�096 0�108 0�309 0�260 0�191
W 0�12 27�33 0�46 0�16 0�67 1�83 0�71
Pb 2�7 3�3 2�0 2�2 2�5 4�3 12�4
Th 0�56 1�52 0�79 0�64 4�60 4�74 2�02
U 0�200 0�550 0�265 0�170 1�549 1�697 1�204
Measured isotopic ratios
87Sr/86Sr 0�7048528 0�7051751 0�7052239 0�7053211 0�7054340 0�7055095 0�7056774
143Nd/144Nd 0�5127635 0�5127206 0�5127070 0�5126710 0�5126206 0�5126017 0�5125519
206Pb/204Pb 18�533 18�551 18�569 18�536 18�817 18�725 18�647
207Pb/204Pb 15�616 15�616 15�625 15�626 15�651 15�639 15�635
208Pb/204Pb 38�478 38�506 38�522 38�509 38�825 38�693 38�599
Initial isotopic ratios
87Sr/86Sri 0�7048265 0�7050736 0�7051728 0�7052909 0�7053583 0�7054151 0�7054973
143Nd/144Ndi 0�5127182 0�5126779 0�5126701 0�5126318 0�5125924 0�5125735 0�5125235
eNdi 2�594 1�807 1�655 0�908 0�139 �0�228 �1�340
206Pb/204Pbi 18�504 18�484 18�430 18�509 18�597 18�585 18�613
207Pb/204Pbi 15�614 15�613 15�618 15�624 15�640 15�632 15�634
208Pb/204Pbi 38�451 38�446 38�507 38�476 38�610 38�564 38�580

DDH#, drillcore number. LOI, loss on ignition; n.d., not detected.
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presence of S in the melt would not have significantly
affected the Mg# of amphiboles from the porphyries,

and no influence on the calculation of intensive param-

eters can be expected.

PETROLOGICAL EVOLUTION

Our main focus is to constrain the deep and upper crus-

tal processes responsible for the 5 Myr petrological

Fig. 9. Harker variation diagrams for whole-rock samples of the Coroccohuayco magmatic suite. Grey field delineates the compos-
itional range of magmatic rocks of the Eocene Anta arc (mostly from northern Chile) as compiled by Mamani et al. (2010).
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evolution of the Coroccohuayco magmatic system lead-

ing to mineralization. Below, we discuss all the

Coroccohuayco magmatic suite evolutionary stages

from the magma source to deep crustal and upper crus-

tal evolution from the inception of the magmatic activity
(the GDC) to its end (the rhyodacite).

Magma source
All the magmatic rocks at Coroccohuayco display the

strong negative Nb, Ta and Ti anomalies and LILE en-

richment that are typical of subduction-related mag-
mas (Fig. 10b). The overlapping Pb isotopic values

corrected for U, Th and Rb decay for the GDC and the

porphyries also suggest that they have a similar

source (Fig. 11). The most primitive samples of the

magmatic suite (the gabbrodiorite samples,

SiO2� 50 wt %) have high Ba/La (�20–30) and Pb/Ce

(0�1–0�2), which is diagnostic of the contribution of flu-
ids that have promoted melting of the mantle wedge.

In line with established models about subduction-

related magmatism, these fluids are likely to have ori-

ginated by dehydration of the subducting slab (e.g.

Tatsumi et al., 1986; Tatsumi, 1989) or of a mélange

diapir (e.g. Marschall & Schumacher, 2012). The low

Th/La (<0�2) and Th/Nb (<1) ratios of the GDC suggest
minimal involvement of subducted sediment recycling

(e.g. Plank, 2005).

Fig. 9. Continued
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Deep crustal evolution
The gabbrodiorite complex (GDC)
Owing to the mafic composition of the GDC
(SiO2< 52 wt %), this unit is the one that most closely

reflects the signature of its source (i.e. least crustal con-

tamination). In the GDC, the initial zircon Hf isotopic

composition (eHfi of þ10�6 to þ5�2; Chelle-Michou et al.,

2014) and the whole-rock Nd isotope composition

(eNd36 Ma of þ2�6 to þ0�9; Fig. 11a) are not compatible

with a 36 Ma depleted mantle source [eNd of þ6 to þ11;
eHf of þ25 to þ11; calculated using present-day values

from Workman & Hart (2005)]. However, their Nd and

Sr isotopic composition is similar to the most primitive

composition of deep crustal xenoliths exhumed near

Cusco (including diorite, gabbro and clinopyroxenite;

inset Fig. 11a; Chapman et al., 2015). This suggests
tha the parental magmas of the GDC were sourced

from either sub-arc mantle intensely metasomatized by

slab-derived fluids or that the mantle-derived melts in-

tensively interacted with less radiogenic material, prob-

ably in a deep crustal hot zone (DCHZ; Annen et al.,

2006).

However, the very low Ni (�10 ppm) and Cr
(�15 ppm) contents and Mg-numbers (42–48) of the

GDC indicate that it does not represent the products of

crystallization of primitive mantle melts and that some

fractionation of olivine, pyroxene and possibly amphi-

bole has occurred, most probably in the DCHZ.

Experimental studies on hydrous (>3 wt % H2O) primi-

tive arc basalts at pressure conditions appropriate for

the deep crust (0�7–1�2 GPa) show plagioclase to be

minimally stable, and that fractionation of olivine, pyr-

oxene and amphibole, as well as possible hybridization

with amphibole-bearing lithologies (from previous

magma batches) result in the formation of low-Mg,

high-Al basalt (MgO<8 wt % and Al2O3> 18 wt %) simi-

lar to the gabbrodiorite at Coroccohuayco (Müntener

et al., 2001; Nandedkar et al., 2014).

Several lines of evidence indicate that the GDC does
not represent a single homogeneous magma batch.

These include: (1) evidence of micro-scale mingling be-

tween clinopyroxene-rich and orthopyroxene-rich mag-

mas that suggests contrasted initial melt compositions

(Fig. 3e and f); (2) variable Sr and Nd isotopic compos-

itions of whole-rock samples (Fig. 11a); (3) heteroge-
neous Hf isotopic compositions of zircons at the hand

sample scale (up to 5 epsilon units; Chelle-Michou

et al., 2014); (4) multiple groups of amphiboles at the

hand sample scale defined by contrasting concentra-

tions of trace elements (e.g. Zr; Fig. 6c). This suggests

Fig. 10. Whole-rock trace element variations. (a) Chondrite-normalized REE patterns [normalizing values from McDonough & Sun
(1995)]. (b) Primitive mantle-normalized trace element patterns [normalizing values from McDonough & Sun (1995)]. (c) Y vs Sr/Y.
(d) Ta vs Zr/Y. Grey lines in (c) and (d) indicate the AFC paths modeled using a Monte Carlo approach that simultaneously repro-
duce the trace element composition (REE, Y, Sr, Zr and Ta) of sample 10CC22 (path 1) and sample 10CC94 (path 2). Large symbols
highlight end-member compositions used for modeling (see text for details).
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Fig. 11. Radiogenic isotope compositions of the studied samples. (a) 87Sr/86Sr vs eNd calculated at 36 Ma. Continuous lines repre-
sent a simple mixing model with three Triassic red sandstones (from the Mamuera section close to Sicuani) with 10% increments
(see text for details). Inset shows the isotopic composition of the Coroccohuayco magmatic rocks compared with depleted MORB
source mantle (DMM; data from Workman & Hart, 2005), and metasedimentary and igneous deep crustal xenoliths from the Cusco
area (Chapman et al., 2015) all calculated at 36 Ma. (b) Pb isotope plots for samples from Coroccohuayco compared with isotopic
reference fields delineated with regional data from Mamani et al. (2010). Legend is the same as in Fig. 9.
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that the GDC was sourced from one compositionally

heterogeneous magma reservoir or from several dis-

tinct magma reservoirs within a deep crustal hot zone.

Because the GDC marks the beginning of arc magma-

tism in this region, it would be expected that the DCHZ
below the Tintaya district at this time had a lower ther-

mal maturity compared with regions where arc magma-

tism had persisted at more or less the same position for

several millions of years. Under these conditions, it is

likely that a newly formed DCHZ hosts several discon-

nected magma reservoirs, each having a slightly differ-

ent isotopic composition.

The porphyries
Compared with other magmatic rocks of the Eocene

Anta arc, the dacitic porphyries at Coroccohuayco have

higher Al2O3 (�17 wt %) and Sr (600–1000 ppm) and
lower Fe2O3, MgO, MnO and TiO2 contents (Fig. 9). This

suggests that the porphyries result from magmatic dif-

ferentiation at mid- to lower crustal levels during which

ferromagnesian minerals fractionate from an evolving

basalt precursor or are residual during melting of a

lower crust amphibolite outside the plagioclase stability

field. The generally high Sr/Y values (increasing
through time from �50 for the hornblende porphyry to

�100 for the rhyodacite; Fig. 10c), the moderate La/Yb

(�12) and the listric shape of the chondrite-normalized

REE patterns (Fig. 10a) point towards the predominance

of amphibole 6 titanite (6garnet 6 clinopyroxene) in the

fractionating mineral assemblage or in the restite. The
decreasing Ta and P2O5 contents with increasing SiO2

(Fig. 9i and k) indicate the predominance of titanite and

apatite fractionation, respectively. The small negative

Eu anomalies of the porphyries (Fig. 10a) additionally

suggest that some plagioclase fractionation may have

occurred.

Experimental studies of fractional crystallization of
hydrous andesitic and low-Si dacitic melts at 800–

450 MPa, 950–850�C and fO2 around the quartz–fayalite–

magnetite (QFM) buffer yield dacite and high-Si dacite

melts, respectively, through crystallization of amphibole

with a lesser amount of plagioclase, garnet (only above

800 MPa), Fe–Ti oxides and pyroxenes (Sisson et al.,
2005; Müntener & Ulmer, 2006; McCanta et al., 2007;

Alonso-Perez et al., 2009; Nandedkar et al., 2014).

Pressures above 800 MPa stabilize garnet at the ex-

pense of amphibole (Alonso-Perez et al., 2009), which

would result in a higher La/Yb ratio (typically> 20) of

the extracted melt. Assuming that these experimental

studies apply to the Coroccohuayco magmatic system,
they would suggest that the DCHZ was located at pres-

sures around (with a small amount of fractionating gar-

net) or below (no fractionating garnet) 800 MPa (i.e. at a

maximal depth of �30 km). The crustal thickness of

southern Peru in the Eocene is estimated to be 35–

40 km, prior to a major orogenic shortening and crustal
thickening event in the Miocene (Hindle et al., 2005;

Gotberg et al., 2010; Eichelberger et al., 2015), which

would imply that the DCHZ was located within the lower

crust.

With respect to the gabbrodiorite complex, the more

homogeneous whole-rock Sr and zircon Hf isotopic

compositions of the porphyries (Fig. 11a; Chelle-Michou
et al., 2014) suggest that they were sourced from a

more homogeneous magma reservoir in the DCHZ.

Prolonged intracrustal magmatic activity (�5 Myr) prior

to the emplacement of the porphyries (Chelle-Michou

et al., 2014) may have favoured thermal maturation of

the DCHZ in which large volumes of evolved magma

could be generated and homogenized on thousands to
millions of years timescales (Sisson et al., 2005; Solano

et al., 2012; Melekhova et al., 2013).

Magma ascent and upper crustal evolution
The gabbrodiorite complex (GDC)
Petrographic observations (Fig. 3) indicate that the ear-

liest crystallizing phases in the GDC were An90 plagio-

clase, clinopyroxene and orthopyroxene. Natural

observations and experimental studies suggest that

such anorthite-rich plagioclase must crystallize near the

liquidus at high temperature (1050–1200�C), under hy-

drous conditions (2–6 wt % H2O) from arc basalts with
high Al and/or high CaO/Na2O values (>8), at various

pressures (from 200 to 800 MPa; Sisson & Grove, 1993a,

1993b; Panjasawatwong et al., 1995; Takagi et al., 2005;

Pichavant & Macdonald, 2007; Alonso-Perez et al., 2009;

Zellmer et al., 2012; Nandedkar et al., 2014). The low La

contents of the An90 plagioclase (La< 1 ppm; Fig. 4c
and f) are also in agreement with their crystallization

from basaltic melts that have undergone limited frac-

tionation. The negative Eu anomalies of clinopyroxene

and orthopyroxene cores (Fig. 7) indicate that they crys-

tallized just after plagioclase, in agreement with hy-

drous basalt phase diagrams at 200 MPa (e.g. Sisson &

Grove, 1993a, 1993b; Blatter et al., 2013). Their low Al,
Ni and Cr contents also confirm that they crystallized at

low pressure from a derivative basalt. Clinopyroxene

crystallization probably caused a rapid decrease in CaO/

Na2O that triggered a rapid decrease of the plagioclase

molar anorthite content to �An75. Subsequent cooling

and crystallization of clinopyroxene and later horn-
blende explains the normal zoning of plagioclase

(Fig. 4b–g).

Towards the south, where the GDC is thicker, an

early crystallizing assemblage from now eroded higher

levels of the magma chamber probably fractionated

from the melt and formed an immature ‘cumulate’ (the

gabbrodiorite cumulate) with anorthite-rich plagioclase
and positive Eu anomalies. The lower Zr, P2O5 and

REEþY concentrations of the gabbrodiorite ‘cumulate’

compared with the gabbrodiorite, but with similar ratios

(e.g. La/Yb, Zr/Y; Figs 9i, j, l and 10; Table 2), cannot be

explained by simple crystal accumulation. The higher

modal content of poikilitic hornblende (although with
slightly lower incompatible element concentrations)

relative to plagioclase in the ‘cumulate’ (Table 1) cannot
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explain the lower concentrations in these whole-rock

samples. The low Zr and P2O5 concentrations in the ‘cu-

mulate’ suggest that these samples host on average

30–50% less zircon and apatite than the gabbrodiorite.

Thus, because zircon and apatite are large repositories
of REEþY (Bea, 1996), the lower whole-rock REEþY

contents of the gabbrodiorite ‘cumulate’ are most prob-

ably due to lower amounts of zircon and apatite. This

implies that the interstitial melt from which these min-

erals crystallized (as well as possibly some hornblende)

was compositionally zoned at the scale of the GDC. In

this scenario, the more evolved melt (incompatible
element-rich) formed the gabbrodiorite, whereas the

less evolved melt (incompatible-poor) formed the gab-

brodiorite ‘cumulate’.

An90 plagioclase–liquid hygrometry (Lange et al.,

2009) at a near-liquidus temperature of 1200�C yields a

melt water content of around 3 wt % (for a melt compos-
ition similar to the whole-rock gabbrodiorite samples).

In turn, hornblende hygrometry (Ridolfi & Renzulli,

2012) yields melt water contents of around 5 wt %,

which is the water solubility of an andesitic melt at

around 200 MPa (e.g. Newman & Lowenstern, 2002;

Papale et al., 2006). These contrasted hygrometry re-
sults, together with the early and late crystallization of

An90 plagioclase and hornblende, respectively, suggest

that volatile saturation was promoted by isobaric

plagioclase crystallization from a melt containing ini-

tially �3 wt % dissolved H2O. Mass-balance consider-

ations require that about 40 wt % of anhydrous

minerals (plagioclase, Fe–Ti oxides, pyroxenes) crystal-
lize prior to amphibole saturation. This is consistent

with both textural observations (Fig. 3) and the modal

mineralogy (Table 1) of the gabbrodiorite.

The volumetrically minor leuco-gabbrodiorite is

more evolved than the gabbrodiorite and has similar

trace (including REE and Eu/Eu*) and minor element
chemistry (Figs 9 and 10; Table 2). Plagioclases in the

leuco-gabbrodiorite are much more albitic than those

from the gabbrodiorite and are in equilibrium with

hornblendes in the same samples (Fig. 5b). This sug-

gests that the leuco-gabbrodiorite magma does not re-

sult from advanced fractionation of the gabbrodiorite

magma in the upper crust, which would be dominated
by plagioclase and amphibole and would significantly

change the trace element signature of the melt. Instead,

we propose that it acquired its composition through

fractional crystallization of ferromagnesian minerals,

mostly Fe–Ti oxides and pyroxenes, probably in the

deep crust.

The porphyries
It is important to stress that, in line with established

models for porphyry deposits (Dilles & Proffett, 1995;

Shinohara & Hedenquist, 1997; Sillitoe, 2010), the por-

phyries from which we obtained samples probably rep-
resent small apophyses of a larger pluton lying at

greater depth and that the majority of the rock-forming

minerals originated from this pluton. The emplacement

pressure of this magmatic (granitic, sensu lato) body as

constrained by hornblende barometry is around 250–

100 MPa (Fig. 12d–f), which is typical for plutons under-

lying porphyry systems (e.g. Dilles, 1987; Cloos, 2001;

Stavast et al., 2008; Sillitoe, 2010; Steinberger et al.,

2013). At such pressures a silicic melt is water saturated

at 5 6 1 wt % (Fig. 12d and e; Papale et al., 2006).

Although Erdmann et al. (2014) showed that the calibra-

tion of Ridolfi & Renzulli (2012) does not reliably predict

the melt H2O content at the Mount Merapi volcano,
water content calculated by hornblende hygrometry in

the porphyries at Coroccohuayco (Fig. 12e) is perfectly

consistent with water saturation of the melt at 250–

100 MPa.

A previous study of the Hf isotopic compositions and

ages of zircon xenocrysts and antecrysts from the por-

phyries at Coroccohuayco (Chelle-Michou et al., 2014)

has highlighted that the upper crustal magmatic

evolution of the felsic magmas is characterized by
open-system behaviour and dominated by crustal as-

similation, proto-pluton cannibalism and magma re-

charge. U–Pb age spectra of zircon xenocrysts and

xenocrystic cores from the porphyries show that during

upper crustal evolution, the magmas assimilated

Triassic siliciclastic sediments (Mitu group; Chelle-
Michou et al., 2014). Furthermore, zircons (autocrysts

and antecrysts) from the porphyries display a temporal

decrease in initial eHf from �7 at 37�5 Ma to �4 at

35�6 Ma, consistent with progressive assimilation of

these sediments (with zircon eHf36 Ma of 0 to –6). Such

Triassic sediments (red sandstones, conglomerates and

pelites) crop out 60 km NE of Coroccohuayco at the bor-
der of the Mesozoic and Cenozoic basins within which

the Andahuaylas–Yauri Batholith was emplaced.

Crustal assimilation is also highlighted by initial iso-

topic compositions of Sr and Nd that become increas-

ingly crustal-like with time (Fig. 11a). A simple mixing

model between a magma with the isotopic composition
of gabbrodiorite sample 10CC55 and the Sr and Nd con-

centrations of the porphyries and the Mitu sediments

suggests that the isotopic composition of the porphy-

ries is best explained by 20–30% bulk assimilation of

the sediments (Fig. 11a). Thermodynamic models of as-

similation–fractional crystallization (AFC) indicate that

this is an unrealistic amount of assimilation under the
estimated P–T conditions of the upper crust (e.g.

Glazner, 2007). One possibility to explain this inconsist-

ency would be that the upper crustal magmatic system

underwent periodic recharge that allowed the mainten-

ance of high temperatures and promoted crustal as-

similation (e.g. Spera & Bohrson, 2004). Some amount
of reactive bulk assimilation in which the assimilant

partly remains in solid form may also provide a mech-

anism for lower energy assimilation (e.g. Beard et al.,

2005; Erdmann et al., 2010). Alternatively, the isotopic

composition of the parental magma at 36 Ma (before as-

similation) may have been more evolved than that of the

gabbrodiorite, possibly owing to the involvement of a
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greater amount of deep crustal material than in the GDC

and/or of a higher amount of slab-derived material in the

fluids metasomatizing the sub-arc mantle. Another pos-
sibility could be that the Mitu samples that we analysed

are not representative of the composition of the rocks

assimilated at Coroccohuayco. We should also keep

open the possibility that the assimilated Mitu sediments

were not located in the upper crust but in the deep crust,

as recently suspected near Cusco on the basis of felsic
granulite xenoliths sampled by Pliocene to Quaternary

volcanism (Chapman et al., 2015). Under this hypothesis,

such an amount of crustal assimilation in a DCHZ can

readily happen after a few hundred thousand to millions

of years of magma injection (Thompson et al., 2002;

Annen et al., 2006).

Porphyry samples have a concordant zircon age re-
cord spanning nearly 2 Myr, from 37�5 to 35�6 Ma; this

has been interpreted to reflect cannibalism of previ-

ously emplaced magma batches (or proto-plutons;

Chelle-Michou et al., 2014). The high-Al amphiboles

found in the hornblende porphyry are also interpreted

in terms of proto-pluton cannibalism. Indeed, these
amphiboles record Na-corrected pressures of 800 to

500 MPa and melt water content around 8 wt %

(Figs 12e and 13a, c), which is close to the solubility of

water in a dacitic melt at this pressure. The high melt

Fig. 12. Plot of P vs (a, d) T, (b, e) H2Omelt, and (c, f) fO2 (expressed as DNNO) calculated from the amphibole-only formulations of
Ridolfi & Renzulli (2012) for amphiboles that match the compositional calibration range. Error bars are model uncertainties. Curves
represent H2O solubility calculated for 10 ppm CO2 (continuous line) and 100 ppm CO2 (dashed line) using the model of Papale et al.
(2006) with the average composition of the hornblende porphyry. Dashed arrows indicate the effect of the maximal Na-correction
on the calculated parameters for the high-Al, intermediate-Al and low-Al amphiboles in the porphyritic rocks (see text and Fig. 13).
Legend is the same as in Fig. 5.
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water content is consistent with the high Ba/La and Sr

content of these amphiboles. This suggests that the

magma from which these amphiboles crystallized

reached volatile saturation in the deep to middle crust,

which induced rapid and abundant crystallization and

inhibited magma ascent to shallower levels. These
amphiboles were probably sampled by subsequent

magma batches at 35�6 Ma and transferred to upper

crustal levels.

Textures of titanite and K-feldspar also highlight

open-system evolution in the porphyries. Although

some titanite may have fractionated in the deep crust,

some hornblendes crystallized in the upper crust retain
a record of titanite co-crystallization. Indeed, some

hornblendes from the hornblende porphyry with

high-MREE–HREE–Y–Ta cores (circled points in Fig. 6g, i

and j; with Na-corrected pressure around 150 MPa)

evolving to lower MREE–HREE–Y–Ta rims (part of the

main amphibole group in Fig. 6g, i and j) show that at
least part of the titanite crystallization took place in the

early stage of upper crustal evolution upon intrusion of

the dacitic magma. This is consistent with the presence

of titanite inclusions in hornblendes and biotites.

Titanites that display dissolution–recrystallization tex-

tures (Fig. 8h) indicate that their early cores were desta-

bilized, probably upon hot magma recharge. Titanite

hosting ilmenite–hematite droplets along growth sur-

faces (Fig. 8h) may indicate fluctuating oxygen fugacity
(e.g. McLeod et al., 2011), possibly as a result of

episodic fluid exsolution (Burgisser & Scaillet, 2007) or

recharge by more reduced magma. Petrographic obser-

vations show that K-feldspar was a late crystallizing

phenocryst in the porphyries (Fig. 8i and j). The Ba zon-

ing of K-feldspar phenocrysts from the hornblende–

biotite porphyry and the rhyodacite, which displays a
smooth decrease and an abrupt increase at dissolution–

recrystallization surfaces (Fig. 8i), also suggests the oc-

currence of magma recharge during K-feldspar

crystallization.

Finally, the zircon record of the rhyodacite porphyry

proves that remelting of proto-plutons was an import-
ant process at Coroccohuayco. Indeed, most zircons

from the rhyodacite crystallized c. 0�5 Myr before the

supposed emplacement of this porphyry as constrained

Fig. 13. Effect of correcting for amphibole excess NaA on the results of (a) pressure, (b) temperature, (c) melt water content and (d)
oxygen fugacity calculations for the hornblende and hornblende–biotite porphyries. Open symbols correspond to calculations per-
formed with an Na decrease of 0�1 p.f.u. Filled symbols correspond to calculations performed with an Na decrease of 0�2 p.f.u.
Shaded areas refer to model uncertainties, which are P 6 11�5%, T 6 23�5�C, H2Omelt 6 0�78 wt % and NNO 6 0�37 log units (Ridolfi &
Renzulli, 2012).
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by cross-cutting relationship with the hornblende and

hornblende–biotite porphyries (Chelle-Michou et al.,

2014). The Nd and Sr isotopic compositions of this rock

also show that it records the maximal amount of crustal

assimilation (Fig. 11a). We propose that magma re-
charge may have triggered partial melting of previous

magma batches (proto-plutons) and crustal material

(Mitu sediments), possibly hybridized with these partial

melts, finally yielding modified magma compositions.

Overall, the magnitude of crustal assimilation, proto-

pluton cannibalism and remelting appears to have

increased with time in the felsic magmatic system at
Coroccohuayco, from the inception of intracrustal mag-

matism at �37�5 Ma to the emplacement of the porphy-

ries at �35�6 Ma. This requires an increasing amount of

heat to be added to the system. We propose that sus-

tained and possibly increasing magmatic injections in

the upper crust for 2 Myr before the emplacement of
the porphyries (as evidenced by zircon antecrysts)

could have favoured the thermal maturation of the sys-

tem and increased the local geothermal gradient that

peaked at the time of porphyry emplacement. Under

these conditions, convective melting of roof-blocks

(proto-plutons and/or older crust) and/or remobilization
and mingling or mixing of crystal mush by hot magma

during high flux recharge events may be facilitated.

This could provide a mechanism for efficient crustal as-

similation and proto-pluton cannibalism and re-melting

(Reubi & Blundy, 2008; Schmitt et al., 2010; Chiaradia

et al., 2011, 2014; Reubi et al., 2011; Kennedy et al.,

2012; Simakin & Bindeman, 2012; Cashman & Blundy,
2013; Walker et al., 2013). In addition, a large part of the

crustal assimilation might have occurred in the DCHZ

through 2 Myr of mantle-derived magma injection.

The nature of the recharge magma in the upper crust

is unclear. Crustal assimilation and proto-pluton canni-

balism would readily be facilitated by mafic magma re-
charges. However, we could not find any compelling

evidence for the involvement of such mafic magma at

Coroccohuayco. Alternatively, we could envision inter-

mediate to felsic recharge magma that would in any

case be hotter than the cooling magmatic system into

which it intrudes. The efficiency of cannibalism and as-

similation would then critically depend on flux and vol-
ume of the recharge events. Combining zircon age data

and thermal modelling, Caricchi et al. (2014) estimated

that the volume of such a felsic magma body associated

with the porphyries could be of the order of 500–2000

km3, consistent with such potential high-volume re-

charge events.

Quantitative constraints on the evolutionary
path of the Coroccohuayco magmatic suite from
trace element modelling
To strengthen the petrological model depicted above

we have modelled the end-member whole-rock trace
element compositions (REE, Y, Sr, Ta, Zr) in terms of

AFC processes (DePaolo, 1981). Starting with the most

primitive gabbrodiorite composition (10CC55), we mod-

elled the evolution to the hornblende (10CC22) and

hornblende–biotite (10CC94) porphyries as an average

of upper and deep crustal processes. To overcome the

large uncertainties associated with numerous input par-
ameters we used a Monte Carlo approach; this consists

of generating a large number of outputs by randomly

selecting the input parameters within known possible

ranges. To obtain internally consistent sets of partition

coefficients for the REE3þþY3þ we generated them

using lattice strain fitting (Blundy & Wood, 2003) from

available sets of partition coefficients. The Sr, Zr and Ta
partition coefficients were selected within a range of

published values [see Béguelin et al. (2015) for more de-

tails on the method]. The fractionating assemblages

were chosen according to the mineralogy and petrog-

raphy of the samples. However, for the porphyries, be-

cause part of the fractionation probably happened in
the deep crust and at least part of the corresponding

fractionating assemblage may not be accessible (e.g.

garnet, clinopyroxene?), the fractionating assemblage

must be inferred from experimental data (e.g. Müntener

& Ulmer, 2006). For the porphyries, the assimilant was

modelled with various proportions of Mitu sediments
and proto-pluton partial melts that were assumed to be

similar to the rhyodacite. Simulations that reproduced

simultaneously all the trace elements of the targeted

samples within 10–20% (depending on the element)

were considered valid. Results are presented in Fig. 10c

and d, Table 3, and SD Tables 6 and 7.

The modelling results show that the chemistry of the
porphyries is consistent with fractionation dominated

by amphibole and pyroxene with lesser amounts of

plagioclase. Fractionation of apatite and titanite is

poorly constrained by the model and is better sug-

gested by the whole-rock data (i.e. decreasing P2O5 and

Ta with increasing SiO2; Fig. 9i and k). Interestingly, the
successful models require the presence of 1�2–5�8 wt %

of garnet in the bulk fractionating assemblage (Table 3).

This amount of fractionating garnet indicates that deep

crustal fractionation processes occurred at around

800 MPa (c. 30 km depth), where the assemblage amphi-

boleþpyroxeneþplagioclase 6 garnet is stable (e.g.

Alonso-Perez et al., 2009). As expected, trace element
modelling did not help in constraining the amount of

assimilation (e.g. Powell, 1984) and the relative propor-

tion of assimilants. The evolution from the hornblende

porphyry to the hornblende–biotite porphyry was

caused by more extensive hornblende fractionation,

mostly at the expense of plagioclase. This most prob-
ably reflects limited evolution at upper crustal levels

and more extensive deep crustal evolution for the horn-

blende–biotite porphyry with respect to the hornblende

porphyry.

Evidence for coeval uplift and erosion
Amphibole crystallization pressure for the GDC (250–

100 MPa) and the porphyries (250–100 MPa) are
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equivalent (Fig. 12). However, whereas the amphiboles

from the GDC crystallized in situ at c. 40�2 Ma, amphi-

boles from the porphyries were sampled at c. 35�6 Ma

from a pluton lying at some depth below the GDC and

transferred into small stocks and dykes. The porphyritic
intrusions and the associated copper mineralization are

now juxtaposed to the GDC. These observations sug-

gest that erosion was taking place in the Tintaya district

between 40�2 and 35�6 Ma.

Based on fluid inclusion data and textural observa-

tion of the skarn and breccia, Maher (2010) proposed

that the ore deposit formed at pressures around
25 MPa. This indicates that 75 (100–25) to 225 (250–25)

MPa of unloading occurred between 40�2 and 35�6 Ma.

This corresponds to an exhumation rate of 0�6–1�8 mm

a–1. Such erosion rates are higher than those measured

today in the Andes (e.g. Gregory-Wodzicki, 2000; Safran

et al., 2005; Bookhagen & Strecker, 2012) but are in the
range of those observed in other porphyry systems

(e.g. Houston & Dilles, 2013). They are also consistent

with the rapid subsidence and infill of the coeval

Eocene sedimentary basins in the future Altiplano re-

gion associated with the Incaic compressional event

(Carlotto, 2013; Chelle-Michou et al., 2015; Horton et al.,
2015). These observations confirm that the

Coroccohuayco deposit formed during a period of in-

tense exhumation and erosion similar to porphyry sys-

tems worldwide (e.g. Skewes & Stern, 1994; Tosdal &

Richards, 2001; Richards, 2003; Cooke et al., 2005;

Chiaradia et al., 2009b; Sillitoe, 2010; Schütte et al.,

2011.

THE ROLE OF MAGMATIC PROCESSES IN THE
GENESIS OF THE COROCCOHUAYCO ORE
DEPOSIT

Similar to porphyry-related magmatism elsewhere (e.g.

Richards & Kerrich, 2007; Loucks, 2014), the magmatic

rocks temporally associated with the mineralization (the

porphyries) display a high Sr/Y signal as opposed to the

precursor magmas (Fig. 10c). This is interpreted to re-
flect hydrous magma evolution in the mid- to deep crust

where amphibole 6 garnet are more stable than

plagioclase (Rohrlach & Loucks, 2005; Richards, 2011a;

Chiaradia et al., 2012; this study). The common associ-

ation of high Sr/Y magma and porphyry Cu deposits

suggests that the fertility of the magmatic system was

mostly acquired in the DCHZ (e.g. Richards, 2011a;
Chiaradia et al., 2012; Chiaradia, 2014). Magmatic evolu-

tion in the DCHZ was probably responsible for increas-

ing magma water content from 3 wt % in the basaltic

magma to 5 wt % in the felsic magma (Fig. 14).

Concurrent with the increase in the water content,

the magma oxidation state increased from NNO to

around NNOþ 1 to NNOþ2 (Fig. 14). During such a

transition in fO2 the dominant sulphur species rapidly

changes from S2– to S6þ (Jugo et al., 2010), the latter

being one order of magnitude more soluble in silicate

melts (Jugo, 2009), allowing chalcophile elements (such

as Cu) to behave incompatibly during magmatic evolu-

tion. This is probably a key factor for the genesis of a

porphyry Cu deposit (e.g. Ishihara, 1981; Candela, 1992;

Lynton et al., 1993; Richards, 2003) such as

Coroccohuayco. The reasons for this higher oxygen fu-

gacity remain unclear. On a global scale water and

element tracers of slab-derived fluids have been found

to correlate with fO2 in primitive melts of the mantle

wedge (Kelley & Cottrell, 2009). However, the high

water and LILE contents (e.g. Ba) observed in the por-

phyries (Figs 10b and 12e) can be attained by recharge–

assimilation–fractional crystallization processes and do

not require additional input of oxidized slab-derived

fluid (e.g. Chiaradia et al., 2014). Some researchers

have proposed that the sub-arc mantle may become in-

creasingly oxidized after several millions years of slab

fluid metasomatism (Rowe et al., 2009; Evans &

Tomkins, 2011; Evans et al., 2012). On the other hand,

trace element systematics suggests that the sub-arc

mantle may not be more oxidized than mid-ocean ridge

basalt (MORB)-source mantle (Lee et al., 2005, 2010,

2012; Mallmann & O’Neill, 2009). These contradictory

views highlight the need for continued efforts to under-

stand the process leading to high oxygen fugacity in arc

magmas that favours the genesis of porphyry deposits

(e.g. Richards, 2015). The increase in fO2 recorded at

Coroccohuayco may be explained by fractional

Table 3: Summary of results from the AFC Monte Carlo simulations

F r Assimilant Amph Garnet Plag Apatite Titanite Cpx Opx
(Mm/M0) (Ma/Mc) (%) (%) (%) (%) (%) (%) (%)

Input
Minimum 0�1 0 1 0 0 0 0 0 0 0
Maximum 0�6 1 1 80 5 50 1 1 30 5
10CC55 to 10CC22
Minimum 0�34 0�05 0�13 34�7 1�2 5�0 0�00 0�01 25�5 0�2
Average 0�36 0�10 0�57 45�4 2�5 11�5 0�15 0�26 37�0 3�2
Maximum 0�40 0�15 0�99 57�9 5�0 21�0 0�58 0�99 49�4 6�3
10CC55 to 10CC94
Minimum 0�30 0�02 0�01 54�1 1�4 0�0 0�00 0�00 16�4 0�0
Average 0�33 0�05 0�47 63�3 2�8 2�7 0�49 0�25 27�3 3�2
Maximum 0�34 0�08 0�99 77�4 5�8 5�8 0�95 0�62 36�7 6�2

Assimilant: 0¼100% of average rhyodacite; 1¼100% of average Mitu sediments. F is final mass of the melt (Mm) over the initial
mass (M0). r is assimilated mass (Ma) over the crystallized mass (Mc).
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crystallization, degassing, assimilation, varying

amounts of slab-fluid metasomatism of the mantle

source, or a combination of these [see review by

Richards (2015)]. However, we note that the hypothesis

that the Triassic Mitu red beds or other oxidized sedi-
ments could be located in the DCHZ (see Chapman

et al., 2015) instead of in the upper crust (Chelle-Michou

et al., 2014) means that their efficient assimilation could

readily drive the observed increase in fO2.

Sustained upper crustal magmatism from 37�5 to

35�6 Ma appears to have increasingly favoured crustal

assimilation and proto-pluton cannibalism. This neces-
sarily implies that a large volume of magma (of the

order of 1000 km3; Caricchi et al., 2014) was emplaced

in the crust, which constituted a large reservoir of cop-

per and sulphur able to source the Coroccohuayco min-

eral deposit. The resulting thermal anomaly was

greatest just before the mineralization event and prob-
ably favoured slow cooling of the underlying silicic

magma body and more efficient metal diffusion and

partitioning into exsolving fluids (Stavast, 2006;

Vigneresse, 2007). If previous magma batches were

able to saturate and sequester some amount of sulfides,

subsequent cannibalism of these sulfide-bearing do-
mains may contribute to the final metal budget of the

deposit (Wilkinson, 2013). A similar process could also

occur in the deep crust where several million years of

magmatism could build up a sulfide-enriched reservoir

(Lee et al., 2012; Chiaradia, 2014). Subsequent remobili-

zation of these sulphides and transfer to the upper crust

could also contribute to the magma metal endowment.

CONCLUSIONS

Figure 14 presents a general model for the evolution of

the Coroccohuayco magmatic system based on age

constraints from Chelle-Michou et al. (2014). At c.

40�4 Ma the GDC magmas were sourced from a hetero-
geneous deep crustal hot zone and subsequently under-

went minor degrees of differentiation in the upper crust

to yield the gabbrodiorite and the gabbrodiorite ‘cumu-

late’. The leuco-gabbrodiorite was probably sourced

from the same deep crustal magma chamber that

underwent a slightly higher degree of differentiation.
After a magmatic lull, magmatism resumed at c.

37�5 Ma with the injection of several magma batches

within the upper crust, probably sourced from a more

mature and homogeneous deep crustal hot zone. The

compositions of these magmas were mostly acquired

in the deep crust but some amount of fractionation and

assimilation also occurred in the upper crust. Sustained
magma injection (recharge) until c. 35�6 Ma favoured

upper (and to some extent mid-) crustal assimilation of

previous magma batches (proto-plutons) and of older

crust. Because the porphyries record increasing

amounts of assimilation with time they are thought to

have been extruded from an upper crustal silicic
magma reservoir undergoing steadily increasing ther-

mal maturation. The rhyodacite results from partial

remelting of a proto-pluton, as suggested by zircon

high-precision U–Pb geochronology and cross-cutting

relationships. Partial melt similar to the rhyodacite is

likely to have hybridized with pristine (uncontaminated),

deep crustal silicic melt. This magmatic history is coeval
with active erosion probably associated with uplift

caused by the Incaic compressional event. The fertility

of the felsic magma with respect to porphyry genesis

was probably acquired in the deep crust through the in-

crease of water content and oxygen fugacity in the melt

and associated S and Cu enrichment. Proto-pluton can-

nibalism and building of a stable thermal anomaly in
the upper crust may have favoured Cu and S recycling

as well as their efficient extraction from the magma to

form the ore deposit.
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Perelló, J., Carlotto, V., Zarate, A., Ramos, P., Posso, H., Neyra,
C., Caballero, A., Fuster, N. & Muhr, R. (2003). Porphyry-style
alteration and mineralization of the Middle Eocene to Early
Oligocene Andahuaylas–Yauri belt, Cuzco region, Peru.
Economic Geology 98, 1575–1605.

Pettke, T., Oberli, F. & Heinrich, C. A. (2010). The magma and
metal source of giant porphyry-type ore deposits, based on
lead isotope microanalysis of individual fluid inclusions.
Earth and Planetary Science Letters 296, 267–277.

Pichavant, M. & Macdonald, R. (2007). Crystallization of primi-
tive basaltic magmas at crustal pressures and genesis of the
calc-alkaline igneous suite: experimental evidence from St
Vincent, Lesser Antilles arc. Contributions to Mineralogy
and Petrology 154, 535–558.

Pin, C., Briot, D., Bassin, C. & Poitrasson, F. (1994). Concomitant
separation of strontium and samarium–neodymium for
isotopic analysis in silicate samples, based on specific
extraction chromatography. Analytica Chimica Acta 298,
209–217.

Plank, T. (2005). Constraints from thorium/lanthanum on sedi-
ment recycling at subduction zones and the evolution of the
continents. Journal of Petrology 46, 921–944.
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