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Abstract

During the genomic era, a large amount of whole genome sequences accumulated,
which identified many hypothetical proteins of unknown function. Rapidly, functional
genomics, which is the research domain that assign a function to a given gene product,
has thus been developed. Functional genomics of intracellular pathogenic bacteria
exhibit specific peculiarities due to the fastidious growth of most of these intracellular
micro-organisms, due to the close interaction with the host cell, due to the risk of
contamination of experiments with host cell proteins and, for some strict intracellular
bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate
the bacterial genome. In order to identify virulence factors of intracellular pathogenic
bacteria, functional genomics often rely on bioinformatic analyses compared to model
organisms such as E. coli and B. subtilis. The use of heterologous expression is another
common approach. Given the intracellular lifestyle and the many effectors that are used
by the intracellular bacteria to corrupt host cell functions, functional genomics is also
often targeting the identification of new effectors such as those of the T4SS of Brucella

and Legionella.
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1. Introduction

In the late 1990’s, the development of automated-DNA sequencing revolutionized
microbiology through the availability of complete genomes of bacteria. The first bacterial
genome sequence was reported for the bacterial pathogen Haemophilus influenzae in
1995 [1]. The availability of a complete genome sequence rapidly appeared to be
insufficient to understand the complexity of the bacterial world. The genome sequence
data is not an end by itself but rather the starting point to raise testable functional
hypotheses. Thus, the transition to the 21%' century gave rise to a large increase of
research in functional genomics, often referred as the post-genomic era (Figure 1).
Functional genomics consist to assign a function to a protein encoded by a given gene.
A key feature of functional genomics is the ‘genome-wide” approach that requires
adapting the experimental design to large-scale research. Basically, functional
genomics is based onto two main approaches: the sequence-based and the
experiment-based function assignment. Sequence-based functional genomics relies
mainly on similarity of sequence at nucleotide and/or protein levels as well as, the
overall structure and composition of a genome. This approach provides clues but does
not establish gene product function and needs experimental verification. On the other
hand, experience-based functional genomics relies on experiments performed at
different levels such as DNA (transpositional screen, random mutagenesis), RNA
(microarrays, RNAseq) and protein (2D gel followed by mass spectrometry, ORFeome,
heterologous expression,...). Studying the function at the protein level helps

characterizing directly the molecular actors in the cell and also includes most functional
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screens such as protein-protein interactions, subcellular localization as well as,
secretion/translocation screens.

Functional genomics was first applied to model organisms such as E. coli and B. subtilis
and then to pathogenic bacteria in order to gain insight on their virulence factors.
Functional genomics of intracellular bacteria cannot be directly extrapoled from
functional genomics data of E. coli because gene content and function largely reflects
the ecology of a given bacterium and sustained host-pathogen interactions shape the
bacterial genomes of intracellular bacteria. This review is devoted to functional
genomics of facultative and obligate intracellular pathogenic bacteria. Obligate
intracellular pathogenic bacteria only proliferate inside host cells and no defined media
are yet available that sustain their bacterial growth whereas, facultative intracellular
bacteria may be grown axenically on synthetic media. Functional genomics of
intracellular bacteria implies two major challenges: (i) to distinguish the bacterial
components of interest from the cellular fraction of the host eukaryotic cell, (ii) the low
number of intracellular bacteria at early time point post-infection (p.i.) (before bacterial
proliferation) forces the experimenter to deal with low amount of bacterial components.
Moreover, the absence of simple genetic system for some strict intracellular bacteria,
such as Chlamydia spp., is another challenge that explains the large variety of
functional genomics approaches that have been developed by chlamydologists. In
addition to Chlamydia, this review will also focus on functional genomics applied to
study two facultative intracellular pathogenic bacteria, Brucella spp. and Legionella spp..
and will present the different strategies used to identify the effectors translocated into

the host cell thanks to their Type IV secretion system (T4SS).
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Functional genomics of Brucella

Generalities

Brucella spp. are the ethiological agent of brucellosis, a widespread worldwide zoonosis
affecting a large range of mammals including humans and responsible of dramatic
economical losses in endemic countries. Brucella spp. are Gram-negative bacteria
belonging to alpha-2 subclass of Proteobacteria [2]. The Brucella genus is divided into
10 species according to their hosts [3, 4]. Brucella spp. are able to infect professional
and non-professional phagocytes. Once internalized, Brucella resides in a vacuole
called “Brucella containing vacuole” (BCV), which successively interacts with endocytic
compartments. Then, Brucella reaches the endoplasmic reticulum (ER) at particular
sites, the ER exit sites (ERES), where it extensively proliferates [5-7].

Brucella genome

The first complete Brucella genomes were reported in 2002 for B. melitensis strain 16M
and B. suis strain 1330 [8, 9]. The complete genome of Brucella abortus was published
in 2005 [10]. Before the availability of complete genome sequence, several groups used
transposon mutagenesis and signature-tagged transposon mutagenesis in order to
identify virulence factors [11-15]. These experiments were essentially performed in vitro
on eukaryotic cells and led to the identification of genes essential for intracellular
survival. These gene products were involved in various pathways such as amino acid
and DNA metabolism, LPS biosynthesis and the T4SS, which suggested that Brucella
genome does not contain toxins and other canonical virulence factors used by other

pathogens.
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ORFeome of Brucella

In 2004, the first B. melitensis ORFeome was constructed [16]. The B. melitensis
ORFeome is a library of all protein-encoding open reading frame (ORF) cloned in an
entry vector compatible with the Gateway cloning technology, easily transferrable in
expression vector by recombination. The ORFeome is a convenient resource for high-
throughput functional genomics and can be used for various purposes such as protein
over-expression, mutant construction, interaction mapping... Various screens based on
the ORFeome availability were performed such as (i) functional screen in yeast for anti-
apoptotic effector candidate, (ii) screen for proteins with a polar localization in B.
abortus or (iii) yeast-two hybrid between all B. melitensis proteins and human
phagosomal protein or endoplasmic reticulum exit site associated proteins [17-20].
Thanks to the presence of the same flanking sequences for each coding sequence, the
ORFeome is also useful for the construction of a PCR product microarrays for the global
analysis of gene expression of Brucella in laboratory conditions [21].

Trancriptional analysis of Brucella

Transcriptional analysis by using microarrays was essentially performed to study the
global regulation of a transcriptional regulator. This was the case of BvrR/S, the two
component system essential for Brucella virulence [22]. The genes regulated by BvrR/S
were determined by parallel whole genome microarray analyses of the wild type and the
bvrR mutant strains grown under the same conditions [23]. A similar approach was used
for VjbR and BabR, two transcriptional factors belonging to LuxR family responding to
quorum sensing autoinducer, by combining proteomic study to genome microarray

analyses [24-27]. The aim of this work was to identify the quorum sensing regulon by
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focusing on the most likely targets. The putative targets included those identified by
combining proteomic and microarray analysis and those by the microarray analysis
alone confirmed by qRT-PCR or chromatin immunoprecipitation (chlP) [27].

Other transcriptomic studies were performed in order to identify differences in global
gene expression level between bacteria subjected to different stimuli or in different
stages of axenic growth or intracellular growth. Rosetti and colleagues performed a
microarray analysis between Brucella melitensis at the late logarithmic phase of growth
(the most invasive culture) and stationary phase (the least invasive). The majority of up-
regulated genes in late-log growth phase were associated with growth, including DNA
replication, transcription, translation, intermediate metabolism, energy production and
conversion, membrane transport, and biogenesis of the cell envelope and outer
membrane [28]. Another study characterized the transcriptional profile at 4h (non-
proliferative phase) and 12h (proliferative phase) after infection of HelLa cells with B.
melitensis. As many as 151 and 115 genes were differentially expressed at 4 and 12h
p.i., compared to the inoculum (a culture at late-log phase of growth). These genes
mainly involved in growth and metabolism were down-regulated at 4h p.i. and up-
regulated at 12h p.i. [29]. The aim of these two studies was first to identify genes
encoding proteins (i) involved in invasion by comparing transcriptional profile between
the most and the least invasive growth phase of B. melitensis cultures and (ii) involved
in survival and proliferation (by comparing transcriptional profile at 4 and 12h p.i). The
results presented in these studies reflect a global adaptation. It is therefore difficult to

identify a single gene or a set of gene involved in the invasion, survival or proliferation.
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The recent advance in RNAseq provides a novel approach for transcriptomic studies
where host and pathogen can be both analyzed in parallel. This technique also allows
the identification of the transcription start site (TSS), alternative TSS and operon
organization as well as non-coding RNAs, antisense RNAs, and 5'-/3'-untranslated
regions. Small regulatory RNAs are involved in post-transcriptional regulation and even
in modification of protein activity. Hfq protein binds RNA and is usually required for the
function and/or stability of this family of sRNAs, in Gram-negative bacteria [30]. The
presence of hfqg gene in B. abortus genome suggests that such a sRNA regulation exist.
Until now, only two sRNAs were identified which are both orthologous to AbcR1 and 2
of A. tumefaciens [31]. Moreover the small regulatory RNAs of Brucella still remain
poorly known and RNAseq approach should help to study this domain.

Proteomics investigations

The first proteomic study of Brucella was performed on bacterial cells grown on blood
agar in aerobic condition [32]. A total of 883 proteins spots were detected on 2D gel
among which 440 proteins were identified by mass spectrometry. These proteins
represent 187 genes that correspond to 6% of the predicted genes present in the
genome. Later, various proteomic studies were performed on infected cells or on
bacteria grown under microaerobic or anaerobic conditions [33-35]. It was reported that
the basal metabolism is reduced under microaerobic and anaerobic conditions, which is
expected with low or absence of growth. Under these both conditions, glycolysis and
denitrification were favored. When oxygen became limiting, basic metabolism processes
were maintained and various respiratory pathways were observed. This flexibility

confers to Brucella an advantage to survive in low oxygen environments such as



177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

damaged host tissues [34]. Lamontagne and colleagues showed that Brucella prepare
for cell division soon after their internalization in mouse macrophages by overproducing
several proteins involved in division and DNA metabolism, such as PleC and XseA [35].
In addition to provide such functional information, proteomic studies can also be useful
to confirm that proteins were correctly annotated in term of length and that they are
produced [36].

Brucella VirB T4SS

The T4SS of Brucella was discovered in 1999, by a transposon mutagenesis screen for
mutants attenuated during infection of HeLa cells. The involvement of the T4SS VirB in
Brucella virulence and its regulation were extensively studied [5, 11, 15, 25, 37-40].
Briefly, virB expression is regulated by BvR/S and VjbR regulators [25, 39]. It was also
reported that VirB T4SS is required to sustain interaction with the ER and generate a
proliferative organelle, probably through the action of translocated effectors into the host
cell or the vacuolar membrane [5]. A common strategy to identify effectors relies on
bioinformatic approaches. One study hypothesized that proteins translocated by VirB
must be co-regulated with the virB operon by the VjbR regulator [41]. A conserved motif,
in the virB promoter, required for VjbR activation was determined and then 144
promoters containing this motif were identified. For interesting candidates, translocation
into macrophages using TEM-B-lactamase reporter were tested. Thus, two proteins,
VceA and VceC, were reported as the first T4SS substrates. A second genome-wide
bioinformatics screen was initiated to identify additional effectors. This screen was
based on different criteria such as the homology to known effectors and the occurrence

of eukaryotic-like domain or motif. Using this bioinformatic approach, 84 B. abortus
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putative effectors (BPEs) were identified [42]. Translocation of these putative effectors
was tested using adenylate cyclase reporter and six were translocated into the
eukaryotic cytoplasm.

Another strategy to identify effectors, consist to focus on a particular feature of these
effectors such as their interactions with host proteins, as well as their translocation into
host cell cytoplasm. In this prospect, a genome-wide yeast-two hybrid between all B.
melitensis and human phagosomal protein was performed [18]. This approach was
possible thanks to the availability of both human and B. melitensis ORFeome. A specific
interaction was identified between the human Rab GTPase Rab2 and a Brucella protein
called RicA. This interaction was confirmed by GST pull down and RicA was shown to
be translocated into host cell cytoplasm of macrophages using the TEM-B-lactamase
reporter. Functional screen in yeast to identify anti-apoptotic effector candidates and
translocation screen using the Yersinia YopP as a reporter system [17, 44] are
alternative strategies used to identify T4SS effectors.

Despite overlapping many different approaches, Brucella effectors still remain poorly
characterized possibly due to the difficulties to adapt tools and experiments to this

biosafety level 3 bacterial pathogen.

Functional genomics of Legionella

Generalities
Legionella pneumophila is a Gram-negative bacterium commonly found in aquatic

environment where it replicates inside protozoan hosts [45, 46]. L. pneumophila is the
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causing agent of a severe pneumonia, called Legionnaires’ disease [47-49]. The
alveolar macrophages are the primary sites of bacterial proliferation. The L.
pneumophila virulence seems to rely on its ability to avoid phagosome-lysosome fusion,
since mutants defective for this particular phenotype are unable to proliferate inside the
host cell and thus to cause the disease [50, 51]. Once inside the cell, L. pneumophila
reside in a vacuole called Legionella containing vacuoles (LCV). The LCV rapidly
acquire the characteristics of an ER-like compartment by recruiting vesicles from the
early secretory pathway [52]. This is essential for bacterial proliferation and require a
functional Dot/lcm type IV secretion system (Dot/lcm T4SS) that translocates effector
proteins and represents a major virulence factor (see below) [53].

Genomics of Legionella

The 3 first complete genomes of L. pneumophila were published in 2004 and a fourth
sequence from the same species was reported in 2007 [54-56]. Many important factors
involved in internalization and intracellular proliferation have been identified during the
pre-genomic era such as Dot/lcm Type IV secretion system, the Type Il secretion
system Lsp and the Mip (macrophage infectivity potentiator) [57, 58]

The availability of complete L. pneumophila genomes is an open window to better
understand the L. pneumophila biology. For example, sequence analysis allowed the
identification of a putative type | secretion system (Lss) encoded by the IssXYZABD
locus [59]. L. pneumophila genome was also screened to identify patatin-like proteins
(PLPs) and 11 PLPs were identified designated PatA to PatK. These PLPs form a new
family of phospholipases. Four of these PLPs (PatA/VipD, PatC/VpdA, PatG/VpdB and

PatF/VpdC) have been identified and characterized previously [60, 61].
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Trancriptional analyses of Legionella

The first transcriptional study of L. pneumophila using microarrays was performed
during infection of its natural host, i.e. Acanthamoeba castellanii [62]. Virulence traits
such as Dot/lcm substrates, factors associated to invasion, virulence and motility as well
as more than 90 proteins without characterized function, were overexpressed during the
transmissive phase (>10h post-infection, p.i.) compared to the proliferative phase (<10h
p.i.). Another transcriptional analysis was performed on L. pneumophila biofilms cells by
comparing transcriptional profile of sessile cells with two distinct populations of
planktonic cells [63]. The results showed that sessile cells have a similar gene
expression profile to proliferative phase L. pneumophila. Recently, to detect putative
virulence factors involved in resistance to macrophages, the transcriptional response of
L. pneumophila once internalized by human macrophages, was analysed at 0, 6 and
18h p.i. and was compared to exponential and post-exponential axenic growth.
Interestingly, 8 of the 10 most highly induced genes were of unknown function. These
genes could represent virulence traits. Three new translocated effectors were identified
by scanning the genome in order to detect regions enriched in genes without assigned
function and showing a similar expression patterns to their neighbouring effector genes
[64].

In addition many putative sRNA molecules were identified by both bioinformatic
analyses and deep RNA-sequencing on L. pneumophila grown in broth and inside A.
castellanii [65-68]. Thus, deep RNA-sequencing gave new insights on the global
transcriptional regulation and response to particular conditions and also helped

identifying small non-coding RNA involved in the post-transcriptional regulation.
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Proteomics investigations

The first proteomic study performed on L. pneumophila was reported in 2005. This work
on total cell extracts provided a reference map for further investigations [69]. A
proteomic approach was also used to identify the T2SS secretome [70, 71], as well as
the whole secretome [72] and the membranome and surfaceome [73]. Proteomic
analysis was also performed at both exponential phase and post-exponential phase
(virulent) of L. pneumophila, to confirm differences observed at the transcription level
and to identify proteins possibly associated to virulence [74]. This led to the
identification of 68 proteins among which 64 were overproduced at the post-exponential
phase. Of these, nine proteins of unknown function were found, among which 6 were
demonstrated specific for L. pneumophila by southern blot analysis. Two of them were
associated to haemolysis by conducting contact dependent hemolysis assay using
SRBC (sheep red blood cells) and two were translocated into macrophages by the
Dot/lcm T4SS demonstrating the usefulness of proteomics to decipher protein functions.

Legionella Dot/lcm T4SS

The T4SS Dot/lcm was identified by various selections and screens for L. pneumophila
mutants defective for intracellular growth and/or defective for macrophage killing. These
mutants were called dot for defect in organelle trafficking, in Isberg lab, and icm for
deficient in intracellular multiplication in Shuman lab [75-80]. Up to now, 26 dot/icm
genes have been identified and are essential for intracellular growth, in particular to
prevent phagosome-lysosome fusion.

More than 300 L. pneumophila effectors have been identified using an arsenal of

methods such as bioinformatic screens for genes encoding eukaryotic-like domain,
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genetic screens for particular phenotypes, yeast screens and translocation screens.
Sequencing and analysis of the Legionella genome identified a wide variety of proteins
exhibiting eukaryotic-like domains such as ankyrin repeat, Sel-1, SET, Sec7 motifs, U-
box and F-box domains. Using these bioinformatic approaches, a L. pneumophila
protein, called RalF, containing a Sec7 homology domain was identified [81]. Sec7
homology domains are found in a family of eukaryotic ARF-GEF, which stimulates
exchange of GDP for GTP. Arf1 is a small GTPase involved in the regulation of the
vesicle traffic between the ER and the Golgi. It was reported that RalF is required for the
localization of Arf1 on phagosomes containing L. pneumophila. Moreover RalF is
translocated through the phagosomal membrane by the T4SS Dot/lcm. RalF is the first
translocated substrate of the T4SS with an identified function.

One interesting genetic screen relied on the identification of mutant strains, obtained by
transposon mutagenesis, exhibiting a similar phenotype than that of the dofL mutant,
i.e. lethality [82]. This lethality is likely due to the assembly of a poison Dot/lcm
complex, caused by the dysregulation of the molecular flow through the translocator.
This study allowed the identification of LidA (lowered viability in the presence of dot).
LidA function was then extensively studied [43, 83-86].

The yeast was also exploited to identify and characterized L. pneumophila effectors. A
yeast lethality screen was performed to identifiy L. pneumophila proteins which interfere
with yeast growth. This screen led to the identification of YIfA for yeast lethal factor. YIfA
was also shown to be translocated by the Dot/lcm apparatus and is associated with
vesicles of the early secretory pathway including ER [87]. The yeast can be also used to

identify proteins which cause a membrane trafficking (vacuole protein sorting, VPS)
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defect in yeast. Using this screen, 3 proteins which inhibit vacuolar traffic were identified
called VipA (VPS inhibitory protein), VipD and VipF [60]. These 3 proteins are also
translocated into host macrophages through the Dot/lcm T4SS. VipD possesses a
patatin domain and is thus also called PatA.

All these methods considerably improved our knowledge on L. pneumophila intracellular
life cycle and subversion of host cell processes to its own advantage. Moreover, yeasts

represent a useful tool to define the function of putative effectors.

Functional genomics of Chlamydia

Generalities

Chlamydia trachomatis and C. pneumoniae are important human pathogens causing
ocular infection and respiratory diseases such as pneumonia, respectively. Until now,
we are still unable to genetically manipulate these organisms by targeted mutagenesis
or transposon mutagenesis, prompting the development of other approaches. One
major reason for the absence of genetic system to manipulate the genome of
Chlamydia, resides in the obligate intracellular life cycle of these bacteria. The
chlamydial development cycle is indeed characterized by two distinct developmental
stages, which are morphologically and functionally different. Elementary bodies (EBs)
are the infectious form that may survive extracellularly whereas reticulate bodies (RBs)
are non-infectious and proliferate inside the host cell. Basically, EBs are internalized
and differentiate into RBs which replicate by binary fission. RBs then redifferentiate into
EBs which are released after cell lysis. Finally, EBs initiate a new infection cycle.

Chlamydia genome and genetic approaches

15
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The complete genome sequence of C. trachomatis and C. pneumonaie were published
in 1998 and 1999, respectively [88, 89].

One interesting approach to tackle the intractability of Chlamydia is the use of a
combinatorial approach coupling a chemical mutagenesis with whole genome
sequencing and a system of DNA exchange within infected cells [90]. Practically,
Chlamydia infected Vero cells were treated with the alkylating agent
ethylmethylsulfonate (EMS). Mutated Chlamydia were then used to reinfect a monolayer
of Vero cells, overlaid with agar to observe plaque formation. Mutants were classified
according to their plaque morphotypes and the whole genome of mutants sequenced to
identify mutated genes sharing the same phenotype. Finally, co-infection between the
wild type and mutant strains were performed to obtain recombinants where particular
mutated genes could be linked to a phenotype. This method led to the identification of 4
mutants which form large granular plaques (Gnr). Three were mutated in the glgB gene
encoding a glycogen-branching enzyme. Microscopic analysis of HelLa cells infected
with Gnr mutants showed an accumulation of large precipitates in the lumen of
inclusions, likely glycogen. Recombinant strains were obtained to address the link
between genotype and phenotype and showed that all strains with a mutated g/gB
(even single mutation) were accumulating glycogen inside inclusion. Altogether, a loss-
of-function of glgB is leading to the accumulation of glycogen. Similarly, in the Gnr4
mutant, a mutation was identified in the gspE gene which is homologous to ATPases of
the Type Il secretion system. One hypothesis is that gspE mutant accumulates
glycogen because a key glycogen hydrolase is not secreted. Interestingly, gspE mutant

is attenuated during HeLa cells infection compared to wild type and glgB mutant strains.
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This suggests that the T2SS is involved in the secretion of other factors essential for
bacterial survival. This combinatorial approach should be applicable to other genetically
intractable pathogenic bacteria.

Trancriptional analyses of Chlamydia

Transcriptomic and proteomic analyses are important to study the global adaptation of
Chlamydia to their host. Microarray analyses of the temporal gene expression during
the developmental cycle have been performed, repectively on C. trachomatis serovar L2
and D [91, 92] and on C. pneumoniae [93]. Belland and colleagues identified 29 early
genes expressed as early as 1h p.i. [91]. Analysis of these genes suggests that
Chlamydia established systems for nutrient acquisition and modify its inclusion by
expressing particular genes during the early stage of infection. Transcriptomic studies
allowed the definition of a new class of genes called the “very late” (or “tardy” genes), in
addition to the “late” genes. Basically, “late” genes encode early proteins required for
EBs infection and “tardy” correspond to genes which mRNA transcripts are present in
EBs. A total of 26 and 70 “late” genes were respectively, identified by Belland et al. and
Nicholson et al. [91, 92]. Among these genes, omcAB and hctAB were previously
characterized as “late” genes. HctAB encodes HctA and HctB, two chlamydial histone-
like proteins, which mediate chromosomal condensation during the differentiation of
RBs to EBs. OmcAB encodes for OmcA and OmcB are two cysteine-rich outer
membrane proteins interacting with OmpA, the major outer membrane protein, to form a
highly disulfide crosslinked complex. This complex is considered essential for the
resistance of EBs to osmotic stress when outside host cells, since Chlamydia do not

have a classical peptidoglycan layer.
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Recently, RNAseq was performed on the C. frachomatis L2b and C. pneumoniae CWL-
029 on purified elementary bodies and reticulate bodies [94, 95]. For C. frachomatis,
363 transcription start sites have been mapped and 43 non-coding RNA identified. As
many as 83 genes showed differential expression level between RBs and EBs [95]. For
C. pneumoniae, 565 transcriptional start sites of annotated genes and novel transcripts
were mapped. Semi-quantitatvive analysis showed significant differences in genes
expression between EBs and RBs for 288 genes. Moreover, 75 non-coding RNA were
identified [94]. By intergenic tiling microarray on RNA of C. trachomatis D at 40h p.i., 34
non-coding RNAs were identified, 16 being confirmed by northern blot [96]. One of the
non-coding RNA regulated ftsl expression by inducing degradation of fts/ mRNA. This is
especially interesting since in other bacterial lineages, Ftsl is involved in peptidoglycan
synthesis. The true role of Ftsl in Chlamydia remains to be determined [97]. Given the
susceptibility of Chlamydia to penicillin derivatives, the Ftsl and others genes of the fts
operon are likely important in chlamydial multiplication and/or in the biosynthesis of the
chlamydial peptidoglycan-like layer.

Proteomics investigations

Different proteomic studies using 2D gel and mass spectrometry were performed during
the past 10 years in order to better understand events such as differentiation of EBs to
RBs. Several studies were performed on purified EBs or on both purified EBs and RBs,
in order to determine the proteome and study its temporal variation [98-100]. These
studies confirmed that ORFing of C. trachomatis and C. pneumoniae genomes was
correct for these hypothetical proteins. It was also showed that the entire set of

glycolytic enzymes were present in the so-called metabolically inert form (EBs)
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suggesting that there are metabolic flux also in EBs. These results were recently
confirmed by a quantitative study showing that proteins of the central metabolism and
glucose catabolism were more abundant in EBs, whereas in RBs, proteins involved in
ATP generation, proteins synthesis, and nutrient transport were predominant [101].
Proteomic approaches were also used to identify translocated chlamydial proteins into
host cell cytoplasm [102, 103]. The first study allowed the identification of CPAF
(chlamydial protease or proteasome-like activity factor), a factor previously
characterized by Zhong and colleagues [104]. A second study allowed the identification
of CT621, which localized to the host cell cytoplasm and nucleus and whose
translocation is dependent of the T3SS [103].

An ORFeome was recently constructed for C. pneumoniae [105]. The ORFeome is an
essential tool for functional genomics of such intractable bacteria allowing functional
screens in yeast such as two-hybrid, lethality screen, membrane traffic defect, adhesion
assays, as well as screen to identify T3SS translocated proteins, for instance by
heterologous expression in Shigella using reporter gene fusions.

Advances in Chlamydia transformation

In one of the pioneering works in this field, Binet and colleagues [106] constructed pUC
plasmid derivatives carrying different lengths of rRNA regions containing 4 nucleotide
substitutions. Three substitutions located in the 16Sr RNA gene conferred resistance to
kasugamycin and spectinomycin, and caused a loss of one Hpal restriction site. C.
psittaci 6BC was then electroporated with various concentrations of circular or linearized
plasmids. Allelic replacements of the endogenous rRNA operon were selected by

incubation of the infected cells with the two antibiotics. Allelic replacements were
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observed at frequencies greater than 10°. This showed that genetic manipulations are
feasible in Chlamydia. Recently, C. trachomatis transformation was reported using
penicillin selection and calcium chloride treatment of EBs to render them competent
[107]. A GFP plasmid was constructed based on the plasmid of the Swedish new
variant strain (a strain with a deletion of a 400bp region in the canonical 7’500kb
plasmid of C. trachomatis). This plasmid was used to obtain penicillin resistant C.
frachomatis strains expressing gfp. These recent advances in C. frachomatis
transformation and mutagenesis by allelic recombination in C. psittaci open the window
to future development of genetic tools in order to perform targeted and random
mutagenesis, which could considerably improve our knowledge on the biology of these

bacteria [106, 107].

Discussion

During the last two decades, complete genomes were obtained for many bacteria. All
these data are however not sufficient to understand the bacterial biology. This led to the
development of functional genomics whose main feature is its genome-wide approach
(Figure 2). One challenge of the functional genomics on intracellular pathogen is to
discriminate bacterial material from host cell material. The early times post-infection are
also critical since there is not yet bacterial proliferation and we have to deal with very
small amount of bacteria. Functional genomics approaches are useful to better
understand host-pathogen interaction which is tightly regulated by the two interacting

partners and leads to accumulating data at the DNA, RNA and protein level. These data
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are quite difficult to interpret and need to conciliate all 3 levels. Each approach presents
advantages and limitations which are summarized in the Table 1. One major
disadvantage of microarray analysis is that results may be different than results
obtained at proteomic level due to post-transcriptional modifications. It is therefore
interesting to perform both analyses in parallel on a same sample. The main
disadvantage of proteomic studies, using 2D gel and mass spectrometry, is that they
require supplementary steps to separate/distinguish host cell proteins from bacterial
proteins. RNAseq compared to microarrays, has several advantages, and especially in
term of cost and quality of data, but this new technology has not yet been much applied
to intracellular pathogenic bacteria. RNAseq also require differentiating bacterial RNA
and host cell RNA. This is possible by mapping reads to reference bacterial genome
sequence or, before the RNAseq, by a physical separation of bacteria from host cells or
by sequential purification steps to isolate bacterial RNA.

Genome-wide studies give a global view of the bacterial response to a particular
environment. They may be combined with specific functional screens in order to
determine the role of a particular protein.

Extracellular pathogenic bacteria secrete toxins/enzymes which are considered as
virulence factors. For intracellular bacteria, toxins/enzymes counterparts are effector
proteins. These proteins are translocated by a secretion system and are involved in the
host cell hijacking. Intracellular pathogenic bacteria possess a battery of non-canonical
effectors with redundant functions, rendering their identification extremely difficult. In

this context, functional genomics approaches are very useful tools.
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In the future, functional genomics will increasingly use RNAseq and will likely also
investigate bacterial metabolism using metabolomics. The major interest of RNAseq is
the identification of non-coding RNAs which are new actors in genes regulation. Non-
coding RNA role is still likely underestimated. By giving a snapshot of the metabolites
present at a define time, metabolomics will provide important insights into bacterial
physiology. The next challenge in the functional genomics field is to integrate data from
transcriptomic, proteomic and metabolomic studies in order to obtain a global picture of
the bacterial state in a defined condition and to better characterize host-pathogen

interaction.
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Figure 1. Graph showing the increasing number of hits when we made a NCBI research
with particular key words. This reflects the expansion of the functional genomics during
the last decade.
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Figure 2. Timeline for Chlamydia spp., Brucella spp. and Legionella spp. during
genomic and post-genomic era (functional genomics).
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