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G E N E T I C S

Extensive tissue-specific expression variation and novel 
regulators underlying circadian behavior
Maria Litovchenko1,2*, Antonio C. A. Meireles-Filho1,2*, Michael V. Frochaux1,2,  
Roel P. J. Bevers1,2, Alessio Prunotto1,2, Ane Martin Anduaga3, Brian Hollis1,2,  
Vincent Gardeux1,2, Virginie S. Braman1,2, Julie M. C. Russeil1,2, Sebastian Kadener3, 
Matteo dal Peraro1,2, Bart Deplancke1,2†

Natural genetic variation affects circadian rhythms across the evolutionary tree, but the underlying molecular 
mechanisms are poorly understood. We investigated population-level, molecular circadian clock variation by 
generating >700 tissue-specific transcriptomes of Drosophila melanogaster (w1118) and 141 Drosophila Genetic 
Reference Panel (DGRP) lines. This comprehensive circadian gene expression atlas contains >1700 cycling genes 
including previously unknown central circadian clock components and tissue-specific regulators. Furthermore, 
>30% of DGRP lines exhibited aberrant circadian gene expression, revealing abundant genetic variation–
mediated, intertissue circadian expression desynchrony. Genetic analysis of one line with the strongest deviating 
circadian expression uncovered a novel cry mutation that, as shown by protein structural modeling and brain 
immunohistochemistry, disrupts the light-driven flavin adenine dinucleotide cofactor photoreduction, providing 
in vivo support for the importance of this conserved photoentrainment mechanism. Together, our study revealed 
pervasive tissue-specific circadian expression variation with genetic variants acting upon tissue-specific regulatory 
networks to generate local gene expression oscillations.

INTRODUCTION
Earth’s rotation results in daily cycles of light intensity, temperature, 
and atmospheric pressure. These oscillations are reflected in the 
biosphere as circadian rhythms, which are manifested in numerous 
species across the evolutionary tree (1). In multicellular organisms, 
the periodic patterns of daily oscillation are established at all levels. 
Intricately coordinated feedback loops of gene expression through 
rhythmic transcript production across multiple tissues (2, 3) thereby 
produce complex behaviors such as cyclic locomotor activity and 
sleep-wake cycles (1). Given its universal presence, the circadian 
clock was found to affect various crucial organismal processes, such 
as the cell cycle (4), metabolism including drug-metabolizing enzymes 
(5, 6), cognitive abilities (7), immunity (8), stem cells (9), and aging (10).

Despite its ubiquity, the circadian clock is not immune to genetic 
variation. For example, it is well established that genetic back-
ground affects the preference of activity time [larks and night owls 
(11)] or can even induce certain circadian clock-related pathologies, 
such as delayed sleep phase disorder (12). However, the underlying 
genetic and molecular mechanisms are still poorly understood. This 
is because natural circadian rhythm observations in humans are 
obstructed by differences in individual lifestyle and by the absence 
of standardized conditions during the monitoring phase. Model 
organisms are therefore well positioned to contribute to a better un-
derstanding of the genetics of circadian rhythms. For example, in 
the fruit fly, Drosophila melanogaster, more than half (68%) of the 
protein-coding genes are evolutionarily conserved in humans, in-
cluding functional orthologs of core circadian regulators (13). 
Moreover, the fruit fly is advantageous over other model organisms 

by scalability, fast generation time, and the ability to perfectly define 
experimental conditions. Furthermore, the Drosophila circadian 
field has been a pioneer in the isolation and characterization of 
genetic variants to uncover the molecular basis of behavior. But that 
work was mainly based on loss-of-function mutants that display ab-
errant circadian behavior, and little is known on the role of natural 
genetic variation on circadian rhythmicity. The fly community ben-
efits from access to the Drosophila Genetic Reference Panel (DGRP), 
which consists of over 200 genetically diverse fly lines that consti-
tute a highly valuable resource of natural genetic variation in 
Drosophila (14, 15). The DGRP has already been successfully used 
to identify genotype to phenotype relationships through genome-
wide association studies for various traits (16–18). Recently, Harbison et al. 
(16) revealed extensive variation in period length and rhythmicity 
index among DGRP flies, two common circadian rhythm readouts. 
Moreover, several hundred putative causal variants were identified, 
clearly demonstrating the contribution of genetic variation to circadian 
phenotypic diversity.

To understand how these genetic variants affect circadian 
rhythms, we need to uncover the underlying regulatory mecha-
nisms. However, there are still several major aspects of molecular 
circadian biology that are yet to be fully elucidated. These include 
(i) how the circadian clock controls tissue- or cell type–specific 
expression rhythms, which affects a wide variety of metabolic, 
physiological, and behavioral processes (19, 20); and (ii) how such 
molecular rhythms vary among genotypes and, in doing so, affect 
circadian behavior along these same processes. To address these key 
questions, we conducted a systematic analysis of circadian gene ex-
pression in the reference w1118 line across four major tissues: brain, 
gut, Malpighian tubules, and fat body via temporal profiling of 
these tissues for two consecutive days resulting in 233 transcrip-
tomes. This is, to our knowledge, the largest circadian dataset 
produced in flies to date and allowed us to identify >1700 mostly 
tissue-specific circadian (TSC) genes, substantially expanding the 
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catalog of known clock-controlled genes. Analysis of the underlying 
gene regulatory network (GRN) based on cycling genes revealed 
transcription factors (TFs) that may control tissue-specific, circadian 
gene expression. In addition, we uncovered seven previously uncharac-
terized circadian regulators, which we validated by perturbation assays. 
We also assessed the influence of genetic variation on circadian rhythm 
by performing high temporal resolution RNA sequencing (RNA-seq) 
on 141 DGRP lines across three tissues, yielding another 451 
transcriptomes. This screen revealed that 45 (>30%) of the sampled 
DGRP lines exhibit aberrant circadian gene expression. Since this 
variation is mostly manifested in a tissue-specific manner, our find-
ings reveal extensive molecular circadian desynchrony between 
tissues. To understand the underlying molecular mechanisms, we 
performed a genetic analysis of the line (DGRP-796) showing the 
strongest deviating circadian expression. Through genetic and mo-
lecular analyses, protein structural modeling and simulation, as well 
as brain immunohistochemistry, we found that this line features a 
dysfunctional clock in both brain and peripheral tissues driven by a 
novel cry mutation that disrupts the light-driven flavin adenine 
dinucleotide (FAD) cofactor photoreduction. Hence, we validated 
in  vivo the importance of this evolutionary conserved photoen-
trainment mechanism in the circadian pacemaker. Together, these 
results underscore the resource value of the generated tissue- and 
genotype-specific gene expression atlas in informing on previously 
unknown circadian biology and the effect of genetic variation thereon.

RESULTS
Tissue-specific cycling genes and putative core  
circadian components
To investigate TSC gene expression, we first created a baseline gene 
expression time series using the w1118 D. melanogaster strain. We 
sampled the brain, gut, Malpighian tubules, and fat body of this ref-
erence strain (Fig. 1A and table S1) every 2 hours, over 48 hours, in 
triplicates. For this, we used one 12-hour/12-hour light-dark (LD) 
cycle followed by 24 hours in darkness (DD) at 25°C to filter genes 
that were merely induced by light. Thereafter, we generated 
genome-wide expression profiles using a high-throughput, 3′end count-
ing RNA-seq method, bulk RNA barcoding (BRB-seq) (21). We used 
JTK CYCLE (22) to determine gene expression periodicity and rhythmic-
ity and detected 1757 cycling genes across four tissues (Fig. 1, B to D, 
and table S2) with most of these cycling in a tissue-specific manner 
(Fig. 1, B and E). This finding is consistent with the observation that 
clock output rhythms are generated locally (2, 3), although the ab-
solute majority of the TSC genes were found to be expressed in 
more than one tissue [brain: 95.6% (129 of 135), fat body: 98.3% 
(353 of 359), gut: 96.0% (460 of 479), Malpighian tubules: 98.4% 
(433 of 440)]. In particular, 38 to 51% of TSC genes did not exhibit 
a change in the expression level compared to any other tissue 
(Fig. 1F). Nonetheless, a notable proportion of TSC genes was 
up-regulated in the tissue where we found them to cycle compared 
to the other three tissues. Similar to the whole set of TSC genes, the 
majority of genes that were up-regulated in the tissue where they 
also cycled were still expressed in more than one tissue (brain: 12 of 
17, fat body: 52 of 56, gut: 109 of 128, and Malpighian tubules: 70 of 77). 
These findings suggest that the mechanism by which tissue-specific 
cycling is achieved tends to be decoupled from the mechanism that 
drives tissue-specific expression, although sometimes they can go 
hand in hand. Not differentially expressed TSC genes were enriched 

in gene ontology (GO) terms related to intracellular transport in all 
four tissues [brain: GO:0046907, intracellular transport, adjusted 
P value (Padj) = 0.028; fat body: GO:1902533, positive regulation of 
intracellular signaling, Padj = 0.019; gut: GO:0006886, intracellular 
protein transport, Padj = 0.003; and Malpighian tubules: GO:0046907, 
intracellular transport, Padj = 0.003], while GO analysis of the TSC 
genes that were up-regulated in the tissue where they also cycled did 
not reveal any significantly enriched terms.

Our transcriptomic analyses also revealed that only 14 genes 
cycled in all tissues. These included all main clock genes: tim, vri, 
per, cry, Clk, cwo, and Pdp1, benchmarking our approach, as well as 
seven largely uncharacterized ones: CG2277, CG5793, CG31324, 
CG14688, Gclm, Amph, and Usp1 (Fig. 2A). To determine whether 
the latter genes play a role in the circadian pacemaker system, we 
explored whether their knockdown in all clock cells using the tim-
GAL4 driver, or in the Pdf-expressing central clock neurons 
[ventrolateral neurons (LNvs), using Pdf-GAL4], would cause locomotor 
activity rhythm defects, the most common readout for circadian 
rhythm integrity. To provide a robust evaluation, two upstream 
activating sequence–RNA interference (UAS-RNAi) constructs tar-
geting different gene regions were used. Overall, knockdown of all 
tested genes, except CG14688 for which only one RNAi line was 
tested, affected the locomotor behavior either by affecting the 
number of rhythmic flies or by altering their period, rhythmicity 
strength, or rhythmicity index (a readout of the strength of the pe-
riodic pattern) with at least one pair of UAS-RNAi lines using either 
the tim or Pdf drivers (fig. S1, and tables S3 and S4). Yet, locomotor 
activity levels were not decreased (fig. S1, A and B). Four genes: 
Amph, CG2277, CG5793, and Usp1 showed robust and consistent 
effects in both RNAi constructs and both gene drivers, i.e., tim 
and Pdf (Fig. 2, B and C). Specifically, we found that, upon knock-
down of Amph, CG2277, and Usp1, the oscillation period increased 
and the rhythmicity index decreased. In contrast, CG5793 knock-
down resulted in an increased period for the tim-GAL4 driver 
and a decreased one for Pdf-GAL4, while the rhythmicity index 
increased under the tim-GAL4 driver and decreased under Pdf-Gal4 
(Fig. 2, B and C). However, the knockdown effect size for period 
length and rhythmicity index was only mild, i.e., the period varied 
between 23.8 and 25.1 hours compared to the period shortening to 
16 and 20 hours or its elongation up to 32 hours in case of actual 
core clock gene disruption (23, 24). Nonetheless, Usp1 knockdown 
did significantly reduce the percentage of rhythmic flies in all RNAi 
constructs using the tim-Gal4 driver.

Since the circadian clock is conserved across species (25), we 
sought to investigate whether these seven largely uncharacterized 
genes have functional homologs that might play a role in the 
mammalian clock pacemaker. We found that five of them (Amph, 
Gclm, CG14688, CG31324, and CG2277) have orthologs in mouse 
(Mus musculus), baboon (Papio anubis), and human (Homo sapiens) 
(table S5). By assessing circadian gene expression data across tissues 
in mouse and baboon from databases and previous publications 
(26, 27), we found that all of them cycled across multiple tissues in 
baboon, and Amph, Gclm, and CG14688 orthologs cycled in at least 
one tissue in the mouse (Fig. 3A). These observations, together with 
our own RNAi results, support the notion that the genes that cycled 
across tissues in Drosophila might be as yet uncharacterized but 
conserved members of the molecular circadian clock machinery or 
central elements in the transmission of circadian information to 
other biological processes.
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Fig. 1. Tissue-specific gene expression cycling and detection of previously uncharacterized circadian regulators based on the reference w1118 time series 
experiments. (A) Schematic representation of the tissue-specific samples obtained from w1118. (B) Heatmap of the expression of TSC genes averaged across 2 days of 
observation. The presence of the characteristic circadian patterns in the tissue is indicated with black rectangles around the heatmaps. The number at the left designates 
the number of detected TSC genes. (C and D) Heatmap of cycling in two (C) and three tissues (D) gene expression averaged across 2 days of observation. Black rectan-
gles indicate tissues in which genes were found to be cycling. For (B) to (D), lighter areas or the heatmaps correspond to lower expression levels. The time is indicated 
at the bottom of the heatmap. (E) Examples of expression across tissues of the TSC genes during two consecutive days of observation (12-hour/12-hour LD + 24-hour 
DD). The rectangle at the bottom shows the presence and absence of light. (F) The majority of TSC genes are not tissue-specifically expressed. Each panel is dedicated 
to the genes found cycling only in the corresponding tissue. The X axis denotes the expression pattern of genes across tissues, and the Y axis shows the number of TSC 
genes with the considered expression pattern. The color of the bar indicates a differential expression status of the gene compared to specific tissues as listed on the X 
axis. Black (“Multi”) indicates genes with a varying direction of differential expression. In (B) to (E), FB stands for fat body and MT for Malpighian tubules, respectively. 
DE, differentially expressed.
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While most cycling genes were unique to one tissue and only 
14 genes cycled in all four tissues, as described above, 344 (19.6%) 
cycled in two or more tissues (Fig. 1, C and D), providing an oppor-
tunity to study circadian expression desynchrony between tissues. 

This is relevant given that the alignment of clocks throughout an 
organism is the key for proper circadian functioning (28) and that 
certain misalignments may lead to various pathologies. However, 
the extent of molecular circadian synchrony across tissues is still 

A

B

C

Fig. 2. Genes cycling in all examined tissues. (A) Rhythmic expression of the canonical circadian genes and previously uncharacterized genes (bold) cycling in all four 
tissues during two consecutive days (12-hour/12-hour LD + 24-hour DD). Rectangles show the presence and absence of light. (B and C) Knockdown effect of four putative 
core circadian genes in tim-expressing (B) and Pdf-expressing (C) clock neurons (LNvs) on locomotor behavior: % rhythmic flies (left), period (middle), and rhythmicity in-
dex (right). The Y axis indicates gene names, and the subscript denotes an RNAi line stock identifier. The first letter of the subscript designates the RNAi line stock center: (B)
loomington and (V)DRC. Column N specifies the number of flies used in the experiment. The red dashed line depicts the mean of measurements in control flies. For the 
period plot, only measurements on rhythmic flies were used. A test of equal proportions was used to assess the statistical significance of the % rhythmic flies deviating 
from the control, and analysis of variance (ANOVA) was used for period and rhythmicity strength. Several RNAi lines were tested per gene. Amph, CG2277, CG5793, and 
Usp1 showed robust and consistent effects in both RNAi constructs and both gene drivers. Figure S1 displays an overview of all tested lines. The stars indicate the 
FDR-adjusted P values: ***P < 0.001, **P < 0.01, *P < 0.05, and ✕P < 0.1.
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A
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C

D

Fig. 3. Mammalian orthologs of genes cycling in all tissues and phase shift in the expression across tissues. (A) Putative core clock regulators orthologs’ expression 
in baboon and mouse. The data were derived from (27) and (26), respectively. (B) Examples of genes cycling in two tissues with the most significant phase shift. ⍵ in plot 
headers denotes the phase shift value. Vertical lines correspond to the tissue-specific expression’s molecular peak times. Tissue-specific molecular peak times on the 
second day were calculated as the sum of tissue-specific molecular peak time on the first day and tissue-specific gene period. (C) Examples of genes cycling in three 
tissues with the most significant phase shifts per tissue combination. Spin and CG5789 have a phase shift in all pairs of tissues they cycle in. ⍵ in the plot header for Spin 
denotes the phase shift between the brain and gut. Phase shifts for the brain–fat body and fat body–gut were 3.72 and 3.20 hours, respectively. ⍵ in the plot header for 
CG5789 denotes the phase shift between fat body and gut. Phase shifts for the fat body–Malpighian tubules and gut–Malpighian tubules were 5.50 and −5.45 hours, 
respectively. (D) Phase shift in the expression patterns of glutathione metabolism–associated genes.
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poorly understood. To address this, we used CircaCompare (29) to 
perform an intertissue phase shift analysis for the genes that cycled 
in two or more tissues. This revealed 101 genes [29%, false discov-
ery rate (FDR)  <  0.05] that display a phase shift in expression of 
>2  hours between at least one pair of tissues in which they cycle 
(Fig. 3, B to D, and table S6). The threshold on the phase shift value 
was dictated by the sampling frequency of the experiment. GO en-
richment analysis of the phase-shifted genes showed enrichment in 
both “glutathione metabolic process” (biological process; Fisher’s 
exact test, P  =  5.1 × 10−5) and “glutathione transferase activity” 
(molecular function; Fisher’s exact test, P = 2.2 × 10−3). Analysis of 
the expression profiles of glutathione-associated genes (Gclc, GstD1, 
GstE3, GstE6, GstE7, and GstE9) indeed showed a systematic molec-
ular desynchronization across tissues (Fig. 3D). Specifically, while 
the expression profiles of these genes were synchronized between the 
gut and Malpighian tubules, they were significantly delayed in the 
fat body with phase shift values ranging from 4.5 to 7.8 hours (Fig. 3D). 
Only two genes (GstD1 and Gclc) in this category were cycling in 
both brain and peripheral tissues (fat body and gut for Gclc; fat body 
and Malpighian tubules for GstD1) (Fig. 3D). Furthermore, GstD1 
and Gclc were found to be targeted by Clk (table S2) (2), suggesting 
that this core circadian regulator directly affects their temporal ex-
pression profiles. Together, these findings suggest that glutathione 
metabolism is not just under circadian control, with Gclc, Gclm, 
and GstD1 contributing to the early circadian regulatory cascade 
in agreement with previous studies (30, 31), but that this control 
is realized in a tissue-specific, desynchronized manner. To our 
knowledge, this is the first report of a naturally occurring tissue-
specific, circadian molecular desynchrony of a biological process in 
D. melanogaster.

A regulatory TF hierarchy drives tissue-specific, circadian 
gene expression
To uncover global principles and major functional modules of the 
TSC pacemaker, we built a GRN based on all detected cycling genes 
and visualized the top 200 most significant nodes with Cytoscape 
(Fig. 4A) (32, 33). Given the key role of genes such as Clk, cwo, vri, 
and Pdp1 in clock control in all tissues, we expected these genes to 
be heavily interconnected, located centrally in the network and 
bridging different nodes in all four tissues. Fifty-two percent of TSC 
genes were directly connected to these regulators (Fig. 4A). To 
decipher direct targets of core clock circadian regulators such as 
Clk and putative genes located downstream of a regulatory cascade, 
we incorporated information about Clk binding sites from publicly 
available chromatin immunoprecipitation sequencing (ChIP-seq) data 
(2). This revealed that 20% of TSC genes were directly bound by 
Clk/Cyc, indicating that many clock targets are directly activated by 
clock master regulators (Fig. 4, A and B) (2, 3). This master clock 
GRN was also connected to several smaller modules that were composed 
of tissue-specific, cycling TFs. This observation suggests a second level 
of circadian regulation in the clock hierarchy in which tissue-specific 
TFs that are not part of the master pacemaker act as integrators of 
circadian information to generate local gene expression rhythms (2, 3). 
Most of the tissue-specific cycling TFs (37 of 38) showed tissue-specific 
cycling but not tissue-specific expression, pointing to further unex-
pected regulatory complexity in local gene expression rhythmicity.

Compelling evidence suggests that context-specific TF binding 
is achieved by partner TFs that contribute to the identification of 
binding targets (34). To identify other TFs that might play a role in 

TSC expression but are not necessarily cycling, we performed a 
motif enrichment analysis around the transcription start site of TSC 
genes (Fig. 4C). As expected, we observed that all four tissues are 
enriched for E-box sites, which are known to be bound by Clk/Cyc 
in upstream activating sequences in all tissues (2, 35). In addition, 
we detected several other motifs such as Drosophila homolog DNA 
replication‑related element‑binding factor (DREF) and the so far 
uncharacterized unknown motifs 1 and 2 to be enriched in all tissues 
(Fig. 4C), suggesting that the clock master GRN might involve other 
regulators that are yet to be identified. We also found several motifs 
that might mediate TSC gene expression rhythms such as GATA in 
the gut (36) and Mef2a in the brain, whose knockdown leads to the 
abolishment of circadian behavior (37, 38). Moreover, we discov-
ered that the binding motif for Foxo is enriched in the brain, and 
since foxo-deficient flies are arrhythmic when exposed to oxidative 
stress (39), this finding supports a role for Foxo in the fly brain clock. 
Together, our analyses provide a comprehensive overview of the 
regulatory subnetworks underlying ubiquitous and TSC gene expres-
sion. These networks might be further expanded by (i) uncovering 
TFs associated with uncharacterized motifs and (ii) determining the 
binding specificity of yet-uncharacterized tissue-specific TFs, includ-
ing emc, CG34367, and HmgD—the most prominent brain-specific 
hub components.

Large-scale genetic variation affects circadian rhythm
Having established a reference atlas of cross-tissue circadian tran-
scriptomes allowed us to investigate the impact of genetic variation 
on TSC gene expression using the DGRP. To alleviate the tremen-
dous challenge of having to profile each of 141 available DGRP lines 
every 2  hours for two consecutive days across several tissues, we 
implemented an alternate approach that was inspired by the con-
cept of reconstructing dynamic profiles from static samples (40). To 
do so, we collected each of the 141 DGRP lines only once. Yet, the 
sampling of the DGRP collection was done at a very high frequency 
(~9-min interval between each line; Fig. 5A). Then, we performed 
BRB-seq on the dissected brains, guts, and fat bodies. In total, we 
acquired 338 static transcriptomes (105, 129, and 104 for the brain, 
fat body, and gut, respectively) at high temporal frequency. In addi-
tion, three DGRP lines that displayed a normal locomotor circadian 
rhythm (16): DGRP-208, DGRP-321, and DGRP-536 were sampled 
around the clock every 4 hours for 24 hours in case of DGRP-208 
and every 2 hours for 24 hours otherwise, resulting into 30, 29, and 
25 samples for the brain, fat body, and gut, respectively (table S1). 
As indicated, these sampled DGRP lines were selected on the basis 
of their regular circadian rhythm, thus allowing us to estimate 
natural variation in circadian gene expression levels in lines that 
do not exhibit irregular behavioral circadian rhythms. Notably, 
most of the sampled DGRP lines for which period measurements 
were available [81 (65%)] featured a circadian period length close to 
normal, ranging from 22 to 26 hours, whereas no data were available 
for 15 lines (table S1) (16). The analysis of temporal core clock gene 
profiles that were formed by integrating individual DGRP samples re-
vealed clear cycling profiles for several known circadian genes (Fig. 5B 
and fig. S2A). These results demonstrate that we were able to recon-
struct dynamic cycling patterns from statically collected samples.

Subsequently, to investigate the impact of genetic variation on 
circadian gene expression, we computed the physiological circadian 
time of each static DGRP sample. In essence, we determined how 
much the static transcriptome of each line deviates from the expected 
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transcriptome at the point of day at which the line was collected. To 
calculate the physiological time, we assessed several published com-
putational methods next to two in-house developed ones described 
below. In general, for every evaluated technique, published or newly 
developed, we divided the process of physiological time inference 
based on static transcriptomes into two stages. In a first step, we 
created a reference time series of gene expression followed by a statis-
tical inference of the relationship between a multidimensional gene 
expression matrix and time, i.e., selection of the best predictor genes. 
To create a reference time line, we used the previously introduced 
w1118 dataset combined with the three profiled DGRP lines (DGRP-
208, DGRP-321, and DGRP-536). The high temporal sampling frequency 
of the w1118 dataset as well biological replication allowed us to account 
for technical variability in the expression values. Furthermore, by 
also considering the three profiled DGRP lines, we were able to in-

clude in the model benign expression variation that does not sig-
nificantly alter the circadian clock, i.e., that does not cause circadian 
phenotypic alterations. In a second step, we mapped a gene expres-
sion vector of a static DGRP sample against the reference time line 
that was created in the first step. In other words, we ranked in time 
each DGRP line based on its gene expression profile relative to 
the reference, allowing us to compute a physiological time per line. 
This strategy allowed us to infer putative alterations of the molecular 
circadian clock based solely on single static transcriptomes without 
performing the challenging temporal profiling of each DGRP line.

As indicated above, we compared several computational ap-
proaches for inferring the physiological time: an in-house devel-
oped least absolute shrinkage and selection operator (LASSO) and 
directional statistics (DirectStat) method, a neural network, as well 
as the molecular time table (MTT) (41) and ZeitZeiger (42) strategies 
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Fig. 4. Regulatory network and motif analyses of TSC gene expression. (A) GRN based on genes cycling in at least one tissue. The color of the node denotes the 
tissue(s) a gene cycles in. The size of the node designates the node out-degree. The color of the edges represents the tissue in which the edge was derived. Shaded areas 
indicate the TSC gene regulatory modules with the names of the TFs arranged in the same order as the nodes. TFs are denoted as diamonds. Nodes with an orange rim indicate 
direct targets of Clk/Cyc. For network clarity, only the top 200 links ranked by weight from every tissue are visualized. (B) Examples of Clk/Cyc binding profiles at the vicinity of 
TSC TF–coding genes as derived from (2). The name of the TSC TF–coding gene is indicated at the top left corner of each column. Rows correspond to ChIP-seq 
samples, and columns denote tissues for which a cycling TF-coding gene was found to be specific. The black bar at the bottom of each column designates the ChIP-seq 
peak location. (C) Motif enrichment in TSC gene promoters. The motif’s name is indicated at the bottom, and its graphical representation is depicted at the top. The num-
ber inside cells refers to the fold enrichment of a motif in the target regions over the random background. The color bar indicates the q-value for motif detection.



Litovchenko et al., Sci. Adv. 2021; 7 : eabc3781     29 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 21

A

C

D

E F G

B

Fig. 5. Transcriptomic-based physiological circadian time assessment for tissue-specific DGRP profiles. (A) Experimental strategy to reconstruct dynamic circadian 
expression profiles based on static transcriptomes from DGRP lines. Dots represent the expression value of the same circadian gene derived from the transcriptome of a 
random DGRP line sampled at the time indicated on the X axis. (B) The dots recapitulate the dynamic expression pattern of a cycling gene as it would be derived from a 
regular time series analysis (shown for timeless). (C) MTT-inferred physiological time versus sampling time. Colored areas feature a difference of >3.4 hours between the 
physiological and sampling times. (D) Time shift of outlier lines across tissues. Gray circles indicate a nonsignificant (n.s.) shift <3.4 hours, and the absence of a circle de-
notes missing data. The period value was derived from (16). The first four columns show samples for line DGRP-774 used as a proof of concept (see Materials and Meth-
ods), which has an 18.9-hour period in males (16). N/A, not applicable. (E) Brain and gut expression profiles of timeless during a 12-hour/12-hour LD followed by 24-hour 
DD in w1118 and DGRP-796. The rectangle indicates light presence versus absence. (F) Venn diagram showing the overlap between cycling genes in w1118 and DGRP-796 
time series in brain and gut. The color code is as in (E). (G) Amplitude distribution of the top 50 cycling genes ranked by the amplitude detected in the w1118 and DGRP-796 
time series. ***P < 0.001; t test (N = 50).
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(fig. S2B). Because of the limited number of samples, we used the 
“leave-one-out” approach, a widely established machine learning 
technique, to assess the performance of each algorithm. To prevent 
model overfitting on the static transcriptomes, only w1118 and the 
three profiled DGRP lines (DGRP-208, DGRP-321, and DGRP-536) 
were used as a training set. During the evaluation, a sample was 
taken out of the training set, and an algorithm was trained on the 
remaining samples, followed by the prediction of the physiological 
time of the removed sample. This procedure was repeated on all 
samples from the training set, and the difference between the pre-
dicted physiological time and time of harvesting was calculated. 
Since no changes in circadian rhythm were observed for either w1118 
or the three profiled DGRP lines, the difference between predicted 
time and harvesting time was used as the main metric for method 
evaluation. We found that the MTT approach yielded the lowest 
averaged difference between predicted and harvesting times across 
the training set (1.32 hours). We therefore considered this approach 
to be the most reliable (fig. S2B), reaching a precision, here conser-
vatively defined as three SDs from the mean, of 3.4 hours. This preci-
sion is in our opinion rather remarkable considering the 2-hour 
sampling frequency of our w1118 experiment.

As a proof of concept that phenotypically relevant deviations in 
molecular rhythms could be detected on the basis of static tran-
scriptomes, we acquired several samples (11 for brain, 11 for fat 
body, and 7 for gut) at various time points for the DGRP-774 fly 
line, which has been shown to feature a shortened circadian period 
(20 hours) (16). While DGRP-774 does not display the biggest devi-
ation from normality in terms of period length across the DGRP, we 
note that the efficiency of detecting molecular circadian rhythm de-
viations from static transcriptomes does not clearly correlate with 
the absolute value of the deviation (see Materials and Methods and 
fig. S2C). We found that one fat body and three gut samples of 
DGRP-774 (Fig. 5, B  to D) have indeed a predicted physiological 
time that significantly (>3.4 hours) differs from the time of harvest-
ing, providing support to the validity of our approach. Moreover, 
using JTK CYCLE, we estimated the molecular period based on tim 
expression pattern of this line to be 22 and 20 hours in the brain and 
fat body, respectively, which is in line with the measured behavioral 
period of 18.9 hours by Harbison et al. (16). However, as indicated, 
we identified no DGRP-774 brain samples with a predicted physio-
logical time that could be significantly distinguished from that of 
the harvesting time, according to the model (Fig. 5, B  to D). The 
root of this observation is unclear at this point but may be both bi-
ological and/or technical in nature (see Discussion).

Using the MTT strategy, we then inferred the physiological cir-
cadian time per tissue for every DGRP sample (Fig. 5, C and D, and 
table S7). We thereby note that the method was executed separately 
for every tissue to avoid imposing the conceptual restriction that 
all tissues should adhere to the same physiological time. This re-
vealed a remarkable 45 DGRP lines (32.1%) with a physiological 
time  >3.4  hours shifted from the harvesting time. Most of these 
lines exhibited molecular circadian variation only in one or two tis-
sues (Fig.  5D), reemphasizing the observed synergy between the 
circadian clock and tissue-specific regulatory networks (Fig.  4A). 
Among lines showing aberrant physiological time, two of them, 
DGRP-796 and DGRP-892, had a significant out-phased or disrupt-
ed clock in all three examined tissues, suggesting that a main clock 
component is affected in these lines. Supporting our approach, DGRP-
892 flies have recently been shown to have a period of 31 hours, yet the 

period for the other line was close to normal (16). To provide in-
sights into the genetic mechanisms underlying the observed molec-
ular circadian variation and to distinguish between the phase shift 
and disruption scenarios, we focused on DGRP-796, since it showed 
the most notable (>10 hours) out-phased molecular clock. We sam-
pled the brains and guts from DGRP-796 flies every 2  hours for 
48  hours (12-hour/12-hour LD followed by 24  hours DD at 25°C), 
performed BRB-seq, and compared the results to the w1118 reference 
(Fig. 5, E to G, and table S2). None of the core clock genes (except 
Pdp1 in the gut) cycled with a circadian period (24 hours) in either 
the brain or gut in DGRP-796 (Fig. 5E and fig. S3A), and overall, we 
observed a marked reduction in the total number of cycling genes 
in DGRP-796 compared to w1118 (91 versus 207 in the brain and 
362 versus 717 in the gut; Fig. 5F). Moreover, the amplitude of the 
top 50 cycling genes in DGRP-796 was significantly reduced com-
pared to w1118 in both tissues (two-sided t test P = 0.00012 for the 
brain and P = 5 × 10−11 for the gut; Fig. 5G). Of the remaining genes 
that we found cycling in DGRP-796, only one was shared with w1118 
in the brain and 84 in the gut. Together, these results strongly suggest 
that DGRP-796 suffers, in fact, from a nonfunctional molecular clock.

Given its severely dampened rhythms in gene expression, we next 
assessed whether DGRP-796 also has aberrant locomotor rhythmic 
behavior. Unexpectedly, DGRP-796 flies showed standard bimodal 
activity patterns under LD and rhythmic circadian activity patterns 
under DD, with a period of around 24 hours (Fig. 6A). This phenotype, 
i.e., the lack of molecular rhythms associated with normal locomotor 
activity rhythms in DD, points to a mutation in cryptochrome (cry). 
This gene was initially isolated in a screen for mutants with dampened 
rhythmic per gene expression (43, 44). The cry gene codes for a 
blue-light photoreceptor involved in the Drosophila circadian pace-
maker light input pathway. To test whether the light input pathway 
was indeed disrupted in DGRP-796 flies and affected behavioral 
patterns, we performed a light pulse (20 min, 600 lux) on DGRP-796 
and control w1118 and Canton-S flies in the subjective late evening 
(CT15), the time when the clock is most sensitive to light input (45). 
The Canton-S genotype was introduced to account for possible dif-
ferences in light perception between w1118 and DGRP-796 due to eye 
pigmentation. Our results showed that, while w1118 and Canton-S 
flies have a phase delay of approximately 3.4 hours, DGRP-796 flies 
do not respond to the light pulse (Fig. 6B).

To subsequently elucidate whether the observed disruption of 
the light input pathway in DGRP-796 manifested itself also at a 
physiological level, we performed a brain immunohistochemistry 
assay. Specifically, since Tim is rapidly degraded after exposure to 
light (46), we reasoned that DGRP-796’s failure to respond to light 
should be visible in the form of reduced or even absent Tim degrada-
tion in the pacemaker neurons. To investigate this, we used -Tim 
and -Pdf antibodies to label all clock cells and large LNvs (l-LNvs), 
respectively. The number of l-LNvs as well as dorsal LNvs (LNds) in 
reference lines (w1118 and Canton-S) and DGRP-796 was assessed at 
ZT21 (peak expression of Tim) before and after a 30-min light pulse 
(Fig. 7, A to D, and fig. S3, B and C). We did not observe any chang-
es in Tim or Pdf distribution across neuronal groups (l-LNvs and 
LNds) between the fly lines before the light pulse (Fig.  7A and 
fig. S3B). However, after the 30-min light pulse, we noticed signifi-
cantly reduced Tim degradation in the LNds in DGRP-796 com-
pared to the reference line (two-sided t test, P = 0.17 for DGRP-796, 
P = 2.1 × 10−10 for Canton-S, and P = 0.043 for w1118; Fig. 7, B and C, and 
fig. S3, B and C). As expected, we observed no significant difference in 
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the number of Tim/Pdf-positive l-LNvs before and after light expo-
sure, which constitutes an internal technical control (two-sided 
t test, P = 0.56 for DGRP-796, P = 0.28 for Canton-S, and P = 0.878 
for w1118; Fig. 7, B and D, and fig. S3, B and C). While previous stud-
ies reported Tim photodegradation by Cry in l-LNvs (47, 48), we 
note that the experimental conditions of these studies were different 
from ours. Flies were kept in DD for an extra hour in (47, 48), while 
our measurements were performed directly after the light pulse, 
aiming to measure immediate effects. In view of the commonly ac-
cepted molecular model of the phase being reset by a light pulse in 
Drosophila (43, 44, 49), the observed decrease in Tim degradation 
in LNds in DGRP-796 suggests a significantly affected or even 
disrupted light input pathway, likely mediated by Cry.

These findings prompted us to perform a sequence analysis of 
cry over the whole DGRP. We discovered that, in total, 322 variants 
affect cry across the panel. Of these, we found that only 21 are 
nonsynonymous, with 19 being single-nucleotide polymorphisms 
(SNPs) and the other two a frameshift ACGAAA > GG at position 
3R 15040256 and a codon change plus codon deletion TGTGGGT > T 
at position 3R 15040481, while the rest fall in upstream, down-
stream, 3′ untranslated region or intronic regions, or are plain syn-
onyms. We noticed that the frameshift is specific to the DGRP-356, 
while the in-frame deletion is also present in DGRP-355, DGRP-
796, and DGRP-911. In this study, DGRP-355 and DGRP-356 were 
not sampled. Consequently, the only variant that affects cry that 

could also be causal to the phenotype was TGTGGGT > T. Howev-
er, as this codon change plus codon deletion is in fact an in-frame 
deletion and as it does not affect a known functional region, we 
decided to also scan other known clock, clock-controlled and light 
input DGRP-796 genes for potentially disruptive mutations that 
could modulate the light input/response pathway. Yet, we did not 
uncover any obvious loss-of-function mutations or indels.

To identify the potential responsible gene(s) in DGRP-796, we 
therefore decided to use a chromosome mapping strategy using the 
lack of phase shift response as a readout (Fig. 8A). These experi-
ments revealed that the individual swapping of both the second and 
third w1118 chromosomes with the respective DGRP-796 chromo-
somes triggered a phenotypic effect (Fig. 8A). Specifically, chromo-
some 2 swapping led to a reduced phase response to a light pulse 
(with a value in between those of w1118 and DGRP-796), suggesting 
that phase response-influencing variants may be located on chro-
mosome 2. This prompted us to perform a variant scan of light- or 
circadian rhythm–associated genes on chromosome 2, revealing 87 
nonsynonymous variants across 38 genes, 11 premature start gains 
in 10 genes, three codon deletions (in Akap200, mus201, and Mef2), 
and one codon change with codon insertion in Akap200. Yet, given 
that DGRP-796 is (as far as we know) the only line that exhibits this 
particular circadian phenotype, we were unable to pinpoint a likely 
causal variant(s) due to a lack of statistical association power. In 
contrast, swapping chromosome 3 caused an almost complete phe-
notype recapitulation (Fig. 8A), implying that the major causal vari-
ant(s) is (are) most likely located on this chromosome. cry is located 
on this chromosome, which prompted us to reevaluate the identi-
fied 6-bp deletion in this gene as the possible causal mutation for 
the observed DGRP-796 circadian phenotypes. This mutation re-
moves the Met421 and Trp422 residues (M421_W422del) and changes 
the Val423 to an Ile (V423I). In addition, we detected a nonsyn-
onymous SNP (T > C) 8 bp downstream of the deletion, which 
transforms Ser424 to a Pro (S424P) (Fig. 8B and fig. S3D). The im-
portance of these residues for Cry function is unclear as they are 
located between the chain of conserved tryptophan (Trp) residues, 
which mediates the photoinduced electron transfer activation, and 
the C-terminal lid domain that changes its conformation to bind 
Tim (50). To assess the impact of these amino acid alterations on 
Cry activity, we generated an atomic three-dimensional model of 
the DGRP-796 Cry protein by homology modeling based on the 
published Cry wild-type (WT) structure [Protein Data Bank (PDB) 
code: 4JZY] (51) and used molecular dynamics simulations to identify 
potential conformational differences between the WT and DGRP-
796 Cry proteins. Intriguingly, we found that, although the global 
structure and dynamic behavior of WT and DGRP-796 Cry proteins 
are almost identical [root mean square deviation (RMSD) = 1.9 ± 
0.1 Å; Fig. 8C and fig. S3E], the DGRP-796 cry mutation locally dis-
rupts the secondary structure of the Asp410-Arg430 ⍺ helix. Our 
analyses revealed that it causes a marked reorientation of Trp420, 
which increases the putative distance between Trp420 and the FAD 
molecule and disrupts the alignment with the adjacent Trp residues 
(Fig. 8D). This likely impedes the photoactivatable electron transfer 
chain mechanism necessary for Cry photoactivation (52), suggest-
ing that the cry mutation found in DGRP-796, which was initially 
perceived as being benign, might nevertheless generate a loss-of-
function Cry. Moreover, we used molecular docking to evaluate 
whether FAD binding on the Cry pocket was affected by these 
mutations. While we were able to recapitulate the crystallographic 
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Fig. 6. Behavioral characterization of DGRP-796. (A) Double-plotted activity 
measurements for w1118 (right), Canton-S (middle), and DGRP-796 flies (left) in 
DD after entrainment in standard LD conditions. The number of flies used in each 
experiment is indicated in the parenthesis next to the genotype. Each row of 
the diagram represents a histogram of flies’ activity during the day concatenated 
with the data from the previous day. The first row displays the data for observation 
days 1 and 2, the second row shows day 2 and 3, etc. The dark gray background 
indicates the absence of light, and white background designates the presence of 
light. The activity of w1118 focused in two peaks at dusk and dawn, and that of  
DGRP-796 was concentrated mostly around dusk, whereas Canton-S was active uni-
formly across the day. (B) Double-plotted activity measurement of w1118 (right), 
Canton-S (middle), and DGRP-796 flies (left). The yellow rectangle indicates the 
light pulse of 20 min (CT15). Upon subjection to the light pulse, w1118 and Canton-S 
showed a phase delay of approximately 3.4 hours, which could be seen as a shift to 
the bottom right of the activity peak between the diagram rows. DGRP-796 did not 
respond to the light pulse.
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binding mode of FAD for Cry WT (RMSD = 0.7 Å; fig. S3F), FAD 
could not be accommodated in the same binding conformation in 
the DGRP-796 Cry pocket (RMSD = 7.5 Å; fig. S3G). Collectively, 
these modeling and simulation results suggest that the 6-bp dele-
tion found in the DGRP-796 cry allele impairs both the ability to 
productively bind FAD and the optimal conformation required 
for the photoactivatable electron transfer cascade mediated by 
Trp residues.

Last, we aimed to provide genetic support to our molecular, 
physiological, behavioral, and modeling Cry-related findings. To do 
so, we first assessed whether the DGRP-796 cry mutation generated 
a loss-of-function phenotype in vivo by testing the locomotor activ-
ity rhythms of DGRP-796 under constant light (LL). While WT flies 
were arrhythmic in LL, as expected, DGRP-796 flies showed per-
sistent rhythms of locomotor activity in LL comparable to the cry02 

null-mutant flies (Fig. 8E) (53). We then generated a genetic cross 
between cry02 and DGRP-796 lines, which was also robustly rhythmic 
in LL, providing further support for the 6-bp deletion in cry to be 
the causal mutation (Fig. 8E, fig. S3H). Last, overexpression of WT 
cry in tim-expressing cells restored the WT arrhythmicity in cry02 
and DGRP-796 flies in LL at comparable levels (Fig. 8E, fig. S3H). 
Together, these results confirm that the cry mutation in DGRP-796 
flies is responsible for the disrupted molecular oscillator in DGRP-
796 and provide in vivo evidence for the importance of the Trp-
mediated flavin photoreduction mechanism for the circadian clock.

DISCUSSION
The circadian clock is a ubiquitous system of temporal control 
over cellular physiology that is implemented through coordinated 

A B

C D

Fig. 7. Histological characterization of DGRP-796. (A) In the absence of light, Tim (first column) is expressed in LNds and l-LNv neuronal groups in both Canton-S and 
DGRP-796. L-LNvs are also marked by expression of Pdf (second column). No significant difference is observed between the fly lines. (B) Influence of a light pulse on neu-
ronal groups in Canton-S and DGRP-796. Upon light pulse exposure, Tim is effectively degraded in the LNds in Canton-S (first row) but to a much lesser extent in DGRP-796 
[third row versus no light pulse (B)]. Large LNvs expressing Pdf (second column) are not affected by the light pulse in either of the lines (second and fourth rows) (47), 
constituting an internal technical control. (C) Quantification of Tim staining in LNds in Canton-S and DGRP-796. (D) Quantification of Tim staining in l-LNvs in Canton-S and 
DGRP-796. The number of Tim-expressing LNds (C) and l-LNvs (D) before and after the light pulse was counted in both fly lines, and a two-sided t test was performed. 
The number of used brains is indicated at the bottom.
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regulatory feedback loops that operate across all tissues (2, 3). 
Yet, while the core molecular components of the circadian clock 
are conserved across tissues, other cycling transcripts vary sig-
nificantly across systems. How these tissue-specific expression 
rhythms are established and how they vary between individuals 
and as such affect circadian behavior is still poorly understood. 
In this study, we explored TSC regulation at both the genomic 

and transcriptomic levels in the D. melanogaster w1118 line as well 
as across 141 genetically diverse (DGRP) lines at high temporal 
resolution. This resulted in a unique circadian gene expression 
catalog composed of 233 samples stratified over four tissue 
(gut, brain, Malpighian tubules, and fat body)–specific time series 
for w1118 and 451 static transcriptomes of three tissues for the 
DGRP lines.
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Fig. 8. Effect of the identified novel cry allele on protein structure. (A) Chromosome mapping strategy involving phase shifts of w1118, DGRP-796, and their crosses 
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A comprehensive atlas of tissue-resolved circadian gene 
expression in D. melanogaster
Despite D. melanogaster’s crucial role in elucidating circadian biol-
ogy, a comprehensive atlas of tissue-resolved, genome-wide circadi-
an gene expression has, to our knowledge, never been generated. 
Using a novel, affordable transcriptomic profiling method, BRB-seq 
(21), which allowed us to incorporate several biological replicates in 
our dataset at high temporal resolution, we identified 1757 cycling 
genes. Given the nature of our experimental design, involving 1 day 
of observation in LD followed by 1 day in DD, it is possible that the 
computed set of cycling genes still contains light-induced genes 
whose cycling properties propagated into the second observation 
day. For example, CG5455, Inos, CG31038, and CG17386 have pre-
viously been reported as light induced (54) and were found cycling 
in our dataset. Yet, we estimate the proportion of solely light-driven 
genes in our dataset to be rather small due to our joint analysis of 
LD and DD. Only 14 of 1757 genes, of which seven were known 
core circadian regulators, cycled in all four tissues. The molecular 
function of the other seven genes remains to be elucidated, but their 
impact on various circadian parameters upon their knockdown 
suggests important roles in circadian biology, either as propagators 
of time information or possibly even as core circadian regulators. 
The latter is especially compelling for Usp1, since knockdown of 
this gene affected the percentage of rhythmic flies the most. Usp1 
(Ubiquitin-specific protease 1) is predicted to be involved in the dy-
namics of protein ubiquitination, which has been shown to affect 
circadian fluctuation of hundreds of proteins in flies (55).

In contrast to these 14 genes, we found that most (80%) identi-
fied cycling genes do so in only one of the examined tissues, despite 
the fact that the majority are not differentially expressed across tis-
sues. The abundance of genes that cycle solely in one tissue and 
their prevalence as a group over genes that cycle in multiple tissues 
suggest a high degree of autonomy for an organ’s circadian rhythm. 
This observation is in line with previous studies that revealed that 
peripheral circadian clocks are, to a large degree, independent of 
the central clock, although this varies among tissues (56). For exam-
ple, Drosophila Malpighian tubules featured a self-sustained, light-
entrained clock that remained functional even upon transplantation 
into flies that were reared in antiphase LD conditions (57). In addi-
tion, the circadian clock in the fat body remained operational in the 
absence of input from the brain in a LD regime. However, in the 
absence of light cues, the brain circadian clock was required 
(58, 59). For the Drosophila gut, a detailed tissue-specific transcriptomic 
analysis of circadian gene expression has, to our knowledge, not yet 
been performed (56) nor has a link to the central clock in the brain 
been thoroughly investigated. Nevertheless, the circadian clock was 
found to be present in all gut cell types, except enteroendocrinocytes, 
and could be synchronized by photoperiod and environmental 
input, such as feeding, while it was also shown to be essential for 
gut regeneration (60, 61).

Although these autonomous circadian rhythms are clearly re-
markable, its molecular basis is still poorly understood. We believe 
that our study provides, in this regard, previously unknown molec-
ular insights into this phenomenon. Specifically, our GRN analyses 
based on the set of cycling genes that we identified showed that core 
circadian regulators, such as vri, Clk, Pdp1, and cwo, are, as expected, 
tightly interconnected and form the foundation of circadian gene 
expression in all tissues. However, we also observed that this central 
module, formed by the core circadian regulators, is connected to smaller 

hubs of tissue-specific cycling TFs. These hubs may be the defining 
elements of the circadian clock’s tissue specificity and serve as trans-
mission units of the central circadian input throughout the entire cir-
cadian GRN. Consequently, the mechanism underlying circadian 
tissue specificity would be, in essence, an interaction between core 
circadian regulators (Clk, Pdp1, cwo, etc.) and tissue-specific TFs, 
e.g., emc in case of the brain. The mode of interaction between these 
core and tissue-specific regulators could follow at least two scenarios: 
(i) cobinding, as previously shown for Opa/Srp establishing body-
specific circadian rhythms (2), whereby tissue-specific TFs could 
involve both cycling and noncycling TFs, as suggested by our motif 
enrichment analysis; and (ii) a core circadian regulator initiating a 
regulatory cascade by activating the expression of tissue-specific TFs, 
which then propagate the signal.

TFs forming individual tissue hubs did not have a common bio-
logical function based on GO term analysis. Nonetheless, four of the 
fat body–specific cycling TFs (svp, noc, salm, and Kr-h1), the prima-
ry genes of the module, are zinc finger TFs that are involved in the 
compound eye photoreceptor differentiation process (62). The par-
ticipation of zinc finger proteins in circadian clock modulation has 
been shown before in both Drosophila (63) and mouse (64). There-
fore, we hypothesize that those genes have a secondary function of 
mediating light entrainment in the fat body independent from the 
central molecular clock. With respect to the gut, we observed that 
an uncharacterized TF, CG9932, has almost as many outgoing edges 
to gut-cycling genes as the well-known circadian regulator cwo. 
CG9932’s high connectivity suggests that it too may play an impor
tant role in the intestinal circadian clock. These are just a couple of 
examples of how our comprehensive, tissue-resolved atlas can be 
used to decipher not only tissue-specific gene regulatory programs 
responsible for complex circadian behavior and physiological pat-
terns in Drosophila but also other species.

Considering the high degree of autonomy of the molecular cir-
cadian clock, we wondered whether this independence extended to 
genes that cycled across several tissues. However, we found that 
about a third (29%) of the genes that cycled in several tissues are 
asynchronous. This is clearly an unexpectedly high fraction, al-
though it is possible that the inbred and laboratory-adapted nature 
of DGRP flies induces stronger phenotypes than what would likely 
be observed in WT lines, as has been documented in previous stud-
ies using DGRP lines (65). Asynchronously cycling genes covered 
various biological processes, yet one of them, glutathione metab-
olism, was enriched with implicated genes displaying a notable 
(>4 hours) expression lag in the fat body compared to the gut and 
Malpighian tubules. The biosynthesis of glutathione, a prime anti-
oxidant and controller of signaling and cellular detoxification (66), 
has previously been reported to be under clock control in fly heads 
(30, 31, 67), although information about the tissue specificity of this 
process was lacking. We hypothesize that this phase control is 
primarily achieved through circadian transcriptional regulation of 
catalytic (Gclc) and modulatory (Gclm) subunits of the Gcl holo
enzyme, as well as glutathione S-transferase D1 (GstD1) given that 
these genes are directly targeted by Clk/Cyc (2). Further studies will 
be required to elucidate the underlying molecular mechanisms in 
more detail as well as their physiological relevance.

Large-scale genetic variation affects circadian rhythm
One of the main challenges in the field of circadian biology research 
is the need for (i) long-term observations that exceed two periods of 
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oscillations (i.e., 48  hours and longer) and (ii) relatively frequent 
sampling to acquire regulatory insights. These requirements be-
come especially pertinent in studies aimed at exploring how genetic 
variation affects the molecular circadian clock. In this study, we 
addressed these challenges through the implementation of a non-
classical experimental design involving static but high temporal 
frequency probing of available genotypes (40) and the use of our 
high-throughput, transcriptomic approach, BRB-seq (21). Apply-
ing this strategy on the DGRP allowed us to effectively infer the 
physiological time of 141 sampled fly lines across several tissues. 
One of the most unexpected results that stemmed from this analysis 
is that TSC rhythms are highly variable in the DGRP population. 
Thirty-two percent (45) of the lines showed aberrant circadian gene 
expression with about half exhibiting a predicted physiological time 
shift larger than 3.4 hours. Given the technical limitations of our 
approach, we believe that this may even be a conservative estimate. 
However, to which extent this time shift has a physiological or be-
havioral phenotypic impact is unclear at this point, especially since 
the observed molecular circadian variation manifested itself mostly 
in tissue-specific fashion. Most of the identified line outliers fea-
tured an altered molecular clock in only one or two tissues. While 
the autonomy of the peripheral clocks in Drosophila has been re-
ported (56) and discussed before, such natural asynchrony (in con-
trast to imposed asynchrony) (57) in molecular circadian rhythms 
between various tissues has, to our knowledge, not been observed 
before. The gut thereby stood out as the organ featuring the highest 
number of lines (26) with an altered physiological time. We hypoth-
esize that this is caused by the interaction between genetic compo-
nents of the circadian clock and strong endogenous cues such as 
feeding behavior and the microbiota (67, 68).

While our static sampling approach offered several experimental 
and analytical advantages, it also suffers from a number of draw-
backs. First, our capacity to infer physiological time depends, in 
large part, on the obtained signal-to-noise ratio in each tissue. This 
ratio may be the lowest in the brain given that only a minority of 
neurons express circadian genes (69), and moreover, different neu-
ronal groups are phase shifted from each other, like morning and 
evening cells (70,  71). In addition, there is evidence from mouse 
that glia cells may be cycling in different phases (72). These findings 
likely clarify, to some extent, why only few lines exhibited a detect-
able time shift in the brain despite featuring an altered, behavioral 
circadian period such as DGRP-774. This interpretation is further 
supported by the detection of fewer cycling genes in the brain in the 
w1118 time series compared to other tissues. Second, the detection of 
cycling genes and inference of their period is not possible based on 
one time point. Third, single static transcriptomes do not allow dis-
tinction between different changes in the molecular clock. Conse-
quently, phase shifts in the molecular clock relative to the reference 
rhythm, alterations in period length, or even full obliteration of the 
clock will all appear in our analysis as deviations from the expected, 
as observed for lines DGRP-774 and DGRP-796 with the latter hav-
ing even an abolished circadian clock. Last, the capacity to mark a 
sample as diverging from the expected reference time line is sto-
chastic and depends on the sampling time. For instance, a sample 
with a phase-shifted circadian clock can still take the same value as 
the reference at a certain time of the day. If sampling was performed 
during that specific time interval, the deviating sample will be indis-
tinguishable from the reference (fig. S2C). Our data on DGRP-774 
(Fig. 5D) illustrate this point given that the ZT9, ZT11, ZT13, and 

ZT19 samples were all identified by our model as outliers; whereas 
the other time points, including ZT1, ZT3, ZT7, ZT15, ZT21, and 
ZT23 were not. Our readout is thus prone to false negatives and 
binary, as our model simply allows us to flag significantly deviating 
samples, while the retrieved time shift values should only be inter-
preted as indicative. Despite these limitations, we still believe that 
our findings yield a strong foundation for further research aimed at 
dissecting circadian clock genetics as well as the regulatory princi-
ples of the observed molecular asynchrony and its influence on 
physiology.

To resolve possible molecular mechanisms underlying the 
observed circadian gene expression variation, we focused on DGPR-
796, revealing a novel cry allele cryDGRP-796 that manifests as a loss-
of-function phenotype based on genetic, molecular, physiological, 
and behavioral analyses. In Drosophila, Cryptochrome is the princi-
pal blue light sensor and directly transmits light signals to the mo-
lecular clock (73). Light transduction is initiated via oxidation of 
photoexcited FAD cofactor bound by Cry. Subsequently, FAD is 
reduced by the first tryptophan (W420) in the Trp tetrade cascade 
resulting in further electron propagation through the tryptophan 
tetrade (52, 74). We found that the discovered cry variant in DGRP-
796 is a 6-bp in-frame deletion, which gives rise to a composite 
change of the amino acid residues at positions 421 to 423 of the 
protein. This lastly results in the deletion of M421 and W422 adja-
cent to the W420 (M421-W422del) and a V423I substitution. The 
difference in amino acid sequence results in a local disruption of the 
⍺ helix and, most importantly, markedly reorients W420. Because 
of the complex nature of the allele, implicating at once three amino 
acid changes, it is difficult to determine the exact influence of each 
of the implicated amino acid changes on protein function. We ar-
gue though that the phenotypic effect is mainly caused by the W422 
residue as it is conserved across multiple animal species, while 
M421 and V423 are not (74). Although W422 is located in the same 
FAD pocket as W420 in the WT Cry, it is unlikely that W422 partic-
ipates in the electron transport chain due to its relative location to 
the FAD molecule. In contrast, our simulations showed that the 
allele might affect FAD binding efficiency to Cry representing the 
first instance of a genetic change in Drosophila affecting FAD-Cry 
interactions. The detection of this cryDGRP-796 allele shows, in our 
opinion, the potential power of our generated dataset and strategy 
to reveal unknown genetic determinants of circadian phenotypic 
variation. Moreover, it provides, to our knowledge, the first in vivo 
evidence via immunohistochemistry and locomotor activity assays 
for the importance of the Trp-mediated flavin photoreduction 
cascade in Cry photoactivation.

Nonetheless, we note that the behavior of DGRP-796 does not 
completely match that of the cry single mutant given that the eve-
ning locomotor activity peak does not end sharply at the “lights off” 
time but rather gradually (Fig. 6A) (49, 75, 76). Such behavior was 
previously observed in mutants featuring a disruption of genes that 
are implicated in light perception pathways such as eya, so, Hdc, 
and gl (75). Given that swapping the w1118 chromosome 2 with that 
of DGRP-796 resulted in a partially reduced phase response to the 
light pulse (Fig. 8A), it is thus possible that the cry variant in DGRP-
796 is accompanied with an auxiliary phenotype-inducing variant 
that is also located on chromosome 2. Our search of disruptive 
chromosome 2 variants in light- or circadian rhythm–associated 
genes revealed 44 genes harboring various types of protein coding–
affecting variants. However, the lack of statistical power precluded 
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us from identifying causal genetic variant(s) contributing to this 
particular circadian phenotype.

Together, this study substantially expands the catalog of known 
circadian transcripts and adds new layers of information to circadian 
biology including tissue specificity, natural occurring phase shifts, 
and the influence of genetic variation. Moreover, the generated atlas 
should constitute a rich resource for extrapolating the acquired 
knowledge to other systems, including mouse and human.

MATERIALS AND METHODS
Experimental design
Drosophila stocks and general experimental conditions
w1118 (W−) and UAS-RNAi flies were obtained from the Transgenic 
RNAi Project and Bloomington Stock Center, while the GD and KK 
UAS-RNAi flies were ordered from the Vienna Drosophila Resource 
Center. The complete list of genotypes is presented in table S3.

The supplementary details of each line can be found on the web-
sites of their corresponding stock centers by stock identifiers listed 
in table S3. Stock identifications for the DGRP lines used in this 
study are available in table S1. The tim-Gal4 driver provides a 
means to direct RNAi action to tim-expressing cells across the 
whole body, including all brain cells, while Pdf-Gal4 targets LNvs.

Drosophila flies were raised on food containing 58.8 g of yeast 96 
(Springaline BA10), 58.8 g of Farigel wheat (Westhove FMZH1), 6.2 g 
of agar powder (ACROS 400400050), 100 ml of grape juice (Ramseier), 
4.9 ml of propionic acid (Sigma-Aldrich P1386), and 26.5 ml of 
methyl 4-98 hydroxybenzoate (VWR ALFAA14289.0; stock: 400 g/liter 
in 95% ethanol), dissolved in 1 liter of water. The temperature was 
set to 25°C, and light exposure was set to 12-hour/12-hour LD cycles 
unless stated otherwise.
Experimental design and tissue dissection: General notes
Two time course experiments were performed in our study. The 
first time course involved only the w1118 genotype, and it allowed us 
to evaluate tissue specificity of the circadian transcriptome (see 
“Experimental design: Time course experiment of w1118” section for 
a detailed description below). The second time course experiment 
involved 141 DGRP lines and was aimed at studying the impact of 
genetic variation on molecular circadian rhythms at a tissue-specific 
level (see “Experimental design: Time course experiment of DGRP 
lines” section for a detailed description below).

For both of the time course experiments, the incubators were 
placed behind light-blocking curtains to minimize experimental 
disruptions when samples were collected in DD conditions. For all 
of the samples mentioned above, unless stated otherwise, we dis-
sected the brain, abdominal fat body, whole gut without the crop, 
and Malpighian tubes. Within each genotype and time point, the 
same flies were used for collecting all organ and tissue samples, see 
table S1 for the exact number of the dissected flies per sample. Thus, 
for any given fly line, the N brains were derived from the same indi-
viduals as the source of N guts, N fat bodies, and N Malpighian 
tubules. The gut in this experiment consists of the foregut and midgut, 
starting at the proventriculus and finishing at the midgut-hindgut 
junction. To harvest the abdominal fat body, we first removed the 
gut and sexual organs from the abdomen and then separated the fat 
body from the dorsal part of the abdominal cavity using pincers.
Experimental design: Time course experiment of w1118

We used the reference w1118 fly line to study the extent of tissue 
specificity of molecular circadian rhythms. Two 3-day-old mated 

males were separated from females under CO2-induced anesthesia 
and placed into vials grouping up to 20 flies per vial. Vials were 
placed in an incubator with a 12-hour/12-hour LD cycle at 25°C. On 
day 3, at ZT0 (Zeitgeber Time, 0 indicates the beginning of the mea-
surement), these vials were divided into two groups. One set of vials 
was kept at LD settings for 24 hours, and the remainder was placed 
in an incubator at 12-hour/12-hour DD settings. Samples derived 
from the group placed in LD condition received the ZT code, and 
samples placed in the DD condition received the CT code. One 
hour after the start of the experiment (10:00 a.m.), one vial from 
each group was collected by transferring the flies into a 15-ml tube 
and by flash-freezing these in liquid nitrogen. This collection point 
is equivalent to time points ZT1 and CT1 for the LD and DD con-
ditions, respectively. Three hours after the start of the experiment, 
at 12:00 p.m. (ZT3/CT3), the next collection point occurred, and 
one vial per group was collected, transferred into a 15-ml tube, and 
flash-frozen in liquid nitrogen. This continued over the course of 
24 hours until no vials with flies were left. Samples that were kept 
in the dark conditions were also collected in a dark environment. 
To perform subsequent RNA-seq, flies from each sample were 
divided into three biological replicates per tissue and per time 
point (table S1).
Experimental design: Time course experiment of DGRP lines
Our experimental design for the time course using DGRP lines was 
based on one used to map gene expression changes to genetic vari-
ation in Caenorhabditis elegans by Francesconi and Lehner (40). 
Doing so for circadian rhythms, this meant that each DGRP line 
that was available to us would be sampled only once in a 24-hour 
period, effectively resulting in the sampling of a random DGRP line 
every 9.5  min. For each DGRP line, two 3-day-old mated males 
were separated from females under CO2-induced anesthesia and 
placed into vials grouping up to 20, but no less than 10 flies per vial. 
To allow the flies to stabilize, vials were placed in an incubator at 
12-hour/12-hour LD settings.

In parallel, we randomly selected four genotypes to act as an in-
ternal control. On the basis of the analysis from Harbison et al. (16), 
three of these DGRP lines (DGRP-208, DGRP-321, and DGRP-536) 
exhibited regular circadian rhythms, were kept in our analysis, and 
were collected every 2 hours over 24 hours starting from ZT1 with 
the exception of DGRP-208 that was collected every 4 hours and in 
DD settings. Sample collection was done in a similar fashion as de-
scribed above for the w1118 dataset. For both the DGRP group and 
the internal control group, samples were processed only with a sin-
gle replicate for each tissue per genotype per time point.
Experimental design: Time course experiment of DGRP-796
DGRP-796 was processed similarly to the w1118 time series experi-
ment but mostly in duplicates. Sample collection was performed as 
described above.

RNA samples and libraries preparation
Around 10 male flies from each genotype were collected at defined 
time points (table S1) and flash-frozen at −80°C before processing. 
Brains, guts, fat bodies, and Malpighian tubules were dissected on 
ice in 1× phosphate-buffered saline with 0.02% Tween 20, immedi-
ately transferred into screw cap tubes with glass beads and 350 l of 
TRI Reagent (Molecular Research Center, TR118), and placed in a 
Precellys 24 for homogenization (settings: 6000 rpm/30 s). Homog-
enized tissues were flash-frozen at −80°C until subsequent RNA 
purification. To avoid batch effects due to differences in RNA 
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purification efficiencies, all homogenized samples were purified in 
parallel using the Direct-zol 96 RNA Purification system (Zymo 
Research, R2056) according to manufacturer’s instructions. Total 
RNA was eluted in water and quantified with the Quant-iT RiboGreen 
RNA Assay Kit (Thermo Fisher Scientific, R11490). Again, to avoid 
batch effects in cDNA amplification and library preparation, we 
took between 10 and 50 ng of the total RNA from each sample and 
used the high-parallel and high-throughput BRB-seq library prepa-
ration method as described (21).

RNA-seq data preprocessing
Raw sequencing reads for all 778 samples (table S1) were obtained 
from the Illumina HiSeq 2500 (paired-end; 75 cycles). The samples 
were pooled into 16 libraries and distributed across the sequencing 
lanes to prevent a lane-induced batch effect. Multiple fastq files for 
each library were merged by SAMtools v1.3 after which they were 
subjected to demultiplexing using BRB-seq tools v1.1 based on the 
information contained within the first read in the pair (R1) (https://
github.com/DeplanckeLab/BRB-seqTools) (21). Quality control of 
every sample was performed using FastQC v0.11.2.

Immunohistochemistry and confocal microscopy
Whole flies were fixed in 4% paraformaldehyde for 2 hours at room 
temperature at ZT21 after a 30-min light pulse followed by a 1-hour 
return into DD as previously described in (48). Whole brains were 
dissected and blocked in 5% goat serum overnight at 4°C (G9023, 
Sigma-Aldrich). To exclude possible cross-talk between the anti-
bodies and bleeding from the Pdf staining, experiments with two 
sets of secondary antibodies were performed. For the stainings pre-
sented on Fig. 7 (A and B), brains were then incubated for 2 days at 
4°C with 1:200 polyclonal rat anti-Tim antibody donated by M. Rosbash 
(48) and 1:1000 monoclonal mouse anti–Pdf-C7 (Development 
Studies Hybridoma Bank, University of Iowa). Secondary antibodies 
conjugated with Alexa Fluor 488 (for Pdf) or Alexa Fluor 647 (for 
Tim) were used at a 1:200 dilution. For the stainings presented on 
fig. S3B, a different pair of antibodies was used: Alexa Fluor 488 for 
Pdf and Cy3 for Tim, respectively, while the rest of the experimental 
conditions stayed the same. For Tim-only stainings, Cy3 secondary 
antibodies were used.

Images were processed using ImageJ (https://imagej.nih.gov/ij/). 
First, z planes containing neurons of interest were selected. Next, 
custom lookup tables were assigned to both channels. The min-
imum and the maximum of the Tim channel were then set to 0 and 
30, respectively. Similarly, the minimum and the maximum of the 
Pdf channel were set to 0 and 50, respectively. Last, the “standard 
deviation” Z-projection method was applied to each of the channels. 
A full list of commands used to process the images is available as 
an ImageJ plugin on the GitHub. Tim- and Pdf-stained neurons 
in l-LNvs and LNds were counted manually.

Statistical analysis
For all scripts written in R, we used version v3.4.1 unless other-
wise noted.

Mapping to the reference genome and genotyping
We ran all the sequenced samples through a computational geno-
typing pipeline to ensure the accuracy of the sample genotypes. This 
pipeline assesses the previously available variants detected in the DGRP 
lines and compares this with the ones detected in each sample. To be 

able to achieve the highest reliability for the variant calling procedure, 
we followed the Genome Analysis Toolkit (GATK) best practices 
workflow for SNP and indel calling on RNA-seq data. The align-
ment was executed in two stages:

• First, the D. melanogaster reference genome [dm3, University 
of California Santa Cruz (UCSC), Berkeley Drosophila Genome Proj-
ect (BDGP) Release 5 Apr 2006] was indexed by STAR v.2.5.0b (77) 
using the RefSeq Genes annotation track (UCSC, annotation data-
base for dm3). The samples were aligned to the genome by STAR in 
the alignReads mode as single end data with the following parameters: 
--outFilterScoreMinOverLread 0.20, --outFilterMatchNminOverLread 0.20 
and --outFilterMultimapNmax 1. Next, all detected splice junctions 
from the samples were merged into one file and used to create a sec-
ond index for the reference genome by STAR in genomeGenerate 
mode with the maximum possible overhang of the reads set to 75 bp 
(--sjdbOverhang 75).

• Second, reads were mapped by STAR using the same parameters 
as above to the reference genome obtained at the end of the previ-
ous step. Then, SAMtools was used to remove reads with an insert 
size >1 kb. Next, soft clipping beyond the end of reference align-
ment and setting mapping quality (MAPQ) to 0 for unmapped reads 
was performed with Picard v2.2.1 CleanSam (http://broadinstitute.
github.io/picard). After that, read group information was added 
(Picard AddOrReplaceReadGroups), and duplicates were marked 
(Picard MarkDuplicates) using default settings, followed by “map-
ping qualities reassignment” by GATK v3.6-0 (SplitNCigarReads -rf 
ReassignOneMappingQuality -RMQF 255 -RMQT 60 -U ALLOW_N_
CIGAR_READS). Last, local realignment around indels was per-
formed with GATK RealignerTargetCreator and IndelRealigner 
using default parameters.

After these two stages, GATK HaplotypeCaller was used on 
every sample in genomic variant call format (GVCF) mode to call 
variants with the minimum phred-scaled confidence threshold set 
at 30 and the emission confidence threshold set at 10. Indels, multi-
ple nucleotide polymorphisms (MNPs), and variants with a depth 
of coverage less than 5 were excluded from further consideration. 
Afterward, GATK CombineGVCFs was used to produce a multi
sample GVCF. Last, GATK GenotypeGVCFs with the same phred-
scaled confidence threshold and emission confidence threshold as 
above were applied to obtain a multisample set of variants. Only 
biallelic SNPs with a depth of coverage > 5, a Fisher strand score 
of >30.0, and a quality by depth <2.0 were selected from the set to 
compare to the reference DGRP2 VCF (14, 15).

Furthermore, we compared each of our samples to all of the 
available DGRP lines from the reference DGRP2 VCF (14, 15). 
Then, we assessed the top three of genotype matches. If the tested 
DGRP and the expected DGRP were the highest ranked, had a >90% 
match, and the second and third match were at least 5% lower, we 
considered it as a clean match. In case the first ranked expected 
DGRP did not match the tested DGRP, however, and >90% of the 
tested loci matched the expected DGRP, and the second and third 
matches were 5% lower, then we considered this to be a mislabeling 
artefact and renamed the DGRP accordingly.

Read counting, normalization, and batch correction
The bam files obtained at the second step of the genotyping proce-
dure after “read with an insert size of >1-kb removal” were used to 
count the number of reads falling into each of the 16,995 genes us-
ing the Python package HTSeq v0.6.1 ran under union mode (78). 

https://github.com/DeplanckeLab/BRB-seqTools
https://github.com/DeplanckeLab/BRB-seqTools
https://imagej.nih.gov/ij/
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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In general, the number of raw reads per sample ranged from 445,538 
to 12,709,229 with a mean of 1,978,519. Samples with <300,000 
reads assigned to the genes (no feature, ambiguous, low quality, not 
aligned, or “mapped to multiple locations” reads were not con-
sidered) were excluded from the analysis, resulting in numbers of 
uniquely mapped to genes reads ranging from 370,312 to 10,567,493, 
with a mean of 1,488, 250 across the dataset as the mapping efficien-
cy varied from 48 to 91% with a mean of 74.57%. This threshold re-
sulted in the following: (i) 233 samples for the w1118 dataset, with 63 
samples dedicated to the brain, 59 to the fat body, 58 to the gut, 
and 53 to the Malpighian tubules, respectively; (ii) 18 samples 
for the DGRP-208 time course with 6 samples per tissue: brain, 
gut, and fat body; (iii) 35 samples for the DGRP-321 time course 
with 12 samples dedicated to the brain and fat body each and 11 
samples dedicated to the gut; (iv) 31 samples for the DGRP-563 
time course with 12 samples of the brain, 11 of the fat body, and 8 of 
the gut, respectively; (v) 29 samples for the DGRP-774 time course 
with 11 samples for the brain and fat body each and 7 samples for 
the gut; (v) 94 samples for the DGRP-796 time course of which 46 
samples were designated to the brain and 48 to the gut; and (vi) 338 
static transcriptomes of the DGRP with 102, 125, and 100 samples 
for the brain, fat body, and gut, respectively, comprising 778 sam-
ples used for the downstream analysis.

To assess the breadth of our dataset in terms of gene coverage as 
another metric of quality control, we counted how many genes in 
the dataset have >1 read assigned to them. Across all tissues and 
samples, the number of expressed genes ranged from 6915 to 
13,131, with a mean of 9933. In the brain, samples demonstrated 
from 7615 to 11,460 expressed genes, with a mean of 9835; in the fat 
body, the number of expressed genes per sample ranged from 6915 
to 12,550, with a mean of 10,013; in the gut, this metric ranged from 
7629 to 13,131, with a mean of 9809; and lastly, in the Malpighian 
tubules, the number of expressed genes per sample ranged from 7464 
to 12,894, with a mean of 10,630.

To keep the samples comparable while not discarding lowly 
expressed genes, three count tables for each tissue were created. 
The first table contained only w1118 reference time series samples; 
the second table contained w1118 reference time series, time series 
for the four profiled DGRP lines, and single observation DGRP 
samples; and lastly, the third table contained time series data for 
w1118 and DGRP-796 samples. All the tables were processed in the 
same way described below. Genes that were expressed in less than 
80% of the samples were removed from the analysis. Then, the 
tables were quantile normalized with the voom function from the 
limma v3.32.5 package (79). Last, within each tissue, batch effects 
from different libraries were removed with ComBat from the SVA 
v3.24.4 package (80).

Reference time series (w1118) and DGRP-796 RNA time series 
expression analysis for the detection of circadian genes
To detect genes with circadian expression patterns, JTK CYCLE 
v3.1 (22) was used separately for each tissue. Before that, expression 
values for each gene were scaled to a range from 0 to 1 across the 
samples in the time series. Samples from LD (first 24 hours of ob-
servation) and DD (second 24  hours of observation) conditions 
were analyzed as one set spanning 48 hours as an observation 
period of 48 hours is essential for the reliable detection of circadian 
cycling. Such experimental design also allows us to avoid the detec-
tion of light-induced genes as they would not be cycling in DD 

and therefore would not be labeled as circadian. A threshold of 
<0.05 on the permutation-based P values of the Jonckheere-Terpstra 
test (ADJ.P) implemented in the JTK CYCLE was applied. No 
threshold on the amplitude was applied.

Phase shift analysis
CircaCompare v0.1.0 (29) was used to detect a phase shift in the 
expression pattern of genes cycling in two or more tissues. For 
genes cycling in three or four tissues, all possible pairs of tissues 
were considered. A phase shift was considered statistically signifi-
cant if the difference in the peak times estimated by CircaCompare 
exceeded 2 hours with an FDR < 0.05. GO enrichment for the 
phase-shifted genes was performed with the R package topGO 
v.2.34.0. All genes cycling in several tissues were used as background.

Circadian network construction based on time series  
gene expression
TSC GRNs were inferred with the dynamic GENIE3 algorithm 
based on genes that were detected as circadian in a tissue (33). The 
decay rate of gene expression was set to half the period estimated by 
the JTK CYCLE. The list of candidate TFs were derived from 
FlyBase, accession term FBgg0000745.

For network visualization with Cytoscape v.3.6.0 (32), only the 
top 200 links ranked by weight assigned by dynGENIE3 were used. 
The links were collected from all four tissues for the w1118 time 
series data, while for the w1118 and DGRP-796 merged networks, 
only links detected in gut samples were used. For visual clarity of 
the network, TFs were grouped by TSC patterns, followed by the 
Kamada-Kawai network layout algorithm application. In addition, 
a grid layout was applied to the groups of TFs. Node centrality and 
betweenness were calculated with the degree and betweenness func-
tions from the igraph v.1.2.2 package.

Physiological time assignment and method evaluation
To achieve optimal precision in the estimation of the physiological 
time for each DGRP sample based on gene expression profiles from 
the single observation made on DGRP lines, we evaluated five 
methods: MTT (41), ZeitZeiger (42), in-house–developed predictors 
based on LASSO and DirectStat, and lastly, neural networks.
Molecular time table
Because of the differences in our experimental setup, the imple-
mentation of the method was slightly modified from the original: In 
our study, two consecutive days of observations were performed on 
the reference time series (w1118, LD and DD) versus 4 days in the 
study published by Ueda et al. (41). To select time-indicating genes 
(TIGs), the time series expression profile of each gene in the 
training set was analyzed through two filters, one for circadian 
rhythmicity and the other for high amplitude. To detect circadian 
rhythmicity, the expression of each gene was correlated with the 
bundle of the artificial cosine waves with a 24-hour period created 
by 10-min phase increments (144 in total), and the maximum cor-
relation value was recorded. The suggested cutoff of a correlation > 
0.8 resulted into a small number of genes passing through and thus 
was reduced down to 0.5. High amplitudes of putative TIGs were 
determined by the coefficient of variation in the expression > 0.20. 
Once TIGs were identified, their molecular peak time (MPT) was 
recorded as the peak time of a best correlated cosine wave. After 
that, expression values of the TIGs in the test sample were cor-
related with the bundle of cosine waves with a 24-hour period and 
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a phase shift of 10 min generated on MPTs. The phase shift of the 
most correlated cosine wave was then registered as the physiological 
time of a sample. Several sets of TIGs were subjected to evaluation: 
(i) TIGs obtained by applying the filters separately to LD and 
DD and afterward overlapped (LD_DD_05); (ii) TIGs passing the 
filters applied to LD and DD time series considered as one unity 
(LDDD_05); (iii) the top 25, 50, and 75% and all genes detected as 
circadian by the JTK CYCLE; (iv) TIGs listed in Supporting Table 3 
of Ueda et al. (41) and expressed in our dataset; and (v) TIGs listed 
in Supporting Table 3 of Ueda et al. (41) and detected as circadian 
by JTK CYCLE. The method was implemented in R v.3.4.1 with 
base functions.
ZeitZeiger v.1.0.04 (42)
First, cross-validation on the training dataset was performed to 
determine the best parameters of the algorithm resulting into the 
optimal amount of regularization = 1.5 and optimal amount of the 
sparse principal components (SPCs) = 2. Then, the zeitzeigerFit 
function was used on the training dataset to fit a spline into the gene 
expression profiles of all expressed genes. Next, the SPCs were cal-
culated using zeitzeigerSpc, and lastly, zeitzeigerPredict was used to 
predict physiological time of a test sample.
Neural networks
We predicted physiological time with the use of neural networks 
applied to the genes detected as circadian by the JTK CYCLE. Three 
neural network configurations were tested: (i) a single layer net-
work with 12 input neurons, (ii) a network with 12 input neurons 
and 6 neurons in the hidden layer, and (iii) a network with 12 input 
neurons and 2 hidden layers having 6 and 3 neurons, respectively. 
The training of the networks was done by the neuralnet function 
from the neuralnet v1.3 package in R. The prediction of the physio-
logical time of the test samples was then achieved via the compute 
function from neuralnet v1.3.
Least absolute shrinkage and selection operator
We also developed and evaluated the LASSO regression analysis for 
the prediction of the physiological time. It consisted of two parts: 
first, the period of the day at which the sample was harvested (a.m. 
or p.m.) was determined to account for the symmetry of the circa-
dian gene expression patterns. In the second step, LASSO calculated 
the physiological time based on the result of the first step. The anal-
ysis was implemented with glmnet v.2.0-13 used on the count table 
containing the time series data of all expressed genes.
Directional statistics
A cyclic nature of time concept served as inspiration to the develop-
ment of the DirectStat approach for the prediction of physiological 
time. In this method, we considered time of the day as a point in 
polar coordinates and used DirectStat to build a regression. First, 
time of the day was converted to radians where 24  hours corre-
sponds to 2 rad. Then, we used forward backward early dropping 
selection for circular data as implemented in the function spml.fbed 
from the R package Directional v4.1 built under R v.3.5 to select 
genes that could be predictors of time. Last, we fit the regression 
with the function spml.reg and predicted physiological time using 
the obtained model.

A cross-validation leave-one-out approach was used to bench-
mark the methods listed above. The evaluation set was composed of 
the reference w1118 time series complemented with the samples for 
three DGRP lines that were profiled every 2 hours over a period of 
24 hours during the overall DGRP single time point collection 
(DGRP-208, DGRP-321, and DGRP-563) together totaling 317 

samples across four tissues. Gene expression values in the set were 
standardized to the range of 0 to 1 before the application of the 
methods. During the procedure, one sample was removed from the 
set (test sample), and training of the models was performed on 
the rest of the samples (training set), followed by the prediction of 
the physiological time on the test sample. Then, the difference in 
time between the estimated physiological time and time of harvest-
ing was calculated. Thus, every method was scored 317 times. Last, 
the best approach was determined as the one with the least differ-
ence between the predicted and expected physiological time across 
all tissues (estimated based on the mean and SD; see fig. S2B), 
which, in our case, was the MTT method based on TIGs passing the 
filters applied to LD and DD time series considered as one unit 
(LDDD_05). To evaluate even further the performance of the method, 
we assessed predictions of the model for the three profiled DGRP 
line samples: the mean difference between predicted physiological 
time and recorded time of harvesting was <1.4 hours across all 
tissues. Predictions for each tissue were conducted separately. A 
DGRP sample was conservatively marked as an outlier if the pre-
dicted physiological time and the time of harvesting differed more 
than 3.4  hours. This cutoff was dictated by the sensitivity of the 
MTT and represents three SDs of the distribution of differences 
between the predicted time and time of harvesting across all four 
tissues, w1118, and three profiled DGRP lines samples.

As a proof of concept demonstrating the ability of the MTT 
method to detect deviations in molecular circadian rhythms based 
on static transcriptomes, we applied it to the time line of DGRP-774 
with respective samples taken every 2  hours for 24  hours across 
three tissues (11 samples for the brain, 11 for the fat body, and 7 for 
the gut, respectively). DGRP-774 is known to have an 18.86-hour 
period in males (16) and is therefore expected to have an altered 
molecular circadian rhythm. Each sample was considered as an 
individual static transcriptome, and MTT was applied. If the differ-
ence between the estimated physiological time and the time of har-
vesting for a sample exceeded 3.4 hours, it was marked as an outlier. 
As a result, one fat body and three gut samples were detected as 
outliers supporting the notion that MTT can identify deviations in 
molecular circadian rhythms based on static transcriptomes.

We must note that the efficiency of detecting molecular circadi-
an rhythm differences between a fly line with circadian rhythm de-
viations, such as an extended or shortened period or a phase shift, 
from static transcriptomes does not clearly correlate with the abso-
lute value of the deviation (fig. S2C). To illustrate this, we simulated 
a circadian gene expression value as a sinus wave with an amplitude 
of 100 U every 10 min for 24 hours for three datasets: one featuring 
“reference” expression rhythms with a period of 24 hours, one dis-
playing a shortened period of 20 hours and one an extended period 
of 30 hours (fig. S2C). The amplitude of 100 U was chosen for 
clarity. Also, our basic model included noise, where the amplitude-
to-noise ratio was derived as the mean across time and genes 
“amplitude-to-noise” ratio of the seven core clock genes (tim, vri, 
Clk, Pdp1, cry, cwo, and per) that were assessed in the w1118 dataset. 
Panels one and three of fig. S2C illustrate that, despite the fact that 
the period in panel 3 is 30 hours (6-hour deviation), the time win-
dow during which we could detect a difference between the static 
transcriptome of the deviating line and a reference transcriptome is 
only 7 hours. This is comparable with the detection time window 
for rhythms with a 20-hour period (4-hour deviation). Moreover, 
the addition of a 6-hour phase shift into the model led to an increase 
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of the detection window to 10 hours for the 20-hour rhythms and 
no change in the detection window size for the 30-hour rhythms, as 
shown in the second and fourth panels (fig. S2C), respectively. This 
simulation, however, is just an illustration of possible situations and 
their dependence on unknown before the experiment start variables, 
such as the molecular period and phase. It thus did not aid in choosing 
which DGRP lines to use to create a proof-of-concept expression 
time line dataset.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/5/eabc3781/DC1

View/request a protocol for this paper from Bio-protocol.
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