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time-to-event phenotypes with a Bayesian
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While recent advancements in computation and modelling have improved the analysis of

complex traits, our understanding of the genetic basis of the time at symptom onset remains

limited. Here, we develop a Bayesian approach (BayesW) that provides probabilistic

inference of the genetic architecture of age-at-onset phenotypes in a sampling scheme that

facilitates biobank-scale time-to-event analyses. We show in extensive simulation work the

benefits BayesW provides in terms of number of discoveries, model performance and

genomic prediction. In the UK Biobank, we find many thousands of common genomic regions

underlying the age-at-onset of high blood pressure (HBP), cardiac disease (CAD), and type-2

diabetes (T2D), and for the genetic basis of onset reflecting the underlying genetic liability to

disease. Age-at-menopause and age-at-menarche are also highly polygenic, but with higher

variance contributed by low frequency variants. Genomic prediction into the Estonian Biobank

data shows that BayesW gives higher prediction accuracy than other approaches.
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Genome-wide association studies (GWAS) have greatly
expanded our understanding of the genetic architecture of
complex traits, but have largely focused on binary phe-

notypes and quantitative traits1, leaving the age-at-onset of
symptoms little studied, despite it being one of the key traits in
biobank studies of age-related disease. Understanding the envir-
onmental and genetic basis of the time at which symptoms first
occur is critical for early screening programs and for gaining
insight into disease development and progression, especially as
the pathological processes of many age-related diseases may be
triggered decades before the first symptoms appear. Evidence
suggests that genome-wide analyses conducted with case-control
phenotypes tend to have less power in comparison with their
age-at-onset analysis counterparts2,3. Genetic predictors created
from case-control studies have been shown to be predictive of
age-at-diagnosis4, implying that early-onset is to a certain degree
indicative of a higher underlying liability of disease. However, our
understanding of the genetic architecture of reproductive timing,
and the age at which symptoms first develop for common com-
plex disorders, remains limited.

Statistical modelling of time-to-event data is a highly active
research area and is frequently applied to clinical and pharma-
cogenetic studies. Analogous to single marker regression in
GWAS analyses, a Cox proportional hazards (PH) model5 for
each single nucleotide polymorphism (SNP) j∈ {1, . . . ,M} can be
formulated as hiðtÞ ¼ h0ðtÞ expðxijβjÞ; where h0(t) is the baseline
hazard at time t, hi(t) is the hazard for individual i, xij is the
standardised jth SNP marker value, with βj the effect size of the
jth SNP and M the total number of SNPs6–8. Recently there have
been improvements in the computation times using some
approximations for single-marker Cox PH regression9, however,
this approach still yields marginal effect size estimates as the
markers are not fitted simultaneously. Residual based approaches
have also been widely used, which first regress the phenotype on
covariates such as gender or age at entry in Cox PH model, and
then use the residuals in a second regression on the SNP data,
with martingale residuals M̂i ¼ di � Λ̂0ðtiÞ expðZt

iγÞ; where M̂i is
the residual for individual i, δi is the failure indicator (di= 1 for
the event during the study period, otherwise di= 0), Λ̂0ðtiÞ is the
baseline cumulative hazard function at time ti, ti is the follow-up
time for individual i, Zi is the vector of variables used in the first
regression step and γ the vector of corresponding parameter
estimates10,11. The martingale residual approach retains the lin-
earity between the effect and the phenotype and given the model
in the second step it can also be very fast. However, the failure
time and censoring indicator are combined to one summary
statistic, rather than including censoring information specifically
via likelihood. Therefore, the martingale residual approach does
not use the censoring information efficiently diminishing the
power of this model. Rather than testing markers one-at-a-time,
their effects can be estimated jointly in a mixed-effects Cox
PH model, referred to as a frailty model, specified as
λiðtjbÞ ¼ λ0ðtÞ expðXt

iβþ bÞ, where β is the effect for one SNP
being tested along with other fixed effects such as age or sex, b ~
N(0, σ2Σ) is the N-dimensional vector of random effects (N is the
sample size), Σ:N ×N is the genetic relationship matrix, σ2 is the
variance of the genetic component, λ0(t) is the baseline hazard
function and λi(t∣b) is the hazard for individual i. This idea
has been long limited by computational resources and in the latest
implementation (COXMEG)12 analyses are constrained to around
~10,000 individuals. For joint marker effect estimation, there is also
the Cox-LASSO model13 which has been recently developed for
genetic data in the R package snpnet14,15. Fully parametric alter-
natives are also the Sparse Bayesian Weibull regression (SBWR),
which may outperform LASSO-based approaches16, but like
other Bayesian methods such as SurvEMVS17 or a semi-parametric

g-prior approach of Held et al.18 the ultrahigh dimensions of
genetic data limit their application. Therefore, approaches that can
efficiently handle both the complexity and scale of many millions
of sequenced individuals with time-to-event outcomes have not
been extensively developed, limiting our understanding and
our ability to predict disease progression and the timing of
symptom onset.

Here, we take an alternative approach to obtain accurate
inference in full-scale phenotype-genotype sequence data sets, by
proposing a mixture of regressions model with variable selection,
using different regularisation parameters for genetically moti-
vated groups (see “Methods” section). Our suggested model fits
all of the markers jointly in a Bayesian framework using the
Weibull assumption for the phenotypes. We show that this
approach: (1) allows for a contrasting the genetic architectures of
age-at-onset phenotypes under this flexible prior formulation; (2)
yields marker effect estimates βj that represent the effect of each
marker conditional on the effects of all the other markers
accounting for genetic architecture; (3) provides a determination
of the probability that each marker and genomic region is asso-
ciated with a phenotype, alongside the proportion of phenotypic
variation contributed by each, and (4) gives a posterior predictive
distribution for each individual. Regardless of the phenotypic
distribution, our suggested approach greatly improves genomic
prediction for the timing of events for each individual and enables
better insight behind the genetic architecture underlying time-to-
event traits.

Results
BayesW model. An overview of our model is as follows, suppose
that M markers are split between Φ different groups. The groups
can be for example formed based on marker-specific genomic
annotations, MAF grouping, grouping based on LD score, etc. We
assume for an individual i that the age-at-onset of a disease Yi has
Weibull distribution, with a reparametrisation of the model to
represent the mean and the variance of the logarithm of the
phenotype as

Eðlog Yijμ; β; δ; αÞ ¼ μþ ∑
Φ

φ¼1
ðxφi Þ0βφ þ z0iδ; ð1Þ

Varðlog Yijμ; β; δ; αÞ ¼
π2

6α2
; ð2Þ

where μ is the intercept, xφi are the standardised marker values for
all SNPs in group φ, βφ are the marker estimates for the corre-
sponding group, zi are additional covariate values (such as sex or
genetic principal components), δ is the additional covariate effect
estimates and α is the Weibull shape parameter (see “Methods”
section). For each group, we assume that βφ is distributed
according to a mixture of Lφ Gaussian components. Each marker
(from group φ) estimate βjj∈ {1, . . . ,M} is related to a corre-
sponding indicator variable γj∈ {0, . . . , Lφ} where Lφ is the
number of mixture distributions. βj have zero values if and only if
γj= 0. We assume that non-zero βj, where marker j belongs to
group φ, that has been assigned to mixture component (γj= k ≥ 1)
comes from a normal distribution with zero mean and variance
Cφ
kσ

2
Gφ, that is βj � Nð0;Cφ

kσ
2
GφÞ, where σ2Gφ represents the

phenotypic variance attributable to markers of group φ and Cφ
k is a

group and mixture specific factor showing the magnitude of
variance explained by this specific mixture that is given by the
user. For example, specifying Cφ

1 ¼ 0:0001, Cφ
2 ¼ 0:001 and Cφ

3 ¼
0:01 gives us mixtures that, respectively, explain 0.01%, 0.1% and
1% of the genetic variance. We also assume that prior probabilities
of belonging to each of the mixture distribution k is stored in
Lφ+ 1-dimensional vector πφ. Thus the mixture proportions,
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variance explained by the SNP markers, and mixture constants are
all unique and independent across SNP marker groups.

An algorithm for whole-genome data at biobank scale. We
develop a computational framework that overcomes previous
limitations for the application of age-at-onset models to large-
scale biobank studies. In the model likelihood, we account for
right censoring, a situation where only the last known time
without an event is recorded, with the event potentially taking
place sometime in the future (see “Methods” section). Although
we did not apply it in our final analysis, we also formulate the
model to accommodate left truncation, a situation where indivi-
duals are not missing from the data at random, creating differ-
ences in the genetic composition of individuals across age groups
(see “Methods” section). We implement a parallel sampling
scheme for Eq. (1) that allows the data to be split across compute
nodes (in a series of MPI tasks), whilst still maintaining the
accuracy of the estimation of βj. With T parallel workers (MPI
tasks), Bulk Synchronous Parallel (BSP) Gibbs sampling can
sample T marker effects when sequential Gibbs samples a single
one, but BSP requires an extra synchronisation step of the tasks
after each of them has processed u markers (see “Methods” sec-
tion). After each worker has processed u markers, we synchronise
the workers by transmitting the residual vector across workers.
Given our assumption that the phenotype follows a Weibull
distribution, we are using a numerical method, Adaptive Gauss-
Hermite quadrature, for calculating the mixture membership
probabilities for variable selection, and Adaptive Rejection Sam-
pling (ARS) for estimating the marker effects. We implement
these approaches to take full advantage of the sparsity of genomic
data, converting computationally intensive calculations of expo-
nents and dot products into a series of summations. We provide
publicly available software (see “Code Availability”) that has the
capacity to easily extend to a wider range of models (not just
Weibull) than that described here. Our software enables the
estimation of 2,975,268 SNP inclusion probabilities split between
T= 96 workers, using 12 compute nodes and synchronisation
rate of u= 10, mixture allocation and effect sizes in 371,878
individuals with an average of 49.7 s per iteration without groups
model and 50.0 s per iteration with the groups model; using
151,472 individuals with T= 64, 8 compute nodes and u= 10
without groups we get an average of 24.8 and with groups, we get
an average of 26.4 s per iteration. Here, we have chosen to run the
chains for 10,000 iterations leading to execution times of 69 h
(N= 151,472) to 139 h (N= 371,878). The run times ultimately
depend upon compute cluster utilisation and the genetic archi-
tecture of the phenotype, as calls to the ARS procedure are linear
with the number of markers. The calculations were done by using
Helvetios cluster of EPFL (see Code availability).

Simulation study. We show in a simulation study that our
model estimates SNP marker effect sizes more accurately, with
a greater number of discoveries, and thus obtains better model
performance with improved genomic prediction accuracy as
compared to other available methods (Fig. 1, Supplementary
Figs. 1 and 2). The other methods used for comparisons in
simulations are Cox-LASSO13, Bayesian regression mixture
model BayesR19 applied on martingale residuals and marginal
single marker regression (OLS) applied on martingale residuals.
First, we show that the previous statement holds even in the
case of model misspecification (Fig. 1), where the phenotypic
distribution does not correspond to a Weibull distribution, but
rather conforms to a series of different generalised gamma
distributions (of which Weibull is one of them in the case where
θ= 1 in the parametrisation of Eq. (1) in the Supplementary

Note of Supplementary Information), with differing θ value (see
“Methods” section and Supplementary Note in Supplementary
Information). In a simulation study of N= 5000 individuals
and 50,000 uncorrelated markers with p= 500 randomly
selected markers as causal variants, our BayesW model obtains
higher out-of-sample prediction accuracy than a Cox-LASSO or
a martingale residual approach used in several recent studies
(Fig. 1a).

Second, we show that this statement also holds in a larger
simulation study using a real genomic data-set of N= 20, 000
randomly selected UK Biobank individuals and 194,922 corre-
lated genetic markers on chromosome 22 under different
censoring levels (Supplementary Fig. 1). Interestingly, in Fig. 1a
we observe that the generalised gamma distributions with θ > 1
lead to more accurate genetic predictions compared to the
Weibull model (θ= 1). Such phenotypic distributions are easier
to discriminate meaning that for distributions where θ > 1 the
same difference in genetic values leads to greater phenotypic
distribution differences in Kullback-Leibler divergences compared
to θ= 1. Our approach achieves better precision-recall as
compared to these approaches (Fig. 1b) across all values of θ
and all censoring levels within the data (Supplementary Fig. 2).
We choose to use precision-recall curves due to the great
imbalance between the number of causal and non-causal
markers20; precision ( TP

TPþFP ¼ 1� FDR) describes how accurately
the markers were identified while recall ( TP

TPþFN) describes the
proportion of how many causal markers were discovered. We
show that across the range of θ values that generate model
misspecification, SNP marker effect estimates remain mostly
correctly estimated (Fig. 1c, Supplementary Fig. 9), however, due
to the shrinkage effect of the prior distribution to the marker
effect size estimates, we observe a very slight underestimation of
the effect size estimates for this simulation scenario if the model is
correctly specified. On the other hand, if the phenotype is from
log-normal distribution (θ= 0) then due to the inflated genetic
variance hyperparameter (Fig. 1d) we see the reduced impact of
the priors and less shrinkage of the effect size estimates, leading to
more accurate effect size estimates. In general, we recognise that
Bayesian modelling may induce slight shrinkage in the effect size
estimates due to the priors. Nevertheless, we consider this effect
negligible (Supplementary Fig. 9), especially in the context of
improved genetic prediction and a more flexible framework that
Bayesian modelling enables.

Third, in the Supplementary Note, we derive a definition of
SNP heritability, the proportion of among-individual variation
in age-at-onset that is attributable to SNP effects, for both the
variance of the logarithmed phenotype and the original scale
(see Supplementary Note). We show that the log-scale SNP
heritability definition is valid under a Weibull assumption and
across the range of theta when restricting the markers entering
the model (Fig. 1d, single mixtures 0.01), but maybe inflated
under low theta values (Fig. 1d, mixtures 0.001, 0.01) because of
the increase in small-effect false positives that enter the model
(Fig. 1e). In addition, we demonstrate that the model is robust
to the specification of mixture components (Fig. 1f), false
discovery rate is bounded even if we add smaller mixtures. To
explore false discovery rate and polygenicity in a more realistic
scenario we further simulate different numbers of causal loci on
LD pruned set of UK Biobank chromosome 1 (M= 230,227)
(see “Methods” section). We show that (a) our model captures
accurately the effect size distribution (Supplementary Fig. 11a),
(b) our model accurately captures the underlying polygenicity
(Supplementary Fig. 11b), (c) our model controls for false
discovery rate (Supplementary Fig. 12). Throughout this work,
we use the posterior probability of window variance (PPWV)21
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Fig. 1 Simulation study results. Method comparison, parameter estimation results and the behaviour of the false discovery rate (FDR). Models were
estimated on a data set of M= 50,000 uncorrelated markers and N= 5000 individuals in 25 replicate simulations of 5 chains with 3000 iterations.
Phenotypes were created from Generalised gamma distributions (see Supplementary note) using p= 500 causals markers and retaining heritability
of h2= 0.5; independent data set had the same markers with N= 1000 other individuals. a Prediction accuracy of four methods when predicting to
an independent data set given different generalised gamma distributions. The plot centres indicate the mean and error bars indicate the standard
deviation of the correlations across simulations; (b) Mean precision values for each level of recall for four methods using Weibull phenotype
(theta= 1); (c) Regression slope (true effect size ~ estimated effect size) when estimating non-zero marker effects given different theta values
estimated with BayesW at each iteration across all simulations; (d) BayesW SNP heritability estimates given different generalised gamma distributions
and different used mixtures at each iteration across all simulations; (e) relationship between the posterior inclusion probability (PIP) and false
discovery rate (FDR) given different generalised gamma distributions for BayesW, for each PIP we present mean FDR values; (f) relationship between
the PIP and FDR for a different number of mixture distributions used using Weibull phenotype and BayesW, for each PIP we present mean FDR
values. In panels c–d, the bounds of the box show the interquartile range, centre shows the median and minimum and maximum indicate the 95%
credibility interval.
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(see “Methods” section) as the metric to summarise the
significance of genetic regions. PPWV shows the probability
that a genetic region explains at least some fixed proportion of
the genetic variance. We show below that false positives are
controlled for under all generative models when conducting LD
clumped based variable selection using a PPWV threshold of
≥0.9 (Supplementary Fig. 12) and hence it is justified to use it
for calling region-based discoveries and compare it with other
methods that are supposed to control for false discovery rates.
Finally, we show that our BSP algorithm is stable under a wide
range of synchronisation rates, parallelism, and quadrature
point selection (Supplementary Fig. 3).

The genetic architecture of age-at-onset. We then applied our
model to unrelated UK biobank individuals of European ancestry
with a pruned set of M= 2,975,268 SNPs for five traits: two
reproductive phenotypes of age-at-menopause (N= 151,472) and
age-at-menarche (N= 200,493) and three common complex dis-
eases (selected as they are some of the leading causes of mortality)
of time-to-diagnosis of type-2-diabetes (T2D) (N= 372,280),
coronary-artery-disease (CAD) (N= 360,715) and high blood
pressure (HBP) (N= 371,878) (see Descriptive statistics in Sup-
plementary Table 1). Using our BSP Gibbs sampling scheme, we
ran a baseline model without any grouping of markers, and then
we re-ran the model grouping markers into 20 MAF-LD bins
(quintiles of MAF and then quartiles within each MAF quantile
split by LD score). Groups were defined using MAF and LD based
on recent theory22 and recent simulation study results23–26, which
suggest that accurate estimation of genetic variance might require
accounting for the MAF-LD structure. To understand the effect
size distribution and genetic architecture, four mixture compo-
nents were specified such that they would represent 0.001%,
0.01%, 0.1% or 1% of the total genetic variance for the no groups
model (0.00001, 0.0001, 0.001, 0.01). For the group model, the
four group-specific mixtures for each of the 20 groups were
chosen to be 10 times larger (0.0001, 0.001, 0.01, 0.1) such that
they would represent 0.01%, 0.1%, 1% or 10% of the group-specific
genetic variances. Additional variables such as sex, UK Biobank
assessment centre, genotype chip, and the leading 20 PCs of
the SNP data (see “Methods” section) were used as fixed effects in
the analysis. We conducted a series of convergence diagnostic
analyses of the posterior distributions to ensure we obtained
estimates from a converged set of chains (Supplementary Figs. 4,
5, 6 and 7).

Under the assumption that the traits are Weibull distributed,
this gives log-scale SNP (pseudo-)heritability estimates (see
Supplementary Note of Supplementary Information) of 0.26
(95% CI 0.25, 0.27) for age-at-menopause, 0.41 (95% CI 0.40,
0.42) for age-at-menarche, 0.36 (95% CI 0.35, 0.37) for age-at-
diagnosis of HBP, 0.48 (95% CI 0.44, 0.52) for age-at-diagnosis
of CAD, and 0.52 (95% CI 0.50, 0.55) for age-at-diagnosis of
T2D. Both the model with and without groups reach similar
conclusions in terms of partitioning markers between mixtures
(Fig. 2a) indicating that the inference we draw on the genetic
architecture is here independent of the group-specific prior
specification. However, our BayesW grouped mixture of
regression model allows for contrasting the variance contributed
by different MAF and LD groups across traits. For all traits, we
find that the majority of the variance contributed by SNP
markers is attributable to SNPs that each proportionally
contribute an average of 10−5 of the genetic variance (Fig. 2a).
We find evidence that age-at-menarche is highly polygenic with
88.1% (95% CI 86.8%, 89.4%) of the genetic variance
attributable to the SNPs contributed by markers in the 10−5

mixture group, similar to CAD with 74.2% (95% CI 63.6%,

81.5%, Fig. 2b). Age-at-menopause and age-at-T2D diagnosis
stand out with 32.3% (95% CI 28.9%, 35.7%) and 18.9% (95% CI
14.6%, 22.9%) of the genotypic variance attributable to the SNPs
contributed by markers in the 10−3 mixture, respectively
(Fig. 2b), indicating a substantial amount of genetic variance
resulting from moderate to large effect sizes. In contrast, for the
other traits, the moderate to large effect sizes (mixture 10−3)
explain a far smaller part of the total genetic variance with age-
at-menarche having almost no genetic variance (0.1%, 95% CI
0.0%, 0.6%) and only a small amount coming from that mixture
for age-at-HBP diagnosis (5.6%, 95% CI 3.1%, 8.4%) and age-at-
CAD (9.4%, 95% CI 6.5%, 12.9%).

We find marked differences in the underlying genetic
architecture of these different age-at-onset phenotypes (Fig. 2c,
d). For age-at-menarche, many rare low-LD SNPs and many
common SNPs contribute similar proportions to the phenotypic
variance attributable to the SNP markers, implying larger
absolute effect sizes for rare low-LD variants per minor allele
substitution, with age-at-menopause showing a similar but less
pronounced pattern with a noticeable proportion of the genetic
variance stemming from small effect sizes of the rare variants
(Fig. 2d, MAF quintiles 1–3). In contrast, we find evidence
that the phenotypic variance attributable to the SNP markers for
age-at-diagnosis for CAD, HBP, and T2D is predominantly
contributed by common variants of small effect (Fig. 2d). This
implies that female reproductive traits may have been under far
stronger selection in our evolutionary past than age-at-diagnosis
of modern-day common complex disease27. In summary, we find
that most of the phenotypic variance attributable to SNPs is
contributed by very many small-effect common variants, but that
there are key differences among time-to-event phenotypes, with
reproductive traits showing different patterns of genetic archi-
tecture to time-to-diagnosis phenotypes.

We then partitioned the SNP markers into regions of LD
clumps (see “Methods” section) and determined the genetic
variance each of those regions explains. Then, we calculated the
probability (PPWV) that each such region contributes at least
1/1000, 1/10,000 or 1/100,000 of the total genotypic variance,
providing a probabilistic approach to assess the contribution
of different genomic regions to time-to-event phenotypes. The
smallest threshold was chosen to be 1/100,000 of the total
genotypic variance corresponding to the smallest mixture
component models were estimated with which also represents
the magnitude of the smallest effect size we intend the model to
capture. We find 291 LD clumped regions for age-at-menarche
with ≥0.95 PPWV of 1/100,000, 176 regions for age-at-
menopause, 441 regions for age-at-diagnosis of HBP, 67 regions
for age-at-diagnosis of CAD, and 108 regions for age-at-diagnosis
of T2D from our BayesW grouped mixture of the regression
model (Fig. 3a). Our grouped model provides slightly better
model performance, as reflected by higher posterior inclusion
probabilities at smaller effect sizes (Fig. 3a, Supplementary Fig. 8),
with the baseline BayesW mixture of regression model detecting
13.7% fewer LD clump regions for age-at-menarche, 4.5% fewer
for age-at-menopause, 34.0% fewer for age-at-diagnosis of HBP,
35.8% fewer for age-at-diagnosis of CAD, and 33.3% fewer for
age-at-diagnosis of T2D when using 1/100,000 PPWV threshold.
Similarly, we evaluated region-based significance by calculating
PPWV for regions that were created by mapping markers to the
closest gene (Fig. 3b). For age-at-menopause we find 101, for
age-at-menarche, we find 119, for time-to-T2D we find 41, for
time-to-HBP we find 159 and for time-to-CAD, we find 20 gene-
associated regions with ≥95% PPWV of explaining at least
1/10,000 of the genetic variance. In addition, we find evidence for
differences in the effect size distribution across traits, largely
reflecting differences in power that result from sample size
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Fig. 2 Genetic architecture for time-to-diagnosis of CAD, HBP, T2D and age-at-menarche and age-at-menopause, estimated using 2,975,268 markers
and unrelated European ancestry individuals from the UK biobank. BayesW models were executed with and without partitioning the markers into
groups. Groups were created by splitting them first into MAF quintiles and each MAF quintile was further split into quartiles based on LD giving us a
total of 20 groups. The used sample sizes were N= 360,715; 371,878; 372,280; 200,493 and 151,472 for time-to-diagnosis of CAD, HBP, T2D and
age-at-menarche and age-at-menopause, respectively. The models without groups were run with five chains and the models with groups were run with
three chains, each chain contained 10,000 iterations out of which 5000 first iterations were discarded as burn-in and a thinning step of five was
applied to give 1000 samples from each chain. a Mean proportions of genetic variances explained by each of the mixtures with the groups model
and without groups model, groups model and no group model are yielding rather similar results; (b) distribution of proportion of genetic variance
between mixtures for the model without groups, time-to-menarche stands out with almost all of genetic the variance attributed to the small mixtures;
(c) distribution of proportion of genetic variance between LD quartiles within each MAF quintile, LD bins do not have a large impact on genetic
variance partitioning as the credibility intervals are large and medians across LD quartiles are rather stable; (d) distribution of proportion of genetic
variance between mixtures within each MAF quintile, mixture allocations tend to be similar compared to no groups model; (e) enrichment (ratio of
proportion of genetic variance and proportion of markers attributed to each MAF quintile group) value for each phenotype, enrichment of higher than 1
represents that the markers are explaining more of the genetic variance compared to their count proportion and vice versa. b–e Height of the bars
represents median and error bars represent 95% credibility intervals, (c–e) are group models. For all of the traits, most of the genetic variance is
coming from common SNPs (MAF quintile 5).
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differences and different censoring levels across traits (Fig. 3c, d)
(see “Methods” section). Overall, these results suggest many
hundreds of genomic regions spread throughout the genome
contribute to the timing of common complex traits.

We also compared the LD clumped regions discovered by
BayesW with LD clumped regions discovered by another
association method fastGWA28. Even though fastGWA is a
frequentist and BayesW is a Bayesian method and the
comparison between the two approaches is not comprehensive,

we still use it as both methods should control for false discovery
rate (Supplementary Fig. 12) and fastGWA is one of the most
recent methods released. Although for age-at-menarche and age-
at-menopause we find 191 and 97 regions that are concordantly
significant according to the two methods (Table 1), we find less
concordance among the other traits. For time-to-angina and
-heart attack fastGWA does not find any significant regions, for
time-to-HBP BayesW finds greatly more LD clumped regions
(BayesW: 663, fastGWA: 14). The striking difference between the

Fig. 3 Regional and individual SNP contributions to the time-to-diagnosis of CAD, HBP, T2D and age-at-menarche and age-at-menopause. a Count of
LD clumped regions with high PPWV (Posterior Probability Window Variance). We split the genome into LD clumped regions such that the r2 < 0.1
between index SNPs. Then we calculated the probability that a region is explaining at least either 0.001%, 0.01% or 0.1% of the genetic variance (PPWV);
(b) Count of gene-mapped regions with high PPWV. Each marker is mapped to the closest gene given that it is within ±50 kb from the marker, then for
each of those gene-specific regions, we calculate PPWV that the region explains either 0.01% or 0.1% of the genetic variance. Both a and b are using the
groups model; (c) distribution of mean non-zero effect sizes for markers with PIP > 0.5 for models with and without groups, we pick up most large effects
for traits such as time-to-diagnosis of CAD or T2D whereas we find an abundance of small effects for age-at-menarche, we see a very small effect of
penalisation in the case of group model; (d) relationship between mean non-zero effect size and posterior inclusion probability for markers with PIP > 0.5
with markers. Source data are provided as a Source Data file.
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numbers of identified regions could be largely attributed to the
larger sample size of BayesW as BayesW can also use the data
from censored individuals where fastGWA can only resort to the
uncensored individuals. For time-to-diabetes BayesW identifies
more than three times more regions but only a small minority of
the discovered regions are concordant. Although for time-to-
menarche the fastGWA identifies more LD clumped regions, still
around half of the regions identified by BayesW are not picked
up by fastGWA. We further looked into the properties behind
the discoveries that are not concordant between the two
methods. It can be seen that the regions discovered by BayesW
have lower p-values compared to the overall p-values (Supple-
mentary Fig. 13a) indicating that many of those regions could be
lacking power with fastGWA whereas BayesW manages to
identify them; similarly, the regions that are discovered by
fastGWA and not by BayesW tend to have higher PPWV
compared to the overall PPWV values (Supplementary Fig. 13b)
indicating that some potential signal could be lost when using
such PPWV threshold. In terms of the prediction accuracy, the
BayesW shows greatly better prediction accuracy to Estonian
Biobank compared to fastGWA when predicting age-at-
menarche or age-at-menopause (Fig. 4a, b) indicating that the
regions identified by BayesW and their effect size estimates
might reflect the genetic architecture more accurately. Therefore,
BayesW identifies already found regions along with previously
unidentified regions compared to previous association methods;
for time-to-diagnosis traits, it can discover more regions due to
using the censored individuals; and BayesW results yield greatly
improved prediction accuracy compared to fastGWA.

Out of sample prediction in an Estonian population. We used
the estimates obtained from the group-specific model to predict
time-to-event in N= 32,594 individuals of the Estonian Biobank
data. We compared our model performance to the Cox-LASSO
approach implemented in the R package snpnet14,15 trained on
the same UK Biobank data (see “Methods” section) using two
metrics. As some of the Estonian Biobank time-to-event pheno-
types are censored, we choose to calculate the R2 values between
the predicted values and the martingale residuals from the Cox
PH model where the true phenotypes are regressed on sex. In
addition, we calculate Harrell’s C-statistic29 from the Cox PH
model where the true phenotypic values are regressed on the
predicted values and sex. BayesW outperforms Cox-LASSO for all
phenotypes (Fig. 4a,b) by giving R2 of 0.032 compared to Cox-
LASSO’s 0.017 for age-at-menopause of 18,134 women and 0.05
compared to Cox-LASSO’s 0.040 for age-at-menarche of 18,134
women. We also get an increase in Harrell’s C-statistic with
BayesW giving 0.623 (se= 0.00443) compared to Cox-LASSO’s

0.593 (0.00455) for age-at-menopause and for age-at-menarche
we get C-statistic of 0.598 (0.00290) with BayesW compared to
Cox-LASSO’s 0.580 (0.00294). For the age-at-diagnosis traits, we
obtain R2 values of 0.0047, 0.0236, and 0.0441 for BayesW and
0.0030, 0.0135 and 0.0271 with Cox-LASSO for CAD, T2D, and
HBP, respectively. This shows that our BayesW model gives a
higher prediction accuracy compared to the Cox-LASSO method,
in-line with our simulation study results.

We then compared the BayesW prediction results to those
obtained from a case-control analysis. In a companion paper22,
we develop a group-specific BayesR approach and we use this to
analyse the indicator variable (0= no registered disease, 1=
reported disease) for HBP using the same data and a liability
model to facilitate a direct comparison of the methods. For CAD
and T2D, we use the results of the companion paper, where there
were almost twice as many case observations (for CAD BayesR
had 39,776 vs. BayesW 17,452 and for T2D BayesR had 25,773 vs.
BayesW 15,813 cases) as it included those with the confirmed
diagnosis but no age information and 8.4 million SNPs were
analysed. For the prediction of age-at-diagnosis, we compared the
R2 values between the predicted values and the martingale
residuals from the Cox PH model and the Harrell’s C-statistic
(Fig. 4a,b). For HBP, CAD we find that BayesW marginally
outperforms BayesR with (HBP R2 BayesW 0.0441, BayesR
0.0437; CAD R2 BayesW 0.0047, BayesR 0.0046) and for T2D
BayesR marginally outperforms BayesW (R2 BayesW 0.0236,
BayesR 0.0262). A similar ranking can be observed when using
Harrell’s C-statistic for comparison (Fig. 4b). We then compared
approaches when predicting 0/1 case-control status, rather than
age-at-diagnosis (Fig. 4c, d). We find that for predicting HBP
BayesW marginally outperforms BayesR in terms of R2 (BayesW
0.0375, BayesR 0.0365) and area under PR curve (BayesW 0.339,
BayesR 0.336) (used because of the imbalance between cases and
controls); for predicting CAD or T2D despite the increase case
sample size, BayesR only marginally outperforms BayesW (T2D
R2 BayesW 0.0127, BayesR 0.0136 and AUC BayesW 0.0766,
BayesR 0.0799; CAD R2 BayesW 0.0025, BayesR 0.0027 and
AUC BayesW 0.0920, BayesR 0.0941). Therefore we get very
similar prediction accuracies with both methods when predicting
case-control phenotypes although the BayesW model was
estimated using time-to-event phenotypes with fewer cases for
T2D and CAD.

A finding of similar prediction accuracy is unsurprising given
the striking concordance between the results of the two models
when partitioning the genotype into 50 kb regions. We calculated
(on a logarithmic scale) the mean proportion of genetic variance
attributed to each 50kb region for the model using case-control
phenotype (BayesR) and for the model using time-to-event
phenotype (BayesW). Both models attribute similar amounts of

Table 1 Concordance between the LD clumped regions discovered by BayesW or fastGWA.

BayesW: no BayesW: no BayesW: yes BayesW: yes Total BayesW

Phenotype fastGWA: no fastGWA: yes fastGWA: no fastGWA: yes

Time to Angina 290,220 0 128 0 128
Time to Heart attack 289,787 0 128 0 128
Time to HBP 291,674 4 653 10 666
Time to Menarche 292,127 242 223 191 414
Time to Menopause 292,202 125 126 97 227
Time to Diabetes 290,599 40 174 8 183

We split the genome into LD clumped regions and we evaluated the significance of each of the regions using the results from the groups BayesW model and the fastGWA model. The fastGWA results
for our CAD and T2D definition were missing so instead time-to-angina and time-to-heart attack are shown for CAD and time-to-diabetes is shown for T2D. Here, BayesW calls an LD clumped region
significant if the PPWV of the region (explaining at least 0.001% of the genetic variance) is higher than 0.9; fastGWA calls an LD clumped region significant if there exists at least one marker with a p-
value < 5 × 10−8. We find that although for age-at-menarche and age-at-menopause there exists an abundance of regions with concordant significance, for other traits most of the discovered regions
differ between two methods. For creating the comparison only overlapping markers were used; in the column Total BayesW we show the total number of discovered LD clumped regions, including those
that did not have a counterpart among fastGWA results.
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genetic variance to the same 50 kb regions (Supplementary Fig. 10),
with correlations between logarithmic proportions of genetic
variances are 0.941, 0.647 and 0.554 for HBP, T2D and CAD,
respectively. Thus, we have shown here that using either time-to-
event or case-control data for genome-wide association analysis we
find a similar amount of genetic variance attributed to the same
regions and both analyses have similar predictive performance
when predicting case-control phenotypes. This suggests that to
some extent there is interchangeability between the case-control
and time-to-event phenotypes demonstrating that both phenotypes
are describing a similar latent mechanism.

The BayesW model enables posterior predictive distributions
to be generated for each individual. For evaluating the predictive
performance of BayesW on the reproductive traits, we calculated
the 95% credibility prediction intervals for each of the subjects
in the Estonian Biobank. We chose to evaluate reproductive
traits only as it is sure that every woman should experience
those events given they have reached a sufficient age. For age-at-
menopause 92.3% and for age-at-menarche 94.8% of the true
uncensored phenotypes lie within the BayesW 95% credibility
prediction intervals. This demonstrates that even though the
prediction R2 values for those traits are not very high due to the
low genetic variance underlying the phenotypic variance, our
Bayesian model quantifies the model uncertainty and yields
well-calibrated subject-specific prediction intervals. An example
of the shape of the distribution is shown in Supplementary
Fig. 15. A caveat is that the subject-specific prediction intervals
can be rather wide, though approximately half the width of the
data range. For age-at-menopause, the data range from 34 to 63

(width of 29 years), and the width of the 95% credibility
intervals ranged from 13.4 to 18.6 years with a median width of
15.9 years. For age-at-menarche, data values range from 9 to 19,
and the posterior predictive interval width ranged from 5.1 to
7.9 years with a median width of 6.3 years.

Discussion
Here, we have shown that our BayesW mixture of regressions
model provides inference as to the genetic architecture of
reproductive timing and the age at which symptoms first develop
for common complex disorders. We provide evidence for an
infinitesimal contribution of many thousands of common geno-
mic regions to variation in the onset of common complex dis-
orders and for the genetic basis of age-at-onset reflecting the
underlying genetic liability to disease. In contrast, while age-at-
menopause and age-at-menarche are highly polygenic, average
effect sizes and the variance contributed by low-frequency var-
iants are higher, supporting a history of stronger selection pres-
sure in the human population27.

Genome-wide association studies of time-to-event pheno-
types are critical for gaining insights into the genetics of disease
etiology and progression, but their application has been
hampered by the computational and statistical challenges of
the models, especially when the predictors are ultrahigh-
dimensional. Our hybrid-parallel sampling scheme enables a
fully Bayesian model to be applied to large-scale genomic data
and we show improved genomic prediction over competing
approaches, not only in the R2 or C-statistic obtained but in the
inference that can be obtained from a full posterior predictive
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Fig. 4 Prediction into the Estonian biobank. BayesW and Cox-LASSO (estimated with snpnet) methods were used for all of the phenotypes; BayesR was
used to see how case-control model predicts time-to-diagnosis phenotypes (CAD, HBP, T2D); fastGWA was used to see how marginal model performs
when predicting continuous traits. BayesW and Cox-LASSO models were estimated using sample sizes of N= 360,715; 371,878; 372,280; 200,493 and
151,472 for time-to-diagnosis of CAD, HBP, T2D and age-at-menarche and age-at-menopause, respectively. The number of validation individuals from the
Estonian Biobank was N= 32,594 for the time-to-diagnosis traits and N= 18,134 and 19,368 for age-at-menarche and age-at-menopause, respectively.
a Prediction R2 when predicting Estonian martingale residuals of time-to-event phenotypes using either BayesW, Cox-LASSO, BayesR or fastGWA model
trained on the UK biobank data, martingale residuals were calculated from Cox PH model with an intercept and sex if applicable; (b) Harrell’s C-statistic,
calculated from Cox PH model where true phenotype was regressed on the genomic prediction and gender data (for CAD, HBP and T2D). Height of the
bars represents the C-statistic and error bars represent corresponding 95% confidence intervals; (c) Prediction R2 when predicting Estonian binary
phenotypes (CAD, HBP, T2D) using either a model based on time-to-event data (BayesW) or case-control data (BayesR), the binary phenotypes that were
used for the comparison were adjusted for age and sex; (d) Area under Precision-recall curve when predicting Estonian binary phenotypes (CAD, HBP,
T2D) using either BayesW or BayesR, areas under the curve were calculated separately for females, males and everyone combined.
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distribution. Previous evidence shows that cohort studies using
proportional hazards (or Cox) regression models generally
increase statistical power compared to case-control studies
using logistic regression model2,3. Our results support this and
we expect the benefits to become more evident as the number of
cases accrues with accurate age-at-diagnosis information.

A typical approach in the time-to-event analysis is the Cox PH
model5 that uses a non-parametric estimate for the baseline
hazard and then estimates other effect sizes proportional to this
hazard. Our BayesW model is also a proportional hazard model
with the constraint that the baseline hazard follows a Weibull
distribution and thus marker effect size estimates have a similar
interpretation as those from a Cox PH model. Interestingly, the
results from both our simulation study and real data analysis
show that when quantifying the significance of the markers and
estimating the marker effect sizes, it might not be pivotal to
capture the baseline hazard with a non-parametric method. The
simulations show that even in the misspecified cases BayesW
performs better compared to the semi-parametric Cox model,
demonstrating that using a parametric assumption might be more
descriptive than simply using a Cox PH model from standard
practice.

There has been a significant amount of work on the heritability
of the time-to-event traits. For example, it has been suggested to
define heritability in the Weibull frailty model on the log-time
scale30, or on the log-frailty scale in Cox PH model31. Trans-
forming the log-scale heritability to the original scale32, has then
required approximations and the term of original scale herit-
ability has not been easy to explain and use33. Here, using a
similar idea of partitioning the total phenotypic variance into
genetic and error variance components, we present an expression
for SNP heritability on the log-time scale. We then show that
there exists a natural correspondence between log-scale and ori-
ginal scale heritability, without the need for any approximations,
with log-scale and original scale heritability giving similar esti-
mates if the Weibull shape parameter tends to higher values.
Therefore, under Weibull assumptions, we provide a definition of
SNP-heritability for time-to-event traits for the GWAS-era.

There are a number of key considerations and limitations. The
assumption of a Weibull distribution for the traits considered
here can induce bias in the hyperparameter estimates, although
we have shown that this assumption yields accurate results in
terms of prediction regardless of the phenotypic distribution. A
third parameter could be introduced through the use of a gen-
eralised gamma distribution and this will be the focus of future
work as it should allow for unbiased hyperparameter estimation
irrespective of the trait distribution. In this study, we have used
hard-coded genotypes to make the method computationally
efficient which can result in reduced covariance between the
imputed marker and the trait. However, we do not believe this to
be a hindrance to our method or the application in this work as
hard-coded genotypic values will likely be the norm with the
upcoming release of whole-genome sequence data and our aim is
to provide a time-to-event model that is capable of scaling to
these data requirements. We apply our approach only to markers
that are imputed in both the UK Biobank and the Estonian
genome centre data and by selecting markers present in both
populations we are favouring markers that impute well across
human populations.

In addition, despite allowing for left-truncation in the like-
lihood, we focus on presenting a series of baseline results before
extending our inference to account for differences in sampling,
semi-competing risks across different outcomes, genomic anno-
tation enrichment, and sex-differences both the effect sizes and in
the sampling of different time-to-event outcomes all of which
require extensions to the modelling framework, which are also the

focus of future work. Furthermore, we do not consider time-
varying coefficients or time-varying covariates, which may
improve inference as multiple measurements over time are col-
lected in biobank studies. Nevertheless, this work represents the
first step toward large-scale inference of the genomic basis of
variation in the timing of common complex traits.

Methods
Parametrisation of Weibull distribution. We define Yi as the time-to-event for
individual i, with Weibull distribution Yi ~W(a, bi), where a and bi are corre-
spondingly the shape and scale parameters. The survival function is

SiðyÞ ¼ exp � y
bi

� �a� �
: ð3Þ

We are interested in modelling the mean and the variance of the time-to-event.
Unfortunately, the mean and the variance of Weibull are dependent as they share
both parameters in their expressions. Moreover, as the expressions for mean and
variance contain gamma functions it is rather difficult to dissect the mean and
variance to be dependant only on one parameter. One possible solution is to use
log Yi and its moments instead. If Yi ~W(a, bi) then log Yi has a Gumbel
distribution, with mean and variance

EðlogYijbi; aÞ ¼ log bi �
K
a
; ð4Þ

VarðlogYijbi; aÞ ¼
π2

6a2
: ð5Þ

where K is the Euler-Mascheroni constant, K ≈ 0.57721. The parametrisation for
the variance is only dependent on one parameter which we denote as α= a. As we
are interested in modelling SNP effects β, covariates δ (sex, PCs) and the average
scale for time-to-event μ (intercept), it is possible to introduce them in the
following way bi ¼ expðμþ x0iβþ z0iδ þ K

α Þ, resulting in

EðlogYijμ; β; δ; αÞ ¼ μþ x0iβþ z0iδ; ð6Þ

Varðlog Yijμ; β; δ; αÞ ¼
π2

6α2
; ð7Þ

where xi is the vector of scaled SNP marker values and zi is the vector of covariate
values for an individual i and π= 3.14159. . . is a constant. The third and the fourth
moment for log Yi are constant regardless of the parametrisation.

Modelling time-to-event and age-at-onset. As a baseline model, we propose to
test the association of Yi with a series of covariates (SNP markers in this case) X
using a mixture of the regression model, with γj as the mixture indicator, with γj=
k if jth marker is included in the kth mixture component of the model, k∈ {1, . . . ,
L}, and γj= 0 if it is not included into the model. The expected value of time-to-
event logarithm is then a linear combination of the markers included in the model
plus the effect of the covariates and the intercept (μ) as in Eq. (6) and error
variance is expressed via the shape parameter as shown in Eq. (7). βj have non-zero
values if and only if γj ≥ 1. We assume that non-zero βj from mixture component k
> 0 (γj= k) comes from a normal distribution with zero mean and variance Ckσ

2
G,

that is βj � Nð0;Ckσ
2
GÞ.

The survival and density function for Yi is correspondingly

SiðyÞ ¼ expf�yα expð�αðμþ x0iβþ z0iδÞ � KÞg; ð8Þ

f iðyÞ ¼ expf�K � αðμþ x0iβþ z0iδÞ � yα expð�αðμþ x0iβþ z0iδÞ � KÞgyα�1α;
ð9Þ

The likelihood function for the right-censored and left truncated data of n
individuals is then

pðDjα; β; δ; μÞ ¼
Yn
i¼1

1
SðaiÞ

Yn
i¼1

f ðyiÞdi SðyiÞ1�di

¼ αd exp �Kd þ ðα� 1Þ ∑
n

i¼1
dilog yi � α ∑

n

i¼1
diðμþ x0iβþ z0iδÞ�

�
� ∑

n

i¼1
yαi expð�αðμþ x0iβþ z0iδÞ � KÞ þ ∑

n

i¼1
aαi expð�αðμþ x0iβþ z0iδÞ � KÞ

�
;

ð10Þ
where di is the failure indicator and d is the number of events at the end of the
periods; ai is the time of left truncation. It is possible to use the model without left
truncation. In order to do so, for every i, we will assume that ai= 0. Whenever
ai= 0, we will naturally define expðαðlog ðaiÞ � μ� x0iβ� z0iδÞÞ ¼ 0, thus the left
truncation would not contribute to the likelihood in the Eq. (10).

Let the prior distribution of α be a gamma distribution with parameters α0, κ0

pðαÞ / αα0�1 expð�κ0αÞ; ð11Þ
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the prior for βj be normal:

pðβjjσ2G; γj ¼ kÞ / 1
Ckσ

2
G

� �0:5

exp � 1
2Ckσ

2
G
β2j

� �
; ð12Þ

the prior for σ2G being inverse gamma distribution with parameters ασ and βσ

pðσ2GÞ /
1
σ2G

� �ασþ1
exp � βσ

σ2G

� �
; ð13Þ

the prior for δq (qth covariate) be normal with variance parameter σ2δ :

pðδqÞ / exp � 1
2σ2δ

δ2q

� �
; ð14Þ

the prior for μ be normal with variance parameter σ2μ :

pðμÞ / exp � 1
2σ2μ

μ2
 !

; ð15Þ

the prior for γj be multinomial:

pðγjjπÞ ¼ π
Iðγj¼0Þ
0 � ::: � πIðγj¼LÞ

L ; ð16Þ
the prior probabilities of belonging to each of the mixture distributions k are stored
in L+ 1-dimensional vector π with the prior for π a Dirichlet distribution

pðπÞ ¼ Dirichlet ðpLÞ; ð17Þ
where I(⋅) is the indicator function and pL is the L+ 1-dimensional vector with
prior values. For the exact values of the prior specification see Data Analysis
Details.

The conditional posterior distribution for σ2G is inverse gamma with parameters

ασ þ 0:5 ∑
L

k¼1
jγkj and 0:5 ∑

L

k¼1
jγkjβ0γkβγk þ βσ ;

where γk denotes the set of indices j for which γj= k. The conditional posterior
distribution for π is Dirichlet distribution

pðπjγÞ ¼ Dirichlet ðpL þ ðjγ0j; :::; jγLjÞÞ: ð18Þ
Unfortunately, there is no simple form for the conditional posteriors of α, μ, βj

and δq. However, the conditional posterior distributions are log-concave (see
Supplementary Note), and thus the sampling for α, μ, βj and δq can be conducted
using adaptive rejection sampling requiring only the log posteriors. Denoting β−j as
all the β parameters, excluding βj, and δ−q as all the δ parameters, excluding δq,
these are

log pðαjD; μ; β; δÞ ¼ constþ ðα0 þ d � 1Þlog αþ α ∑
n

i¼1
diðlog yi � μ� x0iβ� z0iδÞ � κ0

� �
þ expð�KÞ ∑

n

i¼1
½expðαðlog ðaiÞ � μ� x0iβ� z0iδÞÞ � expðαðlog ðyiÞ � μ� x0iβ� z0iδÞÞ�;

ð19Þ

log pðβjjD; α; μ; β�j; δ; σ2G; γj ¼ kÞ ¼ log
constffiffiffiffiffiffi

Ck

p !
� αβj ∑

n

i¼1
dixij

þ expð�KÞ ∑
n

i¼1
½expðαðlog ðaiÞ � μ� x0iβ� z0iδÞÞ � expðαðlog ðyiÞ � μ� x0iβ� z0iδÞÞ� �

1
2Ckσ

2
G
β2j ;

ð20Þ

log pðδqjD; α; μ; β; δ�q; σ2GÞ ¼ �αδq ∑
n

i¼1
dizij

þ expð�KÞ ∑
n

i¼1
½expðαðlog ðaiÞ � μ� x0iβ� z0iδÞÞ � expðαðlog ðyiÞ � μ� x0iβ� z0iδÞÞ� �

1
2σδ2

δ2q;

ð21Þ

log pðμjD; α; β; δÞ ¼ const� αμd

þ expð�KÞ ∑
n

i¼1
½expðαðlog ðaiÞ � μ� x0iβ� z0iδÞÞ � expðαðlog ðyiÞ � μ� x0iβ� z0iδÞÞ� �

1
2σ2μ

μ2:

ð22Þ

Selection of the mixture component. We intend to do variable selection
and select mixture components by using the idea of spike and slab priors34,
where the spike part of the prior has a point mass of 0. SNP will be assigned to a
mixture component by comparing the ratios of the marginal likelihood. For
mixture selection for the jth SNP, we need to find the following marginal like-
lihood for every k. Suppose here that C0 > 0 is the factor for the 0th mixture
(spike)

pðDjβ�j; δ; σ
2
G; α; μ; γj ¼ kÞ ¼

Z
βj

pðDjβ�j; δ; μ; α; βjÞpðβjjσ2G; γj ¼ kÞdβj

¼ Qffiffiffiffiffiffi
Ck

p Z
βj

expfhkðβjÞgdβj;
ð23Þ

where D represents the observed data, Q is a positive constant that is not

dependent on k and

hkðβjÞ ¼ � αβj ∑
n

i¼1
dixij

þ expð�KÞ ∑
n

i¼1
½expðαðlog ðaiÞ � μ� x0iβ� z0iδÞÞ � expðαðlog ðyiÞ � μ� x0iβ� z0iδÞÞ� �

1
2Ckσ

2
G
β2j :

ð24Þ
The probability for γj is :

pðγj ¼ kjD; β�j; δ; σ
2
G; α; μÞ ¼ CpðDjβ�j; δ; γj ¼ k; σ2G; α; μÞpðγj ¼ kÞ: ð25Þ

where C is a positive constant that is not dependent on k. Denoting
Θ ¼ fD; β�j; δ; σ

2
G; α; μg, the probability to include SNP j in the component k can

be calculated as

pðγj ¼ kjΘÞ ¼
Cpðγj ¼ kjΘÞ

Cðpðγj ¼ 0jΘÞ þ :::þ pðγj ¼ LjΘÞÞ : ð26Þ

For every k

pðγj ¼ kjΘÞ ¼
πkffiffiffiffi
Ck

p R
βj
expðhkðβjÞÞdβj

π0ffiffiffiffi
C0

p R
βj
expðh0ðβjÞÞdβj þ :::þ πLffiffiffiffi

CL

p R
βj
expðhLðβjÞÞdβj

ð27Þ

Here, the numerator represents the marginal likelihood assuming jth variable is
included in the kth mixture component.

In general, it is not possible to find an analytic expression for the integrals
presented in Eq. (23), thus some numeric method has to be used for approximating
their values. For this, we use adaptive Gauss-Hermite quadrature as the integral is
improper with infinite endpoints.

We start by rewriting the expression (Eq. 24) as

hkðβjÞ ¼ �αβj ∑
n

i¼1
dixij þ ∑

n

i¼1
½expðui � αxijβjÞ � expðvi � αxijβjÞ� �

1
2Ckσ

2
G
β2j ;

ð28Þ
where vi ¼ αðlog yi � μ� x0β�j � z0iδÞ � K and ui is analogous with ai instead of
yi. We introduce a reparameterisation with variable s

s ¼ βjffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

p ð29Þ

and therefore we get from Eq. (23)

Q
Z

1ffiffiffiffiffiffi
Ck

p expfhkðβjÞgdβj

¼ Q
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ckσ
2
G

p ffiffiffiffiffiffi
Ck

p exp �αs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

q
∑
n

i¼1
dixij þ ∑

n

i¼1
expðui � αxijs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

q
Þ � expðvi � αxijs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

q
Þ

� �
� s2

� �
ds

¼ Q
ffiffiffiffiffiffiffiffi
2σ2G

q Z
exp �αs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

q
∑
n

i¼1
dixij þ ∑

n

i¼1
expðui � αxijs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

q
Þ � expðvi � αxijs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

q
Þ

� �
� s2

� �
ds

¼ Q
ffiffiffiffiffiffiffiffi
2σ2G

q Z
gkðsÞds:

ð30Þ
in the last expression in Eq. (27), the term Q

ffiffiffiffiffiffiffiffi
2σ2G

p
cancels out from the numerator

and the denominator.
If the smallest mixture variance factor C0 > 0, then the corresponding spike

distribution is absolutely continuous. As we would like to use Dirac spike instead,
we define the corresponding marginal likelihood by finding the limit of the
expression in the process C0→ 0+.

pðDjβ�j; δ; σ2G; α; μ; γj ¼ 0Þ ¼ lim
C0!0þ

Q
Z

1ffiffiffiffiffiffi
C0

p expfh0ðβjÞgdβj: ð31Þ

We are only interested in C0 in the limiting process so without the loss of
generality we define C0 through an auxiliary positive integer variable l as C0 ¼ 1

l
and using the reparametrisation result from Eq. (30) we get that

pðDjβ�j; δ; σ2G; α; μ; γj ¼ 0Þ

¼ lim
C0!0þ

Q
ffiffiffiffiffiffiffiffi
2σ2G

q Z
exp �αs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2C0σ

2
G

q
∑
n

i¼1
dixij þ ∑

n

i¼1
expðui � αxijs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2C0σ

2
G

q
Þ � expðvi � αxijs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2C0σ

2
G

q
Þ

� �
� s2

� �
ds

¼ lim
l!1

Q
ffiffiffiffiffiffiffiffi
2σ2G

q Z
exp �αs

ffiffiffiffiffiffiffiffiffiffiffiffi
2σ2G=l

q
∑
n

i¼1
dixij þ ∑

n

i¼1
expðui � αxijs

ffiffiffiffiffiffiffiffiffiffiffiffi
2σ2G=l

q
Þ � expðvi � αxijs

ffiffiffiffiffiffiffiffiffiffiffiffi
2σ2G=l

q
Þ

� �
� s2

� �
ds

¼ lim
l!1

Q
ffiffiffiffiffiffiffiffi
2σ2G

q Z
f ðs; lÞ expf�s2gds:

ð32Þ
As f(s, l) ≤ 1 for every possible combination of arguments, because in the data
censoring or event occurs only after entering the study, we can write that

f ðs; lÞ expf�s2g≤ expf�s2g; 8l ð33Þ
which means that the integrand in Eq. (32) is dominated by expf�s2g.
Furthermore, we see that the limit of the integrand is

lim
l!1

f ðs; lÞ expf�s2g ¼ exp ∑
n

i¼1
½expðuiÞ � expðviÞ� � s2

� �
: ð34Þ

As
R
expf�s2gds <1, it is possible to use the Lebesgue’s dominated convergence
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theorem and therefore

lim
l!1

Q
ffiffiffiffiffiffiffiffi
2σ2G

q Z
f ðs; lÞ expf�s2gds ¼ Q

ffiffiffiffiffiffiffiffi
2σ2G

q Z
exp ∑

n

i¼1
½expðuiÞ � expðviÞ� � s2

� �
ds

¼ Q
ffiffiffiffiffiffiffiffi
2σ2G

q
exp ∑

n

i¼1
½expðuiÞ � expðviÞ�

� �Z
expf�s2gds ¼ Q

ffiffiffiffiffiffiffiffiffiffiffi
2πσ2G

q
exp ∑

n

i¼1
½expðuiÞ � expðviÞ�

� �
:

ð35Þ
In conclusion, we have derived the expression for the marginal likelihood for the
Dirac spike variance component as

pðDjβ�j; δ; σ2G; α; μ; γj ¼ 0Þ ¼ Q
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2G

q
exp ∑

n

i¼1
½expðuiÞ � expðviÞ�

� �
: ð36Þ

Adaptive Gauss-Hermite quadrature. It is possible to use Gauss-Hermite
quadrature, however, it can happen that for adequate precision one has to use a
large number of quadrature points leading to more calculations. Adaptive Gauss-
Hermite quadrature can make the procedure more efficient. For any function gk(s)
as defined in Eq. (30), we can writeZ 1

�1
gkðsÞds � σ̂

ffiffiffi
2

p
∑
m

r¼1
wrgkðμ̂þ σ̂

ffiffiffi
2

p
trÞ; ð37Þ

where μ̂ could be chosen as the mode of gk(s) and σ̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðlog gk ðsÞÞ00 js¼μ̂

p ; m is the

number of quadrature points, tr is the roots of mth order Hermite polynomial and
wr are corresponding weights35.

Finding the posterior mode can be computationally cumbersome, calculating σ̂
requires evaluating the logarithm of gk at this mode. As we assume that the effects
sizes are distributed symmetrically around zero, we use μ̂ ¼ 0 which avoids
numerical posterior mode calculations and evaluating the second derivative at
different posterior modes.

Posterior inclusion probability. Combining the previous results we get a
numerical solution for calculating the posterior inclusion probability. For every k >
0 the inclusion probabilities are

pðγj ¼ kjΘÞ ¼ πk

R
gkðsÞds

π0

ffiffiffi
π

p
expf∑n

i¼1½expðuiÞ � expðviÞ�g þ∑L
l¼1 πl

R
glðsÞds

� πkσ̂k
ffiffiffi
2

p
∑m

r¼1 wrgkðσ̂k
ffiffiffi
2

p
trÞ

π0

ffiffiffi
π

p
T þ∑L

l¼1 πl σ̂ l
ffiffiffi
2

p
∑m

r¼1 wrglðσ̂q
ffiffiffi
2

p
trÞ

¼ πk

ffiffiffi
2

p
σ̂k ∑

m
r¼1 wrgkðσ̂k

ffiffiffi
2

p
trÞ=T

π0

ffiffiffi
π

p þ∑L
l¼1 πl σ̂ l

ffiffiffi
2

p
∑m

r¼1 wrglðσ̂ l
ffiffiffi
2

p
trÞ=T

:

ð38Þ
Similarly, we can find the probability of excluding (γj= 0) the marker

pðγj ¼ 0jΘÞ ¼ π0

ffiffiffi
π

p

π0

ffiffiffi
π

p þ∑L
l¼1 πl σ̂ l

ffiffiffi
2

p
∑m

r¼1 wrglðσ̂ l
ffiffiffi
2

p
trÞ=T

: ð39Þ

Both cases σ̂k are calculated as

σ̂k ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðlog gkðsÞÞ00js¼0

p ¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2Ckσ

2
G ∑

n
i¼1 x

2
ijðexpðviÞ � expðuiÞÞ

q : ð40Þ

For computational purposes, we evaluate gkðσ̂k
ffiffi
2

p
tr Þ

T as

gkðσ̂k
ffiffiffi
2

p
trÞ

T
¼ exp �ασ̂k

ffiffiffi
2

p
tr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

q
∑
n

i¼1
dixij

�
þ ∑

n

i¼1
expðui � αxij σ̂k

ffiffiffi
2

p
tr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

q
Þ � expðuiÞ þ expðviÞ � expðvi � αxijσ̂k

ffiffiffi
2

p
tr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

q
Þ

� �
� ðσ̂k

ffiffiffi
2

p
trÞ

2
�

¼ exp �ασ̂k
ffiffiffi
2

p
tr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

q
∑
n

i¼1
dixij þ ∑

n

i¼1
ðexpðviÞ � expðuiÞÞð1� expð�αxij σ̂k

ffiffiffi
2

p
tr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ckσ

2
G

q
ÞÞ

� �
� ðσ̂k

ffiffiffi
2

p
trÞ

2
� �

:

ð41Þ

Adaptive rejection sampling. To sample α, μ and βj, δq, we use Adaptive
Rejection Sampling, initially outlined by Gilks and Wild36. The prerequisite of the
method is the log-concavity of the sampled density function.

The idea of the method is to build an envelope around the log-density. The
lower hull is constructed by evaluating the function at some pre-specified abscissae
and connecting the evaluation results with linear functions resulting in a piece-wise
linear lower hull. The upper hull can be constructed either by using tangents
evaluated at the prespecified abscissae (Derivative based ARS) or by extending the
linear functions obtained in the construction of the lower hull (Derivative free
ARS37). Although the derivative-based method might result in a more accurate
upper hull, thus leading to faster sampling, it would still require evaluating
derivatives and thus we employ the derivative-free method.

The proposals are sampled from an appropriately scaled exponent of the upper
hull from which it is easier to sample. The sampling proposal will go through tests.
If the proposal is not accepted then it will be included in the set of used abscissae to
create a more accurate envelope in the next round. Therefore, the method requires
specifying the log posterior and at least three initial abscissae. It also requires some
abscissae larger and smaller than the posterior mode. To set the abscissae for some
parameter θ, we could, for example, choose the abscissae fθ̂ � cθ ; θ̂; θ̂ þ cθg, where
θ̂ is ideally the posterior mode for θ. cθ is some positive number that would
guarantee that at least one of the proposed abscissae would be larger than posterior

mode and one smaller. If θ̂ is the posterior mode, then cθ choice is arbitrary and a
smaller cθ is preferred, potentially decreasing the sampling time.

In addition, the derivative-free method requires specifying the minimum and
maximum value of the distribution, an assumption that is often incorrect. In
practice, it poses no problems as we can simply set the required minima and
maxima to be extreme enough so that the distribution is very unlikely to reach
those values. To sample intercept μ we set the limits to 2 and 5 which after
exponentiation would correspond to 7.39 and 148.4 which we believe each of our
posterior means should fit in; for α we set the limits to 0 to 40; for non-zero betas,
we used the previous beta value ± 2

ffiffiffiffiffiffiffiffiffiffiffi
Ckσ

2
G

p
as minimum and maximum limits for

sampling as this can adapt to different mixtures and should still safely retain almost
the entire posterior distribution. The Adaptive Rejection Sampling was
implemented using C code by Gilks (http://www1.maths.leeds.ac.uk/~wally.gilks/
adaptive.rejection/web_page/Welcome.html, accessed 26.08.2020). In the
Supplementary Note, we provide proof of the log-concavity of the functions
sampled.

Sampling algorithm. We summarise the serial sampling algorithm in Algorithm
29 along with the specification for the prior distributions and the initialisation of
the model parameters. Algorithm 2 summarises the Bulk Synchronous Gibbs
sampling for BayesW that extends Algorithm 29. If the number of workers T= 1
and the synchronisation rate u= 1 then Algorithm 2 reduces down to
Algorithm 29.

Extension to a grouped mixture of regressions model. Here, we now assume
that the SNP marker effects come from Φ of disjoint groups, with a reparame-
trisation of the model parameters to represent the mean of the logarithm of the
phenotype as

Eðlog Yijμ; β; δ; αÞ ¼ μþ ∑
Φ

φ¼1
ðxφi Þ0βφ þ z0iδ; ð42Þ

where there is a single intercept term μ, and a single Weibull shape parameter α,
but now xφi are the standardised marker values in group φ, βφ are the marker
estimates for the corresponding group. Each βφj is distributed according to:

βφj � πφ
0δ0 þ πφ

1N ð0;Cφ
1σ

2
GφÞ þ πφ

2N ð0;Cφ
2σ

2
GφÞ þ ¼ þ πφ

Lφ
N ð0;Cφ

Lσ
2
GφÞ ð43Þ

where for each SNP marker group prior probabilities of belonging to each of the
mixture distribution k is stored in Lφ+ 1-dimensional vector πφ and these mixture
proportions πφ

0 ; π
φ
1 ; ¼ ;πφ

L

	 

, ∑L

k¼0 π
φ
k ¼ 1 are updated in each iteration. Each

mixture component (γj= k ≥ 1) is a normal distribution with zero mean and
variance Cφ

k σ
2
Gφ , where σ2Gφ represents the phenotypic variance attributable to

markers of group φ and Cφ
k is group and mixture specific factor showing the

magnitude of variance explained by this specific mixture. Thus, the mixture pro-
portions, variance explained by the SNP markers, and mixture constants are all
unique and independent across SNP marker groups. The formulation presented
here of having an independent variance parameter σ2Gφ per group of markers, and
independent mixture variance components enable estimation of the amount of
phenotypic variance attributable to the group-specific effects and enable differences
in the distribution of effects among groups. All of the steps shown in previous
paragraphs are still valid and now we are using group-specific genetic variances
σ2Gφ, prior inclusion probabilities πφ and mixture proportions Cφ

k . Furthermore, due
to the fact that the model is additive, the sum of group-specific genetic variances
represents the total genetic variance σ2G ¼ ∑Φ

φ¼1 σ
2
Gφ .

Derivations for the sparse calculations. In order to reduce the number of
computations and improve running times we derive a sparse representation of
genotypes, given that conditional posterior distributions in our scheme are dif-
ferent, we have to derive different update equations. Suppose ξij represents the jth
SNP allele count (0, 1 or 2) for the ith individual, and �ξj; sj represent the mean and
standard deviation of the j−th SNP in our sample. In the regular setting we would

like to use standardised count values (xij ¼
ξij��ξj
sj

) instead and meanwhile, speed up

the computations by using the knowledge that xij can have only three values within
an SNP.

There are three equations where we can apply sparsity. Firstly, Eq. (40) for the
σ̂k term (for the jth SNP) in the adaptive Gauss-Hermite quadrature can be

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22538-w

12 NATURE COMMUNICATIONS |         (2021) 12:2337 | https://doi.org/10.1038/s41467-021-22538-w |www.nature.com/naturecommunications

http://www1.maths.leeds.ac.uk/~wally.gilks/adaptive.rejection/web_page/Welcome.html
http://www1.maths.leeds.ac.uk/~wally.gilks/adaptive.rejection/web_page/Welcome.html
www.nature.com/naturecommunications


expressed as

σ̂k ¼
1ffiffiffi
2
p 1þ αCkσ

2
G ∑

n

i¼1

ξ ij � �ξ j
s2j

 !2

ðexpðviÞ � expðuiÞÞ
" #�0:5

¼ 1ffiffiffi
2
p 1þ αCkσ

2
G

s2j
∑
n

i¼1
ξ2ijðexpðviÞ � expðuiÞÞ � 2�ξ j ∑

n

i¼1
ξijðexpðviÞ � expðuiÞÞ þ �ξ

2
j ∑

n

i¼1
ðexpðviÞ � expðuiÞÞ

� �" #�0:5

¼ 1ffiffiffi
2
p 1þ αCkσ

2
G

s2j
∑

ξij¼1
ðexpðviÞ � expðuiÞÞ þ 4 ∑

ξij¼2
ðexpðviÞ � expðuiÞÞ

 "

�2�ξj ∑
ξij¼1
ðexpðviÞ � expðuiÞÞ � 4�ξj ∑

ξij¼2
ðexpðviÞ � expðuiÞÞ þ �ξ

2
j ∑

n

i¼1
ðexpðviÞ � expðuiÞÞ

!#�0:5

¼ 1ffiffiffi
2
p 1þ αCkσ

2
G

s2j
ð1� 2�ξjÞ ∑

ξij¼1
ðexpðviÞ � expðuiÞÞ þ 4ð1� �ξ jÞ ∑

ξij¼2
ðexpðviÞ � expðuiÞÞ þ �ξ

2
j ∑

n

i¼1
ðexpðviÞ � expðuiÞÞ

 !" #�0:5
:

ð44Þ
We see that sj and �ξj and the expressions containing these terms can be calculated
already beforehand for each SNP j.

Secondly, we can use the knowledge about sparsity to simplify expression
(Eq. 41). More specifically

∑
n

i¼1
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Thirdly, in expression (Eq. 20) we can rewrite the transformed residuals as
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For all cases, after each update, we need to recalculate the difference expðviÞ �

expðuiÞ for each individual i. We notice that it is sufficient to use three sums
(∑ξij¼ξðexpðviÞ � expðuiÞÞ, ξ∈ {0, 1, 2}) that we denote as Vj

0, V
j
1, V

j
2 which are

used in both of the final expressions. Thus, we have eliminated the need to calculate
exponents and dot products in expressions (Eq. 40) and (Eq. 41), reducing them to
a series of sparse summations and making the analysis scale sub-linearly with
increasing marker number.

Simulation study. We conducted simulations to analyse the performance of our
model under model misspecification, where the phenotypic distribution does not
conform to a Weibull distribution, and to different censoring levels in the data. We
assessed (i) estimation of hyperparameters, (ii) false discovery rate, and (iii) pre-
diction accuracy. We used M= 50, 000 uncorrelated markers and N= 5000 indi-
viduals for whom we simulated effects on p= 500 randomly selected markers,
heritability (as defined in the Supplementary Note) was set to be h2= 0.5. Then, we
generated phenotypes from the generalised gamma distribution (see Supplemen-
tary Note), retaining the mean and the variance on a logarithmic scale and thus
fixing the heritability, while varying the θ parameter of the generalised gamma
distribution between 0 and 2 (five settings of θ= 0, 0.5, 1, 1.5, 2 with θ= 1 corre-
sponding to a Weibull distribution). For these data sets, we also varied the cen-
soring levels of 0%, 20% and 40% (see Supplementary Note). For each of the
censoring and phenotypic distribution combinations, 25 replicate phenotypic data
sets were created, giving a total of 375 data sets. The prior parameters for σ2G , α and
μ were set the same way as described in Data Analysis Details.

To compare our approach with other available methods we analyzed each data
set using different approaches: a Cox Lasso13, a martingale residuals approach with
single-marker ordinary least squares (OLS) regression11, and martingale residuals
with a Bayesian regression mixture model with a Dirac spike (BayesR)19. For each
of the 25 simulation replicates, across the five generalised gamma θ parameters, we
calculated the correlation between the simulated genetic values and a genetic
predictor, created from the regression coefficients obtained from each approach, in
an independent data set (same number of markers, same causal markers and same
effect sizes, with N= 1000 individuals), with results shown in Fig. 1a). Secondly, for
all four methods, we calculated precision-recall curves for the generalised gamma
distributions θ∈ {0, 1, 2} and censoring levels 0%, 20% and 40% (Fig. 1b,
Supplementary Fig. 2). Bayesian models used 5 chains with 1100 iterations for each
chain with a burn-in of 100 and no thinning. The BayesW model was estimated
using 11 quadrature points. The hyperparameter for Cox Lasso was estimated using
5-fold cross-validation for each simulated data set separately.

In addition, for the BayesW model, we analysed each of the 375 data sets, using
only a single mixture distribution set to a constant of 0.01, or two mixture
distributions with constants 0.01, 0.001. We compared these model formulations
by accessing the slope between true and estimated non-zero marker effects (Fig. 1c)

and the estimated heritability, across the range of generalised gamma distributions
(Fig. 1d). For each of the 5 generalised gamma θ parameter settings, we also
calculated the mean false discovery rate (FDR) levels across the 25 replicate
simulations given fixed posterior inclusion probabilities (Fig. 1e) for both the
single-mixture and two-mixture model formulations (Fig. 1f). Finally, we tested the
impact of using a different number of quadrature points by running the model for
the Weibull setting data sets. We varied the number of quadrature points from 3 to
25 across 5 simulation replicates, using two mixture distributions (0.001,0.01), and
investigated the root mean square error (RMSE: estimated/true) for marker effect
estimates within 5 top deciles of the simulated marker effect distribution
(Supplementary Fig. 3b).

To test the impact of LD among the markers, we used UK Biobank
chromosome 22 imputed genotype data (M= 194, 922 markers, N= 20, 000
randomly selected individuals, p= 2000 randomly selected causal markers, with
heritability h2= 0.5) and we simulated the phenotypes from Weibull distribution,
with 25 simulation replicates. We used this data to compare BayesW to the same
other methods described above, by calculating the correlation of simulated genetic
value and a genetic predictor in an independent data set (the same number of
markers, same causal markers and same effect sizes, with N= 4000 individuals).
We present these results in Supplementary Fig. 1a. In addition, we used the same
genetic data set but varied the censoring levels, to examine the stability of the
heritability estimate (Supplementary Fig. 1b). Bayesian analyses used 5 chains with
3000 iterations each and a burn-in of 1000 and thinning of 5. The Cox Lasso model
was trained the same way as in the uncorrelated case.

To validate properties of polygenicity, variance partitioning between mixtures
and false discovery rate we used UK Biobank chromosome 1 imputed genotype
data that was LD pruned with threshold r2= 0.9 as this data set was later used in
the final analyses (M= 230,227 markers, N= 25,000 randomly selected
individuals). We ran 10 simulations with three different numbers of causal loci:
200, 2500 and 4000. The phenotypes were simulated from Weibull distribution
with a fixed heritability of h2= 0.5. All the models were executed with three
variance components (0.0001,0.001,0.01) (Supplementary Figs. 11, 12). The effects
were created by first grouping the markers via a clumping procedure (window size
10Mb, LD threshold r2= 0.1) and then assigning the effects to the index SNPs of
randomly selected clumps.

Finally, we ran 10 simulations on the same UK Biobank chromosome 1 data as
described in the previous section to check the performance of the BSP Gibbs
sampling algorithm in a scenario that would be the closest to the empirical UK
Biobank data analysis. Here, we only used p= 2, 500 randomly selected causal
SNPs, with heritability h2= 0.5. The phenotypes were simulated from Weibull
distribution and models were run with three variance components
(0.0001,0.001,0.01). Models were run by varying the number of tasks (parallelism)
between 1, 4, 8, 16 and synchronisation rate (number of markers processed by each
task until synchronisation) between 1, 5, 10, 20, 50 (Supplementary Fig. 3a). The
scenario of 8 tasks (~30,000 markers per task) and synchronisation rate of 10 is
used in the empirical data analysis.

UK biobank data. We restricted our discovery analysis of the UK Biobank to a
sample of European-ancestry individuals (N= 456,426). To infer ancestry, 488,377
genotyped participants were projected onto the first two genotypic principal
components (PC) in 2504 individuals of the 1000 Genomes project with known
ancestries. Using the obtained PC loadings, we then assigned each participant to
the closest population in the 1000 Genomes data: European, African, East-Asian,
South-Asian or Admixed. As we wished to contrast the genetic basis of different
phenotypes, we then removed closely related individuals as identified in the UK
Biobank data release. While we expect that our model can accommodate related-
ness similar to other mixed linear model approaches, we wished to compare
phenotypes at markers that enter the model due to LD with underlying causal
variants, and relatedness leads to the addition of markers within the model to
capture the phenotypic covariance of closely related individuals.

We used the imputed autosomal genotype data of the UK Biobank provided as
part of the data release. For each individual, we used the genotype probabilities to
hard-call the genotypes for variants with an imputation quality score above 0.3.
The hard-call-threshold was 0.1, setting the genotypes with probability ≤0.9 as
missing. From the good quality markers (with missingness less than 5% and p-
value for Hardy-Weinberg test larger than 10–6, as determined in the set of
unrelated Europeans) were selected those with minor allele frequency (MAF)
0.0025 and rs identifier, in the set of European-ancestry participants, providing a
data set of 9,144,511 SNPs, short indels and large structural variants. From this, we
took the overlap with the Estonian Biobank data to give a final set of 8,433,421
markers. From the UK Biobank European data set, samples were excluded if in the
UK Biobank quality control procedures they (i) were identified as extreme
heterozygosity or missing genotype outliers; (ii) had a genetically inferred gender
that did not match the self-reported gender; (iii) were identified to have putative
sex chromosome aneuploidy; (iv) were excluded from kinship inference.
Information on individuals who had withdrawn their consent for their data to be
used was also removed. These filters resulted in a dataset with 382,466 individuals.
We then excluded markers of high LD by conducting LD pruning using a threshold
of r2= 0.9 for a 100kb window leaving us with a final set of 2,975,268 markers. This
was done in order to decrease the number of markers that were in high LD and
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thus giving very little extra information but requiring more than two times the
computational resources. Genotype quality control was conducted using plink
version 1.938.

We then selected the recorded measures for the 382,466 to create the
phenotypic data sets for age-at-menopause, age-at-menarche and age-at-diagnosis
of HBP, T2D or CAD. For each individual i we created a pair of last known time
(logarithmed) without an event Yi and censoring indicator Ci (Ci= 1 if the person
had the event at the end of the time period, otherwise Ci= 0). If the event had not
happened for an individual, then the last time without having the event was defined
as the last date of assessment centre visit minus date of birth (only month and year
are known, the exact date was imputed to 15).

For age-at-menopause, we used UKB field 3581 to obtain the time if available.
We excluded from the analysis (1) women who had reported having and later not
having had menopause or vice versa, (2) women who said they had menopause but
there are no record of the time of menopause (UKB field 2724), (3) women who
have had a hysterectomy or the information about this is missing (UKB field 3591),
4) women whose menopause is before age 33 or after 65. This left us with a total of
N= 151,472 women of which 108, 120 had the event and 43, 352 had not had an
event by the end of the follow-up. For time-to-menarche we used UKB field 2714
and we excluded all women who had no record for time-to-menarche which left us
with a total of N= 200,493 women of which all had had the event. For the age of
diagnosis of HBP we used the UKB field 2966 for and we left out individuals who
had the HBP diagnosed but there was no information about the age of diagnosis
(UKB field 6150) which left us with a total of N= 371,878 individuals of which
95,123 had the event and 276, 755 had not had an event by the end of the follow-
up. For age of diagnosis of T2D, we used either the UKB field 2976 or field 20009
or the mean of those two if both were available. We excluded individuals who had
indicated self-reported “type 1 diabetes” (code 1222) and had Type 1 Diabetes
(ICD code E10) diagnosis; we also excluded individuals who did not have any
recorded time for the diagnosis of T2D but had indicated secondary diagnosis
(UKB fields 41202 and 41204) of “non-insulin-dependent diabetes mellitus” (ICD
10 code E11) or self-reported non-cancer illness (UKB field 20002) “type 2
diabetes” (code 1223) or “diabetes” (code 1220). That left us with a total of
N= 372, 280 individuals of which 15, 813 had the event and 356, 467 had not had
an event by the end of the follow-up. For the age of diagnosis of CAD, we used
either the minimum of age at angina diagnosed and age heart attack diagnosed
(UKB fields 3627 and 3894) or the minimum age indicated to have either two of
diagnoses (codes 1074, 1075) in UKB field 20009 or the mean of those if both were
available. We excluded individuals who did not have any information about the
time of diagnosis but had the following primary or secondary diagnoses: ICD 10
codes I20, I21, I22, I23, I24 or I25; self-reported angina (code 1074) or self-reported
heart attack/myocardial infarction (code 1075). That left us with a total of N= 360,
715 individuals of which 17, 452 had the event and 343, 263 had not had an event
by the end of the follow-up.

In the analysis we included covariates of sex, UK Biobank recruitment center,
genotype batch and 20 first principal components of the LD clumped set of 1.2
million marker data set, calculated using flashPCA239 commit version b8044f1, to
account for the population stratification in a standard way. We did not include any
covariates of age or year of birth because these are directly associated with our
phenotypes.

Estonian biobank data. The Estonian Biobank cohort is a volunteer-based sample
of the Estonian resident adult population. The current number of participants-close
to 52,000–represents a large proportion, 5%, of the Estonian adult population,
making it ideally suited to population-based studies40. For the Estonian Biobank
Data, 48,088 individuals were genotyped on Illumina Global Screening (GSA)
(N= 32,594), OmniExpress (N= 8102), CoreExome (N= 4,903) and Hap370CNV
(N= 2,489) arrays. We selected only those from the GSA array and imputed the
data set to an Estonian reference, created from the whole genome sequence data of
2244 participants41. From 11,130,313 markers with imputation quality score >0.3,
we selected SNPs that overlapped with the UK Biobank LD pruned data set,
resulting in a set of 2,975,268 markers. The phenotypic data was constructed
similarly to the phenotypes based on the UK Biobank data for the NEst= 32,594
individuals genotyped on the GSA array. For time-to-event traits, if no event had
happened then the time is considered censored and the last known age without the
event was used, calculated as the last known date without event minus the date of
birth. Because only the year of birth is known, birth date and month were imputed
as July 1 for age calculations.

For age-at-menopause, we excluded women who had reported having
menstruation stopped for other reasons which resulted in 6434 women who had
had menopause and 12,934 women who had not had menopause. For age-at-
menarche we excluded women who had not reported the age when the
menstruation started which resulted in 18,134 women. For both age-at-menarche
and age-at-menopause, if the event had occurred, self-reported age during that
event was used.

Initially, the cases of CAD, HBP or T2D were identified on the basis of the
baseline data collected during the recruitment, where the disease information was
either retrieved from medical records or self-reported by the participant. Then, the
information was linked with additional health insurance information that provided
additional information on prevalent cases. To construct the phenotypes for the

time-to-diagnosis of CAD, HBP or T2D for the individuals with the corresponding
diagnosis we used the age at the first appearance of the respective ICD 10 code that
was also used for creating the UK Biobank phenotypes. If the self-reported data
about the ICD 10 code has only the information about the year, the date and
month were imputed as July 1 and if only the date is missing then the date was
imputed as 15. Respective case-control phenotypes for CAD, HBP or T2D were
defined 0 if the person had not had an event (censored) and 1 if the person had had
an event and these binary indicators were adjusted for age and sex. For the T2D
phenotype, we excluded individuals with a diagnosis of T1D. For CAD we resulted
with 30,015 individuals without the diagnosis and 2579 individuals with a
diagnosis, for HBP we resulted with 24,135 individuals without the diagnosis and
8459 individuals with a diagnosis and for T2D we resulted with 30,883 individuals
without the diagnosis and 1457 individuals with a diagnosis.

Data analysis details. The BayesW model was run on the UK Biobank data
without groups and with 20 MAF-LD groups that were defined as MAF quintiles
and then quartiles within each of those MAF, quintiles split by the LD score. The
cut-off points for creating the MAF quintiles were 0.006, 0.013, 0.039, 0.172; the
cut-off points for creating LD score quartiles were 2.11, 3.08, 4.51 for the first;
3.20, 4.71, 6.84 for the second; 4.70, 6.89, 9.94 for the third; 7.65, 11.01, 15.70 for
the fourth and 10.75, 15.10, 21.14 for the fifth MAF quintile. The prior dis-
tributions for the hyperparameters were specified such that they would be only
weakly informative: normal priors would have a zero mean and very large
variance, Dirichlet priors would be vectors of ones and the rest such that the
prior parameter value would have a very small contribution to the conditional
distribution compared to the likelihood. Specifically, for μ and δ the mean is
chosen 0 and variance σ2μ ¼ σ2δ ¼ 100; for α we choose α0= 0.01 and κ0= 0.01;

for σ2G in without groups and σ2Gφ; ∀ φ in with groups model, we set parameters
to be ασ= 1, βσ= 0.0001; for π and πφ the prior parameters is set to be a vector
of ones. The model without groups was executed with mixture components
0.00001, 0.0001, 0.001, 0.01 (reflecting that the markers allocated into those
mixtures explain the magnitude of 0.001%, 0.01%, 0.1% or 1% of the total genetic
variance), and the model with groups was executed with (group-specific) mix-
ture components (0.0001, 0.001, 0.01, 0.1). Guided by our simulation study
(Supplementary Fig. 3b), we used 25 quadrature points for running each of the
models. For the model without groups, we used five chains and for the model,
with groups, we used three chains. Each of the chains was run for 10,000
iterations with a thinning of 5 giving us 2000 samples. We applied a stringent
criterion of removing the first half of the chain as burn-in, giving the con-
vergence statistics of Supplementary Figs. 4, 5, 6, 7. That gave 5000 samples for
the model without groups and 3000 samples for the model with groups for each
of the five traits.

The BSP Gibbs sampling scheme is implemented by partitioning the markers in
equal size chunks assigned to workers (MPI tasks) themselves distributed over
compute nodes. For the analyses we used 8 tasks per node; due to the differences in
sample size we were using the different number of nodes to accommodate the data
in memory: for time-to-menopause, we used 8 nodes, for time-to-menarche we
used 10 nodes and for time-to-diagnosis of CAD, HBP or T2D we used 12 nodes.
This resulted in splitting the markers between 64 workers for time-to-menopause,
80 workers for time-to-menarche and 96 workers for time-to-diagnosis of CAD,
HBP or T2D. For the last case, the average number of markers assigned to one
worker is 30,992. We chose to use a synchronisation rate of 10 meaning the
synchronisation between all of the workers was done after sampling 10 markers in
each of the workers. Both the choice of the maximum number of workers and the
synchronisation rate are stringent options considering our simulation study results
plotted in Supplementary Fig. 3a.

For testing region-based significance for BayesW, we used a Posterior
Probability of the Window Variance (PPWV)21. PPWV requires first setting a
threshold of the proportion of the genetic variance explained. Then, based on the
posterior distributions we calculated the probability that each region explained
more than the specified threshold of the proportion of the genetic variance and
this quantity is denoted as PPWV. The regions were defined via the LD clumping
procedure (window size 10 Mb, LD threshold r2= 0.1) resulting in regions that
have high inter-region correlations but low intra-region correlations. For these
LD clumped regions we used thresholds of 1/100,000, 1/10,000 and 1/1000 of the
total genetic variance. The smallest threshold for PPWV is 1/100,000 of the total
genetic variance as this gives the same magnitude as the smallest mixture
component (0.00001) used in the models. The smallest mixture component
reflects the smallest effect size the model is intended to capture. The thresholds
of 1/10,000 and 1/1000 of the total genetic variance are chosen 10 and 100 times
greater than the smallest threshold to point out the regions with larger effect
sizes. To check the significance of the gene-associated regions we used more
stringent thresholds of 1/10,000 and 1/1000 of the total genetic variance as gene-
associated regions can contain greatly more markers. Furthermore, to make
gene-associated regions more comparable, we fixed an upper bound of 250 for
the markers that can contribute to a gene-associated, markers exceeding the
bound were randomly discarded.

To do the comparison in terms of discovered regions and prediction accuracy
we used the summary statistics from the fastGWA method28. Because there were
no results for our definition of time-to-CAD or time-to-T2D we used time-to-
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angina and time-to-heart attack summary statistics for comparison with CAD and
time-to-diabetes for comparison with T2D. We called an LD clumped region
significant if the region contained at least one SNP with a p-value < 5 × 10−8. To do
the prediction into the Estonian Biobank we only used the markers with p-value <
5 × 10−8. We did the predictions only for age-at-menarche and age-at-menopause
since the number of significant markers for them is higher.

To do the comparison in terms of predictive accuracy with a competing
method we also trained the Cox-LASSO method with R package snpnet14,15 with
UK Biobank data and then used the estimates to make predictions into Estonian
Biobank. To make the two models comparable, we used exactly the same data
sizes for estimating the models on the UK Biobank as were used with the
BayesW. For all of the traits, we decided to use 95% of the sample size as the
training data and the rest as the validation data. This was done in order to
minimise the loss in power due to not using the entire sample and 5% of the
sample gives a sufficiently large validation set. We ran the Cox-LASSO model
using snpnet with 16 threads and allocating 250 GB of memory. This was
sufficient to find the optimal hyperparameter for the traits of time-to-menopause
(22 iterations to find the optimal hyperparameter) and time-to-CAD (21
iterations to find the optimal hyperparameter). However, for the other traits, the
snpnet procedure ran out of memory and it was decided to use the results from
the last available iteration (iteration 28 for time-to-HBP, iteration 35 for time-
to-menarche, iteration 27 for time-to-T2D). For the traits for which it was not
possible to detect the optimal hyperparameter a sensitivity analysis was done by
comparing with the previous iterations. Prediction accuracy was virtually the
same between the last available iteration and some iterations before that
suggesting that the last available iteration was already providing a
hyperparameter close to the optimum.

The prediction based on BayesW into Estonian Biobank ĝ was calculated by
multiplying ĝ ¼ XEst β̂, where XEst is NEst ×M matrix of standardised Estonian
genotypes (each column is standardised using the mean and the standard deviation
of the Estonian data), β̂ is the M × I matrix containing the posterior distributions
forMmarker effect sizes across I iterations. To calculate the prediction into Estonia
we used the BayesW model with groups using 3000 iterations which gave us
posterior predictive distributions of the genetic values with 3000 iterations. To
create the final predictor, we calculated the mean genetic value for each individual
across 3000 iterations. We also created the predictor using the estimates from Cox-
LASSO by multiplying the standardised Estonian genotype matrix with the vector
of Cox-LASSO effect size estimates. We evaluated the performance of the two
predictors by comparing them to the true phenotype value and calculating R2 and
Harrell’s C-statistic29. Instead of using the exact phenotypes the martingale
residuals from the Cox PH model where the true phenotype was regressed on the
gender (if applicable) were used to calculate the R2. That enables calculating the R2

value using also the censored individuals. Harrell’s C-statistic was calculated from
the Cox PH model where the true phenotype was regressed on the predictor and
gender (if applicable).

The BayesW calculations have been performed using the facilities of the
Scientific IT and Application Support Center of EPFL and the Helvetios cluster.
All of the post-analysis steps were conducted using R software (version 3.6.1)42.

Algorithm 1
Serial algorithm for BayesW sampling from the posterior distribution
pðμ; α; δ; γ; β; π; σ2GjDÞ. Initialisation and prior specification.
Data: Matrix x of standardised genotypes, matrix with covariate data z, vector of last time
without an event y, vector of failure indicators d, prior hyperparameters α0, κ0, ασ, βσ, σ2μ ,
σ2δ , pL, iterations I. V

j
0, V

j
1 and Vj

2 denote the partial sums of the exponentiated residuals
(defined in Derivations for the sparse calculations), K is the Euler-Mascheroni constant.
Initial values: Initially, we exclude all the variables from the model, thus the initial
γj= 0, ∀ j∈ {1, . . . ,M}. We set βj= 0, ∀ j and δq= 0, ∀ q. The initial value for α is chosen
to be the suitably transformed variance of the log sample. The initial value for μ is the
mean of the log sample. The σ2G is initialized as the variance of the log sample divided by
the total number of markers M.
Parameters for prior distributions: We set priors weakly informative. Otherwise, if
available, prior information could be used. To get weakly informative priors, for α prior,
we set parameters to be α0= 0.01 and κ0= 0.01; for σ2G , we set parameters to be ασ= 1,
βσ= 0.0001; for μ prior, we set parameter σ2μ ¼ 100 and similarly for δq we set parameter
σ2δ ¼ 100. The choice of prior parameters for π, pL is a vector of ones.
1 Initialise for every i: εi= yi− μ
2 for iteration ← 1 to I do
3 Add the previous effect to the residual: εi ← εi+ μold

4 Sample μ using ARS;
5 Subtract the new effect from the residual: εi ← εi− μ
6 Shuffle covariatesð Þ;
7 foreach covariate q do
8 εi  εi þ ziqδ

old
q

9 Sample δq using ARS
10 εi ← εi− ziqδq
11 Sample α using ARS;
12 Shuffle markersð Þ;
13 Calculate exponentiated residuals: ϵi  expðαεi � KÞ;

14 foreachmarker j do
15 if βoldj ¼ 0 then
16 Calculate Vj

0, V
j
1, V

j
2;

17 if βoldj ≠0 then
18 εi  εi þ xijβ

old
j ;

19 ϵi  expðαεi � KÞ;
20 Calculate Vj

0, V
j
1, V

j
2;

21 Sample mixture indicator γj;
22 if γj > 0 then
23 sample βj from the γjth conditional distribution using ARS;
24 εi ← εi− xijβj;
25 ϵi  expðαεi � KÞ;
26 if γj= 0 then
27 set βj= 0;
28 Sample π;
29 Sample σ2G .

Algorithm 2
Bulk Synchronous Parallel Gibbs sampling with BayesW. Data, parameter initialisation
and prior values are set as in Algorithm 29.
Input: Define T parallel workers (tasks) and synchronisation rate u. Each worker t∈
{1, . . . , T} has its corresponding vector of marker effects βt (with the number of markers
in each � M

T ,M is the total number of markers), indicator values γt to update and set of T
messages Δεt:N × 1, N is the sample size.
1 Initialise variables;
2 for iteration ← 1 to I do
3 Update μ, δ, α (as in Algorithm 29);
4 foreach subset of size u do
5 Δεt ← 0, t∈ {1, . . . , T};
6 for t ← 1 to T in parallel do
7 foreach column j from a subset of size u of the columns assigned to worker t

do
8 if βoldj ¼ 0 then
9 Calculate Vj

0, V
j
1, V

j
2 based on ϵ;

10 if βoldj ≠ 0 then
11 eεi  εi þ xijβ

old
j ;

12 eϵi  expðαeεi � KÞ;
13 Calculate Vj

0, V
j
1, V

j
2 based on eϵ;

14 Sample mixture indicator γj;
15 if γj > 0 then
16 sample βj from the γjth conditional distribution using ARS;
17 if γj= 0 then
18 set βj= 0;
19 if βj � βoldj

� �
≠ 0 then

20 Δεti ← Δεti− xij βj � βoldj

� �
;

21 Wait until all workers are finished processing their sets of u markers;
22 εi  εi þ∑T

t¼1 Δεti ;
23 ϵi  expðαεi � KÞ;
24 Update π, σ2G (as in Algorithm 29);

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
This project uses UK Biobank data under project 35520. UK Biobank genotypic and
phenotypic data is available through a formal request at (http://www.ukbiobank.ac.uk).
The UK Biobank has ethics approval from the North West Multi-centre Research Ethics
Committee (MREC). For access to be granted to the Estonian Biobank genotypic and
corresponding phenotypic data, a preliminary application must be presented to the
oversight committee, who must first approve the project, ethics permission must then be
obtained from the Estonian Committee on Bioethics and Human Research, and finally, a
full project must be submitted and approved by the Estonian Biobank. This project was
granted ethics approval by the Estonian Committee on Bioethics and Human Research
(https://genomics.ut.ee/en/biobank.ee/data-access). The summary statistics for fastGWA
method were accessed through http://fastgwa.info/ukbimp/phenotypes. Summaries of all
posterior distributions obtained and full posterior distributions of the SNP marker effects
sizes for each trait are deposited on Dryad (https://doi.org/10.5061/dryad.qbzkh18gp)43.
Source data are provided with this paper.

Code availability
Our BayesW model is implemented within the software Hydra, with fully open source
code available at https://github.com/medical-genomics-group/hydra44. FlashPCA2
commit b8044f1 is available at https://github.com/gabraham/flashpca. fastGWA is part of
the GCTA software, version 1.93.2 available at https://cnsgenomics.com/software/.
snpnet commit version c6bc103 is available at https://github.com/junyangq/snpnet. plink
version 1.9 is available at https://www.cog-genomics.org/plink/. R version 3.6.1 is
available at https://www.r-project.org/.
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