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In brief

T cells dynamically rewire their

metabolism during an immune response.

Fernández-Garcı́a et al. use single-cell

RNA sequencing on CD8+ T cells

transitioning in vitro through the immune

response cascade to unravel these

dynamics and find a crucial role of

asparagine synthetase expression in

modulating effector T cell differentiation,

function, and anti-tumor responses.
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SUMMARY
T cells dynamically rewire their metabolism during an immune response. We applied single-cell RNA
sequencing to CD8+ T cells activated and differentiated in vitro in physiological medium to resolve these
metabolic dynamics. We identify a differential time-dependent reliance of activating T cells on the synthesis
versus uptake of various non-essential amino acids, which we corroborate with functional assays. We also
identify metabolic genes that potentially dictate the outcome of T cell differentiation, by ranking them based
on their expression dynamics. Among them, we find asparagine synthetase (Asns), whose expression peaks
for effector T cells and decays toward memory formation. Disrupting these expression dynamics by ASNS
overexpression promotes an effector phenotype, enhancing the anti-tumor response of adoptively trans-
ferred CD8+ T cells in amousemelanomamodel. We thus provide a resource of dynamic expression changes
during CD8+ T cell activation and differentiation, and identify ASNS expression dynamics as a modulator of
CD8+ T cell differentiation.
INTRODUCTION

Cytotoxic (CD8+) T cells protect an organism against foreign

and intrinsic threats, such as viruses or tumors.1 Upon onset

of an immune response, resting naive T cells dynamically

change their phenotype, switching to an activated and, subse-

quently, effector state,2 and eventually differentiating into long-

lived memory T cells.3 The phenotypical changes displayed by

CD8+ T cells throughout their responses are linked to a tightly
C
This is an open access article under the CC BY-N
regulated metabolic rewiring.4–6 For example, naive and mem-

ory T cells rely mainly on catabolic metabolism, including

oxidative phosphorylation (OXPHOS) and fatty acid oxidation

(FAO), to efficiently support their resting state.7,8 Meanwhile,

effector T cells resort to anabolism-promoting pathways,

such as aerobic glycolysis9,10 or amino acid metabolism,11 to

fuel their energetic and biosynthetic needs for rapid prolifera-

tion and cytokine production. Disrupting the ability of T cells

to rewire their metabolism impairs their functionality and
ell Reports 41, 111639, November 15, 2022 ª 2022 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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anti-tumor responses,12 while supporting their metabolic needs

increases their tumor-clearing capacity.13,14

Despite our knowledge of T cell metabolism at phenotypic

endpoint states,15,16 little is known about how it dynamically

evolves when transitioning between these different states.17,18

Recent studies have employed single-cell approaches to charac-

terize dynamic aspects of T cell metabolism.19–21 For example,

using mass cytometry, Levine et al.21 uncovered a metabolically

distinct transient state during early T cell activation, character-

ized by both high glycolysis andOXPHOS. Such studies highlight

the importanceof studying Tcellmetabolism focusingnot only on

endpoint states, but also on the dynamic transitions between

them.However, because of technical constraints,22mass cytom-

etry measurements are still limited to a few tens of enzymes

focusing on central carbon metabolism. Thus, a comprehensive

metabolism-wide dynamic analysis of the metabolic pathways

supporting CD8+ T cell responses is missing.

Here, we used single-cell RNA sequencing (scRNA-seq) to

provide a global description of the dynamic metabolic rewiring

of CD8+ T cells transitioning in vitro through the activation/dif-

ferentiation cascade. Our analysis recapitulates a broad num-

ber of known metabolic aspects of in vivo CD8+ T cell re-

sponses, highlighting the physiological relevance of our

in vitro scRNA-seq approach. We also identify multiple dynamic

alterations in CD8+ T cell metabolism not described in the liter-

ature, most notably a critical role of the dynamics of asparagine

synthetase (ASNS) expression in modulating T cell differentia-

tion and effector function, which we validate via adoptive

T cell transfer in a mouse melanoma model. We expect our da-

taset to be a useful resource to interrogate functionally relevant

dynamic aspects of CD8+ T cell metabolism, and to benchmark

scRNA-seq analysis pipelines focused on modeling dynamic

processes.

RESULTS

scRNA-seq captures the population dynamics of in vitro

activating/differentiating CD8+ T cells
To characterize the dynamics of T cell metabolism, we isolated

naive CD8+ T cells from the spleens of OT-I mice,23,24 activated

them in vitro using anti-CD3 stimulation (in the presence of

anti-CD28 co-stimulation and the pro-proliferative cytokine

interleukin-2 [IL-2]), and differentiated them into effector-

or memory-like cells by supplementation of IL-2 (effector

polarization) or the pro-homeostatic cytokine IL-15 (memory

polarization)25–27 (Figure S1A). Because cellular metabolism is

highly dependent on nutrient availability,28–30 we used a culture

medium resembling the nutrient composition of human plasma

(blood-like medium [BLM]; Table S1).31,32

scRNA-seq can be used to infer the dynamics of an evolving

population, provided that the different states of this evolution

are represented in the analyzed sample.33,34 Using time-

resolved fluorescence-activated cell sorting (FACS) analysis,

we identified the time points of optimal cell state heterogeneity

in our in vitromodel at 24 h activation (Figure S1B) and 144 h dif-

ferentiation (Figure S1C). At 24 h activation (Figures 1A–1C), we

observed at least five distinct populations, evolving from the

naive state (CD69Lo CD25Lo CD62LHi CD44Lo) through transient
2 Cell Reports 41, 111639, November 15, 2022
early/intermediate activation states (upregulation of CD69 and

loss of CD62L followed by CD25 upregulation), until reaching a

late activation state (upregulation of CD44). At 144 h effector dif-

ferentiation (Figure 1D), four distinct phenotypes, all

CD69HiCD44Hi, were detected: two larger, blasting (Figure S1D),

IL-2-responsive (CD25Hi) populations,35 which we identified as

undifferentiated precursors (Undiff; CD62LHi) (Figure S1C) and

effector-like cells (Teff; CD62LLo) (Figure 1D), and two smaller,

non-blasting (Figure S1D),35 IL-2-non-responsive (CD25Lo)

memory-like populations36 displaying a central (CD62LHi) or

effector memory (CD62LLo) phenotype, which we designated

as central memory precursors (Tcmp, CD62LHi) and effector

memory precursors (Temp; CD62LLo) (Figure 1D). Finally, at

144 h memory differentiation, we identified two distinct CD69Hi

CD44Hi CD25Lo populations corresponding to central memory

(Tcm; CD62LHi) and effector memory (Tem; CD62LLo) cells

(Figure 1E).

We next performed scRNA-seq on samples collected at these

time points, which revealed a continuum of cell states within

each sample in the dimensionally reduced UMAP (UniformMani-

fold Approximation and Projection) space (Figures 1F and 1G).

To define the underlying cell state dynamics, we analyzed the

expression profiles of an array of known CD8+ T cell activation/

differentiation marker genes, including those encoding our

FACS surface markers (Figures 1H, S1E, and S1F). At 24 h acti-

vation, we identified the naive population (Figure 1F, bottom left)

using Il7r (CD127) and Sell (CD62L) expression37 (Figure S1E)

and the early activated state (Figure 1F) based on Sell and

Ly6a expression (Figure S1E).37 Based on the bimodal expres-

sion profile of Pdcd1 (PD-1), known to be progressively upregu-

lated during activation,38 we subdivided the remaining, larger

group of cells on the upper half of the UMAP into mid activation

(Pdcd1Lo) and late activation (Pdcd1Hi) states (Figures 1F and

S1E). We observed the chemokine receptor Ccr7 (CCR7) peak-

ing within the mid-activation state (Figure S1E) and being further

downregulated during late activation, coinciding with upregula-

tion of cytokine-related genes like Ifng (interferon g [IFNg]; Fig-

ure S1E).39 In this regard, we observed a separation between

cells expressing intermediate or high levels of Ifng in the late acti-

vation state (Figure S1E). Therefore, we further subdivided this

state into a transitional mid-late activation state (IfngInt) and a

full late activation one (IfngHi) (Figure 1F), with the latter also pre-

senting higher expression of other cytokine-associated genes,

like Gzmb (granzyme B; Figure 1H).

Our 144 h effector-polarized sample (Figures 1G and S1F, top

group) was split into IL-2-responsive (Il2raHi, top half of the

UMAP) and IL-2-non-responsive (Il2raLo, bottom half) cells (Fig-

ure S1F), with the latter also displaying higher expression of the

memory marker Tcf7 (TCF-1)37,40 (Figure S1F), thus correspond-

ing to memory-precursor cells. Combined with Sell expression

(Figure S1F), this allowed us to assign the right branch of the

UMAP to Undiff (SellHiIl2raHi, top right) and Tcmp (SellHiIl2raLo,

bottom right) cells and the left branch to Teff (SellLoIl2raHi, top

left) and Temp (Sell
LoIl2raLo, bottom left) cells (Figure 1G). These

assignments were consistent with the expected connectivity be-

tween populations found in our FACS data (Figure 1D) and were

confirmed by other markers, such as Gzmb (peaking as ex-

pected for Teff)37,40 (Figures 1H and S1F).
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Our 144 h memory-polarized sample (Figures 1G and S1F,

bottom group) displayed a clear division in two clusters, both

showing similar Sell expression (Figure S1F). However, based

on the relative frequencies expected from our FACS data (Fig-

ure 1E) and the proximity of either cluster in the UMAP space

to the respective memory precursor (Tcmp/Temp) clusters, we

could assign the larger cluster on the right side to Tcm cells,

with the smaller cluster on the left side representing Tem cells

(Figure 1G). We confirmed this annotation using other marker

genes, such as Cbx3 (Tcm) and Stat4 (Tem)40,41 (Figures 1H

and S1F).

We found a strong agreement between the sample-specific

fractions of each of the 11 distinct cell states inferred from the in-

dividual scRNA-seq datasets (5 for 24 h activation: naive, early,

mid, mid-late, and late; 4 for 144 h effector polarization: Undiff,

Teff, Tcmp, and Temp; 2 for 144 h memory polarization: Tcm

and Tem) and those derived from FACS measurements of the

corresponding samples (Figure 1I). Our cell state assignment

was further confirmed by applying Monocle-based trajectory

inference42 to each dataset (Figure S1G), which accurately

captured the connectivity between cell states expected from

FACS analysis. Additionally, we confirmed the expected direc-

tionality of the transitions between different states in each sam-

ple based on RNA velocity calculations43,44 (Figure 1J).

We thus demonstrate that the population dynamics of in vitro

activating and differentiating cells can be accurately captured

based on single-time-point scRNA-seq measurements.

scRNA-seq identifies known aspects of in vivo CD8+

T cell metabolism during activation and differentiation
Changes in CD8+ T cell metabolism have been best character-

ized during activation.45 We thus used our activation sample to

validate the fidelity of our in vitro model in recapitulating known

aspects of T cell metabolism and to benchmark the potential

of our scRNA-seq approach to capture the underlying metabolic

dynamics. Using gene set variation analysis (GSVA),46 we deter-

mined per-cell pathway activity scores in the transition from a

naive to an activated state. We found a strong agreement be-

tween our pathway analysis results (Figure 2A) and several

known aspects of CD8+ T cell metabolism and signaling upon

activation. For example, we confirm the previously described

phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of

rapamycin (mTOR)/Myc-orchestrated18,47,48 switch from an

oxidative metabolism, driven by OXPHOS and FAO,49 to a

biosynthetic program driven by aerobic glycolysis,50,51 gluta-

mine uptake/catabolism,49,52 and fatty acid synthesis (FAS),53
Figure 1. scRNA-seq captures the population dynamics of in vitro acti

(A–C) CD25 versus CD69 and CD44 versus CD62L FACS plots for 24 h activated

(D and E) CD25 versus CD62L FACS plots for 144 h effector- (D) and memory-po

(F and G) scRNA-seq-based UMAP plots for the 24 h activation sample (F) an

(G) correspond, respectively, to effector/memory-polarized cells.

(H) Expression versus cell state profiles for marker genes used in cell state annota

Circle areas represent the percentage of cells in each state expressing each gen

(I) Comparison between cell fractions (relative to the total in each sample) assign

represents the sum of Early (1)/(2) in (C). For scRNA-seq, Late represents the su

(J) RNA velocity plots for the 24 h activation sample (left) and both 144 h different

show the merger of 3 replicates and are representative of 4 independent experim

See also Figure S1.
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accompanied by an upregulation of cytokine production, upon

CD8+ T cell activation (Figure 2A). We also confirm the upregula-

tion of polyamine biosynthesis,49 themethionine cycle,54 and the

mevalonate pathway55 in response to T cell receptor (TCR) stim-

ulation (Figure 2A). Importantly, our data provide a dynamic

description of these changes (Figure 2B). In this sense, and

consistent with recent in vivo observations based on 13C label-

ing56 and mass cytometry,21 we show that, contrary to the

widespread notion, both glycolysis and OXPHOS are important

in physiologically activated CD8+ T cells, with OXPHOS being

rapidly upregulated during early activation21 (Figure 2B) and

glycolysis increasing at later activation stages, but not at the

full expense of OXPHOS56 (Figure 2B).

Extending this approach to differentiation (Figure S2A), we

confirm the expected downregulation of the biosynthetic pro-

gram acquired during activation along the transition from an un-

differentiated/effector state to amemoryphenotype (FigureS2A).

Our data further capture the higher OXPHOS reliance of Tcm

versus Tem cells57 and support recent evidence showing that

Tcm cells rely on cell-intrinsic FAS to fuel their FAO58,59 (Fig-

ure S2A). Our data also suggest that, aside from OXPHOS and

fatty acid metabolism, glutamine catabolism may be an impor-

tant source of carbon driving the oxidative program of Tcm cells,

and that Tcm and Tem cells may rely distinctly on methionine

metabolism (Figure S2A).

A key factor enabling our in vitro data to recapitulate known

in vivometabolic aspects is the use of a physiological cultureme-

dium. For example, it was shown recently that in vitro-activated

CD8+ T cells preferentially shunt pyruvate into the tricarboxylic

acid (TCA) cycle via pyruvate carboxylase (PC), whereas in vivo-

activated CD8+ T cells oxidize it into acetyl-coenzyme A (CoA)

using pyruvate dehydrogenase (PDH).56 In line with in vivo rather

than in vitro data,56 we observe high expression levels of PDH-

complex genes (e.g., Pdha1 and Pdhb) coupled to a marked

absence of Pcx (PC) expression (Figure S2B) in all of our cells.

This highlights the importance of using medium resembling

physiological conditions for in vitro metabolic studies.60–62

Our in vitro pathway analysis strategy can thus identify known

aspects of the in vivo metabolic rewiring undergone by CD8+

T cells during activation and differentiation, and further provide

a dynamic description of this rewiring.

scRNA-seq predicts the dependence of activating CD8+

T cells on amino acid uptake versus synthesis
Recent studies have shown that T cell activation relies on the

supply of not only essential54,63 but also various non-essential
vating/differentiating CD8+ T cells

cells.

larized (E) cells.

d both 144 h differentiation samples combined (G). The top/bottom parts of

tion. CP100k denotes average expression levels over all cells in a given state.

e.

ed to each state based on FACS/scRNA-seq (light/dark bars). For FACS, Early

m of Mid-Late/Late in (F).

iation samples combined (right). FACS plots gated on live, single CD8+ T cells

ents.
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amino acids (NEAAs) such as glutamine,49,52 arginine,64 serine,65

alanine,66 or asparagine.67–69 Our pathway analysis strategy

identified amino acid biosynthesis and uptake as hallmarks of

CD8+ T cell activation (Figure 2A). We thus wanted to determine

whether the dependence of activating T cells on the uptake

versus synthesis of specific nutrients may be predicted from

the dynamic expression profiles of the genes regulating their pro-

duction. Comparing the expression profiles of individual NEAA-

biosynthetic genes (Figure 2C), we found those controlling

aspartate, glutamate, glycine, proline, and serine synthesis to

be rapidly upregulated during activation, with most cells reach-

ing full-fledged expression of these genes uponmid or even early

activation (Figure 2C, top), suggesting reliance on biosynthesis.

Conversely, alanine, asparagine, arginine, and glutamine synthe-

sis genes showed sustained low expression during activation,

with only a minority of cells expressing these genes upon late

activation (Figure 2C, bottom), suggesting that CD8+ T cell acti-

vation may rely predominantly on uptake of these amino acids

from the extracellular environment.

To investigate these predictions, we removed either of the

above amino acids from culture from the beginning of activation

(Figure S2C). Consistent with our predictions and prior

studies,49,52,64,67–69 depletion of glutamine, arginine, or aspara-

gine impaired activation-induced proliferation (Figures 2D, 2E,

and S2D), cell growth (Figure S2E), and expression of the late

activation marker CD44 (Figure S2F), with cells lacking these

amino acids closely resembling naive cells (Figure S2G).

Conversely, depletion of aspartate, glutamate, glycine, or proline

had no significant effect on activation (Figures 2D, 2E, and S2D–

S2F), whereas serine depletion only slightly reduced proliferation

(Figures 2D, 2E, and S2D), consistent with prior CD8+ (but not

CD4+) data.65 Finally, alanine depletion led to only a slight delay

in growth and CD44 expression (Figures S2E and S2F), from

which cells recovered after 48 h of activation. This suggests

that CD8+ T cells, unlike their CD4+ counterparts,66 can upregu-

late alanine transaminase in response to alanine deprivation,

highlighting the importance of considering potential metabolic

differences between T cell subtypes.65,70

To investigate how these dependencies change during activa-

tion, we next removed these amino acids after 24 h of stimulation

(Figure S2C). As expected, depletion of aspartate, glutamate,

glycine, proline, serine, or alanine overall had no effect on activa-

tion (Figures 2D, 2E, and S2D–S2F), whereas arginine and gluta-

mine depletion still impaired activation-induced proliferation
Figure 2. scRNA-seq identifies known aspects of in vivo CD8+ T cell

dependence of activating CD8+ T cells on amino acid uptake versus sy

(A) UMAP plots for the 24 h activation scRNA-seq sample, color-coded by GSVA

(B) Dynamic pathway-activity profiles during CD8+ T cell activation for pathways in

their maxima, are shown for reference. Error bars: ± SEM.

(C) Expression versus cell state profiles for NEAA biosynthesis genes. Genes enc

with the corresponding NEAAs on the right.

(D) CellTrace Violet dilution profiles after 48 h of activation in nutrient-replete BLM

24 h of activation (right).

(E) FACS-based time course profiles for the percentage of divided cells (from Cell

Error bars: ±SD. F tests were performed on second-degree polynomials, with glob

next to the profiles for different conditions.

Data in (D) and (E) show averages of 4 culture wells per condition/time point and a

and STAR Methods.
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(Figures 2D, 2E, and S2D) and, in the case of glutamine, cell

growth and CD44 expression (Figures S2E and S2F). Meanwhile,

asparagine depletion after 24 h of activation had only a minor ef-

fect on proliferation (Figures 2D, 2E, and S2D) and growth (Fig-

ure S2E) and no significant effect on CD44 expression or

morphology (Figures S2F and S2G). To investigate this differen-

tial dependence of CD8+ T cells on asparagine during early or

late activation, we performed time-resolved measurements of

Asns gene and ASNS protein expression, as well as stable

isotope-based mass spectrometry measurements of de novo

asparagine synthesis, upon activation under asparagine-replete

or early/late activation asparagine-depleted conditions

(Figures S3A–S3E). Our data showed that CD8+ T cells can upre-

gulate Asns gene expression in response to asparagine deple-

tion (Figure S3A) regardless of the timing of depletion. However,

ASNS protein expression (Figures S3B and S3C) was only upre-

gulated sufficiently to cope with asparagine depletion via de

novo synthesis (Figure S3D) when depletion occurred after early

activation (i.e., when cells had left the naive state), in agreement

with recent reports.68

We thus show that NEAA uptake and synthesis are hallmarks

of CD8+ T cell activation, and that the differential dependence of

CD8+ T cells on uptake versus synthesis can be predicted based

on scRNA-seq measurements.

scRNA-seq identifies the dynamic orchestration of CD8+

T cell metabolic programs during activation and
differentiation
To benchmark the potential of our scRNA-seq approach for

capturing dynamic aspects of T cell metabolism, we focused

on polyamine metabolism. Polyamine metabolism is relatively

unexplored in CD8+ T cells,71 with current knowledge mostly

limited to the importance of Myc-driven polyamine synthesis

during activation.49 Polyamine metabolism is also interesting

from a systems-level perspective because it involves the activ-

ities of various signaling pathways and multiple ancillary meta-

bolic pathways.71,72 We thus wanted to determine whether our

scRNA-seq data could capture the dynamic orchestration of

these pathways. We first focused on the key genes involved in

the synthesis of polyamines from ornithine: Odc1, Srm, Sms,

and Amd1 (STAR Methods). We found that the dynamic expres-

sion profiles of these genes were tightly coordinated with each

other throughout activation/differentiation (Figures 3A and S3F,

top). Conversely, the dynamic profiles of key genes opposing
metabolism during activation and differentiation and predicts the

nthesis

-based metabolic/signaling-pathway activity scores.

(A). Profiles for the number of genes (nGene) and library size (nUMI), relative to

oding rate-limiting biosynthetic enzymes for various NEAAs are shown in bold,

(Full) or upon single-NEAA depletion from the start of stimulation (left) or after

Trace Violet dilution) over 72 h of activation under identical conditions as in (D).

al p values in the top right corners and pairwise significance levels (versus Full)

re representative of 2 independent experiments. See also Figure S2, Table S2,
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polyamine synthesis, such as Paox, Smox, Ass1, and Asl

(STARMethods), were inversely correlated with the former along

the entire activation/differentiation cascade (Figures 3A andS3F,

bottom). This suggests a strong dynamic coordination between

the multiple pathways tied to polyamine metabolism throughout

the entire CD8+ T cell response cascade.

To explore this hypothesis, we extended our analysis beyond

biosynthetic and catabolic genes, also including known tran-

scriptional regulators/targets as well as genes participating in

ancillary metabolic pathways71,72 (STAR Methods). For this, we

correlated the dynamic expression profiles of each of those

genes with that ofOdc1 (Figure S3G) and those of all other genes

in the set (Figure 3B). In agreement with our hypothesis, we

observed a high mutual correlation between the expression pro-

files of most genes known to be drivers or targets of polyamine

synthesis (Figure 3B). We also found a high mutual correlation

and a simultaneous negative correlation versus the former for

genes known to negatively regulate the synthesis pathway (Fig-

ure 3B). Thus, our data confirm the existence of a dynamically

regulated joint orchestration of the many pathways converging

in polyamine metabolism in CD8+ T cells, and show that this

orchestration is not limited to activation49 but extends to the

entire activation/differentiation cascade. Our data also suggest

a switch from polyamine synthesis during CD8+ T cell activation

to catabolism and urea cycle activity during differentiation

(Figures 3A, 3B, and S3G). This rewiring has several potential im-

plications with regard to arginine metabolism. Specifically, the

lower demand for polyamine synthesis during differentiation

may allow T cells to upregulate their urea cycle activity for argi-

nine synthesis without further conversion to ornithine, in turn pro-

moting the maintenance of elevated intracellular arginine levels,

which have been shown to increase T cell survival and memory

formation.13

Our scRNA-seq approach can thus capture the dynamic

orchestration of multiple signaling/metabolic pathways driving

CD8+ T cell progression through the activation/differentiation

cascade, and this dynamic information can drive hypothesis

generation on unexplored aspects of CD8+ T cell metabolism.

scRNA-seq identifies dynamically modulated metabolic
pathways in CD8+ T cells
We next sought to uncover further dynamic metabolic depen-

dencies of CD8+ T cells by adopting an untargeted, metabolic
Figure 3. scRNA-seq captures the dynamic orchestration of CD8+ T
identifies dynamically modulated metabolic pathways

(A) Cell state-averaged expression profiles (scaled to range 0–1) for select gene

profile for Odc1. Error bars: ± SEM.

(B) Heatmapwith mutual correlation coefficients between select genes related to p

genes with |R| > 0.7 shown in bold. Genes involved in polyamine synthesis/hyp

polyamine synthesis are shown in red.

(C and D) Schematic of our state-based ranking approach (C) and heatmap of ce

(D). CP100k denotes average expression levels over all cells in a given state and

state is shown in bold, with genes discussed in the text in blue.

(E and F) Schematic of our branch-based ranking approach (E) and heatmap of c

CP100k denotes average expression levels over all cells in a given state and CP10

not shown). <CM>/<EM> represent averaged values over all states constituting ei

scoring metric. The 5 top-ranked genes for each branch are shown in bold, with

See also Figure S3 and STAR Methods.
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gene-centric approach, exploiting the dynamic cell-state resolu-

tion provided by our single-cell data. Specifically, we aimed to

identify metabolic genes peaking at specific intermediate states

along the CD8+ T cell response cascade that, because of their

transient characteristics, may have been overlooked in bulk

endpoint measurements. For this, we ranked genes based on

their expression levels in each activation/differentiation state

relative to all other states (Figure 3C). This state-based ranking

(Figure 3D) tells us whether dynamic upregulation of a particular

metabolic gene may be critical in a specific stage of CD8+ T cell

activation/differentiation. We also ranked genes based on their

differences in overall expression along the Tcm-generating

‘‘branch’’ of in vitro differentiation (Undiff, Tcmp, and Tcm states)

and its Tem-generating counterpart (Teff, Temp, and Tem states)

(Figure 3E). This branch-based ranking (Figure 3F) tells us

whether the expression of a metabolic gene may affect the po-

tential of CD8+ T cells differentiating into Tcmor Temcells, a rele-

vant distinction because the former is a more desirable outcome

for long-term protection.73

Among the top hits identified in our state-based or branch-

based rankings (Figures 3D and 3F), we found several genes

whose roles in particular stages of CD8+ T cell responses have

been described. These include Idh2 (naive state, when T cells

chiefly rely on oxidative metabolism49), Odc1 and Srm (mid-

late/late activation states, when polyamine synthesis is most

important49), Cpt1a (Tcm-generating branch, consistent with

the role of FAO in Tcm development57), or Pck2 and Oxct1

(Tcm-generating branch and Tcmp state, in agreement with the

role of ketone body-driven phosphoenolpyruvate carboxykinase

[PCK] activation in long-term memory formation74,75). Impor-

tantly, many other top-ranked hits (Figures 3D, 3F, S3H, and

S3I) are still largely unexplored in CD8+ T cells. These include,

for the naive and early/mid activation states, a variety of cyclic

guanosine monophosphate (cGMP)-dependent phosphodies-

terase-coding genes (Pde2a, Pde4b, and Pde6d) (Figure 3D)

involved in mitochondrial morphology regulation and ATP pro-

duction,76 suggesting a link to the elevated OXPHOS activity of

early-activated CD8+ T cells.21 They also include several nucle-

otide metabolism genes (Rrm1/2/2b, Tyms, Tk1, and Dck) for

the Tcm-generating branch (Figure 3F) and/or the Tcm state (Fig-

ure 3D), suggesting that nucleotide metabolism may be a hall-

mark of central memory formation, consistent with the higher

self-renewal capacity of Tcm versus Tem cells.77,78 Finally, we
cell metabolic programs during activation and differentiation and

s driving/opposing polyamine synthesis (top/bottom half). Red lines show the

olyaminemetabolism. Genes are sorted by theirR values relative toOdc1, with

usination or their known drivers/targets are shown in blue. Genes opposing

ll state-averaged expression profiles for the 5 top-ranked genes for each state

CP100k the average of the latter over all states. The top-ranked gene for each

ell state-averaged expression profiles for the 60 top-ranked genes overall (F).

0k the average of the latter over all cell states (including activation states; data

ther of the Tcm/Tem-generating branches, with their difference indicative of the

genes discussed in the text in blue.
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were intrigued to find Asns as the top-ranked gene for the Teff

state (Figure 3D), given its markedly low expression levels during

activation (Figure 2C). Asns encodes the enzyme ASNS, respon-

sible for the synthesis of asparagine from aspartate (Figure S4A).

Although the role of asparagine and ASNS in T cell activation has

been reported,67–69 their potential effect on CD8+ T cell differen-

tiation remains unexplored,79 so we decided to focus on the

latter.

The expression dynamics of ASNS affect the outcome of
CD8+ T cell differentiation in vitro

We first assessed whether our scRNA-seq-based dynamic Asns

expression profile (Figure S4B) is representative of that found in

an in vivo immune response. For this, we isolated naive CD8+

T cells from P14 mice and adoptively transferred them into

wild-typeC57BL/6Jmice, followed by infection with lymphocytic

choriomeningitis virus (LCMV) Armstrong (Figure S4C). We then

sorted CD8+ T cells from the recipient mouse spleens throughout

the ensuing response andmeasured theirAsnsmRNA levels (Fig-

ure S4C). In linewith our in vitro scRNA-seq data (Figure S4B), we

observed a marked Asns upregulation during the early effector

response, followed by downregulation towardmemory formation

(Figure 4A). Consequently, we askedwhether altering asparagine

availability and, thus, potentially ASNS expression (Figures S3A–

S3C), could affect the fate of differentiating CD8+ T cells. To

address this, we activated CD8+ T cells in vitro, starting from

asparagine-replete conditions, and differentiated them under

IL-2 or IL-15 while irreversibly depleting asparagine at multiple

time points during differentiation aswell as after 24 h of activation

(Figure S4D). We observed that neither cell viability (Figures S4E

and S4F) nor proliferation (Figures S4G and S4H) were compro-

mised in differentiating cells lacking extracellular asparagine,

regardless of when depletion took place. However, we observed

a shift toward a central memory phenotype for cells differentiated

in the absence of asparagine when depletion occurred after 24 h

of activation but not during differentiation (Figure 4B). Asparagine

depletionduringdifferentiation conversely led toadelay in central

memory polarization (Figures 4C and 4D), driven by a transient

reduction in the fraction of Tcmp (IL-2 polarization; Figure 4C) or

Tcm (IL-15 polarization; Figure 4D) cells immediately after aspar-

agine removal. This was particularly significant when depletion

occurred at the start of differentiation (Figures 4C and 4D) and

was linked to an increase in the fraction of cells with a Teff pheno-

type under IL-2 polarization (Figures S4I and S4J). This pheno-

typic switch was confirmed under slower differentiation kinetics

(Figures 4E, 4F, S4K, and S4L) and by assessing cytokine pro-

duction in these cells after re-stimulation (Figure S4O). The latter

showed an increase in IFNg production for cells subject to early

differentiation depletion under IL-2 polarization (Figures 4G, 4H,

and S4M), consistent with promotion of an effector phenotype,

and a decrease in IFNg/tumor necrosis factor alpha (TNFa) pro-

duction for cells subject to late activation depletion under IL-15

polarization (Figures 4I, 4J, and S4N), in agreement with favoring

a central memory phenotype. We thus observe an opposed

response of CD8+ T cells to asparagine depletion during late acti-

vation or early differentiation in vitro, with the former promoting

central memory polarization and the latter favoring maintenance

of an effector phenotype.
We reasoned that, rather than asparagine availability, it is the

timing of asparagine depletion and, thus, the potential modula-

tion of ASNS expression, that may influence the outcome of

CD8+ T cell differentiation. To address this, we performed time-

resolved measurements of Asns gene expression under condi-

tions analogous to those above (Figures 4K, 4L, and S4D). As

expected from our in vitro data under late activation depletion

(Figure S3A), we also observed a significant increase in Asns

expression after asparagine withdrawal during early differentia-

tion (Figures 4K and 4L). However, our measurements also

showed that the upregulation of Asns induced by asparagine

depletion is transient, with no differences in the long run between

the expression profiles of cells lacking asparagine from late acti-

vation or early differentiation (Figures 4K and 4L). We next quan-

tified intracellular asparagine levels (Figure 4M) and fractions of

de novo-synthesized asparagine (Figure S4P) in CD8+ T cells

activated and differentiated under analogous conditions as

above (Figure S4D), using time-resolved stable isotope-based

mass spectrometry measurements (Figure S3E). We found that,

aside from a transient increase in de novo synthesis after aspar-

agine withdrawal (Figure S4P), total intracellular asparagine

levels rapidly decayed in the absence of extracellular asparagine,

regardless of the timing of withdrawal (Figure 4M). This suggests

that asparagine-depleted cells adapt their synthesis via ASNS to

generate just enough asparagine to satisfy their biosynthetic

needs, and that the phenotypic differences observed between

late activation and early differentiation depletion do not stem

from differential accumulation of intracellular asparagine.

Our data thus indicate that it is the dynamics of ASNS expres-

sion, rather than asparagine availability itself, that play a role in

CD8+ T cell differentiation, with later ASNS upregulation/decay

favoring maintenance of an effector phenotype while delaying

central memory formation, and vice versa for earlier upregula-

tion/decay.

ASNS overexpression favors effector CD8+ T cell
differentiation and leads to enhanced anti-tumor
responses in vivo

To address our hypothesis that the dynamics of ASNS expres-

sion modulate CD8+ T cell differentiation, we disrupted these dy-

namics by stably overexpressing ASNS in CD8+ T cells differen-

tiated in vitro in the presence of extracellular asparagine. For this,

we transduced in vitro-activated CD8+ T cells with control (EV,

empty vector) or ASNS overexpression (OE) retroviral vectors

(Figure S5A), differentiated these cells under IL-2 or IL-15, and

subsequently assessed the ensuing effector/memory distribu-

tions using flow cytometry (Figure 5A). Extracellular asparagine

was present throughout the entire in vitro activation/differentia-

tion. In line with our hypothesis, we observed a skewing toward

lower CD62L expression upon ASNS OE (Figures S5B–S5D),

driven by an increase in the fraction of effector (Figure 5B) and

effector memory (precursor) cells (Figures 5C and S5E),

concomitant with a decrease in that of central memory (precur-

sor) cells (Figures 5D and 5E). This was apparent under IL-2

and IL-15 polarization, consistent with the prevention of the

decay in ASNS levels under both conditions (Figures 5F and 5G).

To address our hypothesis in a more physiological context, we

next overexpressed ASNS in CD8+ T cells differentiating in vivo in
Cell Reports 41, 111639, November 15, 2022 9
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response to infection. We first transduced in vitro-activated

CD8+ T cells isolated from P14 mice with control or ASNS OE

vectors (Figure S5F). Subsequently, we co-transferred a 50:50

mixture of control and ASNS OE cells into wild-type C57BL/6J

mice infected with LCMV Armstrong and evaluated their relative

numbers and phenotypes throughout the ensuing response (Fig-

ure S5F). Consistent with our hypothesis, we found that prevent-

ing the decay of ASNS by stable OE led to a significant increase

in initial effector expansion, as evidenced by the nearly 2-fold in-

crease in cell frequency for ASNS OE cells relative to control on

day 8 after infection (Figure 5H), which further translated into a

more than 2-fold increase toward the end of the response

(Figures 5H and 5I). This was accompanied, at the late stages

of the response, by a significant delay in central memory polari-

zation (Figure S5G), concomitant with an increase in the fre-

quency of cells with an effector/effector memory phenotype

(Figures 5J and S5G).

We next wanted to determine whether, consistent with promo-

tion of an effector phenotype, stable ASNS OE would lead to

overall enhanced effector function in a pathological context,

such as the anti-tumor immune response. To address this, we

adoptively transferred in vitro-expanded effector CD8+ T cells

from P14 mice transduced with control or ASNS OE vectors

into wild-type C57BL/6J mice bearing subcutaneous gp33-ex-

pressing melanomas (YUMM1.7-gp33)80 and compared the

anti-tumor responses elicited by these cells in the presence
Figure 4. The expression dynamics of ASNS affect the outcome of CD

(A) Box-and-whisker time course plot of Asns expression for CD8+ T cells durin

corresponding cell subpopulations. The y axis represents expression relative to th

states (Figure S4B). One-way ANOVA (p < 0.0001) followed by false discovery rate

p values shown.

(B) CD25 versus CD62L FACS plots for effector- (top) and memory-polarized (bot

asparagine-replete conditions (left) or under asparagine depletion starting from 2

(C and D) Time course of fractional abundances of Tcmp/Tcm (C/D) cells over 120

under asparagine-replete conditions or under asparagine depletion at 24 h activat

the color codes. F tests were performed on third-degree polynomials, with globa

(versus asparagine replete) next to the legend entries.

(E and F) Time course of fractional abundances of Tcmp/Tcm (E/F) cells, analogou

with asparagine depletion only at 24 h activation or 0 h differentiation. Statistica

nomials.

(G–J) Fractional abundances of IFNg+TNFa+ double-positive cells (G and I) and IFN

(PMA)/ionomycin re-stimulation after 72 h of effector (G and H) or memory (I and

(E) and (F). One-way ANOVA (p < 0.05 in all cases) followed by FDR-adjusted

comparisons are indicated by the numbers.

(K and L) Time course profiles of bulk Asns expression for effector/memory-polar

Activation profiles (t % 0 h) from the same experiment, corresponding to the da

relative to the naive state (�48 h). F tests were performed on fifth-degree polynomi

the top left corners and pairwise significance levels (versus asparagine replete)

between either asparagine-depleted condition and the asparagine-replete one,

indicated by color-coded symbols over the data, for significant comparisons. S

respective depletions are indicated in black. Black lines indicate lack of difference

points.

(M) Time course of intracellular asparagine levels for cells activated and different

total intracellular asparagine levels (12C + 13C; Figure S3E) normalized to cell co

ferentiation. Data below the detection limit (n.d.) were manually set to 0 and consi

the global p value in the top-right corner. Pairwise significance levels for aspara

shown next to the legend entries, following the color codes and comparing only c

each pair of polarizations (IL-2 versus IL-15) for each condition are shown in black

under IL-2 or IL-15 in the presence of asparagine based on a fixed-time t test. D

All in vitro data show averages of at least 3 culture wells (or 3 samples for K–M) per

T cells and show the merger of 3 replicates. See also Figure S4.
and absence of irradiation of the engrafted melanomas before

adoptive transfer (Figure S5H).We found that ASNSOE cells dis-

played enhanced anti-tumor capacity, resulting in reduced tu-

mor growth compared with the control condition (Figures 5K,

5L, and S5I). We also found a nearly significant decrease in

endpoint tumor weight both in the presence/absence of irradia-

tion (Figures S5J and S5K). Moreover, ASNS OE cells seemed to

better accumulate in the spleens of non-irradiated tumor-

bearing mice following the anti-tumor response (Figure S5L),

and we also found a trend toward an increased tumor-infiltration

capacity of these cells (Figure S5M). Finally, both splenic and tu-

mor-infiltrating ASNS OE cells showed signs of diminished

exhaustion relative to control cells (Figures 5M and 5N).

Our data thus indicate that the dynamics of ASNS expression

modulate the outcome of CD8+ T cell differentiation, and that dis-

rupting these dynamics by stable ASNS OE promotes effector

T cell expansion and effector differentiation/function, providing

CD8+ T cells with enhanced anti-tumor capacity.

DISCUSSION

The metabolic rewiring undergone by CD8+ T cells along the im-

mune response cascade is linked to their functionality,4–6 but a

comprehensive dynamic characterization of this rewiring is

missing.17,18 Here we provide such a dynamic description based

on scRNA-seq measurements on CD8+ T cells activated and
8+ T cell differentiation in vitro

g an in vivo response to LCMV. The x axis indicates days after infection and

e naive state (day 0). The color code links to comparable scRNA-seq-based cell

(FDR)-adjustedmultiple comparisons between subpopulation pairs, with select

tom) cells at 120 h differentiation, for cells activated/differentiated in vitro under

4 h activation (center) or 0 h differentiation (right).

h of effector/memory (C/D) polarization, for cells activated/differentiated in vitro

ion, 0 h differentiation, or at different differentiation time points, as indicated by

l p values in the bottom right/left corners (C/D) and pairwise significance levels

s to (C) and (D), but on a second experiment with slower differentiation kinetics,

l analyses were performed as in (C) and (D) but based on fourth-degree poly-

gmean fluorescence intensity (H and J) upon phorbol 12-myristate 13-acetate

J) polarization, for cells activated/differentiated under identical conditions as in

multiple comparisons between condition pairs. p values for non-significant

ized (K/L) CD8+ T cells harvested during the same experiment as in (E) and (F).

ta in Figure S3A, are included for reference. The y axis represents expression

als, after log2-transforming normalized expression levels, with global p values in

next to the legend entries. Significance levels for fixed-time pairwise t tests

at times immediately after depletion and at the later differentiation times, are

ignificance levels between each asparagine-depleted condition 24 h after the

s between both asparagine-depleted conditions at the later differentiation time

iated for 72 h under identical conditions as in (E) and (F). The y axis represents

unts and further scaled relative to the asparagine-replete condition at 0 h dif-

dered for statistics. F tests were performed on fourth-degree polynomials, with

gine-depleted conditions relative to their asparagine-replete counterparts are

ells under identical polarization (IL-2/15). Pairwise significance levels between

. The vertical line shows the difference between the endpoint asparagine levels

ata originate from the same experiment as in Figures S3D and S4P.

condition/time point. Error bars: ±SD. FACS plots are gated on live, single CD8+
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Figure 5. ASNS overexpression favors effector CD8+ T cell differentiation and leads to enhanced anti-tumor responses in vivo

(A) CD25 versus CD62L FACS plots at 72 h differentiation for effector- (top) and memory-polarized (bottom) cells transduced with control (EV) (left) or ASNS

overexpression (OE) (right) retroviral vectors.

(B–E) Fractional abundances of Teff (B), Temp (C), Tcmp (D), and Tcm (E) cells at 72 h differentiation for effector- (B–D) andmemory-polarized (E) cells transduced

with EV or ASNS OE vectors. Error bars: ±SD. Two-tailed unpaired t tests with Welch’s correction.

(F) Western blot of bulk ASNS expression at 96 h differentiation for effector/memory-polarized cells transduced with EV (�) or ASNS OE (+) vectors. Ratios

between ASNS and b-actin (loading control) signals were determined by quantification, and are shown below the corresponding lanes.

(G) Quantification of the western blot in (F), with the y axis representing ratios between ASNS and b-actin signals, normalized relative to the effector-polarized EV

condition. Error bars: ±SEM. Two-tailed unpaired t test with Welch’s correction (not performed for memory-polarized cells because of a lack of replicates).

(H) Time course of relative fractions (out of total transduced cells) of EV and ASNS OE CD8+ T cells isolated from mouse spleens over two independent 28-day

in vivo responses to LCMVArmstrong. F test was performed on second-degree polynomials, with the p value in the bottom left corner. Data for day 2 (adoptive co-

transfer time) are given by experimental design and were considered for F tests. Significance levels for fixed-time pairwise t tests are indicated by the symbols

above the data.

(I and J) Box-and-whisker plots of relative fractions (out of total transduced cells) (I) and fractional abundances of Teff/Tem (CD62Lo) cells (J) for EV and ASNS OE

CD8+ T cells isolated from mouse spleens after three independent 28-day in vivo responses to LCMV Armstrong, corresponding to the data in (H) plus an extra

experiment with only day 28 data. Lines link data from the same biological replicates. Two-tailed paired t tests.

(K and L) Time course of tumor volumes for mice bearing YUMM1.7-gp33 melanomas, subject to adoptive transfer of in vitro-expanded EV or ASNS OE effector

CD8+ T cells on day 8 after engraftment, in the presence (K) or absence (L) of irradiation on day 7. F tests were performed on third-degree polynomials, with p

values in the bottom-right corners. Data for day 0 are given by experimental design and were considered for F tests. Significance levels for fixed-time pairwise t

tests considering only data for day 18 are indicated by the black symbols.

(M and N) Box-and-whisker plots of fractional abundances of TIM3-positive cells for EV and ASNS OE CD8+ T cells isolated from the tumors (M) or spleens (N) of

non-irradiated mice bearing YUMM1.7-gp33 melanomas on day 18 after engraftment, corresponding to the experiments in (L) and Figure S5I. Two-tailed un-

paired t tests with Welch’s correction.

All in vitro data except for (F) and (G) show averages of 4 culture wells per condition, with replicates indicated by the dots. FACS plots were gated on live, single,

transduced CD8+ T cells and show the merger of 4 replicates. All in vivo data show averages of at least 4 biological replicates per condition/time point. Error

bars: ±SEM. See also Figure S5.
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differentiated in vitro under physiological nutrient conditions. This

approach allowed us to identify unexplored dynamic metabolic

dependencies of CD8+ T cells, including a crucial role of ASNS

expression dynamics in modulating CD8+ T cell differentiation.

Until recently, our knowledge of T cell metabolic dynamics

was mostly based on time-resolved, bulk-level metabolic mea-

surements and was thus limited to the more tractable case of

in vitro-activating T cells.49,81 Using mass cytometry, several

groups have recently probed dynamic aspects of central carbon

metabolism in T cells in vitro and in vivo.19–21 Our work provides a

complementary, broader description of the dynamic metabolic

rewiring of CD8+ T cells transitioning in vitro through the activa-

tion and differentiation cascade. Although we focused on over

1,000 metabolic genes, our scRNA-seq dataset also includes

over 400 metabolite transporter genes, representing a potential

route to provide additional insights on the dynamics of CD8+

T cell metabolism. As shown by our correlation-based analysis

of polyamine metabolism, scRNA-seq can capture the dynamic

co-regulation between metabolic/signaling genes and transcrip-

tion factors. This approach may be extended to arbitrarily large

gene networks and coupled to regulatory network identification

algorithms82 to investigate the dynamic link between transcrip-

tional and metabolic programs in CD8+ T cell responses.

Several groups have reported critical roles of asparagine avail-

ability and ASNS expression in T cell activation.67–69 However,

their potential effect on differentiation remained unexplored.79

Our results complement the current literature, showing that the

dynamics of ASNS expression, rather than asparagine availabil-

ity, affect effector expansion/function and long-term memory

formation. Mechanistically, this may be tied to a dynamic regula-

tion ofmTOR complex 1 (mTORC1), because asparagine can not

only activate mTORC183,84 but also be exchanged for other

amino acids such as arginine, serine, or histidine,85 which are

well-known mTORC1 activators.83 An alternative mechanism

could be related to a potential moonlighting role of ASNS.

Non-catalytic roles have been uncovered previously for meta-

bolic enzymes in cancer86,87 and immunity.9 Recently, a non-ca-

nonical role of ASNS has been reported in cancer,88 tied to its

regulation of the mitotic spindle. Changes in ASNS expression

may thus contribute to dynamically modulate cell division in

T cells, in turn affecting effector expansion and memory forma-

tion. More studies will be needed to ascertain which of these

mechanisms may be important in differentiating CD8+ T cells.

Our in vivo data indicate that ASNS OE may be an attractive

approach for immunometabolic modulation in adoptive trans-

fer-based immunotherapies. This could be particularly relevant

in the context of tumors sensitive to chimeric antigen receptor

(CAR)-T cell therapies and asparaginase (ASNase) treatment,

such as certain hematological cancers,89,90 given that the sys-

temic asparagine deprivation brought about by ASNase is

known to hinder T cell responses.69 One could thus expect

improved clearance of these tumors, based on combined

ASNase/CAR-T therapy, upon ASNSOE on the CAR-engineered

T cells. Nevertheless, as shown by our data, ASNS OE enhances

the anti-tumor response of adoptively transferred T cells even

against solid tumors, where one would not envisage asparagine

depletion.91 Our results thus highlight that the potential applica-

bility of ASNS OE in adoptive transfer-based immunotherapies
may bemore general than expected, encouraging further clinical

investigations.

We thus provide and validate a comprehensive resource on

the dynamic metabolic changes undergone by CD8+ T cells tran-

sitioning along the immune response cascade. This resource

may provide the basis for identifying strategies to enhance

T cell functionality in pathological contexts, as demonstrated

here for the case of ASNS modulation in anti-tumor responses.

Limitations of the study
We used media with plasma-based nutrient concentrations to

better mimic an in vivo situation. However, we did not modulate

oxygen tension or pH, which may be relevant because CD8+

T cells activate in the lymph node environment in vivo.

Compared with scRNA-seq, mass cytometry can yield a more

direct readout of metabolism, based on enzyme levels rather

than gene expression. Mass cytometry is also not subject to

dropout effects like scRNA-seq, decreasing measurement vari-

ability among cells of a given state.92 These advantages come

at the cost of coverage, given the lack of reliable antibodies for

many enzymes22 and the limited number of proteins measur-

able in a single experiment.93 Thus, scRNA-seq and mass cy-

tometry are complementary approaches for studying meta-

bolism at the single-cell level, with scRNA-seq providing a

global way of identifying potential dependencies, whose meta-

bolic effect may then be explored in a more direct, targeted

way via mass cytometry. Importantly, metabolic insights

derived from gene expression measurements should always

be confirmed by enzyme-level measurements, direct metabolic

measurements (e.g., metabolomics/fluxomics), and functional

readouts in a physiological context.
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Zombie AquaTM Fixable Viability Kit BioLegend Cat #423102; RRID; N/A

Zombie NIRTM Fixable Viability Kit BioLegend Cat #423106; RRID; N/A

Fetal Bovine Serum, qualified, Brazil

(GibcoTM)

Thermo-Fisher Cat #10270106; RRID: N/A

Penicillin-Streptomycin (GibcoTM, 5,000 U/

mL)

Thermo-Fisher Cat #15070063; RRID: N/A

b-Mercaptoethanol (GibcoTM, 55 mM) Thermo-Fisher Cat #21985023; RRID: N/A

Sodium Pyruvate (GibcoTM, 100 mM) Thermo-Fisher Cat #11360070; RRID: N/A

L-Glutamine (GibcoTM, 200 mM) Thermo-Fisher Cat #25030081; RRID: N/A

L-Asparagine:H2O (13C4, 99%) Cambridge Isotope Laboratories Cat #CLM-8699-H-PK; RRID: N/A

Glutaric Acid (99%) Sigma-Aldrich Cat #G3407; RRID: N/A

Ammonium Acetate (LiChropurTM, eluent

additive for LC-MS)

Sigma-Aldrich Cat #73594; RRID: N/A

Water, OptimaTM LC-MS Grade (Fisher

ChemicalTM)

Fisher Scientific Cat #10505904; RRID: N/A

Methanol, CHROMASOLVTM LC-MS Grade

(Riedel-de Haën)

Honeywell International Inc Cat #34966; RRID: N/A

Acetonitrile, OptimaTM LC-MS Grade

(Fisher ChemicalTM)

Fisher Scientific Cat # 10489553; RRID: N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TurboFectTM Transfection Reagent

(Thermo ScientificTM)

Thermo-Fisher Cat #R0532; RRID: N/A

RetroNectin� Recombinant Human

Fibronectin Fragment

Takara Bio Cat #T100A; RRID: N/A

Collagenase from Clostridium histolyticum Sigma-Aldrich Cat #C5138; RRID: N/A

DNase I (Roche) Sigma-Aldrich Cat #10104159001; RRID: N/A

Percoll� Sigma-Aldrich Cat #10104159001; RRID: N/A

RIPA Lysis and Extraction Buffer (Thermo

ScientificTM)

Thermo-Fisher Cat #89901; RRID: N/A

Protease/Phosphatase Inhibitor Cocktail

(100X)

Cell Signaling Technology Cat #5872; RRID: N/A

SuperSignalTM West Femto Maximum

Sensitivity Substrate (Thermo ScientificTM)

Thermo-Fisher Cat #34096; RRID: N/A

SuperSignalTM West Pico PLUS

Chemiluminescent Substrate

Thermo-Fisher Cat #34577; RRID: N/A

Recombinant Mouse IL-2 (carrier-free) BioLegend Cat #575404; RRID: N/A

Recombinant Murine IL-2 Peprotech Cat #212-12; RRID: N/A

Recombinant Murine IL-15 Peprotech Cat #210-15; RRID: N/A

Critical commercial assays

MojoSortTM Mouse CD8 Naive T cell

Isolation Kit

BioLegend Cat #480044; RRID: N/A

MojoSortTM Mouse CD8 T cell Isolation Kit BioLegend Cat #480035; RRID: N/A

DynabeadsTM Mouse T-Activator CD3/

CD28 for T cell Expansion and Activation

(GibcoTM)

Thermo-Fisher Cat #11452D; RRID: N/A

MACS� Dead Cell Removal Kit Miltenyi Biotec Cat #130-090-101; RRID: N/A

ChromiumTM Single Cell 30 Library & Gel

Bead Kit v2

10x Genomics Cat #120237; RRID: N/A

ChromiumTM Single Cell A Chip Kit 10x Genomics Cat #120236; RRID: N/A

ChromiumTM i7 Multiplex Kit 10x Genomics Cat #120262; RRID: N/A

PureLink� DNase Set (InvitrogenTM) Thermo-Fisher Cat #12185010; RRID: N/A

PureLink� RNA Mini Kit (InvitrogenTM) Thermo-Fisher Cat #12183025; RRID: N/A

RNeasy� Mini Kit Qiagen Cat #74104; RRID: N/A

qScriptTM cDNA Synthesis Kit Quantabio Cat #95047-500; RRID: N/A

PrimeScriptTM RT Master Mix Takara Bio Cat #RR036B; RRID: N/A

Platinum� SYBR� Green qPCR SuperMix-

UDG (InvitrogenTM)

Thermo-Fisher Cat #11733046; RRID: N/A

TB Green� Premix Ex TaqTM Takara Bio Cat #RR420W; RRID: N/A

PierceTM BCA Protein Assay Kit (Thermo

ScientificTM)

Thermo-Fisher Cat #23225; RRID: N/A

Deposited data

Single-Cell RNASequencing Data (Raw and

Processed Files)

This manuscript or NCBI Gene

Expression Omnibus

GEO: GSE211602

Cell Ranger References v1.2.0 (November

16, 2016) - Mouse Reference mm10 build

GRCm38.p4

10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

downloads/2.1

Experimental models: Cell lines

Mouse: YUMM1.7-gp33 Melanoma Cells In house (Yu et al., 2020)80 Cat #N/A; RRID: N/A

Human: Phoenix Eco Cells Dr. Pedro Romero (University

of Lausanne)

Cat #CRL-3214; RRID:CVCL_H717

(Continued on next page)
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Experimental models: Organisms/strains

Mouse: C57BL/6-Tg(TcraTcrb)1100Mjb/Crl

(OT-I)

Charles River Cat #642; RRID:IMSR_CRL:642

Mouse: B6.Cg-Tcratm1MomTg(TcrLCMV)

327Sdz/TacMmjax (P14)

The Jackson Laboratory Cat #37394-JAX;

RRID:MMRRC_037394_JAX

Mouse: C57BL/6J Charles River Cat #000664; RRID:IMSR_JAX:000,664

Oligonucleotides

Mouse Asns Forward qPCR Primer:

GAAACTCTTCCCAGGCTTTGAC

This manuscript RRID: N/A

Mouse Asns Reverse qPCR Primer:

TTCAGCAGAGAGGCAGCAAC

This manuscript RRID: N/A

Mouse Ppib Forward qPCR Primer:

GGAGATGGCACAGGAGGAA

This manuscript RRID: N/A

Mouse Ppib Reverse qPCR Primer:

GCCCGTAGTGCTTCAGCTT

This manuscript RRID: N/A

Mouse Actb Forward qPCR Primer:

TCCATCATGAAGTGTGACGT

This manuscript RRID: N/A

Mouse Actb Reverse qPCR Primer:

TACTCCTGCTTGCTGATCCAC

This manuscript RRID: N/A

Recombinant DNA

Plasmid: MSCV-IRES-Thy1.1 Dr. Susan M. Kaech (Salk Institute

for Biological Studies)

RRID: N/A

Plasmid: MSCV-ASNS-OE-IRES-Thy1.1 This manuscript RRID: Addgene_192947

Software and algorithms

Cell Ranger Software v2.1.1 (February 26,

2018)

10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

downloads/2.1; RRID: SCR_017344

R Project for Statistical Computing (v3.6.3) The R Foundation www.r-project.org; RRID: SCR_001905

Bioconductor v3.9.0 Bioconductor www.bioconductor.org; RRID:

SCR_006442

Seurat v2.3.4 (Butler et al., 2018)94 www.satijalab.org/seurat; RRID:

SCR_016341

Monocle3 alpha v2.99.3 (Cao et al., 2019)42 www.github.com/cole-trapnell-lab/

monocle-release/tree/monocle3_alpha;

RRID: SCR_018685

GSVA v1.32.0 (Hänzelmann et al., 2013)46 www.github.com/rcastelo/GSVA; RRID:

SCR_021058

sceasy v0.0.5 Cellular Genetics Informatics,

Wellcome Sanger Institute

www.github.com/cellgeni/sceasy; RRID:

N/A

KEGG Pathway Database (Kanehisa and Goto, 2000)95 www.genome.jp/kegg/pathway.html;

RRID: SCR_018145

Python Programming Language v3.9.9 Python Software Foundation www.python.org; RRID: SCR_008394

velocyto v0.17.17 (La Manno et al., 2018)43 www.velocyto.org; RRID: SCR_018167

scVelo v0.2.3 (Bergen et al., 2020)44 www.github.com/theislab/scvelo; RRID:

SCR_018168

loompy v2.0.17 Linnarsson Lab www.loompy.org; RRID: SCR_016666

BD FACSDivaTM Software v8.0 BD Biosciences www.bdbiosciences.com; RRID:

SCR_001456

FlowJo v10.7 BD Biosciences www.flowjo.com; RRID: SCR_008520

Image StudioTM Lite v5.2 LI-COR Biosciences www.licor.com/bio/image-studio-lite;

RRID: SCR_013715

(Continued on next page)
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MassHunter Acquisition and Quantitative

Analysis Software v11.0

Agilent Technologies www.agilent.com/en/product/

software-informatics/

mass-spectrometry-software; RRID:

SCR_015040

Microsoft� Excel� for Microsoft 365 MSO

v2022

Microsoft Corporation www.office.com; RRID: SCR_016137

GraphPad Prism v9.4.0 GraphPad Software www.graphpad.com/scientific-software/

prism; RRID: SCR_002798

Other

MojoSort Magnet BioLegend Cat #480019; RRID: N/A

MiniMACSTM Separator Miltenyi Biotec Cat #130-042-102; RRID:N/A

MACS� MS Columns Miltenyi Biotec Cat #130-042-201; RRID:N/A

MACS� Multistand Miltenyi Biotec Cat #130-042-303; RRID:N/A

Chromium Controller 10x Genomics Cat #120223; RRID: N/A

NovaSeq 6000 System Illumina Cat #20012850; RRID: N/A

UltraComp eBeadsTM Compensation

Beads (InvitrogenTM)

Thermo-Fisher Cat #01-2222-42; RRID: N/A

BD FACSCantoTM II Cell Analyzer BD Biosciences Cat #338962; RRID: N/A

BD LSR II Cell Analyzer BD Biosciences Cat #347545; RRID: N/A

BD FACSAriaTM III Cell Sorter BD Biosciences Cat #648282; RRID: N/A

NanoDropTM One (Thermo Scientific) Thermo-Fisher Cat #ND-ONE-W; RRID: N/A

QuantStudio 12K Flex Real-Time PCR

System

Applied Biosystems Cat #4471134; RRID: N/A

LightCycler� 480 II Real-Time PCR System Roche Life Science Cat #05015243001; RRID: N/A

NuPAGETM 4 to 12%, Bis-Tris, 1.5 mm,Mini

Protein Gel, 15-well (InvitrogenTM)

Thermo-Fisher Cat #NP0336BOX; RRID: N/A

Nitrocellulose/Filter Paper Sandwich,

0.45 mm, 8.3 3 7.3 cm (InvitrogenTM)

Thermo-Fisher Cat #LC2001; RRID: N/A

ImageQuantTM LAS 4000 Biomolecular

Imager

GE Healthcare Life Sciences Cat #28-9558-10; RRID: N/A

CentriVap Acid-Resistant Concentrator

System

Labconco Cat #7983014; RRID: N/A

Agilent 6546 LC/Q-TOF LC–MS Agilent Technologies Cat #G6546AA; RRID: N/A

InfinityLab Poroshell 120 HILIC-Z

(2.1 mm 3 150 mm, 2.7 mm, PEEK-lined

Agilent Technologies Cat #673775-924; RRID: N/A
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RESOURCE AVAILABILITY

Lead contact
Additional information and requests for resources and/or reagents should be directed to and will be fulfilled by the lead contact, Prof.

Sarah-Maria Fendt (sarah-maria.fendt@kuleuven.be).

Materials availability
Plasmids generated in this study have been deposited to Addgene (Plasmid ID #192947).

Data and code availability
The raw and processed single-cell RNA-sequencing data generated in the present study have been deposited at the NCBI Gene

Expression Omnibus (GEO: GSE211602), and are publicly available as of the date of publication. Additionally, an interactive tool (Dy-

nAMIC: Dynamic Analysis of the Metabolism of Immune Cells) allowing readers to freely explore our scRNA-seq dynamic gene

expression data, is available at https://fendtlab.sites.vib.be/en/resources. No original code and/or algorithms are reported in the pre-

sent study; however, code used for data analysis can be provided upon request. Any additional information required to reanalyze the

data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
For in vitro experiments, 8–13-week-oldmale OT-I transgenic (C57BL/6-Tg(TcraTcrb)1100Mjb/Crl) mice (RRID:IMSR_CRL:642), with

a T cell receptor designed to recognize ovalbumin peptide residues 257–264 (OVASIINFEKL),
23,24 were obtained from Charles River

(France), and were housed in individually ventilated cages within specific pathogen-free (SPF) facilities at the KU Leuven (Leuven,

Belgium) until the start of experiments. All animal experiments and experimental procedures were previously approved by the KU

Leuven Ethical Committee for Animal Experimentation (ECD, Project Nos. P158-2016 and P019-2022), and were performed in

compliance with all relevant ethical regulations and adhering to the triple-R principle (replacement/reduction/refinement). OT-I

mice were chosen for our experiments with a view to minimize the impact of polyclonality, and ensure that all (metabolic) heteroge-

neity during in vitro responses stemmed from different activation/differentiation states, even under non-antigen-specific stimulation.

This was particularly important in the context of our scRNA-seq measurements.

For in vivo experiments, 6–12-week-oldmale and female P14 transgenic (B6.Cg-Tcratm1MomTg(TcrLCMV)327Sdz/TacMmjax) mice

(RRID:MMRRC_037394_JAX), with a T cell receptor designed to recognize peptide gp33 (KAVYNFATM) from lymphocytic choriome-

ningitis virus (LCMV),96,97 were obtained from The Jackson Laboratory (Bar Harbor, ME, USA). Wild type 5-week-old male and female

C57BL/6J mice (RRID:IMSR_JAX:000,664) were obtained from The Jackson Laboratory and bred in house. Animals were housed in

individually ventilated cages within SPF facilities at the University of Lausanne (Lausanne, Switzerland). All animal experiments and

experimental procedures were previously approved and performed in accordance with the guidelines and regulations implemented

by the Swiss Animal Welfare Ordinance.

Mouse T cell isolation for in vitro experiments
Naive CD8+ T cells were isolated from the spleens of 8–13-week-old male OT-I transgenic mice. Mice were sacrificed with an over-

dose of sodium pentobarbital (Dolethal, Vetoquinol), injected intraperitoneally at a dosage of 150–200 mg/kg. A quick whole-body

perfusion with cold PBS was then performed before harvesting the spleen. Splenocyte suspensions were prepared in Separation

Buffer (SB: PBS +3% FBS +2 mM EDTA), by mashing the freshly-resected whole spleens through 70 mm nylon cell strainers

(VWR) using the rubber ends of 10 mL syringe plungers (Terumo). Splenocytes were then resuspended in 4 mL/spleen ice-cold

RedBloodCell Lysis Buffer (Sigma-Aldrich) and incubated for 5min on ice, after which they werewashed twice with SB, filtered again

through 70 mm nylon cell strainers, and resuspended at 108 cells/mL in SB. Naive CD8+ T cells were then negatively-selected

(CD8+CD44- purity >90%) from the resulting single-cell splenocyte suspension using the MojoSort Mouse CD8 Naive T cell Isolation

Kit (BioLegend, San Diego, CA, USA). Twomodifications were introduced relative to themanufacturer’s guidelines to increase purity:

antibody/bead incubations were carried out at room temperature (instead of on ice), and cells were gently resuspended halfway

through the bead incubation. Isolated naive CD8+ T cells were then either stained for proliferation tracking, or directly prepared

for plating, as described below.

CellTrace Violet in vitro proliferation-tracking assays
To allow tracking the proliferation of CD8+ T cells upon activation in particular in vitro experiments, freshly-isolated naive CD8+ T cells

were resuspended at a density of�107 cells/mL in pre-warmed (37�C) SB supplemented with 5 mMCellTrace Violet reagent (Invitro-

gen), and gently dispersed by pipetting. Cell suspensions were then incubated for 12 min in the dark inside a water bath at 37�C, and
gently shaken every 3 min to prevent aggregation. After that, cells were washed with 10 volumes of room temperature SB, to

neutralize and remove the excess CellTrace dye, and prepared for plating, as described below.

In vitro CD8+ T cell activation and effector/memory polarization
Flat- or round-bottom 96-well plates (Corning) were coated overnight at 4�C with 50 mL/well of either 10 mg/mL (flat-bottom) or

5 mg/mL (round-bottom) anti-mouse CD3ε (BioLegend) in PBS (for stimulated wells), or 50 mL/well of PBS (for unstimulated controls).

Prior to cell seeding, plates were washed twice with 200 mL/well PBS. Freshly isolated naive CD8+ T cells were then seeded at�0.5 x

106 cells/mL (200 mL/well = 105 cells/well) in culture medium supplemented with 0.5 mg/mL soluble anti-mouse CD28 (eBioscience)

and 10 ng/mL (�50 U/mL) recombinant murine Interleukin-2 (IL-2, BioLegend), and activated for up to 72h. For differentiation exper-

iments, cells were harvested after 50-54h activation, counted, and re-plated in new round-bottom 96-well plates at�0.25 x 106 cells/

mL (200 mL/well = 5 x 104 cells/well) in fresh culture medium supplemented with either 10 ng/mL IL-2, for effector polarization, or

50 ng/mL (�10 U/mL) recombinant murine Interleukin-15 (IL-15, Peprotech), for memory polarization. Cells were then differentiated

for up to 192h in either condition, subject to daily harvesting, counting, and re-plating in new round-bottom 96-well plates at �0.5 x

106 cells/mL (200 mL/well = 105 cells/well) in fresh culture media supplemented with either cytokine (IL-2 for effector polarization, or

IL-15 for memory polarization). In experiments involving nutrient depletion during differentiation, or at the beginning of activation/dif-

ferentiation, this was achieved by simply resuspending the cells in the appropriate nutrient-depleted (rather than nutrient-replete) cul-

ture medium prior to seeding/re-plating. In experiments involving nutrient depletion from the culture media after 24h activation, the

plated cells were first spun down (3 min at 300 x g, room temperature) and medium was aspirated from each well. Cells were then

washed once with fresh medium lacking the depleted nutrients, followed by a second spin-down and medium aspiration, and final

addition of nutrient-depletedmedium supplemented with anti-CD28 and IL-2 (same concentrations as above). Media aspirations and
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additions were performed gently and along the edges of the plate wells, to minimize perturbations on the activating cells. Nutrient-

replete controls were subject to an identical medium replacement approach as nutrient-depleted conditions, only adding nutrient-

replete medium in the final step. Round-bottom plates were used for activation in all experiments involving nutrient depletion (since

this minimizes cell losses and perturbations during medium aspirations), whereas flat-bottom plates were used for activation in all

other experiments (specifically, for scRNA-seq measurements and in vitro ASNS overexpression experiments). The respective

anti-CD3ε concentrations were selected accordingly, to achieve identical activation dynamics in both cases.

In vitro culture conditions
All in vitro experiments were performed in humidified temperature/CO2-controlled (37�C, 5% CO2) incubators, and using a custom

home-made blood-like medium (BLM; complete formulation available in Table S1), whose preparation has been described else-

where.31 BLM was in all cases supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL penicillin,

100 mg/mL streptomycin, and 50 mM b-mercaptoethanol (all from Gibco). In experiments involving nutrient depletion, FBS was re-

placed with dialyzed FBS, to ensure full nutrient depletion, and the pH of nutrient-depleted or replete BLM stocks was adjusted indi-

vidually for each formulation to achieve identical pH conditions in all of them. IL-2, IL-15, and anti-CD28 were always added freshly to

the culture media, immediately before cell resuspension, and serum-containing BLM aliquots were always used within 3 days of

preparation, to mitigate serum-driven nutrient (e.g. glutamine) degradation.

In vivo Asns gene-expression measurements
Naive CD8+ T cells were isolated from the spleens of 6–12-week-oldmale P14 transgenic mice using theMojoSort Mouse CD8 Naive

T cell Isolation Kit, following themanufacturer’s guidelines, and 5x104 cells were adoptively transferred into 5–8-week-oldmale recip-

ient C57BL/6Jmice. 24 h after transfer, micewere infectedwith 2x105 PFU of LCMVArmstrong (kindly provided byDr. Dietmar Zehn).

At days 0, 5, 8, 15, and 28 post-infection, mice were sacrificed by cervical dislocation, and their spleens were harvested. CD8+ T cells

were then isolated from the spleens using the MojoSort Mouse CD8 T cell Isolation Kit (BioLegend), following the manufacturer’s

guidelines, and immediately stained for FACS sorting and further RNA extraction, as described below. No specific animal allocation

strategies were implemented for these experiments, given that all mice belonged to a single experimental group.

ASNS overexpression experiments
ASNS was stably overexpressed in activated CD8+ T cells using the murine stem cell virus (MSCV) retroviral expression system

MSCV-IRES-Thy1.1 (kindly provided by Dr. Susan M. Kaech). Retroviral production was performed by transfection of Phoenix

Eco cells (kindly provided by Dr. Pedro Romero) with MSCV ASNS-overexpression (MSCV-ASNS-OE) or MSCV empty-vector

(MSCV-EV, serving as control) constructs, with the aid of TurboFect Transfection Reagent (Thermo Scientific). Retroviral particles

were collected 48 and 72h after transfection, concentrated by ultracentrifugation (2 h at 24,000 x g, 4�C), and stored at �80�C
until use.

For in vitro ASNS overexpression experiments, naive CD8+ T cells were isolated from the spleens of 11-week-old male OT-I mice,

and activated for 24h in 96-well flat-bottom plates coated with anti-CD3ε, in nutrient-replete BLM supplemented with IL-2 and anti-

CD28, as previously described (see In vitro CD8+ T cell activation and effector/memory polarization section). After 24h of stimulation,

activated CD8+ T cells were transferred to new 96-well flat-bottom plates simultaneously coated with anti-CD3ε and 5 mg/cm2

RetroNectin (Takara Bio), and transduced with MSCV-ASNS-OE or MSCV-EV viral particles for an extra 36h. Transduced cells

were then washed with PBS, and differentiated for an extra 72h in 96-well round-bottom plates, under nutrient-replete BLM supple-

mentedwith either IL-2 or IL-15, as previously described (see In vitro CD8+ T cell activation and effector/memory polarization section).

For in vivo LCMV Armstrong infection experiments, CD8+ T cells were isolated from the spleens of 6–12-week-old male P14 trans-

genic mice using the MojoSort Mouse CD8 T cell Isolation Kit, following the manufacturer’s guidelines. CD8+ T cells were then acti-

vated in vitro for 24h in 48-well flat-bottom plates, using Dynabeads conjugated with anti-CD3 and anti-CD28monoclonal antibodies

(Gibco; 3:1 bead to cell ratio), in RPMI 1640 supplemented with 10% FBS, 100 U/mL penicillin, 100 mg/mL streptomycin, 1 mM so-

dium pyruvate, 2 mM L-glutamine, 50 mM b-mercaptoethanol (all from Gibco), and 10 ng/mL (�50 U/mL) recombinant murine IL-2

(Peprotech). Concurrently with the start of in vitro activation, 5-week-old male recipient C57BL/6J mice were infected with 2x105

PFU of LCMV Armstrong. After 24h of stimulation, activated CD8+ T cells were transferred to new 48-well flat-bottom plates coated

with 5 mg/cm2 RetroNectin (Takara Bio), and transduced with MSCV-ASNS-OE or MSCV-EV viral particles (still under Dynabeads-

based stimulation) for an extra 24h. Transduced cells were then washed with PBS, Dynabeads were removed, and 5x104 cells of

each control and ASNS OE were adoptively co-transferred into the time-matched infected recipient C57BL/6J mice. At days 8,

12, and 28 post-infection, mice were sacrificed by cervical dislocation, and their spleens were immediately harvested and processed

for FACS analysis, as described below. No specific animal allocation strategies were implemented for these experiments, given that

all mice were subject to adoptive co-transfer of identical numbers of control and ASNS OE cells, and thus all belonged to a single

experimental group.

For in vivo tumor experiments, 5-week-old female C57BL/6J mice were injected subcutaneously with 5x105 gp33-expressing

YUMM1.7 melanoma cells (YUMM1.7-gp33)80 resuspended in 50 mL PBS. Tumors were then allowed to grow for 8 days, reaching

volumes in the range 50–100 mm3, prior to adoptive CD8+ T cell transfer. In parallel with this, CD8+ T cells were isolated from the

spleens of 6–12-week-old female P14 transgenic mice, and activated in vitro for 24h in 48-well plates using Dynabeads conjugated
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with anti-CD3 and anti-CD28 (Gibco), identically as described above for LCMV Armstrong infection experiments. After 24h of stim-

ulation, activated CD8+ T cells were transferred to new 48-well plates coatedwith 5 mg/cm2 RetroNectin (Takara Bio), and transduced

with MSCV-ASNS-OE or MSCV-EV viral particles (still under Dynabeads-based stimulation) for an extra 48h. After that, transduced

cells were washed with PBS, Dynabeads were removed, and cells were expanded for an extra 72h in the presence of 10 ng/mL re-

combinant murine IL-2 (Peprotech) prior to adoptive transfer. On the day of transfer, corresponding to day 8 post tumor engraftment,

cells were washed twice with PBS, and 3x106 (for experiments without irradiation) or 1x106 (for experiments with irradiation) effector

CD8+ T cells, transducedwith either control or ASNSOE vectors, were transferred into independentmice by tail intravenous injection,

after resuspension in 200 mL PBS. For experiments subject to irradiation, micewere irradiatedwith 5Gy the day before adoptive CD8+

T cell transfer (i.e. at day 7 post tumor engraftment). Following adoptive CD8+ T cell transfer, tumor dimensions (widthW and length L,

whereW < L) were measured every 2–3 days using a caliper, and tumor volumes V were calculated from them as V = W2L= 2. At

day 18 post tumor engraftment, mice were sacrificed by cervical dislocation, and both spleens and tumors were immediately har-

vested and processed for FACS analysis, as described below. Prior to tumor processing, tumors were weighed to determine

endpoint tumor weights. For these experiments, mice were allocated to either of the control or ASNS OE groups based on the dis-

tribution of tumor volumesmeasured prior to adoptive CD8+ T cell transfer, in order to achieve a balanced distribution among the two

groups, with the average initial tumor volumes for both groups being as close as possible to each other. Onemouse, belonging to the

ASNS OE group in the experiment involving irradiation, was excluded from the study, given that the corresponding subcutaneous

tumor became ulcerated during the course of the latter, and presented significant internal growth upon the time of sacrifice.

METHOD DETAILS

Dead cell removal and single-cell RNA sequencing cell preparation
T cell activation is necessarily accompanied by substantial cell death. In order to mitigate the impact of the presence of dead cells in

our downstream single-cell sequencing measurements, dead cells were removed from our 24h activation sample (�50% viability)

using a MACS Dead Cell Removal Kit (Miltenyi Biotec). In brief, �2x106 cells were pooled from 24 culture wells and resuspended

in 100 mL Dead Cell Removal MicroBeads suspension, following the manufacturer’s guidelines thereafter. The purified live-cell sus-

pension (�90% viability) was then washed once with fresh culture medium, and resuspended at �106 cells/mL in fresh culture me-

dium supplemented with 10 ng/mL IL-2. Dead cell removal was not necessary for our 144h effector-polarized (�90% viability) or

memory-polarized (�70% viability) samples, in which case �106 cells/sample were pooled from 6 culture wells each, washed

once with fresh culture media, and resuspended at �106 cells/mL in fresh culture media supplemented with either 10 ng/mL IL-2

(for the effector-polarized sample) or 50 ng/mL IL-15 (for the memory-polarized sample). Cell suspensions were kept on ice and

immediately processed for single-cell library preparation, with a fraction of each cell suspension preserved for simultaneous

FACS analysis. The choice of culture medium for cell resuspension before single-cell library preparation, rather than the standard

PBS +0.04%BSA buffer, was motivated by the fact that preliminary tests with the latter resulted in a noticeable decrease in cell qual-

ity, particularly for the effector-polarized sample, likely due to cell starvation resulting from the elevated metabolic activity of highly

proliferating CD8+ T cells. This choice was further motivated by the focus of our study in quantifying metabolic gene expression, for

which maintaining cells in a nutrient-depleted environment would most likely lead to spurious results.

Single-cell RNA sequencing and quality-control filtering
Cell suspensions for each sample were converted to barcoded single-cell cDNA libraries using the Chromium Single Cell 30 V2 Li-

brary, Gel Bead, Chip, and Multiplex Kit (10x Genomics), following the manufacturer’s guidelines, and aiming for a total of 10,000

cells per library. Single-cell libraries were then sequenced on a NovaSeq 6000 System (Illumina). The sequenced reads were then

mapped to the mouse genome (mm10 build GRCm38.p4) using the Cell Ranger software (10x Genomics), and the resulting sin-

gle-cell gene expression data was analyzed within the R/Bioconductor framework. Specifically, the raw UMI count matrices for

each individual sample were first imported using Seurat,94 and then converted for further processing with Monocle.42 Low-quality

cells were then filtered based on standard quality-control metrics, with sample-specific thresholds chosen based on evaluating

quality-control histograms for each sample independently. In particular, cells were filtered based on their mitochondrial RNA content

(allowing for a maximum of 5% in all cases), library size (removing cells with total UMI counts below 1000/2500/2000 for the activa-

tion/effector/memory samples, respectively), and number of detected genes (removing cells expressing less than 350/800/700

genes for the activation/effector/memory samples, respectively). Genes expressed in less than 10 cells were additionally ignored

in all subsequent analyses.

Dimensional reduction, fine-grained clustering, and cell-state assignment
Size-factor and variance-stabilizing normalization (based on fitting to a negative binomial distribution) were applied to the filtered da-

tasets, and highly-variable genes (HVGs) were identified for each of them based on their departure from the average normalized

dispersion versus expression trend observed among all genes. After excluding mitochondrial, ribosomal-protein, and cell cycle-

associated genes, the top 1000 HVGs with size-factor normalized expressions above 0.005 were selected for each sample. Principal

component analysis (PCA) was then performed on the size factor-normalized and variance-stabilized count matrix restricted to these

HVGs only, followed by 2D UMAP dimensional reduction98 based on the resulting top 50 principal components (with correlation
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distance metric, number of neighbors = 15, andminimum distance = 0.05, and without further PCA scaling). After that, following the

standard Monocle pipeline, cells were clustered in the UMAP plane by applying the Louvain99 graph-based algorithm at high reso-

lution (kNN = 5/10/5 for the activation/effector/memory samples, respectively), in order to attain a fine-grained cluster structure for

each sample (69/66/40 clusters for the activation/effector/memory samples, respectively). Fine-grained clusters displaying features

indicative of low quality (e.g. elevatedActb content and/or low number of detected genes relative to neighboring clusters, ormarkedly

high expression of apoptosis and/or exhaustion markers) were removed for all subsequent analyses at this point. Of note, a majority

of these cells were found to cluster away from the bulk of the cells in each sample in the UMAP space, further supporting their removal

based on the underlying biology, by virtue of which one should expect a continuum, in the low-dimensional space, among the

different cell states present in each of our samples. Finally, the remaining fine-grained clusters were manually annotated to specific

cell states, based on evaluating the cluster-averaged normalized expression profiles of a number of cell state-specific markers.

Importantly, the resulting cell-state annotations were found to be virtually identical upon performing the fine-grained clustering in

the higher-dimensional PCA space rather than in the UMAP space.

In the case of the merged differentiation sample, consisting of both the effector- and memory-polarized samples put together, the

latter was processed following an analogous approach to the one described above for the single samples, with some particularities.

First, cell filtering was performed simply by removing all cells previously filtered out from the corresponding effector/memory-polar-

ized single-sample datasets. Second, UMAPdimensional reductionwas performed using cosine distancemetric and increased num-

ber of neighbors (30) and minimum distance (0.2) parameters, to account for the increased cell numbers. Finally, formal clustering

was not performed on this merged sample, but instead the cell-state annotations derived from the corresponding effector/mem-

ory-polarized single-sample datasets were directly transferred to their merged counterpart.

Doublet removal considerations
No doublet removal strategies were implemented in our analysis, despite the fact that the nominal doublet rate for the 10xGenomics-

based approach used in our study (10,000 cells/library) is �7.6%. This is because we did not foresee doublets being either a signif-

icant issue or easily amenable to removal in our case. Indeed, unlike other studies aimed at identifying rare cell populations (which

may be confounded by the presence of doublets), the underlying biological phenotypes present in our samples are known a priori. In

addition, each of our samples further represents a continuum of (known) cell states over a developmental trajectory, and hence most

potential doublets should, by continuity, transcriptionally lie within this continuum. This, on the one hand, makes it difficult to distin-

guish them from the surrounding non-doublet cells based just on their expression profiles. On the positive side, this also means that

including these doublets in the downstream analysis should not significantly distort the ensuing pseudotemporal patterns, as they will

necessarily be transcriptionally similar to the surrounding non-doublet cells. To confirm this, we applied doublet removal, based on

the function doubletCells in the package scran, to our activation sample (potentially the most critical in this respect, as it comprises

the largest number of cell states). In brief, we calculated doublet scores for all the cells in the sample, and labeled the top 10% cells

with the highest doublet scores (a conservative threshold based on the expected doublet rate �7.6%) as potential doublets. Aside

from the fact that potential doublets seemed to be more abundant for the Mid/Mid-Late/Late activation states (consistent with these

being themost represented states in the sample, with their cells in addition expressing a larger number of genes than their Naive/Early

counterparts, thus making them more amenable to being potentially classified as doublets), these potential doublets seemed to be

evenly distributed within each particular cell state (i.e. we found no regions with substantial doublet over-concentration). We further

assessed how these doublets cells may have affected our downstream analysis, by re-determining the dynamic expression profiles

for the top 5 ranked genes for each activation state after removing these cells, and found virtually no differences between the profiles

with or without doublet removal, thus rendering doublet removal unnecessary.

Trajectory inference and RNA velocity
Trajectory inference was performed separately on the activation sample and the combination of both differentiation samples

(effector + memory) within the Monocle3-alpha framework,42 by applying reversed graph embedding in the UMAP plane based

on the SimplePPT algorithm, using default parameters (specifically, without further gene expression scaling) other than forcing a

separate, single Louvain partition per sample in the case of the merged (effector + memory) differentiation sample. RNA velocity

calculations were performed separately on the activation sample and the combination of both differentiation samples (effector +

memory), within the scVelo framework.44 For this, the BAM files generated by the Cell Ranger software (10x Genomics) were first

processed with velocyto43 (without applying a repeat annotation mask), in order to obtain Loom files with spliced/unspliced counts

for each of the 3 samples. The Loom files for the two differentiation samples (effector + memory) were then combined using loompy

(www.loompy.org), and scVelo-compatible AnnData (.h5ad) files for the filtered activation and differentiation (effector + memory) da-

tasets were generated using the R package sceasy (www.github.com/cellgeni/sceasy). The corresponding Loom and AnnData files

were then combinedwithin scVelo,44 and processed in order to obtain RNA velocity profiles. RNA velocity calculations were based on

the top 50 principal components resulting from applying PCA to the top 2000 highly-variable genes in each dataset (after filtering out

genes with fewer than 20 total counts), with first/second-order moment computations for each cell taking into account the 500 near-

est neighbors. The simpler, stochastic velocity model was used to determine RNA velocities for the differentiation (effector +memory)

sample, whereas the more complex dynamicalmodel was used for the activation sample. This choice was imposed by the fact that,
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during CD8+ T cell activation, a majority of the top highly-variable genes corresponds to genes whose expression is repressed along

activation, leading to the stochastic model yielding velocities inverted relative to the expected biological progression.

Pathway activity analysis
Pathway activity analysis was performed using the GSVA (gene set variation analysis) package.46 In brief, count matrices for the

filtered activation and differentiation (effector + memory) datasets were first subject to size-factor and variance-stabilizing normal-

ization. GSVA scores were then determined using default parameters (particularly a Gaussian kernel for cumulative density function

estimation, as the input expression matrix is already log-normalized by virtue of the variance stabilization) for a manually assembled

list of gene sets (see Table S2), each including genes positively (UP) or negatively (DOWN) correlated with the activity of variousmeta-

bolic and signaling pathways. Activity scores for each pathway were then determined for every cell by subtracting the GSVA scores

determined for the corresponding UP and DOWN gene sets. Pathway activity scores were then averaged over all cells belonging to

every given fine-grained cluster found during single-sample processing, and these average scores were further scaled (for plotting

purposes) to the range 0–1, by means of the following mapping:

XP;C =
SP;C � SP;min

SP;max � SP;min

where XP;C is the scaled (0–1) average score for a given pathway P in the fine-grained cluster C, while SP;C is the average pathway

score for that cluster, and SP;max and SP;min are respectively the highest and lowest values of SP;C among all fine-grained clusters. For

dynamic pathway-activity profiles, pathway activity scores were instead averaged over all cells in a given cell state, and these

average scores were analogously scaled to the range 0–1 for plotting purposes.

State-based and branch-based ranking of metabolic genes
The raw countmatrix for the combination of the three datasets was normalized to units of counts per 100k reads (CP100k), by dividing

the UMI counts for every gene in each cell by the total UMI counts for that cell, and then multiplying times 105. The latter was then

subset to include only genes found within any of the metabolic gene sets in the KEGG metabolic pathway database,95 resulting in a

total of 1220metabolic genes. The normalized expression values for those genes were then averaged over all cells annotated to every

given cell state. A state-based score SS;g was then determined for every metabolic gene g, based on how dominant the expression of

that gene was in its most highly expressing cell state relative to all other states, using the formula

SS;g =

�
1

Eg;max

�
3
XN
i = 1

�
Eg;max � Eg;i

�
= N3

�
1 �

�
Eg

�
Eg;max

�

where i = 1;.;N denotes each of the different cell states, N is the total number of states considered (N = 11 here), Eg;i is the average

normalized expression of gene g for cells in state i, Eg;max is themaximum value of Eg;i among all cell states (i.e. the value of Eg;i for the

dominant state), and
�
Eg

�
is the average value of Eg;i over all cell states. Genes dominating in each state were then ranked by sorting

them in descending order of their state-based score, to obtain ranked gene lists for every state. Similarly, branch-based scores SB;g

were determined for every metabolic gene based on the overall differences in relative expression between the differentiation

branches leading to either a central-memory (CM = Undiff + Tcmp + Tcm) or an effector-memory (EM = Teff + Temp + Tem) pheno-

type, using the formula

SB;g =

�
1

Eg;max

�
3

 X
i˛CM

Eg;i �
X
i˛EM

Eg;i

!

where each summation is restricted to cell states in either branch, and with positive/negative scores denoting respectively a domi-

nant expression of gene g in the central/effector-memory branch. Genes dominating in each branch were then ranked by sorting

them in descending order of the absolute value of their branch-based score, to obtain ranked gene lists for either branch. Genes

with an average normalized expression below 1 count per 100k reads for all cell states (i.e. those with Eg;max < 1) were excluded

from all rankings, to avoid any potential bias introduced by high relative oscillations in low expression genes. This resulted in a total

of 750 metabolic genes being considered in our final state-based and branch-based rankings.

Gene expression profile correlations for genes involved in polyamine metabolism
To investigate the dynamic orchestration of CD8+ T cell metabolic programs during activation and differentiation, we focused our

attention on polyamine metabolism. Specifically, we considered the three genes directly involved in the synthesis of the polyamines

spermidine and spermine from ornithine, namely Odc1 (ornithine decarboxylase), Srm (spermidine synthase), and Sms (spermine

synthase). We additionally included among theseAmd1 (s-adenosylmethionine decarboxylase), required to produce decarboxylated

s-adenosyl methionine (SAM), a necessary cofactor in spermidine and spermine synthesis. On the other hand, we also considered

genes directly opposing polyamine synthesis, such as Paox (polyamine oxidase), Smox (spermine oxidase), and Sat1 (spermidine/

spermine N1-acetyltransferase), all involved in polyamine catabolism, as well as Ass1 (argininosuccinate synthase), Asl
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(argininosuccinate lyase), and Otc (ornithine transcarbamylase), all driving the competing urea cycle, and Oaz1 (ornithine decarbox-

ylase antizyme), directly inhibitingOdc1 activity. We also accounted in this analysis for known transcriptional regulators/targets of the

synthesis pathway, aswell as for genes participating in ancillarymetabolic pathways and hypusine synthesis. This included two of the

main pathway drivers, the transcription factorMyc and the protein kinaseMtor, as well as the downstream hypusination target Eif5a,

and the genes responsible for hypusine production Dhps and Dohh.We further considered a number of genes involved in the methi-

onine cycle, such as the SAM hydrolases Ahcy and Ahcyl1/2, several adenosyl/methyl transferases (Mtr,Mat1a/2a/2b,Dnmt1/3a/3b)

necessary for SAM production (prior to its decarboxylation via Amd1), a number of SAM-dependent methyl transferases (Armt1,

Asmt,Bhmt2,Carnmt1,Comtd1,Gamt,Mepce,N6amt1,Nop2, Pcmt1, Pemt, Prmt7, Prmt8, Suv39h1, Tpmt, Trmt2b), and themeth-

ylthioadenosine phosphorylase Mtap, responsible for methionine salvage from the by-products of polyamine synthesis. In addition,

we also considered genes involved in ornithine uptake (Slc7a1), or its production from extracellular glutamine and/or proline (Slc1a5,

Gls, Aldh18a1, Prodh, Oat) or arginine (Arg1/2, Agmat, Azin1/2), and its further shunting to the cytosol (Slc25a15) for polyamine syn-

thesis. Finally, we also considered other genes known to negatively regulate the polyamine synthesis pathway besides the previously

mentioned polyamine catabolism and urea cycle genes, such as Glud1 (glutamate dehydrogenase), diverting glutamate to a-keto-

glutarate, rather than to pyrroline-5-carboxylate (as required for ornithine synthesis).

The raw count matrix for the combination of the three datasets was normalized to units of counts per 100k reads (CP100k) for each

cell, by dividing the UMI counts for every gene in each cell by the total UMI counts for that cell, and then multiplying times 105. The

normalized count matrix was then subset to those of the above mentioned genes present in the dataset (all except for Otc, Mat1a,

Asmt, Bhmt2, Prmt8, Arg1/2, and Agmat), and normalized expression values for those genes were then averaged over all cells an-

notated to every given cell state, to obtain expression profiles for all genes as a function of cell state. These expression profiles were

further scaled to the range 0–1, by means of the following mapping:

Yg;S =
Eg;S � Eg;min

Eg;max � Eg;min

where Yg;S is the scaled (0–1) expression level for gene g in cell state S, while Eg;S is the average normalized expression level for that

cluster, and Eg;max and Eg;min are respectively the highest and lowest values of Eg;S among all cell states. Pearson correlation coef-

ficients and the corresponding p values were then calculated in R between every pair of genes A and B of interest, using the function

cor.test(YA;YB), with YA and YB being vectors of the form YA = fYA;1;YA;2;/;YA;Ng, where 1;2;/;N denote each of the different

cell states, and analogously for YB.

Flow cytometry
For in vitro activation/differentiation experiments not involving ASNS overexpression or intracellular cytokine staining, cells from the

appropriate wells of the culture plates were transferred to a round-bottom 96-well plate (Corning), washed once with PBS, resus-

pended in 50 mL/well of fixable Zombie Green viability dye (BioLegend) diluted 1/1000 in PBS, and stained for 15 min in the dark

at room temperature. Cells were then washed twice with FACS buffer (PBS +3% FBS +2 mM EDTA), resuspended in 50 mL/well

of surface-antibody cocktail, and stained for 30min in the dark at 4�C. Surface-antibody cocktails were prepared in 2.4G2 hybridoma

medium supplemented with 0.05% NaN3 (kindly provided by Dr. Stephanie-Humblet Baron), for simultaneous Fc-receptor blocking.

Cells were then washed twice with FACS buffer, resuspended in a final volume of�100 mL/well of FACS buffer, and filter-transferred

into 5mL FACS tubes with cell-strainer caps (Falcon) for FACS analysis. Single-stained compensation controls were generated using

20 mL of UltraComp eBeads compensation beads (Invitrogen) per single-stain for all antibody-based stains, or a mixture of live and

dead cells (the latter, achieved bywarming up a small cell aliquot at 60�C for 15min) for the fixable Zombie dye. Stained samples were

acquired on a FACSCanto II analyzer (BDBiosciences) using the FACSDiva v8.0 software (BDBiosciences), and further analyzedwith

FlowJo v10.7 (BD Biosciences). Events were first gated to remove cell debris in the FSC-A vs. SSC-A plane, followed by selection of

live (Zombie Green-negative) CD8+ T cells, removal of pro-apoptotic (low FSC) cells in the FSC-A vs. SSC-A plane, and doublet

removal on the FSC-H vs. FSC-A plane. The following surface-marker antibodies (all from eBioscience) and dilutions were used

for FACS analysis: anti-mouse CD8a APC (clone 53-6.7, 1/200 dilution), anti-mouse CD44 PE (clone IM7, 1/500 dilution), anti-mouse

CD62L (L-Selectin) APC-eFluor 780 (clone MEL-14, 1/150 dilution), anti-mouse CD25 PerCP-Cyanine5.5 (clone PC61.5, 1/800 dilu-

tion), anti-mouse CD69 PE-Cyanine7 (clone H1.2F3, 1/200 dilution).

For in vitro ASNS overexpression experiments, cells were processed analogously as described above, with a few particularities.

First, viability staining was performed using the Zombie Aqua (instead of Zombie Green) fixable viability dye (BioLegend), and anti-

mouse CD90.1 (Thy1.1) FITC (clone HIS15, 1/500 dilution; eBioscience) was added to the surface-antibody cocktail to allow the iden-

tification of transduced cells (Thy1.1+). Single-stained compensation controls for the FITC channel were further generated using a

mixture of transduced (Thy1.1+) and non-transduced (Thy1.1-) cells, instead of compensation beads. Finally, events were gated to

select only transduced (Thy1.1+) cells, on top of the gating strategy described above.

For in vitro intracellular cytokine staining experiments, cells were first re-stimulated for a total of 6h, by addition of 20 ng/mL PMA

(phorbol 12-myristate 13-acetate, Sigma-Aldrich) + 200 ng/mL Ionomycin (Thermo Scientific), followed by 3 mg/mL Brefeldin A

(eBioscience) supplementation 2h after the start of re-stimulation. Cells were then transferred to a round-bottom 96-well plate (Corn-

ing), and stained for viability and surface markers analogously as described above. Following surface-marker staining, cells were
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washed twice with FACS buffer, resuspended in 100 mL/well of Fixation/Permeabilization buffer (eBioscience), and fixed for 20 min in

the dark at 4�C. Cells were then washed twice with Perm/Wash buffer (eBioscience), resuspended in 50 mL/well of 2% normal rat

serum (STEMCELL Technologies) in Perm/Wash buffer, and blocked for 15 min in the dark at 4�C. Immediately after blocking,

50 mL of intracellular-antibody cocktail (prepared in Perm/Wash buffer) were added to each well, resuspending upon addition,

and cells were stained for 30 min in the dark at 4�C. Cells were then washed twice with Perm/Wash buffer, followed by one wash

with FACS buffer. After that, cells were resuspended in a final volume of �100 mL/well of FACS buffer, and filter-transferred into

5 mL FACS tubes with cell-strainer caps (Falcon) for FACS analysis. Sample acquisition and analysis, as well as single-stained

compensation-control generation, were performed analogously as described above. The following surface-marker and intracel-

lular-cytokine antibodies (all from eBioscience) and dilutions were used for FACS analysis: anti-mouse CD8a APC (clone 53-6.7,

1/200 dilution), anti-mouse CD44 APC-eFluor 780 (clone IM7, 1/500 dilution), anti-mouse CD25 PerCP-Cyanine5.5 (clone PC61.5,

1/800 dilution), anti-mouse IFNg PE-Cyanine7 (clone XMG1.2, 1/250 dilution), anti-mouse TNFaPE (cloneMP6-XT22, 1/250 dilution).

IFNg+ and TNFa+ frequencies, as well as IFNg/TNFa mean fluorescence intensities, were determined based only on single, non-

apoptotic, live CD8+ T cells.

For in vivo LCMV Armstrong infection experiments, splenocyte suspensions were prepared by mashing freshly-resected whole

spleens through a 180 mm iron-wire mesh (SEFAR) using the rubber ends of syringe plungers, followed by filtering through 70 mm

nylon cell strainers. Cells were then resuspended in ACK red blood cell lysis buffer, incubated for 1 min at room temperature, washed

once, and resuspended in FACS buffer. The resulting whole-splenocyte single-cell suspensions were directly stained in round-bot-

tom 96-well plates using the following surface-marker antibodies (either from eBioscience, BioLegend, or produced in house): anti-

mouse CD8a FITC (clone 53.6.7, 1/500 dilution), anti-mouse CD90.1 (Thy1.1) PE (clone HIS15, 1/500 dilution), anti-mouse CD45.1

Brilliant Violet 785 (clone A20, 1/50 dilution), anti-mouse CD45.2 Pacific Blue (clone Ali 4A2, 1/100 dilution), anti-mouse CD44

APC-Cyanine7 (clone IM7, 1/100 dilution), anti-mouse CD62L (L-Selectin) Brilliant Violet 711 (cloneMEL-14, 1/1000 dilution). Stained

samples were acquired on an LSR II analyzer (BD Biosciences) using the FACSDiva v8.0 software (BD Biosciences), and further

analyzed with FlowJo v10.7 (BD Biosciences). Events were first gated in the FSC-A vs. SSC-A plane to select for lymphocytes

and remove cell debris, followed by doublet removal on the FSC-H vs. FSC-W and SSC-H vs. SSC-W planes. Transduced CD8+

T cells were then selected as CD8/Thy1.1 double-positive cells, followed by gating on either ASNSOE (CD45.1HiCD45.2Lo) or control

(CD45.1Hi CD45.2Hi) cells.

For in vivo tumor experiments, harvested spleens were processed into whole-splenocyte single-cell suspensions identically as

described above for LCMV Armstrong infection experiments. In the case of tumor samples, the harvested tumors were first minced

into small pieces in digestion buffer consisting of RPMI 1640 (Gibco) supplemented with 2% FBS (Gibco), 1 mg/mL clostridium colla-

genase (Sigma-Aldrich), and 1 mg/mL DNAse (Sigma-Aldrich), and further incubated in digestion buffer for 1 h at 37�C. The digested

samples were then filtered through 70 mm nylon cell strainers, and tumor-infiltrating peripheral blood mononuclear cells (PBMCs)

were recovered using density gradient centrifugation. Specifically, samples were resuspended in a 40% Percoll (Sigma-Aldrich) so-

lution, and laid on top of a 80% Percoll solution. Samples were then centrifuged at room temperature for 20 min at 800 x g (without

brake), and the resulting PBMC rings were recovered and washed once with culture medium prior to staining. Staining of both sple-

nocytes and tumor-infiltrating PBMCswas performed in round-bottom 96-well plates. Fc receptors were first blocked using TruStain

FcX PLUS reagent (BioLegend, 1/1000 dilution), after which cells were stained for viability by incubation with Zombie NIR fixable

viability dye (BioLegend, 1/1000 dilution) for 10 min in the dark at 37�C. Cells were then washed with FACS buffer and stained for

30 min in the dark at 4�C, using the following surface-marker antibodies (either from eBioscience, BioLegend, or produced in house):

anti-mouse CD8a FITC (clone 53.6.7, 1/500 dilution), anti-mouse CD90.1 (Thy1.1) PE (clone HIS15, 1/500 dilution), anti-mouse

CD45.1 PE-Cyanine7 (clone A20, 1/100 dilution), anti-mouse CD45.2 Brilliant Violet 711 (clone Ali 4A2, 1/50 dilution), anti-mouse

CD44 PerCP-Cyanine5.5 (clone IM7, 1/50 dilution), anti-mouse CD279 (PD1) Brilliant Violet 421 (RMP1-30, 1/100 dilution), anti-

mouse CD366 (TIM3) Brilliant Violet 605 (RMT3-23, 1/100 dilution). Stained samples were acquired on an LSR II analyzer (BD Bio-

sciences) using the FACSDiva v8.0 software (BD Biosciences), and further analyzed with FlowJo v10.7 (BD Biosciences). Events

were first gated in the FSC-A vs. SSC-A plane to select for lymphocytes and remove cell debris, followed by doublet removal on

the FSC-H vs. FSC-W and SSC-H vs. SSC-W planes, and selection of live (Zombie NIR-negative) CD8+ T cells. Transduced CD8+

T cells were then selected as CD45.1/Thy1.1 double-positive cells, and their corresponding fractions out of the total live CD8+

T cell count were used to infer spleen accumulation and tumor infiltration frequencies. TIM3+ frequencies were determined based

only on single, transduced, live CD8+ T cells.

For in vivo Asns gene-expressionmeasurements, CD8+ T cells isolated at each time point of interest were directly stained in round-

bottom 96-well plates using the following surface-marker antibodies (either from eBioscience, BioLegend, or produced in house):

anti-mouse CD8a FITC (clone 53.6.7, 1/500 dilution), anti-mouse CD45.2 Pacific Blue (clone Ali 4A2, 1/100 dilution), anti-mouse

CD45.1 PE (clone A20, 1/200 dilution), and either anti-mouse CD127 Alexa Fluor 647 (clone A7R34, 1/100 dilution) + anti-mouse

KLRG1 PE-Cyanine7 (clone 2F1, 1/500 dilution), or anti-mouse CD44 APC (clone IM7, 1/500 dilution) + anti-mouse CD62L Pe-

Cyanine7 (clone MEL-14, 1/1000 dilution). Cells were then sorted on a FACSAria III sorter (BD Biosciences) using the FACSDiva

v8.0 software (BD Biosciences). Events were first gated in the FSC-A vs. SSC-A plane to select for lymphocytes and remove cell

debris, followed by doublet removal on the FSC-H vs. FSC-W and SSC-H vs. SSC-W planes. CD8+ T cells were then selected based

on CD8 expression, followed by gating on adoptively-transferred cells (CD45.1Hi CD45.2Lo). At day 8 post-infection, adoptively-

transferred cells were further sorted based on KLRG1 and CD127 expression, to select for both short-lived effector cells (SLECs,
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KLRG1Hi CD127Lo) andmemory-precursor effector cells (MPECs, KLRG1Lo CD127Hi). Similarly, at day 28 post-infection, adoptively-

transferred cells were further sorted based on CD44 and CD62L expression, to select for both central-memory (Tcm, CD44Hi

CD62LHi) and effector-memory (Tem, CD44Hi CD62LLo) cells. At days 0, 5, and 15 post-infection, the whole adoptively-transferred

population was sorted without further subpopulation selection. Sorted cells were then lysed, and cell lysates were frozen until further

used for RNA extraction, as described below.

RNA extraction and qPCR
For in vitro activation/differentiation experiments, cell suspensions were pooled from multiple culture wells (�0.3-1 x 106 cells/repli-

cate, depending on the amount of RNA expected per condition), and total RNA was extracted using the PureLink RNA Mini Kit

(Invitrogen), following the manufacturer’s guidelines for% 106 cells/sample, including on-column PureLink DNase (Invitrogen) treat-

ment, and with a final elution volume of 30 mL/sample. RNA concentration and purity were assessed based on a NanoDrop One

(Thermo Scientific) spectrophotometer, after which RNA (�300 ng/sample) was reverse-transcribed into cDNA using the qScript

cDNA Synthesis Kit (Quantabio). Ct values for Asns and the housekeeping gene Ppib (Cyclophilin B) were determined by quantitative

real-time PCR on a QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems), using the Platinum SYBR Green qPCR

SuperMix-UDG with ROX reference dye (Invitrogen) and specific primers (see key resources table). Amplification was performed

at 95�C for 2 min, followed by 40 cycles of 15 s at 95�C and 1min at 60�C. Asns expression levels were determined by first averaging

the Ct values for Asns and Ppib over 3 technical replicates per biological replicate and condition, and then converting the resulting

DCt (Asns – Ppib) values, for each biological replicate and condition, into housekeeper-normalized absolute expression levels

X = 2�DCt. Asns expression levels (or fold-changes) relative to a reference condition were then determined by dividing the values

of X for each biological replicate and condition by the average value of X for the reference condition.

For in vivo Asns gene-expressionmeasurements, frozen cell lysates from the different cell subpopulations sorted at each time point

were thawed, and RNA was isolated using the RNeasy Mini Kit (Qiagen), following the manufacturer’s guidelines, and with a final

elution volume of 30 mL/sample. RNA concentration and purity were assessed based on a NanoDrop One (Thermo Scientific) spec-

trophotometer, and equal amounts of RNA for each sample were then reverse-transcribed using the PrimeScript RT Master Mix (Ta-

kara Bio), following the manufacturer’s guidelines. Ct values for Asns and the housekeeping gene Actb (b-actin) were determined by

quantitative real-time PCR on a LightCycler 480 II Real-Time PCR System (Roche Life Science), using the TB Green Premix Ex Taq

(Takara Bio) and specific primers (see key resources table). Amplification was performed at 95�C for 30 s, followed by 40 cycles of 5 s

at 95�C and 30 s at 60�C. Asns expression levels were determined by first averaging the Ct values for Asns and Actb over 2 technical

replicates per biological replicate and condition, and then converting the resulting DCt (Asns – Actb) values, for each biological repli-

cate and condition, into housekeeper-normalized absolute expression levels X = 2�DCt.Asns expression levels (or fold-changes) rela-

tive to the naive state were then determined by dividing the values of X for each biological replicate and condition by the average value

of X for the naive state.

Protein extraction and Western blot analysis
Cell suspensions were pooled from multiple culture wells (�1-2 x 106 cells/replicate, depending on the amount of protein expected

per condition), washed once with ice-cold PBS, and lysed on ice in RIPA lysis and extraction buffer (Thermo Scientific) supplemented

with protease/phosphatase inhibitors (Cell Signaling Technology). Protein contents were then quantified using a Pierce BCA Protein

Assay Kit (Thermo Scientific). 15–20 mg of protein (per sample) were loaded on NuPAGE 4–12% denaturing Bis-Tris gels (Invitrogen),

and then transferred to nitrocellulose membranes (Thermo Scientific). Membranes were blocked for 1h at room temperature in TRIS

Buffer Saline 0.05%Tween (TBS-T) + 5%milk, washed, and subsequently incubated overnight at 4�Cwith primarymouse antibodies

against mouse ASNS (Santa Cruz Biotechnologies sc-365809 (G-10), 1/500 dilution) or mouse b-ACTIN (Sigma-Aldrich A5441,

1/10,000 dilution), both diluted in TBS-T + 5% BSA. After that, membranes were washed and incubated for 1h at room temperature

with horse anti-mouse (Cell Signaling Technology 7076, 1/4000 dilution) HRP-linked secondary antibody diluted in TBS-T + 5%milk.

Membranes were then washed, and bound antibodies were immediately visualized using SuperSignal West Femto Maximum Sensi-

tivity Substrate or SuperSignal West Pico PLUS Chemiluminescent Substrate reagents (Thermo Scientific), with image acquisition

performed on an ImageQuant LAS 4000 system (GEHealthcare). Images were further quantified using the Image Studio Lite software

(LI-COR Biosciences), for which signals were normalized relative to those of the loading control b-ACTIN.

Stable-isotope labeling and liquid chromatography–mass spectrometry
For measurements of total and de novo-synthesized asparagine levels in vitro activated/differentiated CD8+ T cells in asparagine-

replete/depleted conditions, cells were activated and differentiated as previously described (see In vitro CD8+ T cell activation

and effector/memory polarization section), with only two particularities. First, conventional asparagine was replaced in all aspara-

gine-containing BLM formulations with its heavy-isotope analog 13C4-asparagine (Cambridge Isotope Laboratories), where all four

carbon atoms in asparagine’s carbon backbone are substituted with the stable isotope 13C. This allows telling apart the fractions

of intracellular asparagine coming either from uptake from the extracellular environment (13C, labeled) or from de novo synthesis

via ASNS (12C, unlabeled; see Figure S3E). Second, FBS was replaced with dialyzed FBS in all media formulations, both to ensure

full extracellular asparagine depletion in the nutrient-depleted conditions, and to maximize 13C4-asparagine purity in the extracellular

environment for asparagine-containing conditions.
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Cell suspensions for each condition of interest were pooled at select activation/differentiation time points from multiple culture

wells (�0.5-2.5 x 106 cells/replicate, depending on the amount of biomass expected per condition), and subject tometabolic quench-

ing as previously described.31 In brief, cells were quickly pelleted by centrifugation (1 min at 1500 x g), followed by two quick washes

(1 min at 1500 x g each) with�40�C-cold quenching buffer (10 mM ammonium acetate in 60:40 methanol-water). The quenched cell

pellets were then frozen on dry ice, and stored at�80�C until extraction. Metabolite extraction was performed using 80:20 methanol-

water, containing 0.75 mg/mL glutaric acid (Sigma-Aldrich) as internal standard. Quenched cell pellets were first resuspended in 1mL

of –20�C-cold extraction buffer, and then transferred to 1.5 mL safe-lock tubes (Eppendorf), vortexed for 15 min at 4�C, and finally

centrifuged at 14,000 x g for 15 min at 4�C. Supernatants containing the extracted intracellular metabolites were then transferred to

new 1.5 mL safe-lock tubes and dried overnight at 4�C in a refrigerated vacuum concentrator (Labconco), after which they were

stored at �80�C until analysis. Dried metabolite extracts were finally re-suspended in 30 mL ice-cold 80:20 methanol-water imme-

diately before liquid chromatography–mass spectrometry (LC–MS) analysis. LC–MS-grade methanol (Riedel-de Haën) and water

(Fisher Chemical) were used in all quenching, extraction, and final re-suspension solutions. 12C-asparagine and 13C-asparagine

levels were determined using an Agilent 6546 LC/Q-TOF LC–MS system (Agilent Technologies). Specifically, 10 mL of each sample

were injected into an Agilent InfinityLab Poroshell 120 HILIC-Z (2.1 mm 3 150 mm, 2.7 mm) chromatography column (Agilent Tech-

nologies), operated at a constant flow rate of 0.25 mL/min and temperature of 30�C, and subject to a 32 min gradient (solvent A:

10 mM ammonium acetate, pH = 9.3 — solvent B: acetonitrile) for metabolite separation (0 min: 4% A; 2 min: 4% A; 5.5 min:

12% A; 8.5 min: 12% A; 9 min: 14% A; 14 min: 14% A; 19 min: 18% A; 25 min: 35% A; 27 min: 35% A; 28 min: 4% A; 32 min:

4% A). The mass spectrometer was operated in negative full-scan mode (m/z range = 50–1200), using a Dual AJS ESI source

with a spray voltage of 3.5 kV, a gas temperature of 225�C (flow rate = 13 L/min), and a sheath gas temperature of 350�C (flow

rate = 12 L/min). Metabolite identification was based on exact mass-to-charge ratios (m/z) and retention times previously determined

based on injection of asparagine standards. Data analysis was performed using the Agilent MassHunter software (Agilent Technol-

ogies), including correction for natural 13C abundance. For data presentation, total (12C + 13C) asparagine or 12C-asparagine ion

counts for each sample were first normalized relative to the corresponding sample’s internal standard (glutaric acid) ion counts,

and further normalized by the corresponding sample’s cell counts, determined upon quenching. In those samples for which aspar-

agine signal was below detection limit, normalized counts were manually set to zero. Furthermore, de novo synthesized asparagine

levels for naive cells were also manually set to zero (rather than to their measured 12C-asparagine levels). This is based on the

assumption that asparagine synthesis by naive cells from the time of isolation up to that of quenching should be negligible, with
12C-asparagine levels corresponding thus to the intrinsic asparagine levels of naive cells prior to isolation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data presentation and statistical analysis
All data are presented as mean ± SD (standard deviation), mean ± SEM (standard error of the mean), or median + inter-quartile range

(IQR), as indicated in the figure legends, with figures corresponding to in vivo data showing also individual data points, each corre-

sponding to an independent biological replicate. In the case of box and whisker plots, box hinges indicate the first/third quartiles of

the corresponding data, while box mid-lines represent medians, and whiskers span the range of the data excluding outliers (data

points more than 1.5 x IQR away from the first/third quartiles), with the latter indicated in red. Statistical analysis was performed

both within the R/Bioconductor framework, and using Microsoft Excel (Microsoft Corporation) and GraphPad Prism version 9

(GraphPad Software). The sample size for all experiments was chosen empirically, and at least 3 biological replicates (for in vivo

data) or 3 independent culture wells or samples (for in vitro data) were used for all statistical calculations, unless otherwise noted.

Statistical analysis for all time course profiles was based on linear regression of the data to orthogonal polynomials of the specified

degree in the continuous time variable, either assuming joint coefficients for all conditions being compared (restricted model), or lett-

ing the coefficients depend on the condition (full model). Statistical comparisons between the full and restricted models were then

performed using F-Tests, to determine significant differences between the time course profiles for different conditions. This was done

first considering all conditions together (global F-Test), and then between every pair of conditions (pairwise F-Tests), if more than 2,

and provided that the global test was statistically significant (indicating a significant condition effect). Further statistical comparisons

between data for different conditions at given (not necessarily fixed) time points were performed using multiple pairwise two-sided

t-Tests with Welch’s correction (unequal variance assumption). Polynomial degrees for regression were chosen empirically for each

dataset to ensure goodness of fit, and unless otherwise noted were set to at most 2 degrees lower than the number of time points in

the dataset, to avoid overfitting. All p values for pairwise F-Tests or t-Tests were subject to FDR-adjustment for multiple comparisons

using the Benjamini-Hochberg method, considering all possible pairwise comparisons (even if reported for select comparisons only)

unless otherwise noted. Further details on the statistical tests applied to each dataset are given in the corresponding figure legends.

Statistical significance levels are indicated in the figures either by the corresponding p values or using the following annotations: ns,

not significant (p R 0.05); *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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