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Abstract: Random shifting typically appears in credibility models whereas random scaling
is often encountered in stochastic models for claim sizes reflecting the time-value property
of money. In this article we discuss some aspects of random shifting and random scaling of
insurance risks focusing in particular on credibility models, dependence structure of claim
sizes in collective risk models, and extreme value models for the joint dependence of large
losses. We show that specifying certain actuarial models using random shifting or scaling
has some advantages for both theoretical treatments and practical applications.
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1. Introduction

Random shifting and random scaling in insurance applications are natural phenomena for latent
unknown risk factors, time-value of money, or the need of allowing financial risks to be dependent.
In this contribution, we are concerned with three principal stochastic models related to credibility theory,
ruin theory, and extreme value modeling of large losses.

In credibility theory (e.g., [9]) often stochastic models are defined via a conditional argument. As an
illustration, consider the classical Gaussian model assuming that the conditional random variableX|Θ =

θ has the normal distribution N (θ, σ2). If further the random variable Θ has the normal distribution
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N (µ, τ 2), we obtain the credibility premium formula for the Bayesian premium (calculated under the L2

loss function)

E{Θ|X = x} = x+
σ2

σ2 + τ 2
(µ− x) (1)

for any x, µ ∈ R and σ, τ positive. The relation explained by (1) can be directly derived by introducing
a random shift. Indeed, let Y be an independent of Θ random variable with N (0, σ2) distribution. We
have the equality in distribution

(X,Θ)
d
= (Θ + Y,Θ). (2)

Consequently, (1) follows immediately by the fact that the conditional random variable Θ|(Θ + Y ) = x

is normally distributed for any x ∈ R.
The random shifting in this approach is related to Θ which shifts Y . The random shift model given in

(2) has natural extensions. For instance, Y can be a d-dimensional normally distributed random vector
with Θ being some d-dimensional random vector; a more general case is recently discussed in [15].
Another extension is to consider Y having an elliptical distribution; see Section 4.

In ruin (or risk) theory, realistic stochastic models for claim sizes (or risks) Xi, i ≥ 1 should allow for
dependence among them. Furthermore, dependent claim sizes need to have a tractable and transparent
dependence structure. In several contributions (see [9,16] and the references therein) dependent claim
sizes (or risks) are introduced by resorting to a dependence structure implied by the Archimedean copula.
Recall that an Archimedean copula in d-dimension (denoted by Cψ) is defined by

Cψ(u1, . . . , ud) = ψ(
d∑
i=1

ψ−1(ui)), u1, . . . , ud ∈ [0, 1], (3)

where ψ is called the generator of Cψ required to be positive, strictly decreasing, and continuous with
ψ(0) = 1 and lims→∞ ψ(s) = 0, and ψ−1(x) := inf{t : ψ(t) ≤ x}; see e.g., [8] and the references
therein.

A similar idea was used in the context of ruin theory in [1] where conditional on the positive random
variable Θ

P {X1 > x1, . . . , Xn > xn|Θ = θ} =
( n∏
i=1

exp(−xi)
)θ

(4)

holds for any positive constants θ, x1, . . . , xn. Proposition 1 of the aforementioned paper shows the
link of such dependence structure (determined by (4)) with the Archimedean copula. In fact, instead
of dealing with the conditional random model defined in (4) we can consider the following equivalent
random scale model

(X1, . . . , Xn)
d
= (Y1/Θ, . . . , Yn/Θ), (5)

where Yi, i ≥ 1 are independent random variables with unit exponential distribution being further
independent of the positive random variable Θ. Clearly, (X1, . . . , Xn)|Θ = θ has joint survival function
given by (4). The random scale model (5) is interesting since it leads to certain simplifications; see [8].
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At this point, we emphasise one extreme important issue, which seems to have been very often
overlooked in the literature. Claim sizes for an infinite sequence of random variables, therefore,
specialising a particular finite dimensional distribution is not enough for completely defining the random
sequence. Of course, if the claim sizes are independent, say Yi, i ≥ 1 no caution is needed for specialising
the dependence for any n. However, if the claims sizes are assumed to be dependent, then particular
dependence structures for finite n (like say the one in (5)) lead to randomly scaled independence
structures, this is further illustrated below in our Theorem 1.

In view of the above discussions, some possible approaches for modeling dependent claim sizes (or
risks) include:

• copula-based models (here one needs to be careful since dependence structures for infinite
sequences are needed!);

• conditional dependence models;

• random scale models;

• transformation of simple independence models.

The last point above means that if Yi, i ≥ 1 are independent claim sizes, then Xi = f(Yi1 , . . . , Yim) with
f some given deterministic function and i1, . . . , im indices form a dependent sequence of claim sizes.
One important example in this direction is the multivariate Pareto distribution of the second kind dealt
with in [2,3]. Many other dependence models, like m dependence or common shock models can be
introduced by this simple transformation of independent risks.
Of course these are only a few possibilities which lead to tractable dependence structures with certain
appeal to actuarial applications; see also [4,9,11–14,21,23,24] and the references therein.

Finally, we mention that there are several other aspects of actuarial models where random shifting
and scaling are intrinsically present. For instance, in [23] a new interesting copula model was studied,
which can be alternatively introduced by a random scale of independent risks; see discussions in Section
4.

The principal goal of this contribution is to discuss various aspects of random shift and random
scale paradigms in actuarial models. Our analysis leads to new derivations and insights concerning
the calculation of the Bayesian premium. Furthermore, we show that modeling claim sizes by a class of
Dirichlet random sequences can be done in the framework of a tractable random scale model. Further,
we point out that random scaling approach is of interest for modeling large losses as in the setup of [23].
As a by-product a new class of LP Dirichlet random vectors is introduced.

Organisation of the paper: In Section 2 we consider the Bayesian premium through certain random
shift model. Our main finding is presented in Section 3 which generalizes Theorem 1 in [8]. Section 4 is
dedicated to discussions and extensions.

2. Credibility Premium in Random Shift Models

For a given d-dimensional distribution function F we define a shift family of distribution functions
F (x;θ) = F (x−θ),x,θ ∈ Rd. Typically, the assumption on a loss random vectorX is thatX|Θ = θ
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follows a distribution function parametrised by θ, say it follows F (x;θ). A direct way to formulate this
model is via the random shift representation

(X,Θ)
d
= (Y + Θ,Θ), (6)

where Y has distribution function F and is independent of Θ. If Θ possesses a probability density
function (pdf) h, then clearlyX also possesses a pdf given byE{h(x−Y )}. Consequently, the Bayesian
premium (under a L2 loss function) when it exists, is given by

E{Θ|X = x} = E{Θ|(Θ + Y ) = x}

= x− E{Y h(x− Y )}
E{h(x− Y )}

, (7)

where for the derivation of the last equality (7) we assumed additionally that Y also possesses a pdf.
Clearly, if Y d

= −Y we have further

E{Θ|X = x} = x+
E{Y h(x+ Y )}
E{h(x+ Y )}

. (8)

The random shift model (6) is transparent and offers a clear advantage in comparison with the
conditional model, if the joint distribution of (Θ + Y ,Θ) (or (Θ + Y ,Y )) can be easily found as
illustrated below.

Example 1. Suppose that X|Θ ∼ Nd(Θ,Σ) with Θ ∼ Nd(µ,Σ0) (here Nd(ν, A) stands for the
d-dimensional normal distribution with mean ν and covariance matrix A). Suppose further that Σ + Σ0

is positive definite. It follows that (X,Θ)
d
= Z = (Θ + Y ,Θ) with Y ∼ Nd(0,Σ) independent of Θ.

Therefore, in the light of [9] the fact that Z is normally distributed in R2d implies that Y |(Θ + Y ) = x

is normally distributed with mean

µ̄ = E{Y |(Θ + Y ) = x} = (x− µ)(Σ + Σ0)−1Σ.

Consequently

E{Θ|X = x} = x−E{Y |(Θ + Y ) = x} = x+ (µ− x)(Σ + Σ0)−1Σ. (9)

Particularly, if Σ is positive definite

E{Θ|X = x} = x+ (µ− x)(Σ0Σ−1 + Id)
−1, (10)

where Id denotes the d× d identity matrix.
Clearly, (1) is immediately established by the above for the special case that d = 1 and Σ = σ2,Σ0 =

τ 2 .
It is worth pointing out that (10) was derived by [15] when Σ0 is non-singular using an indirect (in
that case complicated) approach; whereas Example 1 gives a short direct proof for the formula of the
Bayesian premium in the random shift Gaussian model, where we can further allow Σ0 to be singular.
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3. Dirichlet Claim Sizes & Random Scaling

A fundamental question when constructing models for claim sizes Xi, i ≥ 1 is how to introduce
tractable dependence structures. As mentioned in the Introduction, one common approach in the actuarial
literature is to assume that the survival copula of Xi, i ≤ n is a n-dimensional Archimedean copula; see
e.g., [1,22] and the references therein. In view of the link between Archimedean copula and Dirichlet
distribution explained in [17], we choose the direct approach for modeling claim sizes by a Dirichlet
random sequence as in [8].

With motivation from the definition of L1 Dirichlet random vectors, we introduce next d-dimensional
Lp Dirichlet random vectors. LetGamma(a, λ) denote the Gamma distribution with positive parameters
a, λ. It is known that the pdf of it is λaxa−1 exp(−λx)/Γ(a), where Γ(·) stands for the Euler Gamma
function. Fix some positive constants αi, i ≥ 1, and p. In the rest of the paper, without special indication,
let Yi, i ≥ 1 denote a sequence of positive independent random variables defined on some probability
space (Ω,A,P) such that, for any i ≥ 1, Y p

i has Gamma(αi, 1/p) distribution with parameters αi and
p. It follows easily that the pdf of Yi is given by

fi(x) =
p1−αi

Γ(αi)
xpαi−1 exp

(
−x

p

p

)
, x > 0.

We say that (X1, . . . , Xd) is a d-dimensional Lp Dirichlet random vector, if the stochastic representation

(X1, . . . , Xd)
d
=

(
R

Y1

(
∑

1≤i≤d Y
p
i )1/p

, . . . , R
Yd

(
∑

1≤i≤d Y
p
i )1/p

)
=: RO (11)

holds with some positive random variable R defined on (Ω,A,P) which is independent of the random
vector O. The reason for the name of Lp Dirichlet random vector (and distribution) is that the angular
componentO lives on the unit Lp-sphere of Rd, i.e.,

d∑
i=1

Op
i = 1.

When p = 1,O has the Dirichlet distribution on the unit simplex; see [17].
The main result of this section displayed in the next theorem shows that the model with Dirichlet

claim sizes can be explained by a random scale model.

Theorem 1. Let Xi, i ≥ 1 be positive random variables. If, for any d ≥ 2, the random vector
(X1, . . . , Xd) has a d-dimensional Lp Dirichlet distribution with representation (X1, . . . , Xd)

d
= RdOd,

then

{Xi, i ≥ 1} d
= {SYi, i ≥ 1}, (12)

with S a non-negative random variable defined on (Ω,A,P), independent of Yi, i ≥ 1.

Proof: By definition, it is sufficient to show that, for any d ≥ 1

(X1, . . . , Xd)
d
= S(Y1, . . . , Yd) (13)
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for the non-negative random variable S required. Since for any n ≥ d the random vector (X1, . . . , Xn)

has a Lp Dirichlet distribution, then we have the stochastic representation

(X1, . . . , Xd)
d
=
Rn

an

1

(
∑n

i=1 Y
p
i )1/p/an

(Y1, . . . , Yd), (14)

with an = (
∑n

i=1 αi)
1/p. Therefore, we have the convergence in distribution (denoted here as d→)

Rn

an

1

(
∑n

i=1 Y
p
i )1/p/an

(Y1, . . . , Yd)
d→ (X1, . . . , Xd)

as n→∞. Clearly, by the strong law of large numbers, as n→∞ we have the almost sure convergence
(
∑n

i=1 Y
p
i )1/p/an → 1 which entails

Rn

an
(Y1, . . . , Yd)

d→ (X1, . . . , Xd)

as n→∞, meaning that

ln

(
Rn

an

)
+ (ln(Y1), . . . , ln(Yd))

d→ (ln(X1), . . . , ln(Xd)), n→∞.

In the light of Theorem 3.9.4 in [10], by the independence of Rn and (Y1, . . . , Yd) we conclude that

Rn

an

d→ S, n→∞,

with S some non-negative random variable defined on (Ω,A,P) such that

(ln(Y1) + ln (S) , . . . , ln(Yd) + ln (S))
d
= (ln(X1), . . . , ln(Xd))

implying (13), and thus the claim follows. �

The following corollary is a generalization of Theorem 1 in [8].

Corollary 2. If the claim sizes Xi, i ≥ 1 are identically distributed, then under the assumptions and
notation of Theorem 1 (12) holds with Yi, i ≥ 1 a sequence of independent random variables with
common pdf f(x) = p1−α/Γ(α)xpα−1 exp(−xp/p), x > 0, for some α > 0.

In view of the well-known Beta-Gamma algebra (see e.g., [25]) if α ∈ (0, 1), then Yi in Corollary 2
can be re-written as

Yi
d
= (TiEi)

1/p, i ≥ 1,

with Ti a Beta distribution with parameters α, 1 − α and Ei being exponential distributed with mean p.
Further, Ti, Ei, i ≥ 1 are mutually independent. Consequently

(X1, . . . , Xn)
d
= (S(T1E1)1/p, . . . , S(TnEn)1/p), n ≥ 1.

Note that (SE1, . . . , SEd), d > 1 is a d-dimensional L1 Dirichlet random vector.
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4. Discussions & Extensions

The conditional credibility model considered in Section 2 is simple since we used a single distribution
function F to define a shift family of distributions, i.e., F (x,θ) = F (x−θ). Of course, we can consider
a more general case that F = Fθ is a family of d-dimensional distributions and assume that X|Θ = θ

has distribution function Fθ(x − θ). Hence the random shift model is (X,Θ)
d
= (Θ + Y ,Θ), where

Y |Θ = θ has distribution function Fθ. It is clear that the random shift model is again specified via a
conditional distribution, so there is no essential simplification by re-writing the conditional model apart
from the case that the joint distribution of (Y ,Θ) is known.

We consider briefly a tractable instance that (Y ,Θ) has an elliptical distribution in R2d, i.e.,

(Y ,Θ)
d
=

(
R

Z1√∑2d
i=1 Z

2
i

, . . . , R
Z2d√∑2d
i=1 Z

2
i

)
C + ν =: RUC + ν, ν ∈ R2d, (15)

with Zi, i ≤ 2d independent N (0, 1) distributed random variables being further independent of R > 0,
and C a square matrix in R2d×2d. For more details and actuarial applications of elliptically symmetric
multivariate distributions see [9].

Let I = {1, . . . , d} and J = {d+1, . . . , 2d}. For any 2d×2dmatrixA, denoteAI,J as the sub-matrix
of A obtained by selecting the elements with row indices in I and column indices in J . Similarly, for any
row vector ν ∈ R2d, define νI and νJ to be the sub-vectors of ν. Further, denote by A> the transpose of
matrix A.

By the stochastic representation (15) we obtain that

(Θ + Y ,Θ)
d
= RUC∗ + ν∗,

where

C∗ =

(
CI,I + CI,J CI,J

CJ,I + CJ,J CJ,J

)
, ν∗ = (νI + νJ ,νJ).

Set B = (C∗)>C∗ and assume that B is non-singular. As in the Gaussian case, for the more general
class of elliptically symmetric distributions, the conditional random vector Θ|(Θ + Y ) = x is again
elliptically symmetric with stochastic representation (suppose for simplicity νI = 0,νJ =: µ)

Θ|(Θ + Y ) = x
d
= µ+ (x− µ)B−1

I,IBI,J +RxUD,

where D is a square matrix such that D>D = BJ,J − BJ,IB
−1
I,IBI,J , and the random variable Rx > 0 is

independent of U ; see e.g., [6]. Consequently, since U has components being symmetric about 0, we
obtain the Bayesian premium formula

E{Θ|X = x} = µ+ (x− µ)B−1
I,IBI,J , (16)

provided that E{Rx} <∞. In the special case that CI,J and CJ,I have all entries equal to 0, and further

C>I,ICI,I = Σ C>J,JCJ,J = Σ0,

we conclude that (9) holds.
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The random vectorO defined in (11) has componentsOi, i ≤ d such thatOp
i has beta distribution with

parameters αi,
∑

j≤d,j 6=i αj; see e.g., [8]. In the special case that αi = 1/p for any i ≤ d, properties ofO
and X = RO with R > 0 independent of O are studied in [20]. Our result in Corollary 2 agrees with
the finding of Theorem 4.4 in the aforementioned paper. Note that, for the case p = 2 the corresponding
result of Theorem 1 for spherically symmetric random sequences is well-known, see e.g., [5,19].

Weighted Lp Dirichlet random vectors are naturally introduced by using indicator random variables.
Specifically, let R > 0 andO be given as in (11). Further, let Ii, i ≤ d be independent Bernoulli random
variables defined on (Ω,A,P) with P {Ii = 1} = qi = 1 − P {Ii = −1}, qi ∈ (0, 1], i ≤ d, which is
further independent of the random vector (R,O). The random vectorX with stochastic representation

X
d
= (RI1O1, . . . , RIdOd) (17)

is referred to as a weighted Lp Dirichlet random vector with indicators Ii, i ≤ d and parameters
α1, . . . , αd.
If Ii’s are iid with E{I1} = 0 and α1 = . . . = αd = 2 = p, then

(I1O1, . . . , IdOd)
d
=

(
Z1√∑d
i=1 Z

2
i

, . . . ,
Zd√∑d
i=1 Z

2
i

)
.

Therefore, if R2 is chi-square distributed with d degrees of freedom then X has a centered Gaussian
distribution with N(0, 1) independent components. The introduction of the weighted Dirichlet random
vectors is important since it includes the normal distribution as a special case. In addition, weighted
Dirichlet random vectors are suitable for modeling claim sizes in certain ruin models with double-sided
jumps; see Example 4 in [8].

As in the case of Lp Dirichlet random sequences, in the weighted case the dependence structure can
be given through a random scale model as well. More precisely, if the random sequence Xi, i ≥ 1, is
such that, for any fixed d ≥ 2, (X1, . . . , Xd) is a weighted Lp Dirichlet random vector with indicators
Ii, i ≤ d and parameters α1, . . . , αd, then

{Xi, i ≥ 1} d
= {SIiYi, i ≥ 1}, (18)

with S some non-negative random variable defined on (Ω,A,P) which is independent of Ii, Yi, i ≥ 1.
With motivation from credibility theory, we propose to consider a new class of multivariate

distributions called LP Dirichlet distributions, which is naturally introduced by letting the parameter
p in our definition above to be random (a common feature of credibility models where parameters are
random elements).

Specifically, let P be a positive random variable, and let αi, i ≥ 1 be positive constants. Further,
let Yi, i ≥ 1 be independent random variables, which are further independent of P such that Y P

i has
Gamma(αi, 1) distribution. We say that (X1, . . . , Xd) is a d-dimensional LP Dirichlet random vector if

(X1, . . . , Xd)
d
=

(
R

Y1

(
∑

1≤i≤d Y
P
i )1/P

, . . . , R
Yd

(
∑

1≤i≤d Y
P
i )1/P

)
=: RO(P ) (19)
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holds for some positive random variable R independent of P and (Y1, . . . , Yd). Here, for any O(P ) =

(O1, . . . , Od)
d∑
i=1

OP
i = 1.

This multivariate distribution can be used in the context of credibility models, models for large losses,
models for risk aggregation, or models for claim sizes. If we assume that Xi, i ≥ 1 is a sequence of
claim sizes such that, for any n ≥ 2, (X1, . . . , Xd) has a d-dimensional LP Dirichlet distribution, then
an extension of Theorem 1 for this case is possible. More precisely choosing now an = (

∑n
i=1 αi)

1/P

we conclude that
{Xi, i ≥ 1} d

= {SYi, i ≥ 1},

with some non-negative random variable S independent of Yi, i ≥ 1.
In what follows, we consider a new copula class introduced in [23] which is referred to as MGB2

copula. Let Θ be a positive random variable having an inverse Gamma distribution with shape parameter
q > 0 and a unit scale, i.e., 1/Θ has Gamma(q, 1) distribution. In view of the aforementioned paper
(X1, . . . , Xn) has a MGB2 distribution (or MGB2 copula) if Xi’s are positive random variables and
X1|Θ = θ, . . . , Xn|Θ = θ are independent with pdf fXi|Θ, i ≤ n given by

fXi|Θ(xi|θ) =
ai

Γ(pi)xiθpi

(
xi
bi

)aipi
e−θ

−1(xi/bi)
ai , xi > 0, θ > 0.

Here the parameters ai, bi, pi, i ≤ n are all positive constants. Instead of using the conditional argument,
we can directly define (X1, . . . , Xn) via a random scale model as follows

(X1, . . . , Xn)
d
= (Θ1/a1W1, . . . ,Θ

1/anWn), (20)

with W1, . . . ,Wn being independent positive random variables such that, for any fixed i ≤ n, W ai
i has

Gamma(pi, b
−ai
i ) distribution. One advantage of the random scale model (20) is that, for modeling

purposes, it can be re-written as a random shift model

(lnX1, . . . , lnXn)
d
=
( 1

a1

ln Θ + lnW1, . . . ,
1

an
ln Θ + lnWn

)
. (21)

Another advantage of the random scale model (20) becomes clearer if of interest is the joint tail
asymptotic behaviour of (X1, X2), as discussed in [23]. As illustrated below, the regular variation
of survival function of Θ is enough for the joint tail asymptotic behaviour of (X1, X2); distributional
assumptions on Θ are not really necessary.

Example 2. Let (W1,W2) be defined as above with the parameters therein and further assume that
a1 = a2 = a > 0. Define (X1, X2) through (20) with Θ an independent of (W1,W2) random variable
having a regularly varying tail behavior at infinity with index q > 0, i.e.,

lim
x→∞

P {Θ > tx}
P {Θ > x}

= t−q, ∀t > 0.

For modeling joint behaviour of large losses of interest is the calculation of the following limit

lim
t→∞

P {X1 > c1t,X2 > c2t}
P {X1 > t}
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for c1, c2 positive constants, see e.g., [7] and [9]. In our case we have

P {X1 > c1t,X2 > c2t}
P {X1 > t}

=
P {Θ1/aW1/c1 > t,Θ1/aW2/c2 > t}

P {Θ1/aW1 > t}

=
P
{

Θ min
(

(W1/c1)a, (W2/c2)a
)
> ta

}
P {ΘW a

1 > ta}

→
E

{(
min(W1/c1,W2/c2)

)aq}
E{W aq

1 }
= I(c1, c2) > 0

as t → ∞ where in the last step we applied Breiman’s lemma; see e.g., [18]. Since the asymptotic
dependence function I(c1, c2) is positive, an appropriate extreme value model for the joint survival
function of X1 and X2 is the one that allows for Fréchet marginals and asymptotic dependence.

5. Conclusion

This contribution shows that in various insurance applications besides common conditional stochastic
models, equivalent random shift or random scale models can be analysed and explored. As explained in
the context of credibility models, simple random shift models lead to direct derivations for the calculation
of the Bayesian premium. In particular, Example 1 shows that for Gaussian models, the covariance
matrix of the prior distribution can be singular without changing the outcome.

Our main result concerning the random scale property of Lp Dirichlet random sequences is not only
of theoretical importance but also of practical importance, since in certain models claim sizes can be
reduced to random scale of independent random sequences with known marginal distributions.

Example 2 demonstrates the usefulness of random scale models for analysing joint survival functions
for large thresholds. As a by-product in Section 4 we suggest a new dependence structure of interest for
dependent risks.
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