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  University of Lausanne 

Faculty of Business and Economics 
 
 

PhD in Business Analytics 
 
 
 
 
 
 
 

I hereby certify that I have examined the doctoral thesis of  
 
 

Dmitry MIKUSHIN 
 
 

and have found it to meet the requirements for a doctoral thesis. 
All revisions that I or committee members 

made during the doctoral colloquium 
have been addressed to my entire satisfaction. 

 
 
 
 
 

Signature:  ____________________________   Date:  _________________ 
 
 
 

Prof. Simon SCHEIDEGGER 
Thesis supervisor 

Simon Scheidegger


Simon Scheidegger


Simon Scheidegger


Simon Scheidegger


Simon Scheidegger


Simon Scheidegger


Simon Scheidegger


Simon Scheidegger


Simon Scheidegger


Simon Scheidegger






 
 

University of Lausanne 
Faculty of Business and Economics 

 
 

PhD in Business Analytics 
 
 
 
 
 

 
 

I hereby certify that I have examined the doctoral thesis of  
 

 
Dmitry MIKUSHIN 

 
 

and have found it to meet the requirements for a doctoral thesis. 
All revisions that I or committee members 

made during the doctoral colloquium 
have been addressed to my entire satisfaction. 

 
 

 
 

 
Signature:  ____________________________   Date:  _________________ 

 
 
 

Prof. Philipp RENNER 
Thesis co-supervisor 

 
 

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner

Philipp Renner





 
 

University of Lausanne 
Faculty of Business and Economics 

 
 

PhD in Business Analytics 
 
 

 
 
 
 
 

I hereby certify that I have examined the doctoral thesis of  
 
 

Dmitry MIKUSHIN 
 

 
and have found it to meet the requirements for a doctoral thesis. 

All revisions that I or committee members 
made during the doctoral colloquium 

have been addressed to my entire satisfaction. 
 
 
 
 
 

Signature:  ____________________________   Date:  _________________ 
 

 
 

Prof. Michalis VLACHOS 
Internal member of the doctoral committee 

 
 
 

mvlachos
7.12.2022





 
 

University of Lausanne 
Faculty of Business and Economics 

 
 

PhD in Business Analytics 
 
 

 
 
 
 
 

I hereby certify that I have examined the doctoral thesis of  
 
 

Dmitry MIKUSHIN 
 

 
and have found it to meet the requirements for a doctoral thesis. 

All revisions that I or committee members 
made during the doctoral colloquium 

have been addressed to my entire satisfaction. 
 
 
 
 
 

Signature:  ____________________________   Date:  _________________ 
 

 
 

Prof. Florian OSWALD 
External member of the doctoral committee 

 
 

 

flo oswald
7 December 2022





First you jump off the cliff and build

your wings on the way down.

— Ray Bradbury
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Abstract
This thesis consists of three applications of contemporary high-performance com-

puting to accelerate large-scale dynamic models in economics and finance. The

first chapter is entitled “Scalable high-dimensional dynamic stochastic economic

modeling” and presents a highly parallelizable and flexible computational method

to solve high-dimensional stochastic dynamic economic models. By exploiting the

generic iterative structure of this broad class of economic problems, we propose a

parallelization scheme that favors hybrid massively parallel computer architectures.

Numerical experiments on “Piz Daint” at the Swiss National Supercomputing Centre

show that high-dimensional international real business cycle models can be effi-

ciently solved in parallel up to 2,048 compute nodes. The second chapter is called

“Rethinking large-scale economic modeling for efficiency: optimizations for GPU

and Xeon Phi clusters” and proposes a massively parallelized and optimized frame-

work to solve high-dimensional dynamic stochastic economic models on modern

GPU- and KNL-based clusters. Numerical experiments show that our framework

scales to at least 4,096 compute nodes. The third chapter, titled “GPU-Accelerated Dy-

namic Human Capital Models” develops a generic computational method for dynamic

discrete-choice models. We align the generic numerical properties of the models un-

der consideration with the recent advancements in GPU computing hardware in order

to solve, simulate, and calibrate models of great complexity in relatively short times.

Our tests show a speedup of at least three orders of magnitude over the previous state

of the art.
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Résumé
Cette thèse consiste en trois applications du calcul haute performance contempo-

rain pour accélérer les modèles dynamiques à grande échelle en économie et en

finance. Le premier chapitre s’intitule “Scalable high-dimensional dynamic stochas-

tic economic modeling” et présente une méthode de calcul flexible et hautement

parallélisable pour résoudre des modèles économiques dynamiques stochastiques

à haute dimension. Nous proposons un schéma de parallélisation qui favorise les

architectures informatiques hybrides massivement parallèles. Des test numériques

au Centre national suisse de supercalcul montrent que des modèles internationaux

de cycle économique réel de haute dimension peuvent être résolus efficacement en

parallèle jusqu’à 2,048 nœuds de calcul. Le deuxième chapitre s’intitule “Rethinking

large-scale economic modeling for efficiency : optimizations for GPU and Xeon Phi

clusters” et propose un cadre massivement parallélisé et optimisé pour résoudre des

modèles économiques stochastiques dynamiques de haute dimension sur des clusters

modernes basés sur GPU et KNL. Notre tests montrent que notre cadre s’adapte à

au moins 4,096 nœuds de calcul. Le troisième chapitre, intitulé “GPU-Accelerated

Dynamic Human Capital Models”, développe une méthode de calcul générique pour

les modèles dynamiques à choix discret. Nous alignons les propriétés numériques

génériques des modèles considérés avec les progrès récents du matériel de calcul

GPU afin de résoudre, simuler et calibrer des modèles de grande complexité dans

des délais relativement courts. Nos tests montrent une accélération d’au moins trois

ordres de grandeur par rapport à l’état de l’art précédent.
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Synthesis
This thesis consists of three applications of contemporary high-performance comput-

ing (HPC) to accelerate large-scale dynamic models in economics and finance.

The first chapter is entitled “Scalable high-dimensional dynamic stochastic economic

modeling” (Brumm et al., 2015), is co-authored with Johannes Brumm (KIT, Germany),

Simon Scheidegger (UNIL, Switzerland), and Olaf Schenk (USI, Switzerland). In this

work, we present a highly parallelizable and flexible computational method to solve

high-dimensional stochastic dynamic economic models. Solving such models often

requires the use of iterative methods, like time iteration or dynamic programming. By

exploiting the generic iterative structure of this broad class of economic problems,

we propose a parallelization scheme that favors hybrid massively parallel computer

architectures. Within a parallel nonlinear time iteration framework, we interpolate

policy functions partially on GPUs using an adaptive sparse grid algorithm with piece-

wise linear hierarchical basis functions. GPUs accelerate this part of the computation

by one order of magnitude, thus reducing overall computation time by 50%. The

developments in this paper include the use of a fully adaptive sparse grid algorithm

and the use of a mixed MPI-Intel TBB-CUDA/Thrust implementation to improve the

interprocess communication strategy on massively parallel architectures. Numerical

experiments on “Piz Daint” (Cray XC30) at the Swiss National Supercomputing Centre

show that high-dimensional international real business cycle models can be efficiently

solved in parallel. To the best of our knowledge, this performance on a massively

parallel petascale architecture for such nonlinear high-dimensional economic models

has not been possible prior to the present work.

The second chapter is called “Rethinking large-scale economic modeling for efficiency:

optimizations for GPU and Xeon Phi clusters” (Scheidegger et al., 2018), is co-authored

with Simon Scheidegger (UNIL, Switzerland), Felix Kubler (UZH, Switzerland), Olaf

Schenk (USI, Switzerland). In this publication, we propose a massively parallelized and

optimized framework to solve high-dimensional dynamic stochastic economic mod-

els on modern GPU- and KNL-based clusters. First, we introduce a novel approach for

adaptive sparse grid index compression alongside surplus matrix reordering, which

vii



Synthesis

significantly reduces the global memory throughput of the compute kernels and maps

randomly accessed data onto cache or fast shared memory. Second, we fully vectorize

the compute kernels for AVX, AVX2, and AVX512 CPUs, respectively. Third, we develop

a hybrid cluster-oriented work-preempting scheduler based on TBB, which evenly

distributes the time iteration workload onto available CPU cores and accelerators.

Numerical experiments on Cray XC40 KNL “Grand Tave” and on Cray XC50 “Piz Daint”

systems at the Swiss National Supercomputer Centre (CSCS) show that our framework

scales nicely to at least 4,096 compute nodes, resulting in an overall speedup of more

than four orders of magnitude compared to a single, optimized CPU thread. As an

economic application, we compute global solutions to an annually calibrated stochas-

tic public finance model with sixteen discrete, stochastic states with unprecedented

performance.

The third chapter, titled “GPU-Accelerated Dynamic Human Capital Models” is co-

authored with Philipp Eisenhauer (UBonn, Germany and Amazon, USA) and Simon

Scheidegger (UNIL, Switzerland). In this paper, we develop a generic computa-

tional method for dynamic discrete-choice models. Building on the RESPY project

(https://respy.readthedocs.io), an open-source research code for the flexible speci-

fication, simulation, and estimation of discrete-choice models, we align the generic

numerical properties of the models under consideration with the recent advance-

ments in General-Purpose Graphics Processing Units (GPU) computing hardware in

order to solve, simulate, and calibrate models of great complexity in relatively short

times. Specifically, our contribution is threefold. First, we propose an optimal mem-

ory layout for EKW model data, so that the CPU could perform backward induction

with minimum possible pipeline stalls. Second, we derive a partitioning algorithm to

distribute the EKW problem to hundred thousand of parallel workers. And third, we

develop a generic C++ model core, which is compatible with CUDA and HIP GPU run-

times used by 5 out of 6 currently fastest supercomputers. Our tests show a speedup

of at least three orders of magnitude over the previous state of the art, which will allow

us to tackle discrete-choice models of unprecedented complexity, which opens the

room for novel applications that were previously thought to be intractable.
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1 Scalable High-Dimensional Dynamic
Stochastic Economic Modeling

We present a highly parallelizable and flexible method to compute global solutions of

high-dimensional stochastic dynamic economic models. By exploiting the generic

structure of such problems, we propose a parallelization scheme that favours CPU-

GPU hybrid supercomputing systems. Within a MPI-parallel time-iteration frame-

work, we interpolate policy functions on GPUs using an adaptive sparse grid algo-

rithm with piecewise multi-linear hierarchical basis functions. The defining feature

of sparse grids is that they grow considerably slower with increasing dimension than

standard tensor product grids. Moreover, in order to capture steep gradients and non-

differentiabilities, the grid scheme is automatically refined locally. Due to the high

arithmetic density of the interpolation, GPUs can accelerate this part of the computa-

tions by more than one order of magnitude, thus reducing the overall computational

time by a factor of three. The proposed algorithm enables us to efficiently solve dy-

namic economic models of a level of complexity and heterogeneity not possible before.

To demonstrate the performance of our method, we apply it to high-dimensional

international real business cycle models with capital adjustment costs and irreversible

investment. Performance tests on the ‘Piz Daint Cray CX30’ supercomputer indicate

that our algorithm scales nicely to at least ten thousand cores for intermediate-sized

problems, and even reaches sustained petaflop performance in the case of weak

scaling.

1.1 Introduction

Driven by theoretical developments and the availability of “big data,” contemporary

models in economics and finance have seen tremendous growth in complexity. Het-

erogeneity between types of agents, such as hand-to-mouth and non hand-to-mouth

consumers (see, e.g., Bilbiie (2008); Debortoli and Galí (2017); Kaplan et al. (2018)),
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financial frictions (see, e.g., Fernández-Villaverde et al. (2016); Dou et al. (2017), and

references therein),such as borrowing constraints, and distributional channels (see,

e.g., Krueger et al. (2016)) are widely recognized as key ingredients for modern macroe-

conomic models.

Clearly, any economy is an extremely complex system. Even when modeling only

the most relevant features of a small part of this system, one easily ends up with a

large and intricate formal structure. This is often due to the heterogeneity across

different consumers, workers, households, firms, sectors, or countries. A further

complication stems from the fact that human beings choose their actions based on

expectations about an uncertain future. This feedback from the future makes dy-

namic stochastic economic modeling particularly difficult (see, e.g., Ljungqvist and

Sargent (2000); Stokey et al. (1989a)). Model-based economics has for the most part

reacted to this challenge in two ways. Either by focusing on qualitative results ob-

tained from extremely simplified models with little heterogeneity, or by only locally

solving the equation systems that describe the dynamics around a so-called steady

state. In contrast, solving for the global solution of a model with substantial het-

erogeneity is very costly: The computation time and storage requirements increase

dramatically with the amount of heterogeneity, i.e. with the dimensionality of the

problem. It is therefore often far beyond the scope of current methods to include

as much heterogeneity as a natural modeling choice would suggest. In overlapping

generations models researchers often use time-steps that exceed one year by far. For

instance, Krueger and Kubler (2004) analyze the welfare implications of social security

reform in a model where one period corresponds to six years, thereby reducing the

number of adult cohorts and thus the dimensionality of the problem by a factor of

six. Similarly, international real business cycle (IRBC) models often include only a

very small number of countries or regions. Bengui et al. (2013), for example, analyze

cross-country risk-sharing at the business cycle frequency using a two country model

— one ‘focus’ country versus the rest of the world. Reducing the dimensionality of the

problem in such ways can deliver valuable qualitative insights. However, to derive

solid quantitative results or even to test the robustness of the qualitative results, one

often has to look at problems of higher dimension.

Building on Brumm and Scheidegger (2014), this paper shows how we can use modern

numerical methods and cutting-edge supercomputing facilities to compute global

solutions of high-dimensional dynamic stochastic economic models in a way that

fits their generic structure. No matter whether these are solved by iterating on a

Bellman equation to update a value function (parametric dynamic programming;

see, e.g., Judd (1998); Rust (1996)) or by iterating on systems of non-linear equations

that represent equilibrium conditions to update functions that represent economic

4



1.1 Introduction

choices (time iteration; see, e.g., Judd (1998)), the computational challenge is similar:

(i) In each iteration step, an economic function needs to be approximated. For

this purpose, the function value has to be determined at many points in the

high-dimensional state space, and

(ii) each point involves solving a high-dimensional maximization problem (for

dynamic programming) or a system of nonlinear equations (for time iteration).

These two important features of the considered problems create difficulties in achiev-

ing a fast time-to-solution process. We overcome these difficulties by minimizing

both the number of points to be evaluated and the time needed for each evaluation.

For the first purpose (i) we use adaptive sparse grids (see, e.g., Bungartz and Griebel

(2004); Ma and Zabaras (2009)), while the second task (ii) is accomplished using a

hybrid parallelization scheme that minimizes interprocess communication by using

Intel Threading Building Blocks (TBB) Reinders (2007) and partially offloads the func-

tion evaluations to accelerators using CUDA/Thrust Bell and Hoberock (2011). This

scheme enables us to make efficient use of modern hybrid high-performance comput-

ing facilities, whose performance nowadays reaches multiple petaflops Dongarra and

van der Steen (2012). Their hybrid architecture typically features CPU compute nodes

with attached GPUs1. We show in this paper that the generic structure of an algorithm

that solves dynamic economic models by time iteration or dynamic programming

using sparse grids is a natural match for such hybrid systems.

Sparse grid interpolation alleviates the curse of dimensionality Bellman (1961) faced

by interpolation on standard tensor product grids: Starting with a one-dimensional

discretization scheme that employs N grid points, a naive extension to d dimensions

using tensor products leads to N d grid points. In the IRBC model we consider as an ap-

plication, d depends on the number of countries included in the model. Sparse grids

reduce the number of grid points needed from the order O
(
N d

)
to O

(
N · (log N )d−1

)
,

while the accuracy of the interpolation only slightly deteriorates in the case of suf-

ficiently smooth functions (Bungartz and Griebel, 2004). Sparse grids go back to

Smolyak Smolyak (1963) and have been applied to a whole range of different re-

search fields such as physics, visualization, data mining, Hamilton-Jacobi Bellman

(HJB) equations, mathematical finance, insurance, and econometrics (Hegland, 2003;

Bokanowski et al., 2013; Bungartz and Griebel, 2004; Garcke and Griebel, 2012; Hager

et al., 2010; Heinecke and Pflueger, 2013; Holtz, 2011; Murarasu et al., 2011; Winschel

1The Swiss National Supercomputer Centre’s “Piz Daint” Cray XC30 that is used in the numerical
experiments in Sec. 1.5 consists of Intel Xeon E5 processors with NVIDIA Tesla K20X GPUs attached to
it; its peak performance is 7.7 petaflops.

5



Scalable High-Dimensional Dynamic Stochastic Economic Modeling

and Kraetzig, 2010). Krueger and Kubler (2004) and Judd et al. (2014) solve dynamic

economic models using sparse grids with global polynomials as basis functions. In

contrast, we use piecewise-linear local basis functions first introduced by Zenger

(1991) in the context of sparse grids. The hierarchical structure of these basis func-

tions lends itself for an adaptive refinement strategy as, e.g., in Ma and Zabaras (Ma

and Zabaras, 2009), Bungartz and Dirnstorfer Bungartz and Dirnstorfer (2003), or

Pflüger Pflüger (2010). This adaptive grid can better capture the local behavior of

functions that have steep gradients or even nondifferentiabilities. The latter feature

naturally arise from occasionally binding constraints which are present in many eco-

nomic models yet have so far been tractable only in low-dimensional cases Brumm

and Grill (2014); Christiano and Fisher (2000); Hintermaier and Koeniger (2010).

Parallel computing and sparse grids (Deftu and Murarasu, 2013; Heene et al., 2013;

Rabitz and Alis, 1999; Hupp et al., 2013; Muraraşu et al., 2012; Murarasu, 2013; Mu-

rarasu and Weidendorfe, 2012; Pflüger et al., 2014) enters the picture when we have to

solve high-dimensional nonlinear equation systems (or maximization problems) at

each point of the sparse grid. Fortunately, within each iteration step, these tasks are

independent from each other and can thus be solved in parallel by distributing them

via MPI Skjellum et al. (1999) to different processes. When searching for the solution

to the equation system at a given point, the algorithm has to frequently interpolate

the function computed in the previous iteration step. These interpolations take up

99% of the computation time needed to solve the equation system. As they have a

high arithmetic intensity, i.e., many arithmetic operations are performed for each byte

of memory transfer and access, they are perfectly suited for GPUs (Heene et al., 2013;

Gaikwad and Toke, 2009; Murarasu et al., 2011). We therefore offload parts of the inter-

polation tasks from the compute nodes to their attached accelerators, which results

in a reduction of the overall computation time by roughly 50%. Due to the indicated

high intrinsic level of parallelism, the economic modeling code can efficiently use

CPU-GPU hybrid supercomputing systems. Our large scale numerical experiments

performed on the “Piz Daint” XC30 machine from the Swiss National Supercomputing

Centre (CSCS) show that the developments of this paper make it possible to solve

realistically sized and thus high-dimensional, heterogeneous economic models in

times that are considerably under one hour. To the best of our knowledge, this has not

been possible before. We also observe very good strong scaling efficiencies on “Piz

Daint”.

Summing up, we present a method for solving a large class of generic high-dimensional

dynamic stochastic economic models of size and complexity that were not tractable in

a reasonable time before. Using adaptive sparse grids, we build a hybrid-parallel itera-

tive procedure which, by construction, can efficiently use modern high-performance
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computing architectures. With this work, we hope to help computational research

become a strong “third pillar” of economics, alongside theory and experimentation, as

it already is in many sciences, like physics or chemistry. Despite the promise of high-

performance computing facilities to solve complex economic models, economists

have in the past been restrained in doing so. Single GPUs were used in several applica-

tions in order to accelerate computations Aldrich (2014), whereas Cai and Judd Cai

et al. (2013) used the high latency “Condor” paradigm to solve dynamic programming

problems in parallel. However, apart from Brumm and Scheidegger (2014) and Cai

et al. (2015), who recently exploited highly parallel low-latency systems, no one in

computational economics has so far made the effort to make efficient use of the most

advanced contemporary high-performance computing (HPC) systems.

The remainder of the paper is organized as follows. In Sec. 1.2, we describe the

structure of the dynamic economic models we solve. In Sec. 2.3, we briefly outline

the construction of adaptive sparse grids. In Sec. 2.4, we embed adaptive sparse grid

interpolation in a time iteration algorithm. We then discuss in Sec. 1.5 the performance

of this algorithm and report how hybrid parallelization can speed up the computations.

Section 1.6 concludes.

1.2 High-dimensional dynamic economic models

To capture complex economic phenomena, models often have to include several

different economic agents (who choose actions that are optimal given their objectives).

Depending on the research question, these agents might represent firms, sectors,

countries, or certain subgroups of the population, ordered by skills, age, or other

characteristics. If the model is dynamic, it is common practice to consider so-called

recursive equilibria (Ljungqvist and Sargent, 2000; Stokey et al., 1989b), where the

state of the economy can be summarized by a state variable and the dynamics of

the economy can be captured by a time-invariant function of this state. In most

applications, the state variable contains agents’ characteristics, for instance their

accumulated assets. When multiple agents and/or several of their relevant character-

istics are included, the state of the economy can quickly become high-dimensional.

As the state influences agents’ behavior and thereby the dynamics of the economic

model, it is a serious challenge for numerical methods to capture these dynamics if

the state space is high-dimensional. To describe this challenge more formally, we first

describe the general structure common to many (infinite-horizon) dynamic economic

models. In a second step, we describe one concrete example, the IRBC model (see,

e.g., Backus et al. (1992); Kollmann et al. (2011)).
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1.2.1 Dynamic economic models as functional equations

Let xt ∈ X ⊂ Rd denote the state of the economy at time t ∈N. Then the actions of

all agents can be represented by a policy function p : X → Y , where Y is the space of

possible policies. The stochastic transition of the economy from period t to t +1 can

then be represented by the distribution of next period’s state xt+1, which depends on

the current state and policies:

xt+1 ∼ F
(·|xt , p(xt )

)
. (1.1)

While the distribution F as a function of xt and p(xt ) is implied by the economic

assumptions of the model, the policy function p needs to be determined from equilib-

rium conditions. When using time iteration (see Sec. 2.4), these conditions include

agents’ first-order optimality conditions, next to other conditions like budget con-

straints or market clearing (Judd, 1998). Taken together, these conditions constitute a

functional equation that the policy function p has to satisfy, namely, that for all xt ∈ X ,

0 = E
{

E
(
xt , xt+1, p (xt ) , p (xt+1)

)
|xt , p(xt )

}
, (1.2)

where the expectation, represented by the operator E, is taken with respect to the

distribution F
(·|xt , p(xt )

)
of next period’s state xt+1. The function E : X 2 ×Y 2 →R2d

represents the period-to-period equilibrium conditions of the model. In most eco-

nomic applications, this function is nonlinear because of concavity assumptions on

utility and production functions. As a consequence, the optimal policy p solving (2.3)

will also be nonlinear, or even nonsmooth if the model includes so-called (economic)

frictions, like borrowing constraints or irreversible investments. Therefore, approxi-

mating this function only locally, which is often sufficient if the model exhibits low

volatility, might provide misleading results when larger fluctuations are considered.

For such applications, we need a global solution, that is, we need to approximate p

over the entire state space X or at least on the ergodic distribution of the stochastic

state variable (see, e.g., Judd et al. (2014)). We solve for the policy function p using

a time iteration procedure (see Sec. 2.4). As a consequence, we need to interpolate

many successive approximations of p. To do this efficiently we employ (adaptive)

sparse grids (see Sec. 2.3). Next, we introduce the example that we apply our algorithm

to. Readers who are more interested in our solution methods can skip the subsequent

example.
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1.2.2 Example: The international real business cycle model

To demonstrate the capabilities of our method, we choose the IRBC model, which

has become a workhorse for studying methods for solving high-dimensional eco-

nomic models (Den Haan et al., 2011). The IRBC model is relatively simple and easy

to explain, whereas the dimensionality of the model can be scaled up in a straight-

forward and meaningful way as it just depends linearly on the number of countries

considered. This feature of the model allows us to focus on the problem of handling

high-dimensional state spaces. To show that we can also handle nonsmooth problems,

we consider a version of the IRBC model where investment is irreversible.

Stochastic dynamic equilibrium models have been used to study business cycle fluc-

tuations of economic aggregates like output, consumption, and investment since

the seminal work of Kydland and Prescott (1982). Initially, the focus was on mod-

els of closed economies with the United States being the main application. Later,

these real business cycle models were extended to include several countries and

were thus called IRBC models (Backus et al., 1992). They can be used to model co-

movements and spillovers across countries as well as current account deficits and

exchange rate movements. However, previous research (see, e.g., Backus et al. (1992);

Bengui et al. (2013) analyzed setups with only a very small number of countries/re-

gions (mainly two or three) and mostly considered models without occasionally bind-

ing constraints. We solve models with many more countries that nevertheless include

occasionally binding constraints, in particular irreversible investment. To focus on

the high-dimensionality of the state space, we keep the model simple in other ways.

Extending the model in directions that are standard in the literature, however, is not

a serious challenge for our solution method. For instance, to discuss exchange rate

movements one would have to consider a model with several commodities, differenti-

ated by the country in which they are produced. This extension would not increase

the dimension of the state space, just the size of the equations systems that have to be

solved.

In the model we are considering, there are M countries, j = 1, . . . , M , each using

its accumulated capital stock, k j
t , to produce the output good, which can either

be used for investment, χ j
t , or for consumption, c j

t , generating utility, u j (c j
t ), with

constant relative risk aversion utility u j (c) = c−γ/(1−γ) and risk-aversion parameter γ.

Investment is subject to adjustment costs, and it is irreversible in the following sense:

The capital stock of a country can neither be consumed nor used for production in

another country — an assumption that seems more realistic than perfect reversibility,

which is normally assumed to keep the model tractable. However, capital depreciates

at a rate δ> 0 and can thus nevertheless shrink over time if there is not enough new
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investment. Thus, the law of motion of capital is

k j
t+1 = k j

t · (1−δ)+χ j
t . (1.3)

The amount produced by each country is given by

a j
t · A · (k j

t )κ.

It thus depends on the size of the capital stock employed, k j
t , on the overall produc-

tivity level, A, as well as on the country specific productivity level, a j
t , which has the

following law of motion:

ln a j
t = ρ · ln a j

t−1 +σ
(
e j

t +eM+1
t

)
. (1.4)

The parameters ρ and σ determine persistence and volatility in productivity. The

country specific shocks, e j
t ∼N (0,1), as well as the global shock, eM+1

t ∼N (0,1), are

assumed to be independent from each other and across time. However, we assume

that countries can insure themselves against these shocks by trading assets with

payoffs that are contingent on the realization of these shocks. This complete markets

assumption2 implies that the market allocation of capital and consumption (the so-

called decentralized competitive equilibrium) can be obtained as the solution to a

social planner’s problem: maximize the weighted sum of all countries utility from

consumption, weighted by welfare weights, τ j , which depend on the initial capital

stocks of the countries. Thus, the social planner solves the following infinite-horizon

problem, where the future is discounted by the discount factor, β:

max
{c

j
t ,k

j
t }
E0

M∑
j=1

τ j ·
( ∞∑

t=1
βt ·u j (c j

t )

)
, (1.5)

subject to the aggregate resource constraint

M∑
j=1

(
a j

t · A · (k j
t )κ−k j

t ·
φ

2
· (g j

t+1)2 −χ j
t − c j

t

)
= 0, (1.6)

and the constraint that investment in each country j , χ j
t , is irreversible,

χ
j
t ≥ 0. (1.7)

2We follow the comparison study by Kollmann et al. (2011) in assuming complete markets. However,
we are not directly solving the social planner problem, but iterate on the period-to-period equilibrium
conditions given in (1.8)–(1.10) below. With incomplete markets, these conditions have a similar
structure and our method can thus be applied as well.
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In (1.6), the first term is the amount produced by each country, while the second term

represents the convex adjustment costs, where φ parametrizes the intensity of capital

adjustment costs, and g j
t+1 ≡ k j

t+1/k j
t −1 is the growth rate of capital in country j .

So far, we are considering an infinite horizon problem. However, as mentioned above,

it is common practice in economics to focus on recursive equilibria (Stokey et al.,

1989a; Ljungqvist and Sargent, 2000), where the state of the economy is summarized

by a state variable and the dynamics of the economy is capture by a time-invariant

function of this state. We now briefly present the recursive structure of the above IRBC

model, while we refer the reader to Brumm and Scheidegger (2014) for the derivation

of the equilibrium conditions. The state variables of the IRBC model with M countries

consist of

xt =
(
a1

t , . . . , aM
t ,k1

t , . . . ,kM
t

) ∈ X ⊂R2M ,

where a j
t and k j

t are the productivity and capital stock of country j , respectively. The

policy function p : R2M →R2M+1 maps the current state into investment choices, χ j
t ,

the multipliers for the irreversibility constraints, µ j
t , and the multiplier of the aggregate

resource constraint, λt :

p(xt ) = (
χ1

t , . . . ,χM
t ,µ1

t , . . . ,µM
t ,λt

)
.

The investment choices determine next period’s capital stock in a deterministic way

through (1.3). In contrast, the law of motion of productivity, (1.4), is stochastic. Taken

together, (1.3) and (1.4) specify the distribution of xt+1 (corresponding to (1.1) in the

general problem above). The period-to-period equilibrium conditions of this model

(corresponding to (2.3)) consist of three types of equations. First are the optimality

conditions for investment in capital in each country j :3

λt ·
[

1+φ · g j
t+1

]
−µ j

t

−βEt

{
λt+1

[
a j

t+1 Aκ(k j
t+1)κ−1 +1−δ+ φ

2
g j

t+2

(
g j

t+2 +2
)]

−µ j
t+1(1−δ)

}
= 0.(1.8)

Second is the irreversibility assumption for investment in each country j , and the

associated complementarity conditions,

χ
j
t ≥ 0,µ j

t ≥ 0,χ j
t ·µ j

t = 0. (1.9)

3The expectation in Eq. 1.8 below is given by the following integral:

(2π)−
M+1

2

∫
Ω (xt ,et )·exp

(−e ′t ·et /2
)·det , whereΩ (xt ,et ) is defined as the term whithin the expectation,

and et =
(
e1

t , ...,eM+1
t

)
.

11



Scalable High-Dimensional Dynamic Stochastic Economic Modeling

Table 1.1: Choice of parameters for the IRBC model

Parameter Symbol Value
Discount factor β 0.99
IES of country j γ j a+(j-1)(b-a)/(M-1)

with a=0.25, b=1
Capital share κ 0.36
Depreciation δ 0.01
Standard deviation of log-productivity shocks σ 0.01
Autocorrelation of log-productivity ρ 0.95
Intensity of capital adjustment costs φ 0.50
Aggregate productivity A

(
1−β(1−δ)

)
/(α ·β)

Welfare weights τ j A1/γ j

Number of countries M 2,3,4

Finally is the aggregate resource constraint

M∑
j=1

(
a j

t · A · (k j
t )κ−k j

t ·
φ

2
· (g j

t+1)2 −χ j
t − ct

)
= 0, (1.10)

where we can use the fact that ct = (λt /τ j )−γ
j

at an optimal choice.

For all the parameters of the economic model, we make standard assumptions, as in

Brumm and Scheidegger (2014) and Den Haan et al. (2011). Nevertheless, we report

them here and in Tab. 1.1 for completeness. For our computations, we choose an

asymmetric specification where preferences are heterogeneous across countries. In

particular, the intertemporal elasticity of substitution (IES) of the M countries is evenly

spread over the interval [0.25,1]. The welfare weights τ j need not be specified, as

they do not matter for the capital allocation, but only for the consumption allocation

which we do not consider. Finally, the parameter A is chosen such that the capital of

each country is equal to 1 in the deterministic steady state.

1.3 Sparse grid interpolation

For the time iteration algorithm we propose in Sec. 2.4, we need to repeatedly evaluate

(policy) functions at arbitrary coordinates within the domain of interest. As a single

function evaluation can be very expensive — it involves solving a system of nonlinear

equations (cf. (1.8) and (1.6)) — we need an efficient interpolation scheme. Our

method of choice is adaptive sparse grid interpolation, which we now explain.

Generally speaking, we aim to approximate each individual variable of the policy or
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value function by a function f :Ω→R as

f (⃗x) ≈ u (⃗x) :=∑
i
αiφi (⃗x) (1.11)

with coefficients αi and a set of appropriate (piecewise linear) basis functions φi (⃗x).

Employing standard discretization methods for the high-dimensional domainΩ is

out of the question, as ordinary discretization approaches yield too many grid points

where the functions have to be evaluated. Starting with a one-dimensional discretiza-

tion scheme that employs N grid points, a straightforward extension to d dimensions

by a tensor product construction would lead to N d grid points, encountering the

so-called curse of dimensionality Bellman (1961). The exponential dependence of the

overall computational effort on the number of dimensions is a prohibitive obstacle

for the numerical treatment of high-dimensional problems. Sparse grids, on the other

hand, are able to alleviate this curse of dimensionality by reducing the number of

grid points by orders of magnitude, yet with only slightly deteriorated accuracy if the

underlying function is sufficiently smooth (Bungartz and Griebel, 2004).

In this section, we therefore first provide a brief introduction to classical, i.e., non-

adaptive sparse grid interpolation. Subsequently, we also show how the hierarchical

structure of the basis functions and the associated sparse grid can be used to refine

the grid such that it can better capture the local behavior of the functions to be inter-

polated. In Sec. 2.4, we will see in the case of an economic model that adaptive sparse

grids outperform classical sparse grids by far when it comes to interpolating functions

that exhibit steep gradients or nondifferentiabilities.

1.3.1 Notation

Following Bungartz and Griebel (2004) and Garcke and Griebel (2012), we first intro-

duce some notation and definitions that we will require later on. For all our consid-

erations, we will focus on the domain Ω = [0,1]d , where d is the dimensionality of

the economic problem. This situation can be achieved for other domains by a proper

rescaling. Moreover, let l⃗ = (l1, ..., ld ) ∈Nd and i⃗ = (i1, ..., id ) ∈Nd denote multi-indices,

and define |⃗l |1 :=∑d
t=1 lt and |⃗l |∞ := max1≤t≤d lt .

1.3.2 Hierarchical basis functions

We use a sparse grid interpolation method that is based on a hierarchical decom-

position of the underlying approximation space. Such a hierarchical structure is

convenient both for local adaptivity (see Sec. 1.3.4) and for the use of massively par-
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Figure 1.1: Hierarchical basis functions of V3 in (2.11) in one dimension. Level l = 1
(solid black), l = 2 (dashed blue), and l = 3 (solid red).

allel architectures (see Sec. 2.4). We now explain this hierarchical structure, starting

with the one-dimensional case, i.e., Ω = [0,1]. Afterwards, we will extend it to the

multivariate case using tensor products. The equidistant sparse grid interpolant we

use below (Bungartz and Griebel, 2004; Garcke and Griebel, 2012) consists of a com-

bination of nested one-dimensional grids of different refinement levels. For a given

level l ∈N, the grid points on [0,1] are distributed as

xl ,i =
0.5, l = i = 1,

i ·21−l , i = 0, ...,2l−1, l > 1.
(1.12)

The corresponding piecewise linear basis functions for x ∈ [0,1] are given by

φl ,i (x) (1.13)

=
1, l = i = 1,

max(1−2l−1 · ∣∣x −xl ,i
∣∣ ,0) i = 0, ...,2l−1, l > 1.

Note that the basis function of level 1 is a constant rather than a hat function, which is

different from many other sparse grid constructions (see, e.g., Bungartz and Griebel
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f(x)= sin(π x)*x 2 + 0.2*(1-x)
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Figure 1.2: Construction of u (x) interpolating f (x) = sin(π · x) · x2 +0.2 · (1− x) with
hierarchical linear basis functions of levels 1, 2, and 3. The hierarchical surpluses
αl ,i that belong to the respective basis functions are indicated by arrows. They are
simply the difference between the function values at the current and the previous
interpolation levels.

(2004); Garcke and Griebel (2012), and references therein). The one-dimensional

basis functions can be extended to d-dimensional ones on the unit cubeΩ= [0,1]d

by a tensor product construction. For each grid point x⃗l⃗ ,⃗i = (xl1,i1 , ..., xlt ,it ), an as-

sociated piecewise d-linear basis function φl⃗ ,⃗i (⃗x) is defined as the product of the

one-dimensional basis functions (cf. (2.6))

φl⃗ ,⃗i (⃗x) :=
d∏

t=1
φlt ,it (xt ) . (1.14)

Next, the hierarchical increment spaces Wl⃗ are defined by

Wl⃗ := span{φl⃗ ,⃗i : i⃗ ∈ I l⃗ } (1.15)
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Figure 1.3: Left: schematic construction of a level 4 sparse grid V S
4 Klimke and

Wohlmuth (2005) in two dimensions. Right: sparse grid space V S
4 in 2 dimensions,

constructed according to (2.13) from the increments displayed in the left graphic.

with the index set I l⃗ given as

I l⃗ :=


{⃗i : it = 1,1 ≤ t ≤ d} if l = 1,

{⃗i : 0 ≤ it ≤ 2, it even,1 ≤ t ≤ d} if l = 2,

{⃗i : 0 ≤ it ≤ 2lt−1, it odd,1 ≤ t ≤ d} else.

(1.16)

Fig. 1.1 depicts the first three levels of the associated 1d hierarchical, piecewise linear

basis functions. Consequently, the hierarchical increment spaces Wl⃗ are related to the

space Vn of d−linear functions with mesh size hn = 21−n in each dimension by

Vn :=
n⊕

l1=1

· · ·
n⊕

ld=1

Wl⃗ =
⊕

|l |∞≤n

Wl⃗ , (1.17)

leading to a full grid with O (2nd ) grid points. The interpolant of f , namely, u (⃗x) ∈Vn ,

can uniquely be represented by

f (⃗x) ≈ u (⃗x) = ∑
|l |∞≤n

∑
i⃗∈I l⃗

αl⃗ ,⃗i ·φl⃗ ,⃗i (⃗x) (1.18)

with αl⃗ ,⃗i ∈R. Note that the coefficients αl⃗ ,⃗i ∈R are commonly termed the hierarchical

surpluses Zenger (1991); Bungartz and Griebel (2004). They are simply the difference

between the function values at the current and the previous interpolation levels (see

Fig. 1.2). As we have chosen our set of grid points to be nested, i.e., such that the

set of points X l−1 at level l −1 with support nodes x⃗l⃗ ,⃗i is contained in X l , namely,

X l−1 ⊂ X l , the extension of the interpolation level from level l −1 to l only requires us

to evaluate the function at grid points that are unique to X l , that is, at X l
∆ = X l \X l−1.
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For a sufficiently smooth function f (which we will make precise in the next section)

and its interpolant u ∈Vn (Bungartz and Griebel, 2004), we obtain an asymptotic error

decay of

∥ f (⃗x)−u (⃗x)∥L2 ∈O
(
h2

n

)
, (1.19)

but at the cost of

O
(
h−d

n

)
=O

(
2nd

)
(1.20)

function evaluations, encountering the curse of dimensionality.

1.3.3 Ordinary sparse grids

As a consequence of the curse of dimensionality, the question that needs to be an-

swered is how we can construct discrete approximation spaces that are better than Vn

in the sense that the same number of invested grid points leads to a higher order of

accuracy. The classical sparse grid construction arises from a cost-to-benefit analysis

(see, e.g., Bungartz and Griebel (2004); Garcke and Griebel (2012); Zenger (1991), and

references therein) in function approximation. Thereby, functions f (⃗x) :Ω→R which

have bounded second mixed derivatives are considered. For such functions, the hier-

archical coefficients αl⃗ ,⃗i (see (2.12) and Bungartz and Griebel (2004)) rapidly decay,

namely,

|αl⃗ ,⃗i | =O
(
2−2|⃗l |1

)
. (1.21)

The strategy for constructing a sparse grid thus is to leave out those subspaces among

the full grid space Vn that only contribute little to the interpolant (Bungartz and

Griebel, 2004). An optimization with respect to the number of degrees of freedom, i.e.,

the grid points, and the resulting approximation accuracy directly lead to the sparse

grid space V S
n of level n, defined by

V S
n := ⊕

|⃗l |1≤n+d−1

Wl⃗ . (1.22)

In Fig. 1.3, we depict its construction for n = 4 in two dimensions. V S
4 consists of the

hierarchical increment spaces W(l1,l2) for 1 ≤ l1, l2 ≤ n = 4. The area enclosed by the

red bold lines marks the region where |⃗l | ≤ n +d −1, fulfilling (2.10). The blue dots

represent the grid points of the respective subspaces. Finally, the dashed black lines

indicate the hierarchical increment spaces for constant |⃗l |. Note that the sparse grid

contains only 29 support nodes, whereas a full grid would consist of 81 points.

The concrete choice of subspaces depends on the norm in which we measure the error.

The result obtained in (2.13) is optimal for the L2-norm and the L∞-norm Bungartz
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and Griebel (2004). The number of grid points required by the space V S
n is now given

by Bungartz and Griebel (2004); Garcke and Griebel (2012)

|V S
n | =O

(
h−1

n · (log(h−1
n )

)d−1
)

. (1.23)

This is of order O
(
2n ·nd−1

)
, which is a significant reduction of the number of grid

points, and thus of the computational and storage requirements compared to O
(
2nd

)
of the full grid space |Vn | (see Fig. 1.3). In analogy to (2.12), a function f ∈ V S

n ⊂ Vn

can now be expanded by

f S
n (⃗x) ≈ u (⃗x) = ∑

|l |1≤n+d−1

∑
i⃗∈I l⃗

αl⃗ ,⃗i ·φl⃗ ,⃗i (⃗x). (1.24)

The asymptotic accuracy of the interpolant deteriorates only slightly from O
(
h2

n

)
in

the case of the full grid (cf. (1.19)) down to

O
(
h2

n · log(h−1
n )d−1

)
, (1.25)

as shown e.g. in Bungartz and Griebel (2004); Garcke and Griebel (2012). Taken

together, (1.23) and (1.25) demonstrate why sparse grids are so well suited for high-

dimensional problems. In contrast to full grids, their size increases only moderately

with dimension, while the accuracy they provide is nearly as good as the one of full

grids.

1.3.4 Adaptive sparse grids

In many economic applications (Brumm and Scheidegger, 2014), the functions to

be interpolated do not meet the regularity conditions assumed above, but instead

have steep gradients, nondifferentiabilities, or even finite discontinuities. In such

cases, the classical sparse grid methods outlined so far may fail to provide a good

approximation. One effective way to overcome this problem is to adaptively refine the

sparse grid in regions with high function variation and spend fewer points in regions of

low variation (see, e.g., Bungartz and Griebel (2004); Ma and Zabaras (2009); Pflüger

(2010), and references therein). The working principle of the refinement strategy

we use is to monitor the size of the hierarchical surpluses (see (1.21)), which reflect

the local irregularity of the function. For functions with small mixed-derivatives the

hierarchical surpluses rapidly converge to zero as the level l tends to infinity (cf. (1.21)).

On the other hand, a nondifferentiability or discontinuity can often be identified by

large and slowly decaying hierarchical surpluses. Therefore, we use the hierarchical

surpluses as an error indicator and refine the grid around a grid point if its surplus
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1.3 Sparse grid interpolation

Figure 1.4: One-dimensional tree-like structure of a classical sparse grid (cf. Sec. 1.3.3)
for the first three hierarchical levels.

αl⃗ ,⃗i satisfies

|αl⃗ ,⃗i | ≥ ϵ, (1.26)

for a so-called refinement threshold ϵ≥ 0. Technically, the adaptive grid refinement

can be built on top of the hierarchical grid structure. The points of the classical sparse

grid form a tree-like data structure, as displayed in Fig. 1.4 for the one-dimensional

case.4 Going from one level to the next, we see that there are two sons for each

grid point (if l ̸= 2). For example, the point 0.5 from level l = 1 is the father of the

points 0 and 1 from level l = 2. In the d-dimensional case, there are consequently

two sons per dimension for each grid point, i.e., 2d sons in total. Whenever the

criterion given by (1.26) is satisfied, these 2d neighbor points of the current point are

added to the sparse grid.5 In this way, we can adapt to nondifferentiabilities induced

by occasionally binding constraints that are common in economic models. While

existing methods can adapt very precisely to these nondifferentiabilities (Barillas and

Fernández-Villaverde, 2007; Brumm and Grill, 2014), adaptive sparse grids work in

much higher dimensions.

4For more details on the data structure employed to store sparse grids, see Sec. 2.4.2.
5We point out that in our application in Sec. 2.4 we interpolate several policies on one grid, i.e.,

we interpolate a function f :Ω→ Rm . Therefore, we get m surpluses at each grid point and we thus

have to replace the refinement criterion in (1.26) by g
(
α1

l⃗ ,⃗i
, . . . ,αm

l⃗ ,⃗i

)
≥ ϵ, where the refinement choice is

governed by a function g :Rm →R. A natural choice for g is the maximum function, which we will use
in Sec. 2.4.
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1.4 Scalable sparse grid time iteration algorithm

We now describe how to solve the IRBC model introduced in Sec. 1.2.2 using adaptive

sparse grids as presented in Sec. 2.3. For this purpose, we build a time iteration

algorithm (see, e.g., Judd (1998)) that uses adaptive sparse grid interpolation in each

iteration step (cf. Sec. 1.4.1). We parallelize this algorithm by a hybrid parallelization

scheme using MPI (Skjellum et al., 1999), Thread Building Blocks (Reinders, 2007),

and CUDA/Thrust (Bell and Hoberock, 2011), as outlined in Sec. 1.4.2

1.4.1 Time iteration

The time iteration algorithm that we use to compute a policy function satisfying (2.3)

is based on the following heuristic: Solve the equilibrium conditions of the model for

today’s policy p : X → Y taking as given an initial guess for the function that represents

next period’s policy, pnext ; then, use p to update the guess for pnext and iterate the

procedure until convergence. Note that in the case of Pareto optimal problems,

as the one solved in this paper, convergence of time iteration can be derived from

convergence of value function iteration (see Stokey et al. (1989a) for a comprehensive

study of value function iteration and its convergence properties) and even explicit

error bounds for the approximate policy functions can be obtained under strong

concavity (see Maldonado and Svaiter (2007)). For non-optimal economies, results

about convergence of time iteration and also the existence of recursive equilibria

are harder to obtain, yet are available for large classes of models with heterogeneous

agents, incomplete markets, externalities, discretionary taxation and other salient

features of applied models (see, e.g., Morand and Reffett (2003); Datta et al. (2005)).

The structure of our time iteration algorithm is given in Algorithm 1. 6 Two remarks

about the maximal refinement level, Lmax , are in place. First, the classical sparse

grid of level L is obtained as a special case of this algorithm by setting Lmax = L0 =
L. Second, for the adaptive sparse grid, one could in principle set the maximum

refinement level Lmax to a very large value such that it is never reached for a given

refinement threshold. However, this can create practical problems: in case of high

curvature or non-differentiabilities, the hierarchical surpluses may decrease very

6Note that the formal iterative structure of Algorithm 1 is similar to the approach taken by
Bokanowski et al. (2013) to solve the HJB equation. However, there are a couple of differences worth
mentioning. First, since we aim to iteratively solve for a multivariate policy function, our adaptive refine-
ment criterion had, as pointed out earlier, to be extended to the multivariate case, whereas Bokanowski
et al. (2013) consider a single-valued function approximation. On the other hand, Bokanowski et al.
(2013) allow for adaptive coarsening when iterating from one time step to the next, while we only allow
for adaptive refinement.
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1.4 Scalable sparse grid time iteration algorithm

Data: Initial guess pnext for next period’s policy function. Approximation
accuracy η̄. Maximal refinement level Lmax . Starting refinement level
L0 ≤ Lmax . Refinement threshold ϵ.

Result: The (approximate) equilibrium policy function p.
while η> η̄ do

Set l = 1, set G ⊂ X to be the level 1 grid on X , and set Gol d =;,Gnew =;.
while G ̸=Gol d do

for g ∈G \Gol d do

Compute the optimal policies p(g ) by solving the system of
equilibrium conditions

0 = E
{

E
(
g , xt+1, p

(
g
)

, pnext (xt+1)
)
|g , p(g )

}
,

xt+1 ∼ F
(·|g , p(g )

)
,

given next period’s policy pnext .
Define the policy p̃(g ) by interpolating {p(g )}g∈Gol d .
if (l < Lmax and ∥p(g )− p̃(g )∥∞ > ϵ) or l < L0, then

Add the neighboring points (sons) of g to Gnew .
end

end
Set Gol d =G , set G =Gol d ∪Gnew , set Gnew =;, and set l = l +1.

end
Define the policy function p as the sparse grid interpolation of {p(g )}g∈G .

Calculate (an approximation for) the error: η= ∥p −pnext∥∞. Set
pnext = p.

end

Algorithm 1: Overview of the crucial steps of the time iteration algorithm.

slowly and the algorithm may not stop to refine until a very high interpolation level.

Thus, as one has no reasonable upper bound for the number of grid points created by

the refinement procedure, we have to set a maximum refinement level.

An important detail of the implementation is the integration procedure used to evalu-

ate the expectations operator. In case of the IRBC application, the expectation term in

Equ. (1.8) has to be evaluated by integrating over the normally distributed productivity

shocks. As we want to focus on the grid structure, we chose an integration rule that

is simple and fast. In particular, we use a simple monomial rule that exploits the

normality assumption and uses just two evaluation points per shock, thus 2(M +1)

points in total (see, Judd (1998), with references therein). As we apply the same rule

along the time iteration algorithm as well as for the error evaluation, this choice fac-

tors out the question of finding integration procedures that are both accurate and
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efficient. In principle integration could also be carried out using an (adaptive) sparse

grid (Bungartz and Dirnstorfer, 2003; Ma and Zabaras, 2009), yet not over the same

space that the policy functions are interpolated on. Therefore, we view integration as

a problem that is orthogonal to the choice of the grid structure, and thus do not focus

on it.

1.4.2 Hybrid parallelization scheme

In each step of the above time iteration procedure the updated policy function is deter-

mined using a hybrid-parallel algorithm, as shown in Fig. 1.5. We construct adaptive

sparse grids by distributing the newly generated grid points via MPI within a refine-

ment step among multiple, multithreaded processes. The points that are send to one

particular compute node are then further distributed among different threads. Each

thread then solves a set of nonlinear equations for every single grid point assigned

to it. The set of nonlinear equations—given by (1.8)–(1.10) in our application—is

solved with Ipopt (Waechter and Biegler, 2006), which is a high-quality open-source

software for solving nonlinear programs (http://www.coin-or.org/Ipopt/). On

top of this, we add an additional level of parallelism. When searching for the solution

to the equation system at a given point, the algorithm has to frequently interpolate

the function computed in the previous iteration step. These interpolations take up

99% of the computation time needed to solve the equation system. As they have a

high arithmetic intensity—that is to say, many arithmetic operations are performed

for each byte of memory transfer and access—they are perfectly suited for GPUs. We

therefore offload parts of the interpolation from the compute nodes to their attached

accelerators (cf. Sec. 1.4.3 for more details). Hence, CPU cores and the GPU device

of a single node are utilized through multiple threads, and MPI is used for internode

communication only.

Given the limited availability of unified multicore CPU/GPU programming models,

such as OpenMP 4, and our aim to perform more aggressive manual optimizations,

we decided to develop two separate code paths: GPU kernels are implemented with

Thrust (Bell and Hoberock, 2011), while CPU multithreading and CPU/GPU workload

partitioning is organized with Thread Building Blocks (Reinders, 2007).

1.4.3 Single node optimization and parallelization

In order to solve the IRBC model in minimal time, we aim to utilize the computational

resources available on each compute node in an efficient manner. Targeting primarily

hybrid CPU+GPU compute nodes, our general strategy is to map the homogeneous
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Figure 1.5: Schematic representation of the hybrid parallelization of a time iteration
step presented in Algorithm 1 and Sec. 1.4.2. Each MPI process is using TBB and a
CUDA/Thrust kernel for the function evaluation.

workload onto a combination of CPU threads and GPU kernels. In this section, we

explain the steps taken during IRBC code optimization. The resulting gains are then

reported in Sec. 1.5.1.

Explicit programming of mathematical notations “as is” is an essential starting point

for any scientific application. The optimizations the compiler is able to perform are,

however, not always of the same quality as manual math expressions folding. The

following basic source transformations increased the odds of getting a reasonably

efficient binary code:

• eliminate floating-point divisions

• eliminate redundant branching

• eliminate redundant computations, conserving the memory throughput.
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Figure 1.6: Hybrid multithreading with Intel TBB: (N −1) threads on CPU, 1 thread –
for GPU; TBB balances workloads automatically using “work stealing”

Above’s code changes often work in combination. For instance, precomputing directly

usable index arrays made it possible to eliminate branching in the section of the code

that computes the linear basis functions. The GPU version of the policy function

evaluation is implemented with Thrust’s transform_reduce. Arrays of read-only

indices are transposed to fitful coalescing requirements. One GPU thread handles 4

consecutive indices that are loaded with a single int4 (LD.128) memory transaction.

Multithreading on a single node CPU is implemented with Thread Building Blocks

(TBB). Moreover, one of the TBB-managed threads is exclusively used for the GPU

kernels dispatch. CPU and GPU threads leverage TBB’s automatic workload balancing

based on stealing tasks from slower workers (see Fig. 1.6). Our code performs floating-

point computations in double precision. Modern SIMD CPUs are able to handle 4

double values in a single instruction using 32-byte AVX vector registers (see Fig. 1.7).

The use of AVX not only increases effective arithmetic throughput in compute-bound

applications, but also results in a better register allocation and reduced cache pressure

in memory-bound applications. Therefore, vectorization is preferred, regardless the

class of application. Scalar-vector code transition is mostly straight-forward; however,

special attention should be paid to element-wise accesses within AVX vectors: they

are expensive and should be avoided. In other words, the most efficient vectorization

could be achieved if the code is fully vectorized from loading inputs to storing outputs,
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Figure 1.7: Vector registers on modern CPUs: a scalar program can utilize only 1/4 of
computational parallelism on AVX-enabled CPUs, e.g. the SandyBridge.

without being interrupted by scalar regions. Specifically for the AVX version of the

policy function evaluation, we had to adapt arithmetics, 0-comparison branch and

abs function all to handle 4 grid points at once, which resulted into 2.1× overall

performance improvement.

Thrust’s transform_reduce implementation allocates the GPU memory buffer to

keep partial sums, which is not exposed to the user. The reuse of this buffer across

subsequent reductions with equal parameters is not supported. As result, Thrust

accompanies each reduction with an allocation and deallocation of a small memory

region. We eliminated the overhead of redundant allocations/deallocations by provid-

ing alternative Thrust-aware cudaMalloc/cudaFree implementations that allocate

the requested buffer one time, and then pass the existing allocation to all subsequent

requests, without freeing it. This modification reduced the total execution time by

approximately 7%, as shown in Fig. 1.8.

Most of the read-only data used by the policy function evaluation is shared across

all invocations. The only exception is the x coordinate vector, whose size equals to

the dimensionality of economic problem, typically a small value. Given that PCI-E

data transfer reaches optimal bandwidth for vector sizes of at least several megabytes,

x-vector copying always has low efficiency. One simple method to eliminate this small

inefficient vector cudaMemcpy is to append the vector elements directly to the kernel

argument list (as scalars):

1 kernel<<<grid , block> > > ( . . . , x [ 0 ] , x [ 1 ] , . . . , x [DIM − 1 ] ) ;

Scalar elements are then assembled back into the local array in order to keep simple

indexing. This technique requires that we hard-coded the dimensionality of the

economic problem into the kernel source. Knowing its value, the compiler will very
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Figure 1.8: Eliminating Thurst’s GPU scratch space memory allocation overhead:
original implementation profile (top), reusing single-time allocation across all Thrust
kernel calls (bottom). The gap between kernel launches is approximately 2 times
smaller, thanks to elimination of cudaMalloc/cudaFree (green range).

likely perform complete unrolling of the corresponding loop both in the CPU and GPU

versions, resulting in less branching. The local array will be mapped onto registers. Our

implementation deploys JIT-compilation to dynamically compile CPU/GPU kernels,

hard-coding the required dimension value, which could be scripted in a number of

ways. Our implementation uses C macros for the x-vector manipulations, invokes

the compiler from the running program and loads the compiled object as a shared

library (dlopen/dlsym). This saves on the time of separate host-device memory

transfers and leads to a speedup of about 15%. On the downside, the hard-coded

kernels must be generated during program runtime, inducing some overhead from

the compilation and disk I/O. The quantitative impact of all optimizations discussed

here are summarized in Sec. 1.5.1 and Figure 1.9.
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1.5 Numerical experiments

For our scaling experiments, we consider an 8-dimensional economic problem with

four countries in Sec. 1.5.1 and 1.5.2, and four to 8-dimensional models in Sec. 2.5.4.
7 In this section, we report on the single node performance achieved by the various

code optimizations described in Sec. 1.4.3. Moreover, we evaluate the strong scaling

efficiencies of the IRBC model on the new Cray XC30 “Piz Daint” system. Finally, we

discuss solutions to the IRBC models and show how adaptive sparse grids can speed

up the computations.

We deploy the IRBC model on the 5,272-node Cray XC30 “Piz Daint” system installed

at Swiss National Supercomputing Centre (CSCS). Cray XC30 compute nodes combine

8-core Intel Xeon E5-2670 (SandyBridge) CPUs with 1× NVIDIA Tesla K20X GPU. The

IRBC model is compiled with GNU compilers and CUDA Toolkit 5.0.

1.5.1 Single node performance

To give a measure of how the various optimizations discussed in Sec. 1.4.3 impact

the performance of the time iteration code on a single CPU thread, GPU and entire

node, we evaluated the second refinement levels of a single time step from the IRBC

model outlined before. This instance consists of 128 grid points, 1,152 variables and

constraints. The results are summarized in Fig. 1.9. and indicate a total speedup of

about 30× when going from the naive single CPU thread implementation to a more

efficient version utilizing both CPU and GPU resources of the entire node. Most

notably, we can see that a single-threaded GPU is about 12× faster than a single-

threaded CPU, leading to an overall speedup of ∼50% when the entire node is utilized

in a multi-threaded mode8 (see Fig. 1.9).

7Note that in computational economics, there are no standard baseline tests such as, for instance,
the Sedov-–Taylor blast wave test in physics (Landau et al., 2007). What comes closest to being a
standard high-dimensional test case is the the IRBC model used in Den Haan et al. (2011). However, to
demonstrate the potential of adaptive grids, we include irreversibility constraints that make the model
much harder to solve (cf., Sec. 1.2.2). Solving dynamic economic models with such constraints in high
dimensions was not possible before and there is thus no baseline to compare to.

8Note that Rabitz and Alis (1999) observed in their examples speedups one to two orders of magni-
tude larger than the one observed here when invoking GPUs for function evaluations on sparse grids.
However, their results are not directly comparable to ours due to four reasons: first they compare a
so-called “iterative” sparse grid evaluation to a “recursive” one that serves as baseline. We, on the other
hand, compare a multi-threaded algorithm to a single-threaded one, where the function evaluation
is performed in an “iterative” fashion, similar to Rabitz and Alis (1999). Secondly, their scaling exper-
iments are based on a test case where tens of thousands of function evaluations can be performed
at once, whereas we can only perform a couple of hundred function evaluations per GPU invocation.
Third, their most significant speedups were observed in single presicion computations, whereas we
have to run in double-precision mode. Finally, Rabitz and Alis (1999) were using different hardware

27



Scalable High-Dimensional Dynamic Stochastic Economic Modeling
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Figure 1.9: Comparison of walltimes for different IRBC model code variants on a single
node of Piz Daint (speedup against scalar serial version). Benchmarked configuration:
8-dimensional model with 128 grid points and 1,152 variables and constraints.

1.5.2 Strong Scaling

We now report strong scaling efficiency of our code. The test problem is again a

single timestep of an 8-dimensional economic problem with 4 countries. In order

to provide a consistent benchmark, we used a nonadaptive classical sparse grid of

refinement level 6. This instance has a total of 510,633 variables and constraints per

time step 9. The economic test case was solved with increasingly larger numbers of

nodes (from 1 to 2,048 nodes). Fig. 1.10 shows the execution time and scaling on

different levels and their ideal speedups. We used 1 MPI processes per multi-threaded

Intel SandyBridge node, of which each offloads part of the function evaluation to

the K20x GPU (cf. Sec. 1.4.2 and Fig.1.5). For this benchmark, the code scales nicely

up to the order of 256 to 512 nodes. Thus, combined with the speedup gains due to

TBB, the GPU and the code optimizations reported in Secs. 1.4.3 and 1.5.1, we attain

an overall speedup of more than three orders of magnitude for our benchmark. The

dominant limitation to the strong scaling stems from the fact that within the first

few refinement levels, the ratio of “points to be evaluated to MPI processes” is often

smaller than one with increasing node numbers, i.e., there are MPI processes idling,

as can be seen in Fig. 1.10. Moreover, the workload sometimes may be unbalanced

in the case of large node numbers in a sense that, e.g. one MPI process gets 2 points

to work on, while a second one obtains only 1 point to work on. The better parallel

efficiency on the higher refinement levels is due to the fact we have many more points

where for instance GPUs were attached to one compute node.
9The sparse grid under considerartion consists of 56,737 points that each hold 9 variables.

28



1.5 Numerical experiments

available on this refinement level, so the workload is somewhat fairer distributed

among the different MPI processes. Thus, strong scaling efficiencies will be much

better for higher-dimensional models (d > 8), as the number of newly generated grid

points grows faster with increasing refinement levels. In a 24-dimensional model,

for example, the points of a fixed sparse grid grow with the refinement level by 48,

1,152, 18,496, and 224,304 points, i.e. the ratio of grid points to be evaluated in the

individual refinement levels per MPI process is considerably larger compared to our

example.
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Figure 1.10: Strong scaling plots on Piz Daint for an IRBC model using 6 levels of grid
refinements and in total 56,737 points. “Total” shows the entire simulation time up
2,048 nodes. We also show execution times for the computational subcomponents on
different refinement levels, e.g, for refinement level 6 using 41,024 points, refinement
level 5 using 11,776 points, and refinement level 4 using 3,088 points. Dotted lines
show ideal speedups.

1.5.3 Convergence of time iteration

In order to gain an understanding of how the adaptivity in our algorithm can speed

up computations in nonsmooth economic problems, we compare adaptive and non-

adaptive solutions of the IRBC model with binding constraints outlined in Sec. 1.2.
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For this purpose, we define the L∞- and the L2-error as (cf. Algorithm 1)

L∞ = max
i=1,...,Θ

|p(xi )−pnext (xi )|, (1.27)

and

L2 = 1

Θ

(
Θ∑

i=1

(
p(xi )−pnext (xi )

)2

) 1
2

, (1.28)

i.e., we interpolate the two consecutive policy functions p and pnext atΘ= 10,000 test

points that were randomly generated from a uniform distribution over the state space.

In Fig. 1.11, we compare the decaying L2 and L∞- error for a complete simulation

of an 8-dimensional model, once run with a fixed sparse grid of level 7 (refinement

level Lmax = 6), and once run with an adaptive sparse grid of a refinement threshold

ϵ= 0.01 and a maximum refinement level of six. 10 It is apparent from Fig. 1.11 that

convergence of the time iteration algorithm is rather slow. This is to be expected,

as time iteration has, at best, a linear convergence rate.11 Fig. 1.11 also shows that

adaptive sparse grids are much more efficient in reducing the approximation errors

in our model, as they put additional resolution where needed, while not wasting

resources in areas of smooth variation. The adaptivity in this particular benchmark

reduces the size of the grid by more than one order of magnitude compared to a

classical sparse grid (see Tab. 1.2). Since the interpolation time on sparse grids grows

faster than linearly with the number of points (see, e.g., Murarasu et al. (2011)), the

walltime is in this experiment reduced by approximately two orders of magnitude.

Hence, adaptive sparse grids introduce an additional layer of sparsity on top of the a

priori sparse grid structure of the classical sparse grid. In Fig. 1.12, we illustrate this by

displaying 2-dimensional projections of a fixed and an adaptive sparse grid. Thus, we

are able to locally mimic an interpolant that is of very high order where needed, while

in other regions, only a few points are invested. This is contrasted by non-adaptive

methods which can only provide one resolution over the whole domain. This feature

is illustrated in Tab. 1.2, where we compare the number of grid points for different

grid types and dimensions. With adaptive sparse grids, we spend at least one order of

magnitude fewer points compared to ordinary sparse grids in order to reach the same

accuracy of the interpolant.

Let us now turn our attention to the economic interpretation of our global solutions

to the nonsmooth IRBC models. While the L∞ and L2 errors displayed in Fig. 1.11

10Note that ϵ= 0.01 and Lmax = 6 in this example were chosen such that the simulations satisfy the
order of accuracy desired.

11Assuming strong concavity of the return function (in either the state or the choice), Maldonado and
Svaiter (2007) show that the policy function of a stochastic dynamic programming problem is Hoelder
continuous in the value function and that its convergence rate is the square root of the discount factor.
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Figure 1.11: Comparison of the decreasing maximum (L∞) and L2-error for con-
ventional (SG) and adaptive sparse grid (ASG) solutions to the 2N = 8-dimensional
nonsmooth IRBC model as a function of node hours on a Cray XC30. We compute
these errors for ten thousand points drawn from a uniform distribution over the state
space.
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Figure 1.12: This figure displays 2-dimensional projections of two different grids.
The left one is from a classical sparse grid, the right one from an adaptive grid of
comparable accuracy. Both grids were generated in the course of running a 2M = 4-
dimensional simulation. The x-axis shows capital holding of country 1, the y-axis
shows capital holding of country 2, while the two other axis of the four dimensional
grid (productivities of the two countries) are kept fixed at their mean values.

give an indication about the rate of convergence, we are still lacking a measure of how

accurate these solutions are.

To give an economic interpretation to the accuracy of the computed solutions, recall

that the policy functions have to satisfy a set of equilibrium conditions. Therefore, it

is common practice in economics (see, e.g., Kollmann et al. (2011)) to compute (unit-

free) errors in the M +1 equilibrium conditions. As in our model, these conditions

often mainly consist of Euler equations12, the respective errors are therefore called

12In economics, the term Euler equation has a specific meaning different from its meaning in fluid
dynamics. Here, Euler equations are first-order optimality conditions in dynamic equilibrium models.
These (difference or differential) equations thus characterize the evolution of economic variables along

Table 1.2: Average Euler errors for an adaptive sparse grid solution of the nonsmooth
IRBC model with increasing dimension. For all dimensions, we use a refinement
threshold ϵ= 0.01 to further refine the grid up to a maximum refinement level of six.
The number of required grid points of the adaptive sparse grid solution (|V AS

7 |) is
contrasted by the corresponding grid size of the classical sparse grid (|V S

7 |) and a full
tensor product grid (|V7|). All Euler errors are reported in log10-scale.

Dimension d Full grid |V7| |V S
7 | |V AS

7 | Euler error
4 17,850,625 2,929 512 -2.88
6 75,418,890,625 15,121 1,679 -2.73
8 318,644,812,890,625 56,737 4,747 -2.66
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Euler errors. In our IRBC model, there is one Euler equation error for each country

j ∈ {1, ..., M } :[
βEt

{
λt+1

[
a j

t+1 Aκ(k j
t+1)κ−1 + (1−δ)+ φ

2
g j

t+2

(
g j

t+2 +2
)]

−µ j
t+1(1−δ)

}]
·
[
λt

(
1+φg j

t+1

)]−1 −1. (1.29)

In addition, there is one additional error from the aggregate resource constraint:

M∑
j=1

(
a j

t · A · (k j
t )κ+k j

t ·
(
(1−δ)− φ

2
· (g j

t+1)2
)
−k j

t+1 −
(
λt

τ j

)−γ j )

·
(

M∑
j=1

(
a j

t · A · (k j
t )κ+k j

t ·
(
−φ

2
· (g j

t+1)2
)))−1

. (1.30)

In case of the IRBC model with irreversible investment there is one additional com-

plication. Denoting the error defined in Eq. 1.29 by EE j and defining the percentage

violation of the irreversibility constraint by

IC j ≡ 1− k j
t+1

k j
t · (1−δ)

(1.31)

the error is now given by

max
(
EE j , IC j ,min

(
−EE j ,−IC j

))
. (1.32)

The economic reason for this functional form of the error is that the optimal level of

investment might be negative and thus not feasible due to the irreversibility constraint.

In this case, the violation or slackness in the constraint (that is, IC j or −IC j ) has to be

taken into account when calculating the economic error (see Brumm and Scheidegger

(2014) for a more detailed explanation of (1.32)). To calculate the M+1 errors at a given

point in the state space, we evaluate the terms in (1.29) to (1.32) using the computed

equilibrium policy function for calculating both today’s policy and next period’s policy.

To generate the statistics on Euler errors reported below we then proceed as follows.

We compute the M +1 errors for all points in the state space that are visited for ten

thousand points drawn from a uniform distribution over the state space. We then take

the maximum over the absolute value of these errors, which results in one error for

each point. Finally, we compute the average over all points and report the result in

log10-scale.

an equilibrium path.
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Figure 1.13: Comparison of the average Euler error (in log10-scale) for adaptive sparse
grid solutions to the 2M = 4-dimensional nonsmooth IRBC model as a function
of the number of gridpoints resulting from varying the refinement threshold ϵ =
{0.02,0.01,0.005,0.0025,0.001,0.0005}.

Tab. 1.2 reports the average Euler errors for adaptive sparse grids of a fixed refinement

threshold ϵ = 0.01, a maximum refinement level Lmax = 6, and increasing dimen-

sionality. We find that the accuracy moderately depends on the dimension of the

model. There seems to be a downward trend in the average Euler error. However,

this behavior is not surprising. One has to keep in mind that kinks that appear in our

2M-dimensional models are in fact (2M −1)-dimensional hypersurfaces. Thus, such

objects become much harder to approximate as M increases. Moreover, the maximum

refinement Lmax = 6 is binding for dimensions six and eight, while it is not reached

for dimension four. Therefore, with a larger Lmax the errors for higher dimensions

would slightly improve relative to the four-dimensional case. More importantly, the

Euler errors can be improved substantially by lowering the refinement threshold ϵ

(and increasing the maximum refinement level Lmax = 6)

To show how powerful the adaptive grids are in reducing Euler errors we focus on the

four-dimensional case and set Lmax such that it is never reached. In Figs 1.13 and

1.14, the average Euler errors for adaptive sparse grid solutions of the 4-dimensional

nonsmooth IRBC model of different refinement thresholds ϵ are reported. These

figures show that the error converges roughly linearly with respect to 1/ϵ and the num-

ber of points. The smaller the chosen refinement threshold, the larger the maximum

refinement level reached and the larger the number of gridpoints.

To sum up, the hybrid parallel time iteration algorithm presented in this paper can

successfully compute global solutions of high-dimensional, (nonsmooth) dynamic
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Figure 1.14: Average Euler error (in log10-scale) for adaptive sparse grid solutions to
the 2M = 4-dimensional nonsmooth IRBC model as a function of the inverse of the
refinement threshold 1/ϵ.

stochastic economic models of a level of complexity not possible before—models with

occasionally binding constraints have so far been tractable only in low-dimensional

cases (Brumm and Grill, 2014; Christiano and Fisher, 2000; Hintermaier and Koeniger,

2010).

1.6 Conclusion

Solving complex high-dimensional dynamic stochastic economic models numerically

in reasonable time—i.e., in hours or days—imposes a variety of problems. In this

work, we developed an effective strategy to address these challenges by combining

adaptive sparse grids, time iteration methods, and high-performance computing in a

powerful toolkit that can handle a broad class of models up to a level of heterogeneity

not seen before.

First, using (adaptive) sparse grids alleviates the curse of dimensionality imposed by

the heterogeneity of the economic models. Second, they can successfully resolve

non-smooth policy functions, as they put additional resolution where needed, while

not wasting resources in areas of smooth variation. High-performance computing

on the other hand enters the picture when we aim to minimize the time-to-solution.

By exploiting the generic structure common to many dynamic economic models,

we implemented a hybrid parallelization scheme that uses state-of-the-art parallel

computing paradigms. It minimizes MPI interprocess communication by using TBB
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and partially offloads the function evaluations to GPUs.

Numerical experiments on Piz Daint (Cray XC30) at CSCS show that our code is very

scalable and flexible. In the case of our intermediate-sized, 8-dimensional IRBC

benchmark, we found very good strong scaling properties up to the order of 256 to 512

nodes. The dominant limitation to the strong scaling stems from the fact that within

the first few refinement levels, the ratio of “points to be evaluated to MPI processes”

is often smaller than 1 with increasing node numbers, i.e. there are MPI processes

idling for some time. This all suggests that our framework is very well suited for

large-scale economic simulations on massively parallel high-performance computing

architectures.
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2 Rethinking large-scale economic mod-
eling for efficiency

We propose a massively parallelized and optimized framework to solve high-dimensional

dynamic stochastic economic models on modern GPU- and KNL-based clusters. First,

we introduce a novel approach for adaptive sparse grid index compression alongside a

surplus matrix reordering, which significantly reduces the global memory throughput

of the compute kernels and maps randomly accessed data onto cache or fast shared

memory. Second, we fully vectorize the compute kernels for AVX, AVX2 and AVX512

CPUs, respectively. Third, we develop a hybrid cluster oriented work-preempting

scheduler based on TBB, which evenly distributes the time iteration workload onto

available CPU cores and accelerators. Numerical experiments on Cray XC40 KNL

“Grand Tave” and on Cray XC50 “Piz Daint” systems at the Swiss National Supercom-

puter Centre (CSCS) show that our framework scales nicely to at least 4,096 compute

nodes, resulting in an overall speedup of more than four orders of magnitude com-

pared to a single, optimized CPU thread. As an economic application, we compute

global solutions to an annually calibrated stochastic public finance model with sixteen

discrete, stochastic states with unprecedented performance.

2.1 Introduction

Optimal taxation and the optimal design of public pension systems are classic themes

in economics with obvious relevance for society. To address these questions quantita-

tively, dynamic stochastic general equilibrium models with heterogeneous agents are

used for counter-factual policy analysis. One particular subclass is called an overlap-

ping generation (OLG) model (Diamond, 1965). These models are essential tools in

public finance since they allow for careful modeling of individuals’ decisions over the

life cycle and their interactions with capital accumulation and economic growth.

There are now several areas where, over the last 10 to 20 years, deterministic OLG
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models have been fruitfully applied to the analysis of taxation and fiscal policy. In

particular large-scale deterministic versions of the model have been applied to the

“fiscal gap” (Evans et al., 2012), to “dynamic scoring of tax policies” (Auerbach and Kot-

likoff, 1987), and to the evaluations of social security reforms (see, e.g., Feldstein and

Liebman (2001)). It is clear, however, that to be able to address these policy-relevant

questions thoroughly, uncertainty needs to be included in the basic model. Both

uncertainty about economic fundamentals as in Krueger and Kubler (2006) as well

as uncertainty about future policy (David S. Bizer, 1989) crucially affect individuals’

savings, consumption, and labor-supply decisions and the uncertainty in the specifi-

cation of the model can overturn many results obtained in the deterministic model.

Moreover, uncertainty about future productivity as well as uncertainty about future

taxes have first-order effects on agents’ behavior. Unfortunately, when one introduces

this form of uncertainty into the model, there does not exist steady-state equilibria,

as the stochastic aggregate shocks affect everybody’s return to physical and human

capital. These effects do not cancel out in the aggregate so that the distribution of

wealth across generations changes with the stochastic aggregate shock. This feature

makes it difficult to approximate equilibria with many agents of different ages and ag-

gregate uncertainty—realistic calibrations of the model lead to very-high-dimensional

problems that were so far thought to be unsolvable. This explains why relatively little

policy-work has been carried out using stochastic OLG models. Krueger and Kubler

(2004), for example, analyze welfare implications of social security reforms in an OLG

model where one period corresponds to six years, thereby reducing the number of

adult cohorts and thus the dimensionality of the problem by a factor of six. Hasan-

hodzic and Kotlikoff (2013), on the other hand, approximate the solution of an OLG

model using simulation-based methods and certainty equivalents. Their method only

yields acceptable solutions for special cases and cannot be easily extended to tackle

general OLG models.

This article shows how we can leverage recent developments in computational math-

ematics and massively parallel hardware to compute global solutions to general

stochastic OLG models in relatively short times. As a test case, we have solved a

59-dimensional model with 16 discrete, stochastic states—much larger than any prob-

lem known to be addressed so far in this stream of the literature. Therefore, our

methodology opens the room to address economic research questions of unprece-

dented realism.

In stochastic dynamic models, individuals’ optimal policies and prices are unknown

functions of the underlying, high dimension states and are solved for by so-called time

iteration algorithms (see, e.g., Judd (1998)). Two major bottlenecks create difficulties in

achieving a fast time-to-solution process when solving large-scale dynamic stochastic
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OLG models with this iterative method, namely,

(i) in each iteration step, several economic functions need to be approximated and

interpolated. For this purpose, the function values have to be determined at

many points in the high-dimensional state space, and

(ii) each point involves solving a system of nonlinear equations (around 60 equa-

tions in 60 unknowns).

We overcome these difficulties by massively reducing the number of grid points re-

quired to represent the economic functions by using adaptive sparse grids (ASGs;

see, e.g., Bungartz and Griebel (2004); Ma and Zabaras (2009); Pflüger (2012); Nobile

et al. (2008)) as well as by compressing the ASGs only to visit points with meaningful

contribution when interpolating on them. Also, the time spent in each iteration step

is substantially reduced by applying massively parallel processing. Using the Message

Passing Interface (MPI) (Skjellum et al., 1999), we distribute the workload—that is,

the grid points, across compute nodes. The nodes can optionally be equipped with

NVIDIA GPUs. Within a single node, the workload is further partitioned among

CPU cores and a GPU with Intel Thread Building Blocks (TBB) (Reinders, 2007).

The CPU code deploys AVX, AVX2 or AVX-512 vectorization for Sandy/Ivy Bridge,

Haswell/Broadwell or Skylake/KNL, respectively, while NVIDIA GPU kernels are writ-

ten in CUDA (Buck et al., 2004). This scheme enables us to make efficient use of the

contemporary HPC facilities that consist of a variety of special purpose as well as

general purpose hardware and whose performance nowadays can reach dozens of

petaflop/s (https://www.top500.org). To sum up, the main contributions of this paper

are as follows:

• Building on Brumm and Scheidegger (2017); Brumm et al. (2015), we propose a

generic parallelization scheme for time iteration algorithms that aim to solve

mixed high-dimensional continuous/discrete state dynamic stochastic eco-

nomic models.

• We show that our parallelization approach is ideally suited for heterogeneous

CPU/GPU HPC systems as well as for Intel Xeon Phi KNL clusters.

• We introduce an original compression method for ASGs that reduces computa-

tions, yet allowing partial vectorization and randomly accessed data fitting into

cache or GPU shared memory.

• We present highly efficient and scalable implementations of the time iteration

algorithm on the aforementioned hardware platforms.
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• As an example application, we compute global solutions to 59-dimensional OLG

model with 16 discrete, stochastic states with unprecedented performance.

This paper is organized as follows. In Sec. 2.2, we describe the abstract economic

models we aim to solve. In Sec. 2.3, we briefly summarize the theory of ASGs. In

Sec. 2.4, we embed ASG interpolation in a time iteration algorithm. Moreover, we also

discuss the respective hybrid parallelization scheme as well as a novel compression

method for ASGs that substantially reduces computations. In Sec. 2.5, we report

on how our implementation performs and scales in solving an annually calibrated,

stochastic OLG model.

2.2 Overlapping generation models

To demonstrate the capabilities of our method, we consider an annually calibrated,

stochastic OLG model similarly to the one described in Krueger and Kubler (2006)—

that is, agents have a model lifetime of 60 periods, each corresponding to one year

of life after the age of 20. Moreover, there are Ns = 16 discrete states in our model

that represent the economy in a variety of situations such as booms, busts as well as

different tax regimes. Agents face taxes τl on labor income and τc on capital income.

Tax rates change stochastically over time and are used to fund a pay-as-you-go social

security system. We assume that the average retirement age is 65, and that agents

receive social security payments, financed by the labor-income tax, starting at age

66. It is clear that the level of complexity listed here is needed to model for example

demographic effects that are caused by retirement as well as to mimic the fact that

agents choose their actions based on expectations about an uncertain future. However,

taken together, this all results in a very intricate formal structure of the model.

This is an example of a broad class of models in macroeconomics and public finance

and is typically solved by time iteration algorithms (see, e.g., Judd (1998)). To this

end, we outline in Sec. 2.2.1 the general structure that is common to OLG models.

Moreover, we briefly describe how we iteratively solve them.

2.2.1 Abstract model formulation and solution method

The formal structure1 common to stochastic OLG models can be described as follows:

The economy is populated with agents that live for A periods. Each of them can

uniquely be identified by her age a, where 1 ≤ a ≤ A. Let st = (zt , xt ) ∈ S ⊂ Z×B ⊂R×Rd

1Note that we omit a detailed discussion of the OLG model, as this is beyond the scope of the paper.
For a detailed review of this application, we refer to Krueger and Kubler (2006); Brumm et al. (2017).
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denote the state of the economy at time t ∈N, where Z is a finite set of size Ns ∈N,

d = A−1 is the dimensionality of xt , and B is a d−dimensional rectanglular box. zt

represents a stochastic shock to the economy, e.g., to it’s output, and xt characterizes

the economy in zt . In our OLG model, it is given by

xt = (K ,ω2, ...,ωA−1) ⊂RA−1, (2.1)

where K is the aggregate capital and ωi are the wealth levels of generations i = 2 to

i = A −1. The actions of all agents in the economy can be represented by a policy

function p : S → Y , where Y is the space of possible policies. In our OLG model,

the optimal policy p : RNs ·d → RNs ·2·d maps the current state st into unknown asset

demand functions ki : Z×B →R and value functions vi : Z×B →R, where i = 1, ..., A−1,

and z ∈ Z. Furthermore, the evolution of the current state of the economy st from

period t to t +1 is described by the state transition

st+1 ∼P
(·|st , p(st )

)
, (2.2)

where the distribution P (·) is pre-defined and model specific. In our case, the stochas-

tic transition of the economy from period t to t +1 is given by a Markov chain—that

is, zt follows a first-order Markov process with transition probability π(z ′|z). The

stationary policy function p needs to be determined from equilibrium conditions.

These conditions constitute a functional equation that the policy function p has to

satisfy, namely, that for all st ∈ S,

0 = E
[

f
(
st , st+1, p (st ) , p (st+1)

)
|st , p(st )

]
, (2.3)

where f : S2 ×Y 2 → RNs ·d represents the period-to-period equilibrium conditions

of the OLG model, and where the expectation operator is taken on the the disrete

shocks. This function is nonlinear because of concavity assumptions on utility and

production functions. As a direct consequence, the optimal policy p solving (2.3) will

also be nonlinear. Hence, approximating it only locally might provide misleading

results. For such applications, we, therefore, need a global solution, that is, we need

to approximate p over the entire state space S. In our work, we approximate the

unknown equilibrium asset demand and value functions on an individual ASG per

discrete state z ∈ Z by piecewise multilinear functions k̂i (z, ·|αk ), v̂i (z, ·|αv ) that are

uniquely defined by finitely many coefficients αk ,αv (see Sec. 2.3). In order to solve

for the unknown coefficients, we require that the functional equations of the OLG

model (see (2.3) and Krueger and Kubler (2006); Brumm et al. (2017)) hold exactly at

M grid points xi=1,...,M ∈ B per discrete state z.

Our computational strategy to solve the OLG model is to search for a recursive equi-
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librium (see, e.g., Stokey et al. (1989a))—that is, a time-invariant policy function p by

using a time iteration algorithm (see, e.g., Judd (1998)). The sequential version of this

algorithm is summarized in Alg. 2 and is based on the following heuristic: solve the

equilibrium conditions of the model for today’s policy p : S → Y taking as given an

initial guess for the function that represents next period’s policy, pnext ; then, use p to

update the guess for pnext and iterate the procedure until numerical convergence is

reached. As a practical consequence, we need to compute many successive approxi-

Data: Initial guess for p = (
p(z = 1), ..., p(z = Ns)

)
. Convergence tolerance tol .

Result: The time-invariant policy function p.
while ϵ> tol do

pnext ← p.
for z = 1; z ≤ Ns ; z = z +1 do

approximate p(z) by solving (2.3) at M grid points given pnext .
end
ϵ= ∥p −pnext∥.

end

Algorithm 2: Time iteration algorithm.

mations of p that rely on interpolating on pnext . To do this efficiently, we employ ASGs

(see Sec. 2.3) in combination with a hybrid parallelization scheme (see Sec. 2.4.1) as

well as a novel ASG compression scheme (see Sec. 2.4.2).

2.3 Basics on adaptive sparse grids

Our method of choice to tackle the numerical issues that arise from the nature of the

high-dimensional state space as described in Sec. 2.2, namely, the repeated construc-

tion and evaluation of multivariate policy and value functions (see (2.3)) are ASGs. In

this section, we summarize its basics. For thorough derivations, we point the reader,

e.g., to Bungartz and Griebel (2004); Garcke and Griebel (2012).

We consider the representation of a piecewise d-linear function f :Ω→R for a certain

mesh width hn = 21−n with some discretization level n ∈N. As we aim to discretize

Ω, we restrict our domain of interest to the compact sub-volumeΩ= [0,1]d , where d

in our case is the dimensionality of the OLG model. This situation can be achieved

for most other domains by re-scaling and possibly carefully truncating the original

domain. In order to generate an approximation u of f , we construct an expansion

f (⃗x) ≈ u (⃗x) :=
N∑

j=1
α jφ j (⃗x) (2.4)
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with N basis functions φ j and coefficients α j . We use one-dimensional hat functions

φl ,i (x) (2.5)

=
1, l = i = 1,

max(1−2l−1 · ∣∣x −xl ,i
∣∣ ,0), i = 0, ...,2l−1, l > 1,

which depend on a level l ∈ N and index i ∈ N. The corresponding grid points are

distributed as

xl ,i =
0.5, l = i = 1,

i ·21−l , i = 0, ...,2l−1, l > 1,
(2.6)

and are depicted in Fig. 2.1. We use a sparse grid interpolation method that is based

on a hierarchical decomposition of the underlying approximation space. Hence, we

next introduce, hierarchical index sets Il :

Il :=


{i = 1}, if l = 1,

{0 ≤ i ≤ 2, i even} if l = 2,

{0 ≤ i ≤ 2lt−1, i odd} else,

(2.7)

that lead to hierarchical subspaces Wl spanned by the corresponding basis φl :=
{φl ,i (x), i ∈ Il }. Fig. 2.1 shows the basis functions up to level 3. The hierarchical basis

functions extend to the multivariate case by using tensor products:

φl⃗ ,⃗i (⃗x) :=
d∏

t=1
φlt ,it (xt ) , (2.8)

where l⃗ and i⃗ are multi-indices, uniquely indicating level and index of the underly-

ing one-dimensional hat functions for each dimension. They span the multivariate

subspaces by

Wl⃗ := span{φl⃗ ,⃗i : i⃗ ∈ I l⃗ } (2.9)

with the index set I l⃗ given by a multidimensional extension to (2.7):

I l⃗ :=


{⃗i : it = 1,1 ≤ t ≤ d} if l = 1,

{⃗i : 0 ≤ it ≤ 2, it even,1 ≤ t ≤ d} if l = 2,

{⃗i : 0 ≤ it ≤ 2lt−1, it odd,1 ≤ t ≤ d} else.

(2.10)

The space of piecewise linear functions Vn on a Cartesian grid with mesh size hn for a

given level n is then defined by the direct sum of the increment spaces (cf. (2.9)):

Vn := ⊕
|l |∞≤n

Wl⃗ , |l |∞ := max
1≤t≤d

lt . (2.11)
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The interpolant of f , namely, u (⃗x) ∈Vn , can now uniquely be represented by

f (⃗x) ≈ u (⃗x) = ∑
|l |∞≤n

∑
i⃗∈I l⃗

αl⃗ ,⃗i ·φl⃗ ,⃗i (⃗x). (2.12)

Note that the coefficients αl⃗ ,⃗i ∈R are commonly termed hierarchical surpluses. They

are merely the difference between the function values at the current and the previous

interpolation levels. For a sufficiently smooth function f the asymptotic error decays

as O
(
h2

n

)
but at the cost of spending O

(
h−d

n

)=O
(
2nd

)
grid points, thus suffering the

curse of dimensionality (Bellman, 1961). As a consequence, the question that needs

to be answered is how we can construct discrete approximation spaces that are better

than Vn in the sense that the same number of invested grid points leads to a higher

order of accuracy. Luckily, for functions with bounded second mixed derivatives, it can

be shown that the hierarchical coefficients rapidly decay, namely, |αl⃗ ,⃗i | =O
(
2−2|⃗l |1

)
.

Hence, the hierarchical subspace splitting allows us to select those Wl⃗ that contribute

most to the overall approximation. This can be done by an a priori selection, resulting

in the sparse grid space V S
n of level n, defined by

V S
n := ⊕

|⃗l |1≤n+d−1

Wl⃗ , |⃗l |1 =
d∑

i=1
lt . (2.13)

In Fig. 2.1, we depict its construction for n = 3 in two dimensions. V S
3 shown there

consists of the hierarchical increment spaces W(l1,l2) for 1 ≤ l1, l2 ≤ n = 3. The num-

ber of grid points required by the space V S
n is now of order O

(
2n ·nd−1

)
, which is a

significant reduction of the number of grid points, and thus of the computational and

storage requirements compared to the Cartesian grid space. In analogy to (2.12), a

function f ∈V S
n ⊂Vn can now be expanded by

f (⃗x) ≈ u (⃗x) = ∑
|l |1≤n+d−1

∑
i⃗∈I l⃗

αl⃗ ,⃗i ·φl⃗ ,⃗i (⃗x), (2.14)

which contains substantially fewer terms. In the case that functions do not meet the

smoothness requirements or that show distinct local features as we face in the model

described in Sec. 2.2, they can still be tackled efficiently with sparse grids if spatial

adaptivity is used. The classical sparse grid construction introduced in (2.13) defines

an a priori selection of grid points that are optimal for functions with bounded second-

order mixed derivatives. An adaptive (a posteriori) refinement can, additionally, based

on a local error estimator, select which grid points in the sparse grid structure should

be refined. The most common way of doing so is to add 2d children in the hierarchical

structure with increasing grid refinement level if the hierarchical surpluses satisfy

g (α) ≥ ϵ for a so-called refinement threshold ϵ≥ 0. For more details regarding ASGs,
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Figure 2.1: Left panel: Hierarchical increment spaces W(l1,l2) for 1 ≤ l1, l2 ≤ n = 3
with their corresponding grid points and one-dimensional piecewise linear basis
functions of levels 1, 2, and 3. Top right panel: Construction of a classical sparse grid
V S

3 (see (2.13)), consisting of all the points displayed in the left figure. Note that the
optimal selection of subspaces for the classical sparse grid is indicated by the dashed
lines of constant l1 + l2. Bottom right panel: Construction of the ASG V ASG

3 . Note that
the red dots in the left panel symbolically represent points that would be refined, i.e.,
g (α) ≥ ϵ holds, whereas the green ones indicate points where the grid is not further
refined. The black points in the left panel are only contained in V S

3 , and not V ASG
3 .
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we refer the reader e.g. to Bungartz and Dirnstorfer (2003); Ma and Zabaras (2009);

Pflüger (2012). The lower right panel of Fig. 2.1 illustrates a qualitative example of how

a sparse grid is refined adaptively, adding a second layer of sparsity to the sparse grid.
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Proceed to iteration step 𝑖 + 1

Figure 2.2: Schematic representation of the hybrid parallelization scheme in a single
time step. Every MPI process within an MPI_Group is using TBB. In the case of deploy-
ing our software on hybrid CPU/GPU nodes, the interpolation on the next period’s
policy function pnext is partially offloaded to GPUs.

2.4 Parallel time iteration algorithm

We describe now how to solve the stochastic OLG model introduced in Sec. 2.2. For

this reason, we implement a massively parallel version of a time iteration algorithm

(see code listing 2 and Judd (1998)) for mixed high-dimensional continuous/discrete

states that uses one ASG per shock z ∈ Z in each iteration step.2 Building on Brumm

et al. (2015), we parallelize this algorithm by a hybrid scheme using MPI (Skjellum

et al., 1999), TBB (Reinders, 2007) (and CUDA, if a GPU is present on the compute

2In line with Sec. 2.2, the mixed discrete/continuous state variables of the OLG model at time t
consist of s = (z, x), where x has 59 dimensions, and the shock z has Ns = 16 possible realizations.
Moreover, the policy function p = (

p(z = 1, ·), . . . , p(z = 16, ·)) :R16·59 →R16·2·59 maps the current state
into asset demand and value functions (see Sec. 2.2). We, therefore, have to approximate 118 coefficients
α= (αk ,αv ) per state z and grid point.
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2.4 Parallel time iteration algorithm

node), and deploy compute kernels that leverage AVX, AVX2 or AVX-512 vectorization,

depending on the respective hardware platform (see Sec. 2.4.1).3

One significant performance bottleneck when solving large-scale economic mod-

els always lie on interpolating the previous iteration step’s policy functions. When

searching for the solution to the equation system at a given point for a given shock z

(cf. (2.3)), the algorithm has to frequently interpolate on the policy functions pnext of

all the Ns = 16 states from the previous iteration step at once. These interpolations

typically take up to 99% of the computation time needed (see, e.g., Brumm and Schei-

degger (2017)) to solve the nonlinear set of equations and therefore need to be carried

out as rapidly as possible to guarantee a fast time-to-solution process. In our earlier

work (Brumm et al., 2015), we applied a dense matrix data format that is very similar

to the one proposed by Heinecke and Pflueger (2013) and for which highly optimized

algorithms exist to perform the interpolation task. However, for the applications in

scope here, we cannot maintain this data structure, since in contrast to Brumm et al.

(2015), where we had to deal with interpolating on one single ASG of intermediate

size only (around 8 continuous dimensions), we now have to be able to operate on 16

very large—that is, 59-dimensional ASGs at once (cf. Secs. 2.2 and 2.5). Keeping the

aforementioned dense matrix format to store the previous timestep’s policy function

for the interpolation introduces a memory footprint of a non-trivial size that, in turn,

would substantially slow down interpolations and thus the time-to-solution. To this

end, we propose a novel, generic data compression method for ASGs (see Sec. 2.4.2).

2.4.1 Hybrid parallelization scheme on heterogeneous HPC systems

In every step i of the time iteration procedure (see Alg. 2), the policy function p is

updated by using a hybrid-parallel algorithm (see Fig. 2.2). Conceptually, the top

layer of parallelism is the Ns discrete states of the OLG model, which are completely

independent of each other within a time step. Hence, the MPI_COMM_WORLD com-

municator is split into Ns = 16 sub-communicators, each of them representing an

individual discrete state—that is, an independent ASG which updates its share of

the total policy p = (
p(z = 1), . . . , p(z = Ns)

)
. Next, every MPI_Group gets a fraction

from all the MPI processes available in the MPI_COMM_WORLD communicator assigned

3Note that the developments presented in this article substantially improve over our previous
work (Brumm et al., 2015). First, we extend our original code base, and it’s respective parallelization
scheme such that it can handle high-dimensional continuous as well as discrete, stochastic states at
the same time. Second, our compute kernels now also deploy AVX2 and AVX-512 vectorization. Third,
we introduce a novel data structure for operating on ASGs (see Sec. 2.4.2).
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such that an optimal workload balance across different discrete states in guaranteed4

(see the top part of Fig. 2.2). We achieve this by using the number of grid points Mz

contained in pnext (z) from the previous iteration step i −1 as a proxy for the demand

on computational resources necessary in the current time step i . In particular, we

assign the fraction MPI_COMM_SIZE(z) = Mz/
(∑Ns

j=1 M j

)
from the total available MPI

processes to an individual state z. Inside every MPI_Group, an ASG is constructed in a

massively parallel fashion. The points that are newly generated within a refinement

level (see (2.13)) are distributed via MPI among multiple, multi-threaded processes.

The points that are sent to one particular compute node are then further distributed

among different threads. Multithreading on compute nodes is implemented with TBB.

To guarantee efficient use of any of the compute nodes, the threads leverage TBB’s

automatic workload balancing based on stealing tasks from the slower workers. In

general, each TBB thread has to solve an independent set of nonlinear equations for

every single grid point assigned to it. These nonlinear equations (see (2.3)) are solved

with Ipopt (Waechter and Biegler, 2006), which is high-quality open-source software

for solving nonlinear programs (http://www.coin-or.org/Ipopt/). On top of this,

we add an additional level of parallelism. When searching for the solution to the

equation system at a given point for a given shock z, the algorithm has to frequently

interpolate on the policy functions of all the Ns = 16 states from the previous iteration

step at once. As they have a high arithmetic intensity—that is to say, many arithmetic

operations are performed for each byte of memory transfer and access—they can

leverage on SIMD AVX, AVX2 and AVX-512 instructions as well as on the massive paral-

lelism of GPUs, depending on the hardware we deploy our code framework on. In the

case of CPU/GPU nodes, we offload parts of the policy function interpolation from the

compute nodes to their attached accelerators. In particular, one of the TBB-managed

threads is exclusively used for the GPU kernel dispatch, as indicated in the lower part

of Fig. 2.2. This GPU-dedicated thread launches the kernel and polls until it is finished.

As the GPU is much more powerful than a CPU thread, the TBB scheduler will observe

the “skew” of work balance, and will dynamically re-adjust the amounts of work in

favor of the GPU-dedicated thread.

2.4.2 Adaptive sparse grid compression

While the primary arithmetic operations to calculate surpluses and perform interpo-

lations on ASGs are rather simple (see Sec. 2.3), accessing the data requires most of

the computing time, which emphasizes the importance of efficient data structures.

Depending on the target hardware platform, the most widespread techniques for

4Note that the overhead of invoking an MPI_barrier after each iteration to synchronize across
sub-communicators (see Fig. 2.2) is typically relatively small—that is, less than 1% of the total runtime.
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Figure 2.3: First step of the data compression: initial elimination of zeros in Ξ̃, exampli-
fied by a (0. . .58)× (0 . . .58) submatrix for a sparse grid of maximum refinement level 3.
In both figures, the x-direction corresponds to the dimension index dim, whereas the
y-axis corresponds to grid points that are uniquely labeled by nno. The color-coded
squares indicate scalar combinations of (l , i ).

storing ASGs are matrix-kind of structures (see, e.g., Heinecke and Pflueger (2013))

or hash tables (see, e.g., Bungartz and Dirnstorfer (2003), and references therein).

However, a direct application of those schemes is suboptimal due to particularities

of the target application. To reduce the compute time spent on interpolations when

performing time iteration, we, therefore, introduce here a novel data compression

scheme for ASGs. Its primary features are that it significantly reduces the global

memory throughput of the compute kernels and maps randomly accessed data onto

cache or fast shared memory. Conceptually, an ASG is represented by a set of nno

points that are all uniquely defined by multi-index pairs (⃗l , i⃗ ) as well as a vector of

surpluses α⃗ (see (2.10) and (2.14)). Let Ξ̃ be a matrix that is formed of multi-index

pairs, as illustrated in Fig. 2.3a by an example for a sparse grid of maximum refinement

level 3. Next, we derive a matrix Ξ from Ξ̃ by pre-processing the scalar entries for

every dimension di m of the multi-index pairs as l ← 2 ≪ (l −2) and i ← i −1, which

leads up 96.8% of “zeros” content, as shown in Fig. 2.3b. Note that the (l , i ) pair in

a given dimension di m is considered zero only if both l and i are zero at the same

time. Depending on the level l , each d-sized row usually contains only a few non-zero

pairs: at most 1 for level 1, and at most 2 for level 2. Moreover, let n f r eq —that is, the

number of freqencies, be the maximum number of non-zero values across individ-

51



Rethinking large-scale economic modeling for efficiency

0 3
0

10

20

30

40

50

freq0

n
n
o

0 10 20 30 40 50
0

10

20

30

40

50

dim

0 6
0

10

20

30

40

50

freq1

(0, 0) (2, 0) (2, 2) (4, 1) (4, 3)

Figure 2.4: Second step of the data compression: distribution of the non-zeros from Ξ

across two tables of {(l , i ),knno} elements. In addition to (l , i ), the pair’s Ξ row index is
stored in knno .

ual Ξ rows. We decompose the dense Ξ matrix into a set of matrices ξ?×d
f r eq , where

f r eq = 1,n f r eq .5 Each of those matrices shall contain no more than one non-zero

element from each Ξ row such that the sequences of elements picked up as one from

every ξ f r eq , could, later on, be built up into chains. Therefore, ξ f r eq rows may still

contain some zero elements. The number of rows in ξ?×d
f r eq is dynamically expanded to

fit the actual non-zero population. The set of ξ f r eq matrices is a sparse representation

of Ξ—each ξ f r eq element, in addition to (l , i ), holds the pair’s row index in Ξ. Fig. 2.4

illustrates the decomposition of Ξ into two ξ f r eq matrices. Note that for illustrative

purposes, we show here only the first 59 points from the example sparse grid being

represented in our novel data structure. After the initial placement of its elements, the

Ξ row index components from each ξ f r eq matrix element are renumbered in a sorted

order that ranges from the first to the last row of ξ f r eq . A set of transition matrices

T f r eq holds correspondences between row indices of consecutive ξ f r eq matrix pairs

after the individual renumbering. The original Ξ row indices in the ξ f r eq−elements

are omitted after renumbering. The elements of the ξ f r eq matrices are further iterated

to form a global array of unique elements xps, and a linear lookup index vector V f r eq

is defined for each ξ f r eq matrix. As result, the size of the xps array denotes which of

the linear basis calculations have a non-zero contribution in forming the ASG inter-

5ξ?×d
f r eq is a short-hand notation for the fact that we have a dynamically expandable matrix with fixed

row size. We start filling it will elements, starting from the first row. If the first row’s j-th column is
already busy, we append the second row and place another j-th element there, and so on.
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polant (see (2.14)) and thus are meaningful to perform. Finally, we use T f r eq , xps, and

the lookup indices V f r eq to construct the set of contributing linear basis chains, as

shown in Alg. 3. Note that the rows from the matrix in which we store the hierarchical

for i = 0, ich = 0; i < nno; i = i +1, ich = ich +n f r eq do
chai ns (ich) = V (0, i );
for i f r eq = 0; i f r eq < n f r eq ; i f r eq = i f r eq +1 do

chai ns (ich) = V (i f r eq ,T (i f r eq , i ));
end

end

Algorithm 3: Construction of chains from transition matrices and lookup indices.

surpluses are reordered accordingly.

Our main motivation for the sparse grid index compression introduced above is

to eliminate redundant computations when interpolating on the ASGs (see (2.14)).

Indeed, as shown in the left panel of Fig. 2.5 by example of a pure x86 (serial) code

listing, the complexity of the linear basis computation shrinks from nno×d iterations

in the dense representation (see Brumm et al. (2015)) down to nno ×n f r eq in the case

of our proposed data format. Given that in our practital application (see Sec. 2.5),

d = 59 and n f r eq is a small constant (n f r eq ≤ 7 in typical cases), the complexity

decreases roughly one order of magnitude, yet introducing some memory access

penalty due to the additional indexing chains. The number of meaningful basis

function factors xps to be calculated is usually relatively small. For instance, xps = 473

in the case of a sparse grid that consists of about nno = 300,000 points (see Fig. 2.1),

which easily fits the cache as well as the GPU shared memory (48 KB). In Sec. 2.5.1,

we analyze the overall performance impact of the index compression for different

interpolation kernels.

2.5 Performance and Scaling

In this section, we first show in Sec. 2.5.1 how the data structure introduced in Sec. 2.4.2

improves on the performance of the interpolation kernels. Second, we report in

Sec. 2.5.2 on the single node performance achieved by the entire time iteration al-

gorithm. Third, we evaluate the strong scaling behavior of our implementation in

Sec. 2.5.3. Finally, we discuss solutions to an annually calibrated OLG model in

Sec. 2.5.4.

We deploy our code on two different types of hardware. As the first testbed, we use the
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1 vector<double> xpv (xps . size ( ) , 1 . 0 ) ;
2 for ( i n t i = 0 , e = xpv . size ( ) ; i < e ; i++)
3 {
4 const Index<uint16_t >& index = xps [i ] ;
5 const uint32_t& j = index . index ;
6 double xp = LinearBasis (x [j ] , index . l , index . i ) ;
7 xpv [i ] = fmax ( 0 . 0 , xp ) ;
8 }
9

10 for ( i n t i = 0 , ichain = 0 ; i < nno ; i++ , ichain += nfreqs )
11 {
12 double temp = 1 . 0 ;
13 for ( i n t ifreq = 0 ; ifreq < nfreqs ; ifreq++)
14 {
15 const auto& idx = chains [ichain + ifreq ] ;
16 i f ( ! idx ) break ;
17

18 temp *= xpv [idx ] ;
19 i f ( ! temp ) goto zero ;
20 }
21

22 for ( i n t dof = 0 ; dof < ndofs ; dof++)
23 value [dof ] += temp * surplus (i , dof ) ;
24

25 zero :
26

27 continue ;
28 }

1 for ( i n t i = 0 ; i < nno ; i++)
2 {
3 double temp = 1 . 0 ;
4 for ( i n t j = 0 ; j < DIM ; j++)
5 {
6 double xp = LinearBasis (
7 x [j ] , index (i , j ) . l , index (i , j ) . i ) ;
8 i f (xp <= 0 . 0 ) goto zero ;
9

10 temp *= xp ;
11 }
12

13 for ( i n t dof = 0 ; dof < ndofs ; dof++)
14 value [dof ] += temp * surplus (i , dof ) ;
15

16 zero :
17

18 continue ;
19 }

Figure 2.5: Comparison of the interpolation kernels for an x86 code with (left) and
without (right) sparse grid index compression (cf. (2.14)).
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test d nno level # states # xps/state
“7k” 59 7,081 3 16 237
“300k” 59 281,077 4 16 473

Table 2.1: Interpolation test cases for varying sparse grid levels.

version “7k” test [sec] “300k” test [sec]

gold 0.000820 0.018884
x86 0.000197 0.004251
avx 0.000204 0.004221
avx2 0.000204 0.004234
avx512 0.000225 0.000907
cuda 0.000122 0.000275

Table 2.2: Performance of the interpolation kernels on various target platforms (time
measured in seconds). Note that the runtime reported for the cud a version accounts
both for the execution time of the kernel as well as the data transfers into the final
value.

Cray XC50 “Piz Daint” system. Cray XC50 compute nodes combine Intel Xeon E5-2690

v3 CPUs with one NVIDIA P100 GPU.6 Second, we use the Cray XC40 Iron Compute

“Grand Tave” system, whose nodes consist of Intel Xeon Phi 7230.7

2.5.1 Performance of the interpolation kernels

To demonstrate the performance gains of the interpolation kernels with respect to

the novel data format (see Sec. 2.4.2), we carried out two tests on ASGs of varying size.

The detailed specification for each of the test cases are summarized in Tab. 2.1. Below,

we first give a short description of every version of the interpolation kernel (cf. (2.14))

and then subsequently report on the achieved performance.

gold

The gold version denotes a scalar interpolation kernel that operates on the data format

we were using in Brumm et al. (2015) and which was based on Heinecke and Pflueger

(2013).

6More details can be found at http://www.cscs.ch/computers/piz_daint/.
7For more information, see http://www.cscs.ch/computers/grand_tave/.
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Figure 2.6: Normalized speedup gains of various interpolation kernels for the two test
cases (cf. Fig. 2.1).

x86

The x86 version leverages the novel data format in a most trivial way. The code is

scalar—that is, no explicit vectorization is performed.

AVX/AVX2

In the AVX/AVX2 kernels, the compute loops are manually vectorized. The AVX2

additionally deploys vector FMA instructions where applicable. The effect of these

optimizations is minimal due to the memory-bound nature of our problem.

AVX512

Unlike its AVX/AVX2 siblings, the AVX512 version has to deal with much less cache

size per compute core. Therefore, it deploys OpenMP parallelization inside the inter-

polation kernel instead of high-level TBB work distribution (cf. Fig. 2.2). As long as

the kernel performs the summing of the nno vectors, AVX512 deploys an OpenMP 4

user-defined reduction with partial vector sums that are implemented in 512-bit wide

intrinsics. By the nature of the algorithm, many partial vector sums end up making

zero contributions. They are handled specially to initiate no actual memory flow and

to reduce the cache pollution, yet causing imbalances in the reduction tree traversal.
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CUDA

The CUDA version offloads the interpolation kernel to the NVIDIA Tesla P100 GPU.

The scheduler uses a block size of 128, which is the closest to the ndo f s per point.8

The nno is distributed across the maximum number of concurrent blocks for a given

SM and register count. In this way, the whole kernel workload efficiently goes through

in a single “wave” of blocks. The xpv array is mapped onto the shared memory. Unlike

the “300k” test case, the “7k” benchmark is not sufficiently large to fully utilize the

P100 compute resources and therefore demonstrates only a moderate speedup.

As an indicative performance measure, we consider the average execution time of

a particular kernel. The data was generated by evaluating the interpolation kernels

at 1,000 randomly sampled grid points in B and then taking the average runtime.

The performance results for the various implementations are reported in Tab. 2.2 and

Fig. 2.6. The latter is normalized with respect to the gold version. Note that all kernels—

except AVX512 and CUDA—are single-threaded and therefore delegate the thread

parallelism to the upper-level TBB scheduler (see Fig. 2.2). As shown in Fig. 2.6, we

find that deploying the novel data structure delivers a speedup of about 4×, whereas in

combination with AV X 512 and CU D A (where there are also more compute resources

available), we can reach a combined speedup of almost two orders of magnitude. For

further details, please refer to the interpolation kernel source code (Scheidegger and

Mikushin, 2018).

2.5.2 Single-node performance: KNL versus CPU/GPU clusters

To give a measure of how the single-node parallelization scheme discussed in Sec. 2.4.1

impacts the performance, we evaluate the first two sparse grid levels of a single time

step from the OLG model as outlined in Sec. 2.2. This relatively small instance consists

of 16 ·119 = 1,904 grid points, 16 ·119 ·59 = 112,336 variables and constraints. The

results are summarized in Fig. 2.7. They indicate a total speedup of 25× when going

from a single CPU thread implementation to a more efficient version of utilizing

both all CPU and GPU resources present on a “Piz Daint" compute node. In case of

running the same experiment on “Grand Tave", we find that utilizing Xeon Phi KNL

in a multi-threaded mode delivers a speedup of about 96× over a single-threaded

version. Moreover, we observe that for our target application, “Piz Daint" nodes are

about 2× faster than the ones from “Grand Tave".

8Note that the variable ndo f s = 2 ·d = 118 corresponds to the 118 coefficients α= (αk ,αv ) that are
used to approximate the policy and value functions (see Sec. 2.2.1).
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Figure 2.7: Comparison of wall times for different stochastic OLG code variants on
a single node of “Piz Daint" and “Grand Tave". The speedup is normalized with
respect to an optimized, single-threaded test instance on “Piz Daint", whose runtime
corresponds to 2,243 seconds.

2.5.3 Strong Scaling

We now report the strong scaling efficiency of our code. The test problem is again a

single time step of a 59-dimensional OLG model with 16 discrete, stochastic states. To

provide a consistent benchmark, we used a nonadaptive sparse grid of refinement level

4 that was restarted from a sparse grid of level 2. This test case consists of 16·281,077 =
4,497,232 points and 16 ·281,077 ·59 = 265,336,688 unknowns and constraints per

time step. The economic test case was solved with increasingly larger numbers of

nodes (from 1 to 4,096 nodes on “Piz Daint"). Fig. 2.8 shows the normalized execution

time and scaling on different levels and their ideal speedups. We used 1 MPI process

per multi-threaded node. In case of running the benchmark on “Piz Daint", the code

scales nicely up to 4,096 nodes, where the overall efficiency still is around 70%.9 Thus,

combined with the single-node speedup gains reported in Sec. 2.5.2 we attain an

overall speedup of more than four orders of magnitude for our benchmark. There is

one dominant limitation to the strong scaling. It stems from the fact that within the

lower refinement levels, the ratio of “points to be evaluated per thread” is often smaller

than one with increasing node numbers, i.e., threads are idling. The better parallel

efficiency on the higher refinement levels is due to the fact we have in this situation

many more points available, resulting in a workload that is somewhat fairer distributed

among the different MPI processes and their respective threads (see Fig. 2.8).

9Note that due to the limited size of “Grand Tave"—less than 200 nodes—we did not add the
corresponding strong scaling figures here. From Fig. 2.8, it becomes evident that our code scales almost
perfectly on such a small system.
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2.5.4 Convergence of the time iteration algorithm

For the purpose of testing the convergence of our massively parallel time iteration

algorithm, we compute equilibria for the model outlined in Sec. 2.2 and a decreasing

refinement threshold ϵ (see Sec. 2.3). In the left panel of Fig. 2.9, we compare the

decaying L2- and L∞- error for a complete simulation of a 59-dimensional model as

a function of compute time. The right panel of Fig. 2.9 shows the decreasing errors

as a function of iteration steps. It is apparent from Fig. 2.9 that convergence of the

time iteration algorithm is rather slow. This is to be expected, as time iteration has, at

best, a linear convergence rate in iterations (Maldonado and Svaiter, 2007). The time

iteration was terminated once the average error dropped below the satisfactory level

of 0.1 percent. For this iteration step, the ASGs consist in average of 73,874 points

per state, however varying between a minimum of 69,026 points in state z = 6 and a

maximum of 76,645 points in state z = 1.10

2.6 Conclusions

Solving mixed high-dimensional continuous/discrete dynamic stochastic economic

models in competitive times, that is, in hours or days of human time at maximum

imposes many challenges both from a modeling as well as from a computational

perspective. We demonstrate in this paper that by combining ASGs (that ameliorate

the curse of dimensionality imposed by the significant heterogeneity of the economic

model) with efficient data structures, a time iteration algorithm (that deals with

the recursive nature of the problem formulation), and with hybrid HPC compute

paradigms (which drastically reduces the time-to-solution process), we can handle

the difficulties imparted by this particular model class up to a level of complexity

not seen before. By exploiting the generic structure of the economic model under

consideration, we implemented a hybrid parallelization scheme that uses state-of-

the-art parallel computing paradigms. It minimizes MPI interprocess communication

by using TBB and AVX, AVX2 or AVX-512 vectorization (depending on the hardware

available), and partially offloads the function evaluations to GPUs if available. In

addition, we introduced a novel data compression scheme for ASGs that resulted in

accelerating the compute time spent on interpolations by about 4×. Numerical tests

on “Piz Daint" (a hybrid CPU/GPU system) and “Grand Tave" (a Xeon Phi KNL cluster)

10Note that we carried out our computations by setting Lmax = 6 and fixing ϵ until the error level
did not improve any further. We subsequently restarted the code with a decreased value of ϵ. This
measure then slightly adds points to the grid and therefore further lowers the error. As the size of the
classical sparse grid grows very fast in high dimensions when the level increases—from 119 (l = 2),
7,081 (l = 3), 281,077 (l = 4), 8,378,001 (l = 5), to > 2 ·108 (l = 6)— adaptive sparse grids allow us to
look at intermediate numbers of grid points.
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2.6 Conclusions

at CSCS show that our code is highly scalable. In the case of a stochastic public finance

OLG model with 60 generations and sixteen discrete states, we found excellent strong

scaling properties up to 4,096 nodes, resulting in an overall speedup of more than

four orders of magnitude compared to a single, optimized CPU thread.
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3 GPU-Accelerated Dynamic Human
Capital Models

3.1 Introduction

Economists use dynamic structural econometric models to study individual decision-

making such as career decisions about schooling, work, occupational choice, the

impact of economic mechanisms, and to forecast the effect of public policies on the

welfare (see, e.g., Blundell et al. (2016)). These models specify the individuals’ objec-

tive, their economic environment, and the institutional and informational constraints

under which they operate. This paper is dedicated to Eckstein–Keane–Wolpin (EKW)

models used to quantitatively study human capital investment decisions over the

full life cycle of an individual (Aguirregabiria and Mira, 2010). Human capital com-

prises the knowledge, skills, competencies, and attributes embodied in individuals

facilitating the creation of personal, social, and economic well-being (Becker, 1964).

Differences in human capital attainment lead to inequality in various life outcomes

such as labor market success and health across and within countries (OECD, 2001).

EKW models are formulated as discrete-state dynamic stochastic optimal control

problems (Judd, 1998), and are usually solved by backward induction method (Bell-

man, 1961). This method suffers from the curse of dimensionality, which could be

alleviated only under very strong restrictions on the fundamentals of the model (Rust,

1997). Solving a large-scale EKW model numerically by a backward induction scheme

at each iteration step:

• requires a highly accurate approximation of economic functions at a vast num-

ber of discrete points;

• yields to a maximization problem that needs to be solved by brute force via grid

search, and involves the numerical approximation of a complex integral.
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Hence, achieving a fast time-to-solution is difficult for even a single solution of a

realistically-sized EKW model. Moreover, to actually calibrate the model to empirical

data, it needs to be solved hundreds of thousands times. According to Borella et al.

(2019), a model parallelized in C, requires 22 minutes for each set of parameter values

to be solved on high-end workstations, totalling at least three or four weeks runtime

for a single cohort. As a consequence, economists restrict themselves to working with

simplified models, and a small number of calibrations. Even the simplified models

are only solved to a low level of numerical accuracy and no uncertainty quantification

or sensitivity analysis is done. This situation is particularly unsatisfactory as the

amount of populational data is ever-increasing and allows to add important economic

mechanisms that are so far ignored to ease the computational burden.

This work is based on the RESPY project (Gabler and Raabe, 2020), a research code for

the flexible specification, simulation, and estimation of EKW models. Being developed

in pure Python, RESPY is an example of readable and descriptive scientific software,

which expresses each component of EKW model with simple and natural Python

language constructs. As almost any pure Python software, RESPY’s scalability is

limited by nature of Python runtime environment. Therefore, we have set out our goal

to create an “enhanced” variant of RESPY, which rewrites the original software very

closely, but in a more HPC-friendly manner. Specifically, our contribution is threefold:

1. an optimal memory layout for EKW model data, so that the CPU could perform

backward induction with minimum possible pipeline stalls,

2. a partitioning algorithm to distribute the EKW problem to hundred thousand of

parallel workers,

3. a generic C++ model core, which is compatible with CUDA and HIP GPU run-

times used by 5 out of 6 currently fastest supercomputers.

The computational kernel of the RESPY EKW solver consists of dense linear algebra

and reduction operations implemented mainly in Python Pandas.DataFrame (Wes

McKinney, 2010). The main purpose of Pandas.DataFrame in EKW solver is to store

the economic agents data, and apply groupby filters to construct various aggregates

and subviews. Being particularly good for prototyping, the Pandas framework quickly

hits its limited scalability (Petersohn et al., 2020). We tackle the scalability limitation in

three directions. First, we develop forward and inverse translation formulas between

each possible discrete choice and the index of its corresponding data value in a flat

1-dimensional array. Second, we replace Python-based data structures with native

C++ arrays. Finally, we implement each period of backward induction process in
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such way, that iterations over all possible discrete choices are performed on-the-fly,

without precomputing and storing the list of them. Ultimately, our optimizations

demonstrated two orders of magnitude speedup over the original Python version, and

allow to simulate much larger EKW problems.

While in this article we focus on EKW models, the presented performance tuning

approach could be useful for any discrete-state optimal control problems.

We organize the remainder of this article as follows. In Section 3.2, we briefly introduce

the class of EKW models. We discuss the economic framework, their mathematical

formulation, and outline the calibration procedures that allow to fit them to observa-

tional data. We then, in Section 3.3, present an empirical application of the model. In

Section 3.4 we focus on the implementation details, including the general discrete-

state dynamic programming algorithm, its novel parallelization scheme. Finally, in

Section 3.9, we substantiate our performance claims for the algorithm in the empirical

application. Section 3.10 concludes.

3.2 Eckstein-Keane-Wolpin models

To demonstrate the capabilities of the massively-parallelized solution algorithm for

EKW models introduced in this article, we now present their formal setup. We first

describe the economic framework in Section 3.2.1, then turn in Section 3.2.2 to their

mathematical formulation, and finally outline in Section 3.2.3 the calibration proce-

dure.

3.2.1 Economic framework

EKW models describe the sequential decision-making of economic agents under

uncertainty (Gilboa, 2009; Machina and Viscusi, 2014). At time t = 1, . . . ,T , where t ∈N,

each individual observes the state of the economic environment st ∈ S, and chooses

an action at from the set of admissible actions A . In previewing our application, we

model the human capital investment decisions of individuals between age 16 and 65.

The state st contains, for example, information about an individual’s labor market

experience and educational attainment, and individuals can choose to either join the

labor market, go to school, or simply stay at home. The decision has two consequences:

an individual receives an immediate reward ut (st , at ), and the economy evolves to

a new state st+1. Going forward, we will use the term "utility" instead of a reward.

Economists use the term utility to refer to a level of overall satisfaction. In the context

of our application, the utility from working is partly determined by the wage an
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Figure 3.1: Timing of events in the discrete-state dynamic EKW model for two generic
time periods.

individual receives but also other job amenities. The transition from st to st+1 is

affected by the action, but remains uncertain. Individuals are assumed to be forward-

looking. Thus, they do not simply choose the alternative with the highest immediate

utility. Instead, they take the future consequences of their current action into account.

A policy π= (aπ1 (s1), . . . , aπT (sT )) provides the individual with instructions for choosing

an action in any possible future state. It is a sequence of decision rules aπt (st ) that

specify the action at a particular time t for any possible state st under π. As individuals

follow their policy, they receive a sequence of utilities that depends on the objective

transition probability distribution pt (st , at ) for the evolution of state st to st+1 induced

by the model. Individuals have rational expectations (Muth, 1961)—that is, their

subjective beliefs about the future agree with the objective transition probabilities of

the model.

Figure 3.1 depicts the timing of events in the model for two generic periods. At the

beginning of period t , an individual fully learns about the immediate utility of each

alternative, chooses one of them, and receives its immediate utility. Then the state

evolves from st to st+1, and the process is repeated in t+1. Individuals face uncertainty,

and they seek to maximize the expected total discounted utilities. An exponential

discount factor 0 < δ< 1 parameterizes their time preference and captures a taste for

immediate over future utilities.

The subsequent equation (3.1) provides the formal representation of the individual’s

objective: Given an initial state s1, individuals implement the policy π from the set of

all possible policiesΠ that maximizes the expected total discounted utilities over all T
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decision periods given the information I1 available in the first period:

max
π∈Π

Eπs1

[
T∑

t=1
δt−1ut (st , aπt (st ))

∣∣∣∣∣ I1

]
. (3.1)

The superscript of the expectation emphasizes that each policy π induces a different

probability distribution over the sequences of utilities.

3.2.2 Mathematical formulation and a solution algorithm

EKW models are set up as a standard Markov decision process (MDP) (Puterman, 1994;

White, 1993). When making sequential decisions under uncertainty, the decision-

maker seeks to implement the optimal policy π∗ with the largest expected total dis-

counted utilities vπ
∗

1 (s1) as formalized in equation (3.1). In principle, this requires

evaluating all policies’ performance based on all possible sequences of utilities, each

weighted by the probability with which they occur. Fortunately, however, the multi-

stage problem can be solved by a sequence of simpler inductively defined single-stage

problems.1

The value function vπt (st ) captures the expected total discounted utilities under policy

π from period t onwards for an individual experiencing state st :

vπt (st ) = Eπst

[
T−t∑
j=0

δ j ut+ j (st+ j , aπt+ j (st+ j ))

∣∣∣∣∣ It

]
.

Then we can determine vπ1 (s1) for any policy by recursively evaluating equation (3.2):

vπt (st ) = ut (st , aπt (st ))+δEπst

[
vπt+1(st+1)

∣∣ It
]

. (3.2)

Equation (3.2) expresses the total value vπt (st ) of adopting policy π going forward as

the sum of its immediate utility and all expected discounted future utilities.

The principle of optimality (Bellman, 1954) allows to construct π∗ by solving the

optimality equations (3.3) for all s and t recursively:

vπ
∗

t (st ) = max
at∈A

{
ut (st , at )+δEπ

∗
st

[
vπ

∗
t+1(st+1)

∣∣∣ It

]}
. (3.3)

1Optimal decisions in an MDP are a deterministic function of the current state s only—that is, an
optimal decision rule is always deterministic and Markovian. We restrict our notation to this special
case right from the beginning.
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The optimal value function vπ
∗

t is the sum of the expected discounted utilities in t

over the remaining time horizon assuming the optimal policy is implemented going

forward. The optimal action is choosing the alternative with the highest total value:

aπ
∗

t (st ) = argmax
at∈A

{
ut (st , at )+δEπ

∗
st

[
vπ

∗
t+1(st+1)

∣∣∣ It

]}
.

Algorithm 4 illustrates the canonical way to solve the MDP by a backward induction

procedure. In the final period, T , there is no future to take into account, and the

optimal action is choosing the alternative with the highest immediate utilities in each

state. With the decision rule for the final period at hand, the other optimal decisions

can be determined recursively following equation (3.3) as the calculation of their

expected future utilities is straightforward given the relevant transition probabilities.

2

From a computational perspective, it is important to note that the number of states

and actions can be large, and can leverage high-performance parallel and distributed

computing methodology. Section 3.4 describes how the original backward induction

algorithm can be partitioned for execution on multicore CPUs and GPUs.

3.2.3 Calibration procedure

EKW models are calibrated to data on observed individual decisions and experiences

under the hypothesis that the individual behaves according to the model. This requires

the full parameterization θ of the model as we need to specify the functional form

of the immediate utility functions and impose distributional assumptions about the

2Note that algorithm 4 is closely related to reinforcement learning. The latter is branch of machine
learning that, among other things, is concerned with solving dynamic programming problems. Rein-
forcement learning is a data-driven approach to solving dynamic programming problems, where the
data can be created artificially via simulations or by real-life observations (see Sutton and Barto (2018)
for a thorough introduction). This type of machine learning refers to training a model to maximize a
reward via iterative trial and error. Both optimal control and reinforcement learning aim to find a policy
that optimizes a long-term performance measure. In contrast to optimal control, reinforcement learn-
ing usually does not assume a priori known transition dynamics and cost. Hence, general reinforcement
learning algorithms have to treat these quantities as random variables. However, if reinforcement
learning algorithms are applied to a fully known Markov decision process such as the ones we are
working with in this chapter, the reinforcement learning problem can be considered equivalent to
optimal control. The dynamic programming recursion and, therefore, all related algorithms, such as
value function iteration, can be used to solve this problem. Both reinforcement learning and optimal
control aim to find a solution to an optimization problem where the effect of the current decision can
be delayed. For further details on optimal control, dynamic programming, and reinforcement learning,
we refer to Sutton and Barto (2018).
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for t = T, . . . , 1 do
if t = T then

vπ
∗

T (sT ) = max
aT∈A

{
uT (sT , aT )

}
∀ sT ∈ S

else
Compute vπ

∗
t (st) for each st ∈ S by

vπ
∗

t (st) = max
at∈A

{
ut(st, at)+δ Eπ

st

[
vπ

∗
t+1(st+1)

∣∣ It
]}

and set

aπ
∗

t (st) = argmax
at∈A

{
ut(st, at)+δ Eπ

st

[
vπ

∗
t+1(st+1)

∣∣ It
]}

.

end if
end for

Algorithm 4: Backward induction procedure.

unobservables of the model. The goal of the calibration is to learn about the utility

functions and preference parameters that govern individual decision-making.

Economists have access to information for i = 1, . . . , N individuals in each time period

t = 1, . . . ,Ti . For every observation (i , t) in the data, we observe the action ai t , some

components ūi t of the utility, and a subset s̄i t of the state si t . Therefore, from the

researcher’s point of view, we need to distinguish between two types of state variables—

that is, si t = (s̄i t ,ϵi t ). At time t , the economist and individual both observe s̄i t while ϵi t

is only observed by the individual. In summary, the data D has the following structure:

D = {ai t , s̄i t , ūi t : i = 1, . . . , N ; t = 1, . . . ,Ti },

where Ti is the number of observations for which we observe individual i .

Numerous calibration procedures for different settings exist (Davidson and MacKin-

non, 2003; Gourieroux and Monfort, 1996). We briefly outline the likelihood-based

and simulation-based calibration. Independent of the calibration criterion, it is nec-

essary to solve for the optimal policy π∗ at each candidate parameterization of the

model.

Likelihood-based calibration seeks to find the parameterization θ̂ that maximizes

the likelihood function L (θ |D), i.e., the probability of observing the given data as

a function of θ. As we only observe a subset s̄t of the state, we can determine the

probability pi t (ai t , ūi t | s̄i t ,θ) of individual i at time t in s̄i t choosing ai t and receiving

ui t given parametric assumptions about the distribution of ϵi t . The objective function
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takes the following form:

θ̂ ≡ argmax
θ∈Θ

N∏
i=1

Ti∏
t=1

pi t (ai t , ūi t | s̄i t ,θ)︸ ︷︷ ︸
L (θ|D)

.

In simulation-based calibration, our goal is to find the parameterization θ̂ that yields

a simulated data set from the model that closest resembles the observed data. More

precisely, the goal is often to minimize the weighted squared distance between a

set of moments MD computed on the observed data and the same set of moments

computed on the simulated data MS(θ).3 The objective function takes the following

form:

θ̂ ≡ argmin
θ∈Θ

(MD −MS(θ))′W (MD −MS(θ)).

3.3 A fully specified EKW model

We now present an exemplifying analysis of a canonical EKW model on human capital

investment that is confronted with real data. The model was initially studied in Keane

and Wolpin (1997) to explore the career decisions of young men about their schooling,

work, and occupational choice, and will serve us below as an ideal benchmark to

measure performance since it’s solutions are known. We first outline the model’s

basic setup and provide some descriptive statistics of the empirical data used for its

calibration.

3.3.1 Basic setup

We follow individuals over their working life from young adulthood at age 16 to re-

tirement at age 65 where the decision period t = 16, . . . ,65 is one (discrete-valued)

school year. Figure 3.2 illustrates the initial decision problem as individuals decide

a ∈A whether to work in a blue-collar or white-collar occupation (a = 1,2), to serve

in the military (a = 3), to attend school (a = 4), or to stay at home (a = 5). Individ-

uals are already heterogeneous when entering the model. They differ with respect

to their level of completed schooling h16 and have one of four different J = {1, . . . ,4}

alternative-specific skill endowments e = (
e j ,a

)
J×A

.

3Note that the full solution of the model is required to carry out this maximum likelihood computa-
tion, as its moments need to be simulated.
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Figure 3.2: Decision tree for the initial two periods of the model that reveals the curse
of dimensionality that plagues the applications of EKW models. In the final period of
our examples (T = 49), there are 549 different states.

The immediate utility u(·) of each alternative consists of a non-pecuniary utility

ζa(·) and, at least for the working alternatives, an additional wage component wa(·).

Both depend on the level of human capital as measured by their occupation-specific

work experience kt =
(
ka,t

)
a∈{1,2,3}, years of completed schooling ht , and alternative-

specific skill endowment e. The immediate utilities are influenced by last-period

choices at−1 and alternative-specific productivity shocks ϵt =
(
ϵa,t

)
a∈A as well. Their

general form is given by:

u(·) =


ζa(kt ,ht , t , at−1)

+wa(kt ,ht , t , at−1,e j ,a ,ϵa,t ) if a ∈ {1,2,3}

ζa(kt ,ht , t , at−1,e j ,a ,ϵa,t ) if a ∈ {4,5}

.

Work experience kt and years of completed schooling ht evolve deterministically as

ka,t+1 = ka,t + I[at = a] if a ∈ {1,2,3}

ht+1 = ht + I[at = 4].

The productivity shocks ϵt are uncorrelated across time and follow a multivariate

normal distribution with mean 0 and covariance matrix Σ. Given the structure of

the utility functions and the distribution of the shocks, the state at time t is st =
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{kt ,ht , t , at−1,e,ϵt }.

Theoretical and empirical research from specialized disciplines within economics

informs the specification of each ua(·) and we discuss the exact functional form of

the per-period utility in the blue-collar occupation as an example.4 Equation (3.4)

shows the parameterization of the non-pecuniary utility from working in a blue-collar

occupation:

ζ1(kt ,ht , at−1) =α1 + c1,1 · I[at−1 ̸= 1]+ c1,2 · I[k1,t = 0] (3.4)

+ϑ1 · I[ht ≥ 12]+ϑ2 · I[ht ≥ 16]

+ϑ3 · I[k3,t = 1].

It includes job amenities α1 and mobility and search costs (c1,1,c1,2) that capture

the extra effort for individuals who only recently started working in a blue-collar

occupation. Additional components depend on whether an individual has a high

school ϑ1 or college ϑ2 degree. There is a detrimental impact of leaving the military

after a single year ϑ3.

The wage component w1(·) is given by the product of the market-equilibrium rental

price r1 and an occupation-specific skill level x1(·). The overall level of human capital

determines the latter. This specification leads to a standard logarithmic wage equation

in which the constant term is the skill rental price ln(r1) and wages follow a log-normal

distribution.

The occupation-specific skill level x1(·) is determined by a skill production function,

which includes a deterministic component Γ1(·) and a multiplicative stochastic pro-

ductivity shock ϵ1,t :

x1(kt ,ht , t , at−1,e j ,1,ϵ1,t ) = exp
(
Γ1(kt ,ht , t , at−1,e j ,1) ·ϵ1,t

)
.

Equation (3.5) shows the parameterization of the deterministic component of the skill

4All additional details are available at https://bit.ly/ekw-handout.
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production function:

Γ1(kt ,ht , t , at−1,e j ,1) = e j ,1 +β1,1 ·ht +β1,2 · I[ht ≥ 12] (3.5)

+γ1,1 ·k1,t +γ1,2 · (k1,t )2

+γ1,3 · I[k1,t > 0]+γ1,4 · t

+γ1,5 · I[t < 18]

+γ1,6 · I[at−1 = 1]

+γ1,7 ·k2,t +γ1,8 ·k3,t .

There are several notable features. Skills increase with schooling β1,1 and blue-collar

work experience (γ1,1,γ1,2). There are so-called sheep-skin effects associated with

completing a high school β1,2 and graduate β1,3 education that capture the impact of

completing a degree beyond just the associated years of schooling. Also, there is a first-

year blue-collar experience effect γ1,3 while skills depreciate when not employed in a

blue-collar occupation in the preceding period γ1,6. Other work experience (γ1,7,γ1,8)

is transferable.

The goal of the following calibration step is to learn about the quantitative values of

the parameters characterizing the immediate utility from each alternative.

θ =
{{

c1,i
}

i=1,2 ,
{
ν1,i

}
i=1,2,3 ,e j ,1

{
β1,i

}
i=1,2 ,

{
γ1,i

}
i=1,...,6 , ...

}

3.3.2 Empirical data

We analyze the original dataset used by Keane and Wolpin (1997) and thus only provide

a brief description here.5 The authors construct their sample based on the National

Longitudinal Survey of Youth 1979 (NLSY79) (Bureau of Labor Statistics, 2019). The

NLSY79 is a nationally representative sample of young men and women living in the

United States in 1979 and born between 1957 and 1964. Individuals were followed

from 1979 onwards and repeatedly interviewed about their schooling decisions and

labor market experiences. Based on this information, individuals are assigned to

either working in one of the three occupations, attending school, or simply staying at

home.

5We use the same data as in Keane and Wolpin (1997). Please see https://bit.ly/ekw-data for details.
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Figure 3.3: Data overview
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Notes: The wage is a full-time equivalent deflated by the gross national product deflator, with 1987 as
the base year. We do not report the wage if less than ten observations are available.

Keane and Wolpin (1997) restrict attention to white males that turn 16 between 1977

and 1981 and exploit the information collected between 1979 and 1987. Thus indi-

viduals in the sample are all between 16 and 26 years old. While the sample initially

consists of 1,373 individuals at age 16, this number drops to 256 at the age of 26 due

to sample attrition, missing data, and the short observation period. Overall, the final

sample consists of 12,359 person-period observations.

Figure 3.3 summarizes our information about choices and wages by age. We show

the distribution of choices on the left and report average wages on the right. Initially,

roughly 86% of individuals enroll in school, but this share steadily declines with age.

Nevertheless, about 39% obtain more than a high school degree and continue their

schooling for more than twelve years. As individuals leave school, most of them

initially pursue a blue-collar occupation. However, the relative share of the white-

collar occupation increases as individuals entering the labor market later have higher

levels of schooling. At age 26, about 48% work in a blue-collar occupation and 34%

in a white-collar occupation. The share of individuals in the military peaks around

age 20 when it amounts to 8%. At its maximum around age 18, approximately 20% of

individuals stay at home.

Overall, average wages start at about $10,000 at age 16 but increase considerably up

to about $25,000 at age 26. While wages in the blue-collar occupation are initially

highest with about $10,286, wages in the white-collar occupation and military start

around $9,000. However, wages in the white-collar occupation increase steeper over

time and overtake blue-collar wages around age 21. At the end of the observation

period, wages in the white-collar occupation are about 50% higher than blue-collar

wages with $32,756 as opposed to only $20,739. Military wages remain the lowest
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Figure 3.4: Model fit
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Notes: We simulate a sample of 1,000 individuals using the calibrated model.

throughout. We fit the model to the empirical data using maximum likelihood cal-

ibration. Figure 3.4 shows the overall agreement between the empirical data and a

dataset simulated using the calibrated parameters within the support of the data. On

the left, we show the choice probability of working in a blue-collar occupation while

plotting the average wage across all occupations on the right. Overall, the values of

the model’s calibrated parameters are in broad agreement with the relevant literature.

For example, individuals discount future utilities by 6% per year, and wages increase

by about 7% with each additional year of schooling.

3.4 Respy performance review

EKW model software is formed by two large functional blocks: backward propaga-

tion and simulation. In terms of complexity, we can mostly disregard the simulation

because it’s essentially a query to Emax database, which is created by a backward

propagation block. Therefore, our research shall be mostly concentrated on designing

and implementing backward propagation architecture for performance and scalabil-

ity.

3.4.1 Initial code performance

We construct two test cases based on well-known, influential, and empirically moti-

vated model specifications to evaluate Respy’s initial performance profiles. The first

one kw94_one provided a benchmarking setup for the development of an approximate

solution method for EKW models that is still in use today (Keane and Wolpin, 1994).

The second one kw97_advanced was the first successful estimation of an EKW model
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on empirical data and was already discussed in detail in the earlier sections.

The evaluation results are presented in Fig. 3.5.

Figure 3.5: Initial Respy code performance profiles

(a) Test configuration kw94_one initial profile

(b) Test configuration kw97_advanced initial profile

The original version of Respy package deploys pandas.DataFrame to perform com-

putationally intensive EKW operations. The user-defined callback functions for im-

mediate rewards and state variables updates are defined as expressions in the model

configuration provided by the user separately in a YAML file. These expressions

are evaluated by pandas.DataFrame during the backward propagation procedure.

The pandas.DataFrame is a tabular processor; it is tuned to operate the data or-

ganized similarly to an in-memory database. This design makes prototyping very

fast, which is much appreciated by Python developers. On the other hand, due to

pandas.DataFrame, the Respy hits multiple performance penalties:

1. Only the data physically stored in memory could be operated by pandas.DataFrame,

however, the states could be computed and used on-the-fly.

2. The pandas.DataFrame data is always stored in separately-allocated columns,

making any row-spanning calculations slower.
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3. Compared to native C arrays or matrices, each pandas.DataFrame a column is

a separate object whose data format is not compatible even with NumPy; as a

result, any operation on this data is essentially several times slower than native

C array data processing.

One possibility would be to swap pandas.DataFrame with cuDF by RapidsAI: a very

similar database engine gets deployed on a GPU, with all data kept in GPU memory by

default. We do not take this path, as it fundamentally has the same penalties, which

just get slightly scaled but hit again at larger problem sizes.

In fact, the performance issues above could only be addressed by re-writing the EKW

model code in C++. The next sections present how we move from algorithmic and

hardware definitions to efficient CPU and GPU implementations.

3.5 Algorithmic definitions

EKW model engine could be expressed in terms of Combinatorics. In EKW, each

combination of choices is a state, and the backward propagation process in a direct

simulation of a combinatorial system over the entire state space of choices. The

backward propagation process is similar to “picking a key” to a padlock with several

digits. A program implementation of this method would require a multiloop – a

stacked nest of indexed loops. A multi-index is a set of loops indices identifying each

state of the multiloop.

Unlike a simple padlock, the state variables in the EKW model are limited by total sum,

significantly reducing the resulting state space. The total sum of state variables values

cannot exceed the number of periods. Practically, if an agent is allowed to make a

choice each year during 60 years, then he cannot make more than 60 choices in total.

Therefore, we refer to the set of state variables as sum-constrained.

We develop EKW models with lagged actions support. The concept of lagged actions

is borrowed from regression modelling, where lagged dependent variables are used to

express that the current state of a dependent variable is heavily determined by its past

state. Likewise, in EKW the inclusion of lagged actions should better preserve the bias.

As a result, lagged actions are becoming additional variables identifying the model

state. However, unlike the usual state variables, they are not constrained by the total

number of periods. Therefore, we refer to the set of lagged actions as unconstrained.

Driven by its combinatorial nature, the EKW model problem experiences a very rapid

complexity growth with an increase of dimensions, which is often referred to as the

79



GPU-Accelerated Dynamic Human Capital Models

combinatorial explosion, or the curse of dimensionality. Leveraging large distributed

computing environments such as supercomputers or grid systems remains the main

method to solve this type of combinatorial problems directly.

In order to distribute the state space for a parallel system such as a GPU or supercom-

puter, we leverage two main combinatorial operations: ranking (indexing) of a given

combination, and sequencing (restoring) a combination for a given lexicographical

rank (index). In particular, a function returning an index of a given combination acts

as a “hashing function” to access an array of data items stored for each combination.

Similarly, a function that restores a combination from the given index, could be used

to quickly partition the volume of iterations between the parallel workers, and provide

each worker with a starting combination.

We discuss the flavors of combinatorial setups required for EKW backward propaga-

tion and derive the essential utility functions in Appendix A.

3.6 Hardware definitions

Due to the curse of dimensionality, the EKW model pushes the limits of the hardware.

Given that the EKW model is a memory-bound type of problem, our goal is to preserve

the optimal data throughput, which is in general identified by registers, caches, and

dynamic random access memory.

Registers. The register file is the on-chip fast data storage of immediate and most

frequently used elements of the execution context. For the EKW model, the execution

context of each worker is identified by the current combination and its upper limits,

QRNG state, the currently accumulated Emax value, some other loop indices, such

as the number of actions and the number of draws, and stack frames of the function

calls.

Each CPU thread typically has access to 16 general-purpose scalar registers, as well

as to about 16 general-purpose vector registers. In fact, the real number of registers

in CPU hardware is much larger due to many pipeline optimization techniques ap-

plied over the years of development. However, the compilers could only operate the

mentioned amount of “programmer-visible” registers, and push the excess data to

the stack, which is mapped onto the cache memory. If the application code is not

vectorized, the use of vector registers is very limited. The user may choose to sustain a

bit more register space by artificially deploying vector registers as a storage space for

scalars, but the overhead of accessing it is significant compared to the cache. Overall,

the CPU could barely operate the EKW model of a few dimensions, using registers
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alone, which does not happen in practice but makes much more sense for the GPU

case explained below.

Each GPU thread may have access to up to 255 general-purpose registers. At the

same time, each GPU multiprocessor has a fixed total number of registers available,

effectively limiting the maximum number of threads in flight. A typical optimal register

footprint that allows fair utilization of all GPU resources is ≈32 registers per thread.

Any larger register consumption per thread would often limit the number of threads

in flight and will not allow leveraging all available hardware compute units. Like on

the CPU, excess registers could be spilled into the L2 cache, but the effective size of

cache per thread is much smaller due to the much larger number of threads. For this

reason, GPU applications are strongly discouraged from inducing register spilling in

order to avoid dramatic performance penalties. Overall, the meaningful use of GPU

could be maintained with at most ≈100 registers per thread, which could hold up to

≈40 EKW model dimensions.

Cache. The L2 cache sizes are similar on modern high-end CPUs and GPUs, but

its purpose is different. While on the CPU, the use of cache is essential in almost

any routine task, the use of L2 cache for user data on GPU is considered exceptional

practice risky for performance, as the cache is quickly exhausted by a large number

of in-flight threads. One legitimate use of cache on GPU is function frame support,

which makes certain registers available in order to pass arguments to a function

call, according to the calling convention (in CUDA terms this usecase is called local

memory).

The EKW model should not make use of a cache for any data. The size of Emax array

is too large to fit into the cache, and its access pattern is streaming, that is, elements

are accessed one time at most.

Dynamic random access memory (DRAM). GPU DRAM is a huge volatile storage,

which is connected directly to the GPU chip. Like any DRAM, it still has a latency of

hundereds of CPU cycles. Moreover, memory transactions have minimum possible

size of 32 consecutive bytes. This DRAM property creates an important weak point

for almost any EKW data structure design. Like in the Monte-Carlo method, a typical

next period Emax array access pattern consists of reading individual 4-byte values

at random memory locations by each GPU thread. Therefore, the average memory

efficiency would be ≈12%, and is hard to improve, unless each Emax is identified by a

set of multiple data records, or each memory access is acompanied by a large amount

of computations.

GPU warp. The warp is a group of threads with consecutive thread indexes, which are
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bundled together and executed simultaneously on a single GPU code. Each warp is

fully executed on a single GPU core.

GPU block. The block is a group of threads with consecutive thread indices designed

to work as a batch or an elemental subset of the user-defined problem. In the case

of matrix operations, a block is usually a submatrix. At runtime, a thread block is

divided into a number of warps for execution on the cores of an SM. The size of a warp

depends on the hardware.

GPU compute grid. Compute grid is a GPU’s approach to enumerate blocks of threads,

similar to how OpenMP enumerates individual threads with omp_get_thread_num().

But unlike OpenMP, compute grid is a 3-dimensional enumeration implemented close

to hardware level, so that both programmer and GPU could better handle grid-based

problems, such as numerical simulations, image processing or tensor arithmetics.

Problems that do not require multidimensional indexing could use just one dimension,

and set the two others to 1, which is exactly the case of EKW.

Occupancy. The occupancy of a GPU is the number of warps running concurrently on

a multiprocessor divided by the maximum number of warps that can run concurrently.

This metric is often used to understand the saturation of GPU resource usage, such as

threads, registers, and shared memory. The higher the occupancy, the better is usually

the utilization of different GPU resources. However, occupancy maximization should

not be set out as an ultimate goal per se, as there are exceptions.

GPU Shared memory. In addition to cache, GPU provides a programmable indexed

cache called shared memory. This memory is shared among threads belonging to the

same block. It amounts to at most 48 KBytes per block. As for the registers, the shared

memory size per block impacts the total number of blocks in flight and should be

chosen reasonably small. In the EKW model code, the shared memory could serve the

following purposes. First of all, combinatorial algorithms leverage lookup tables to

speedup ranking, sequencing, and popcount operations. Secondly, shared memory is

often used as a scratch space for parallel reduction. Particularly, if the Monte Carlo

loop is parallelized among multiple threads of a block, the Emax value could be

reduced in shared memory.

Kernel. GPU kernel is a special type of function, which is executed by a collective of

GPU threads, according to the Single Instruction Multiple Threads (SIMT) paradigm.

In the context of the EKW model, by kernels, we denote two particular kernels: the

backward propagation kernel and the simulation kernel. When the EKW model is

executed for a given problem setting, parameter values such as dimensions are inlined

into the code to minimize the unknowns for compiler-driven optimizations. Yet, one
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big unknown which remains is the user-defined callbacks, whose complexity cannot

be estimated beforehand. While we leave the potential side-effects and optimization

issues of callback to the user, we still ensure the work items distribution on the GPU

to be most evenly aligned to the total number of in-flight blocks a GPU could handle

simultaneously, using the occupancy calculator.

Schedule. By schedule, we denote the mapping between the compute grid and the

problem-defined work items, which largely determines how the logical work items

would be dispatched onto the hardware. Specifically, we have a degree of freedom in

choosing how the combinations domain space should be divided among the threads.

We define the schedule for both GPU and multithreaded CPU in a similar way, except

that the optimal number of workers on GPU additionally takes into account the

resources requested by a particular kernel. During the EKW code development, we

have considered several scheduling strategies, which are presented in the following

sections.

Warp divergence. Threads belonging to the same warp must execute the same in-

struction at all times. If the code paths of threads within the same warp diverge, their

execution is serialized. That is, each thread executing a unique code path will be

waited by all other threads of warp until the next common instruction.

Memory coalescing. Memory coalescing is an automatic mandatory procedure of

“gathering” simultaneous memory operations requested by threads of a single warp.

The GPU memory bus must convert multiple natural individual values reads and

writes into larger transactions. The conversion is most efficient, when there is a way

to gather requests from all threads of warp into a single 32/64/128-byte memory trans-

action, which incorporates all requested values. In other words, memory coalescing is

optimized for collective accessing of continuous memory regions. As the memory I/O

is two orders of magnitude slower than compute cores, it’s very important to use it

efficiently. In EK W we are able to address this requirement only partially. The current

period of backward induction iterates through discrete choices, such that the Emax

values in memory are accessed continuously. However, the next period Emax values

are read at random, which results into poor coalescing. Our best hope is that the user

could provide sufficiently “heavy” computations to be performed while the memory

transaction is in flight.

EKW model has been deployed on NVIDIA A100 and AMD Instinct MI200 GPUs; the

reference cards for this hardware could be found in NVIDIA (2020) and AMD (2020).
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3.7 Multithreaded implementation

The best source of EKW model scalability is its huge state space. The generic par-

allelization scheme is therefore based on partitioning the state space among the

compute units. The partitioning must be performed not only evenly, but also align

with more specific hardware features, and choose the most suitable algorithmic trade-

offs. For instance, the preferred lexicographically-ordered Emax storage contradicts

with an ability of GPU threads to execute fully independent code paths. For CPU-

based multithreaded implementation this is not an issue, due to the massive branch

processing (branch prediction) logic available in the modern x86 hardware. For this

reason, we consider multithreaded implementation described here a baseline, and

develop a more complex GPU implementation on top of it in the next section.

The generic multithreaded partitioning consists of the following steps:

• Calculate the volume (population count) of EKW model state space

• Calculate the even (st ar t , l i mi t ) intervals of state space to be handled by each

individual compute unit (worker)

The model state space is calculated using binomial coefficients, with some corrections

applied due to sum-constrained choices. The biggest challenge here is to avoid perfor-

mance and integer overflow issues during the evaluation of Cn,k binomial coefficients.

We follow the method of Lemire et al. (2019) to minimize performance costs of integer

division, predict the integer overflow and avoid it to the maximum possible extent.

Although the number of combinations to be processed by each worker is trivial to

obtain, a more challenging task is to convert the starting combination index into the

combination itself, which we call sequencing. Furthermore, sequencing needs to be

really efficient, in order to be performed for thousands of working threads on GPU.

We developed a sequencing function based on decomposing a given combination

index into binomial coefficients, and optimized it with a cachable lookup table for

best performance.

We provide an efficient and scalable generic partitioning method, which could be

even parallelized by itself for large distributed systems.
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3.8 GPU implementation

GPU implementation largely follows the multithreaded approach, but deals with

further challenges due to the GPU hardware architecture:

• Calculate the optimal schedule for the given kernel, constrained by the GPU

limitations

• The growth of register usage, due to the need to maintain the combinations

iterator state

• Thread divergence problem in 1-1 mapping

• Alternative: give the whole warp to a single combination:

– No warp divergence due to a separate loop on each thread

– All threads of warp handle the same combination but collectively perform

the parallel reduction of the Monte-Carlo sampling loop

Naive 1-1 mapping (Fig. 3.6) presents an illustrative example of how the maximum

possible theoretical, algorithmic parallelism can effectively become the worst practi-

cal choice for the GPU architecture. In this schedule, each GPU thread is intended to

perform the portion of work fully independently of each other. This idea is often ap-

plied in CPU multithreading, which indeed may work well, thanks to many hardware

and software means. In GPU, threads are not fully independent by design. Threads

belonging to the same warp execute synchronously and largely share the execution

context. Threads of the same warp execute the same instruction at all times, while

threads of different warps are independent and asynchronous. That is, on GPU, only

the warps could be considered similar to CPU threads in the sense of independent

execution. Given that threads of the same warp always execute the same instruction,

they are not able to diverge their control flow, e.g., due to a different logical expression

value. Instead, all threads of warp must visit all instructions of the logically divergent

block of code, regardless of the actual need. During the execution of the unexpected

instructions, the threads which must not take them are simply masked, or stalled,

until the other threads of warp finish executing the same instructions as they intend

to. As a result, in the event of control divergence, each thread of warp works twice:

on his own instructions and on unexpected instructions in a stalled state. If there is

more branching in the control flow, each thread will wait even longer until the control

flow could finally return to an instruction common for all threads of the warp. In fact,

nearly half of the EKW code is vulnerable to the divergence issue, given that any loop

with dynamically changing bounds is diverging:
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Figure 3.6: GPU execution flow with each thread processing independent work item,
and the resulting stalls due to warp divergence.

• Combinations iterator: each thread runs its own (start, limit) interval of multi-

loop, the loop boundary checks do not evaluate equally ⇒ divergence

• Emax value read: Emax index calculation is done by sequencing loop, which

bounds are defined by the current combination, which is different on each

thread ⇒ divergence

Fortunately, there still exist EKW code parts that can execute in parallel unaffected by

the divergence issue:

• Monte Carlo loop: when the new Emax value is calculated, the loop iterates

through a constant number of draws and can be expressed with a parallel

reduction
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Figure 3.7: GPU execution flow with each warp processing independent work item
and warp-shared parallel reduction of Monte Carlo loop.

• Emax value write: Emax writes are performed in order (the same lexicographic

order, which is maintained by the combinations iterator)

• Random number generation with Sobol QRNG does not use any branching

The intermediate rewards and state variables updates are provided by the user, so their

control flow is implementation-defined. Although the reference KW’94 and KW’97

examples do not add any noticeable divergence, it’s highly expected that the real

research code will, due to the need to express individual behavior with conditional

decision-making patterns. We would like to study these complex cases carefully and

offer practical recommendations enabling the efficient use of GPUs.

A less obvious scheduling strategy would be to keep the serial execution of code por-

tions that do not parallelize efficiently due to the divergent execution stalls (Fig. 3.7).
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3.8.1 Further GPU performance considerations

EKW model simulation is in fact an atypical kind of workload for a GPU. While the

GPU hardware is designed to serve as a number cruncher, the EKW model actually

does not do much computations by itself. The building of a EKW discrete choice tree

has a lot of common with a class of graph traversal problems. We try to avoid some

properties of graph traversal, most unfortunate for performance, such as a hierarcial

data structure. But although we use plain arrays, the “look up a neighbour node” type

of workload still makes the majority of the EKW model runtime. Overall, the following

performance properties could be outlined:

• GPU does FP calculations; the only part of the code which does FP is the Monte-

Carlo loop

• Monte-Carlo loop requires normalized QRNG

• GPU keeps Emax in on-board GPU global memory:

– Emax writes are lexicographically ordered, i.e., the memory is filled with

Emax values continuously.

– Emax reads are random, only 4 bytes (float) per read.

The memory read must always pass through the cache. The cache-streaming

mode may help to minimize the cache pollution, when for example the

local memory could benefit from caching on its own. On NVIDIA A100, the

granularity of L2 memory transactions can be set to 32, 64, or 128 Bytes.

Random accesses should use smaller granularity, in order to minimize over-

fetch, we use cudaDeviceSetLimit(cudaLimitMaxL2FetchGranularity,
32). And even with all these optimizations, at least 32 bytes of memory

will be read per each actual read of 4 bytes.

3.9 Performance evaluation

For performance evaluation, we look into the medium-sized problem setup:

• The number of state variables: 4

• The number of lagged actions: 1

• The number of periods: 240

88



3.10 Conclusion

• The number of actions: 4

• The number of draws: 100

The EKW backward propagation process performance is presented in Listing 1. Here,

the model is executed on an ordinary 4-core laptop, demonstrating the aggregate

combinations processing rate of ≈ 3Mi o per second.

p14s ~/h/e/T/e/build (emax)> ./test_eskew_emax --gtest_filter="*medium"
Note: Google Test filter = *medium
[==========] Running 1 test from 1 test suite.
[----------] Global test environment set-up.
[----------] 1 test from eskew_emax
[ RUN ] eskew_emax.test_emax_medium
425167380 iterations in total, 8 workers, 53145923 iterations per worker
Using CPU backend with 8 workers
26633/425167380 (1877519 combs/sec)
3088322/425167380 (3044723 combs/sec)
7084827/425167380 (3512785 combs/sec)
11204528/425167380 (3713716 combs/sec)
15597975/425167380 (3882848 combs/sec)
20034970/425167380 (3993228 combs/sec)
...
420760659/425167380 (3162287 combs/sec)
422554635/425167380 (3152077 combs/sec)
424109318/425167380 (3140247 combs/sec)
425050178/425167380 (3124080 combs/sec)
[ OK ] eskew_emax.test_emax_medium (137379 ms)
[----------] 1 test from eskew_emax (137381 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (137381 ms total)
[ PASSED ] 1 test.

Listing 1: Performance evaluation of medium-sized problem setup.

We designed the GPU backend execution to add no difference from the user perspec-

tive. As show in Listing 2, the only difference is a much larger number of workers.

3.10 Conclusion

We have designed and implemented an EKW model backward propagation core, which

is able to solve medium-sized problems on an ordinary laptop computer in a few

minutes. This result has been obtained without any GPU acceleration. It is sufficient

to solve all “classical” EKW problems instantly and to solve ×100 larger problems on a

routine basis.

Although CPU and GPU versions of EKW model core software could share the same

components, the stall-free execution schedule for GPU threads requires very careful
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./test_combinations_partitioner_cuda
[==========] Running 1 test from 1 test suite.
[----------] Global test environment set-up.
[----------] 1 test from eskew_combinations
[ RUN ] eskew_combinations.test_partitioner
300292131 iterations in total, 104414 workers, 2876 iterations per worker
Using NVIDIA GeForce RTX 3080 backend with 104414 workers
[ OK ] eskew_combinations.test_partitioner (4388 ms)
[----------] 1 test from eskew_combinations (4388 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (4388 ms total)
[ PASSED ] 1 test.

./test_combinations_partitioner_hip
[==========] Running 1 test from 1 test suite.
[----------] Global test environment set-up.
[----------] 1 test from combinations
[ RUN ] combinations.test_partitioner
300292131 iterations in total, 71669 workers, 4190 iterations per worker
Using Radeon RX Vega backend with 71669 workers
[ OK ] combinations.test_partitioner (3633 ms)
[----------] 1 test from combinations (3633 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (3633 ms total)
[ PASSED ] 1 test.

Listing 2: Performance evaluation of a GPU-enabled model execution.

planning of Emax data layout and access ordering. We have considered multiple

approaches to address this challenge and compared their characteristics. Overall, an

efficient use of GPU shifts the prohibitively large problem size threshold towards the

GPU DRAM size limit. In other words, the GPU version of the EKW model backward

propagation is able to process the state space in very short times and is only limited

by the size of GPU on-board memory, which typically does not exceed 80GB.
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A Scalable iterations over constrained
multiloops

A.1 Introduction

In combinatorics, a state of the system is identified by the combination of choices. A

direct simulation of the system often requires iterating through the entire state space

of choices. A program to “pick a key” to a combination lock with 3 digits by iterating

through all combinations is shown in Listing 3. In this example, a multiloop is a

stacked nest of indexed loops. A multi-index is a set of loops indices identifying each

state of the multiloop.

By the term scalability, we denote an execution schedule and resource utilization,

which could sustain a solution to the largest possible problem in the least time. In

particular, scalability involves minimization of memory usage in order to push the

performance bottleneck created by much smaller memory throughput compared to

processor unit throughput. It could be facilitated by computing and consuming the

immediate result “on-the-fly”, or repeated computing of the same immediate result

instead of storing it (often referred to as “trading compute for memory”).

We propose a compute engine and its software implementation to iterate over the

user-specified multiloops on a large distributed system, a supercomputer, or a grid

system. Our implementation shall be scalable enough to be practically efficient on

the largest currently available distributed systems.

A.2 Requirements

A.2.1 Parameters

In a simple case, a combinatorial problem is identified by the following 3 parameters:
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#include <array>
#include <iterator>
#include <iostream>

int main(int argc, char* argv[])
{

const constexpr int m = 9;
for (int i1 = 0; i1 <= m; i1++)

for (int i2 = 0; i2 <=m; i2++)
for (int i3 = 0; i3 <= m; i3++)
{

std::array combination = { i1, i2, i3 };
std::copy(

std::begin(combination),
std::end(combination),
std::ostream_iterator<int>(std::cout, " "));

std::cout << std::endl;
}

return 0;
}

Listing 3: A program for iterating through all combinations of a combination lock with
3 digits.

• k - length of sequence.

• m - max allowed sequence element value.

• Callable - a user-defined function to be called on each combination.

As an example, we provide all combinations generated by C m=2
k=3 in Listing 4.

(0,0,0)0, (0,0,1)1, (0,0,2)2, (0,1,0)3,
(0,1,1)4, (0,1,2)5, (0,2,0)6, (0,2,1)7,
(0,2,2)8, (1,0,0)9, (1,0,1)10, (1,0,2)11,
(1,1,0)12, (1,1,1)13, (1,1,2)14, (1,2,0)15,
(1,2,1)16, (1,2,2)17, (2,0,0)18, (2,0,1)19,
(2,0,2)20, (2,1,0)21, (2,1,1)22, (2,1,2)23,
(2,2,0)24, (2,2,1)25, (2,2,2)26

Listing 4: All combinations of a problem C m=2
k=3 .

In addition to the basic setup, we provide a parameter to limit each combination with

a given sum:

• n - sequence elements sum.
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(0,2,2)0, (1,1,2)1, (1,2,1)2, (2,0,2)3,
(2,1,1)4, (2,2,0)5

Listing 5: All combinations of a problem n=4C m=2
k=3 .

As an example, we provide all combinations generated by n=4C m=2
k=3 in Listing 5.

Furthermore, each sum-constrained iterator is provided in two variants:

•
∑k

i=0 ei = n: combination elements sum must be equal to the given constraint.

•
∑k

i=0 ei ≤ n: combination elements sum must be less or equal to the given

constraint.

Technically,
∑k

i=0 ei ≤ n iterator is implemented as a set of
∑k

i=0 ei = n iterators exe-

cuted one after another. The combinations generated by sum_less_or_equal case of
n≤4C m=2

k=3 are shown in Listing 6.

(0,0,0)0, (0,0,1)1, (0,0,2)2, (0,1,0)3,
(0,1,1)4, (0,1,2)5, (0,2,0)6, (0,2,1)7,
(0,2,2)8, (1,0,0)9, (1,0,1)10, (1,0,2)11,
(1,1,0)12, (1,1,1)13, (1,1,2)14, (1,2,0)15,
(1,2,1)16, (2,0,0)17, (2,0,1)18, (2,0,2)19,
(2,1,0)20, (2,1,1)21, (2,2,0)22

Listing 6: All combinations of a problem n≤4C m=2
k=3 .

Finally, we allow a combination to be joined of two independent sum-constrained

and unconstrained parts:

• k1 - length of sum-constrained sequence.

• m1 - max allowed sum-constrained sequence element value.

• k2 - length on unconstrained sequence.

• m2 - max allowed unconstrained sequence element value.

In this most complex case, a problem n≤4C m1=2,m2=3
k1=3,k2=1 yields a set of combinations

shown in Listing 7
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(0,0,0,0)0, (0,0,0,1)1, (0,0,0,2)2, (0,0,0,3)3,
(0,0,1,0)4, (0,0,1,1)5, (0,0,1,2)6, (0,0,1,3)7,
(0,0,2,0)8, (0,0,2,1)9, (0,0,2,2)10, (0,0,2,3)11,
(0,1,0,0)12, (0,1,0,1)13, (0,1,0,2)14, (0,1,0,3)15,
(0,1,1,0)16, (0,1,1,1)17, (0,1,1,2)18, (0,1,1,3)19,
(0,1,2,0)20, (0,1,2,1)21, (0,1,2,2)22, (0,1,2,3)23,
(0,2,0,0)24, (0,2,0,1)25, (0,2,0,2)26, (0,2,0,3)27,
(0,2,1,0)28, (0,2,1,1)29, (0,2,1,2)30, (0,2,1,3)31,
(0,2,2,0)32, (0,2,2,1)33, (0,2,2,2)34, (0,2,2,3)35,
(1,0,0,0)36, (1,0,0,1)37, (1,0,0,2)38, (1,0,0,3)39,
(1,0,1,0)40, (1,0,1,1)41, (1,0,1,2)42, (1,0,1,3)43,
(1,0,2,0)44, (1,0,2,1)45, (1,0,2,2)46, (1,0,2,3)47,
(1,1,0,0)48, (1,1,0,1)49, (1,1,0,2)50, (1,1,0,3)51,
(1,1,1,0)52, (1,1,1,1)53, (1,1,1,2)54, (1,1,1,3)55,
(1,1,2,0)56, (1,1,2,1)57, (1,1,2,2)58, (1,1,2,3)59,
(1,2,0,0)60, (1,2,0,1)61, (1,2,0,2)62, (1,2,0,3)63,
(1,2,1,0)64, (1,2,1,1)65, (1,2,1,2)66, (1,2,1,3)67,
(2,0,0,0)68, (2,0,0,1)69, (2,0,0,2)70, (2,0,0,3)71,
(2,0,1,0)72, (2,0,1,1)73, (2,0,1,2)74, (2,0,1,3)75,
(2,0,2,0)76, (2,0,2,1)77, (2,0,2,2)78, (2,0,2,3)79,
(2,1,0,0)80, (2,1,0,1)81, (2,1,0,2)82, (2,1,0,3)83,
(2,1,1,0)84, (2,1,1,1)85, (2,1,1,2)86, (2,1,1,3)87,
(2,2,0,0)88, (2,2,0,1)89, (2,2,0,2)90, (2,2,0,3)91

Listing 7: All combinations of a problem n≤4C m1=2,m2=3
k1=3,k2=1 .
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A.3 Usability

Note: in all cases, combinations are always iterated strictly in lexicographical order.

This property shall allow to develop of straight-forward conversion methods between

a combination and its index (rank) in the lexicographical sequence of combinations.

In Listings 4,5,6,7 the rank of each combination is denoted with a subscript.

A.3 Usability

Goals:

• Avoid the development of a new program code for each problem size.

A.4 Scalability

• Support iterations partitioning between a very large (≈100K) number of parallel

workers.

A.4.1 Serial implementation

The combinations are iterated with a recursive templated function. Each nested

call to a function adds a dimension until the specified sequence length is reached.

Each function call iterates over a loop ranging from the starting element value to

the maximum allowed value. The current element values of all frames of recursion

are stacked into a sequence and are propagated to the next level of recursion as in

functional Currying. As a result, a compiler may leverage recursion and loop unrolling

on the constant ranges for better code optimization. The implementation is based on

the generic C++17 code presented on StackOverflow.

A.4.2 Parallel implementation support

Iterations over a multiloop could be trivially partitioned by sub-dividing the outermost

loop, for example, with OpenMP, as shown in Listing 8. In order to scale the parallel

execution up to a larger number of workers, the loops could even be ‘collapsed‘ in

the OpenMP sense, meaning that the ranges of all nested loops are linearized into a

single range, which is then partitioned evenly between the workers. This procedure

may work very well for generic cases but is not suitable here for two main reasons.

Firstly, in order to find a starting point for each worker from a collapsed loop nest, the

original multi-dimensional index must be reconstructed out of a linearized flat index.
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#pragma omp parallel for collapse(3)
for (int i1 = 0; i1 <= m; i1++)

for (int i2 = 0; i2 <=m; i2++)
for (int i3 = 0; i3 <= m; i3++)
{

std::array combination = { i1, i2, i3 };
std::copy(

std::begin(combination),
std::end(combination),
std::ostream_iterator<int>(std::cout, " "));

std::cout << std::endl;
}

Listing 8: Partitioning multiloop with OpenMP directive and collapse clause.

This procedure is formally simple but involves performing a lot of integer divisions,

which are expensive, even in modern hardware. The overhead of determining the

starting point could only be neglected if each worker handles a significant number of

iterations.

Secondly, the sum-constrained appears to be a blocker for simple partitioning algo-

rithms. The partitioning could be performed on an unconstrained problem first and

constrained at a later step during the parallel execution. In this case, a huge volume of

combinations could be skipped (discarded) at entry and introduce imbalances in the

processing speed of individual workers.

As simple partitioning is not suitable for our setup, we allow the partitioning to be

done separately. A separate engine shall determine a starting point for each worker,

which will be read and used at the start of the execution. Therefore, we additionally

provide parameters to run a given number of iterations, starting from the specified

combination:

• start - a combination to start with.

• limit - a number of combinations to iterate from the start.

A.5 Lexicographical ranking of combinations

In this Section we describe the methods for ranking (indexing) of a given combination

and for restoring a combination for a given lexicographical rank (index). These two

operations are essential for the use of combinations in practical applications and dis-

tributed systems. In particular, a function returning an index of a given combination

acts as a “hashing function” to access an array of data items stored for each combina-

tion. Similarly, a function that restores a combination from the given index, could be
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used to quickly partition the volume of iterations between the parallel workers, and

provide each worker with a starting combination.

A.5.1 Unconstrained ranking

The simplest case of finding the index of combination is solved on StackOverflow. The

corresponding code for our software package is presented in Listing 9.

template<
uint32_t k, // length of sequence
uint32_t m // max allowed sequence element value

>
static uint32_t rank(const uint32_t* sequence)
{

// The rank of a single entry sequence is zero.
if constexpr (k == 1) return 0;

uint32_t mul = 1, result = 0;
for (uint32_t i = 0; i < k; i++, mul *= (m + 1))
{

result += mul * sequence[k - i - 1];
}
return result;

}

Listing 9: A function for ranking unconstrained combinations.

The sequencing code is an exact inverse of the ranking code and is shown in Listing 10.

template<
uint32_t k, // length of sequence
uint32_t m // max allowed sequence element value

>
static std::array<uint32_t, k> sequence(uint32_t rank)
{

std::array<uint32_t, k> result;
uint32_t mul = 1;
for (uint32_t i = 0; i < k - 1; i++)

mul *= (m + 1);
for (uint32_t i = 0; i < k; i++, mul /= (m + 1))
{

result[i] = rank / mul;
rank -= mul * result[i];

}

return result;
}

Listing 10: A function for sequencing unconstrained combinations.
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A.5.2 Constrained ranking

Constrained ranking performance may benefit from caching popcount values for a

certain problem in a lookup table, which could then be used for all subsequent calls

to rank function for the same dimensions. This version of the algorithm is hereinafter

referred to as stateful, while the non-cached version is referred to as stateless.

Ranking in
∑k

i=0 ei = n mode

The stateless algorithm for constrained combinations ranking has been initially pro-

posed by Mike Earnest on Math.StackExchange, its C++ version is presented in List-

ing 11. The corresponding stateful implementation is presented in Listing 12.

template<
uint32_t n, // sequence elements sum
uint32_t k, // length of sequence
uint32_t m // max allowed sequence element value

>
static uint32_t rank(const uint32_t* sequence)
{

using Combinations = combinations::sum_equal::Combinations;

// Evaluate, each time omitting the leading term of the sequence.
uint32_t result = 0;
for (uint32_t i = 0, sum = n; i < k - 1; i++)
{

for (uint32_t j = 0; j < sequence[i]; j++)
result += Combinations::popcount(sum - j, k - i - 1, m);

sum -= sequence[i];
}

return result;
}

Listing 11: A stateless function for ranking constrained combinations in
∑k

i=0 ei = n
mode (stateless version).

Ranking in
∑k

i=0 ei ≤ n mode

A.5.3 Combined constrained and unconstrained ranking

Ranking in
∑k

i=0 ei = n mode

For the ranking function, we trivially combine the formulas for constrained and

unconstrained cases and get a program in Listing 19.
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template<
uint32_t n, // sequence elements sum
uint32_t k, // length of sequence
uint32_t m // max allowed sequence element value

>
class Rank<n, k, m>
{

std::vector<uint64_t> dp_;

public :

Rank() : dp_((k - 1) * n)
{

auto dp = reinterpret_cast<uint64_t(*)[n]>(dp_.data());

using Combinations = combinations::sum_equal::Combinations;

// Evaluate, each time omitting the leading term of the sequence.
for (uint32_t j = 1; j < k; j++)

for (uint32_t i = 1; i <= n; i++)
dp[j - 1][i - 1] = Combinations::popcount(i, j, m);

}

auto rank(const uint32_t* sequence) const
{

auto dp = reinterpret_cast<const uint64_t(*)[n]>(dp_.data());

// Evaluate, each time omitting the leading term of the sequence.
uint64_t result = 0;
for (uint32_t i = 0, sum = n; i < k - 1; i++)
{

for (uint32_t j = 0; j < sequence[i]; j++)
result += dp[k - i - 2][sum - j - 1];

sum -= sequence[i];
}

return result;
}

};

Listing 12: A stateful function for ranking constrained combinations in
∑k

i=0 ei = n
mode (stateless version).
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template<
uint32_t n, // sequence elements sum
uint32_t k, // length of sequence
uint32_t m // max allowed sequence element value

>
static std::array<uint32_t, k> sequence(uint64_t rank)
{

using Combinations = combinations::sum_equal::Combinations;

std::array<uint32_t, k> result {};

// https://math.stackexchange.com/a/4495062/945948
uint32_t sum = n;
for (uint32_t i = 0; (i < k - 1) && sum; i++)
{

// Find the largest value of "j" for which the sum of populations
// is still below the rank value.
result[i] = 0;
for (int j = 0; (j <= std::min(m, sum)) && (result[i] < sum); j++)
{

auto count = Combinations::popcount(sum - j, k - i - 1, m);
if (rank < count) break;

rank -= count;
result[i]++;

}

sum -= result[i];
}

result[k - 1] = sum;

return result;
}

Listing 13: A stateless function for sequencing constrained combinations in
∑k

i=0 ei =
n mode.
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template<
uint32_t n, // sequence elements sum
uint32_t k, // length of sequence
uint32_t m // max allowed sequence element value

>
class Sequence<n, k, m>
{

std::vector<uint32_t> dp_;

public :

Sequence() : dp_((n + 1) * (m + 1) * (k + 1))
{

auto dp = reinterpret_cast<uint32_t(*)[m + 1][k + 1]>(dp_.data());

std::vector<uint32_t> dp_sum_((n + 1) * (k + 1));
auto dp_sum = reinterpret_cast<uint32_t(*)[k + 1]>(dp_sum_.data());

for (uint32_t x = 0; (x <= n) && (x <= m); x++)
dp[x][x][1] = 1;

for (uint32_t l = 0; l < 2; l++)
for (uint32_t s = 0; s <= n; s++)

for (uint32_t x = 0; x <= m; x++)
dp_sum[s][l] += dp[s][x][l];

for (uint32_t l = 2; l <= k; l++)
for (uint32_t s = 0; s <= n; s++)

for (uint32_t x = 0; (x <= s) && (x <= m); x++)
{

dp[s][x][l] = dp_sum[s - x][l - 1];
dp_sum[s][l] += dp[s][x][l];

}
}

auto sequence(uint64_t rank) const
{

auto dp = reinterpret_cast<const uint32_t(*)[m + 1][k + 1]>(dp_.data());

++rank;
uint32_t s = n;
std::array<uint32_t, k> result;

for (uint32_t i = 0; i < k; i++)
{

for (uint32_t x = 0; x <= m; x++)
{

auto cur = dp[s][x][k - i];
if (cur < rank)
{

rank -= cur;
continue;

}

s -= x;
result[i] = x;
break;

}
}

return result;
}

};

Listing 14: A stateful function for sequencing constrained combinations in
∑k

i=0 ei = n
mode.
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template<
uint32_t n, // sequence elements sum
uint32_t k, // length of sequence
uint32_t m // max allowed sequence element value

>
static uint32_t rank(const uint32_t* sequence)
{

using Combinations = combinations::sum_equal::Combinations;

// The rank of a single entry sequence is this entry itself.
if constexpr (k == 1) return sequence[0];

// Evaluate, each time omitting the leading term of the sequence.
uint32_t result = 0;
for (uint32_t i = 0, sum = n; i < k; i++)
{

for (uint32_t j = 0; j < sequence[i]; j++)
{

for (uint32_t s = 0; s <= sum - j; s++)
result += Combinations::popcount(s, k - i - 1, m);

}

sum -= sequence[i];
}

return result;
}

Listing 15: A stateless function for ranking constrained combinations in
∑k

i=0 ei ≤ n
mode.

For the sequencing function, we need to split the combination into two diverse parts.

All combinations are divided into groups by the first constrained part because having

different constrained parts already defines the order between two sequences. And we

also know that in each group, sequences differ only by unconstrained part, and for

every unique constrained part, there are exactly (m2 +1)k2 different unconstrained

parts. And then, you can represent the problem of ranking combined sequences as

some problem of encoding positions in the matrix to an integer. Each (i , j ) element

of n ×m matrix could be mapped onto a single integer as i ·m + j . Now imagine that

the sequences from the same group are written in the same rows, and then different

sequences in the same row are written in different columns, and the same logic is

used.

Integer division and modulo operations are costly but are required because the com-

binations are handled as numbers in base (m2 +1), similar to ranking, which converts

a number in base (m2 +1) to a number in base 10.

Listing 20
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template<
uint32_t n, // sequence elements sum
uint32_t k, // length of sequence
uint32_t m // max allowed sequence element value

>
class Rank<n, k, m>
{

bool fits32bit = true;
std::vector<uint64_t> dp_;

public :

Rank() : dp_(k * (n + 1) * n)
{

auto dp = reinterpret_cast<uint64_t(*)[n + 1][n]>(dp_.data());

using Combinations = combinations::sum_equal::Combinations;

std::vector<uint64_t> dp_sum(n + 1);

// Evaluate, each time omitting the leading term of the sequence.
for (uint32_t j = 0; j < k; j++)
{

// Prefix sum.
dp_sum[0] = Combinations::popcount(0, j, m);
for (uint32_t i = 1; i <= n; i++)

dp_sum[i] = dp_sum[i - 1] + Combinations::popcount(i, j, m);

// Triangle lookup table.
for (uint32_t sum = 1; sum <= n; sum++)
{

dp[j][sum][sum - 1] = dp_sum[sum];
for (uint32_t i = sum - 1; i > 0; i--)

dp[j][sum][i - 1] = dp_sum[i] + dp[j][sum][i];
}

}

for (auto& value : dp_)
{

if (value <= std::numeric_limits<uint32_t>::max())
continue;

fits32bit = false;
break;

}

if (fits32bit)
{

auto dp64bit = dp_;
auto dp32bit = reinterpret_cast<uint32_t*>(dp_.data());
for (int i = 0; i < dp_.size(); i++)

dp32bit[i] = static_cast<uint32_t>(dp_[i]);
}

}

auto rank(const uint32_t* sequence) const
{

// The rank of a single entry sequence is this entry itself.
if constexpr (k == 1) return sequence[0];

uint64_t result = 0;
if (fits32bit)
{

auto dp = reinterpret_cast<const uint32_t(*)[n + 1][n]>(dp_.data());

// Evaluate, each time omitting the leading term of the sequence.
for (uint32_t i = 0, sum = n; i < k; i++)
{

if (sequence[i] == 0) continue;

result += dp[k - i - 1][sum][sum - sequence[i]];
sum -= sequence[i];

}
}
else
{

auto dp = reinterpret_cast<const uint64_t(*)[n + 1][n]>(dp_.data());

// Evaluate, each time omitting the leading term of the sequence.
for (uint32_t i = 0, sum = n; i < k; i++)
{

if (sequence[i] == 0) continue;

result += dp[k - i - 1][sum][sum - sequence[i]];
sum -= sequence[i];

}
}

return result;
}

};

Listing 16: A stateful function for ranking constrained combinations in
∑k

i=0 ei ≤ n
mode.
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template<
uint32_t n, // sequence elements sum
uint32_t k, // length of sequence
uint32_t m // max allowed sequence element value

>
static std::array<uint32_t, k> sequence(uint64_t rank)
{

using Combinations = combinations::sum_equal::Combinations;

std::array<uint32_t, k> result;

// https://math.stackexchange.com/a/4495062/945948
uint32_t sum = n;
for (uint32_t i = 0; i < k - 1; i++)
{

// Find the largest value of "j" for which the sum of populations
// is still below the rank value.
int j = 0, asum = 0;
for (j = 0; j <= std::min(m, sum); j++)
{

auto asum_old = asum;
for (uint32_t s = 0; s <= sum - j; s++)
{

auto count = Combinations::popcount(s, k - i - 1, m);
asum += count;
if (asum > rank)
{

asum = asum_old;
j++;
goto finish;

}
}

}

finish :
j--;
result[i] = j;
sum -= j;
rank -= asum;

}

result[k - 1] = rank;

return result;
}

Listing 17: A stateless function for sequencing constrained combinations in
∑k

i=0 ei ≤
n mode.
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template<
uint32_t n, // sequence elements sum
uint32_t k, // length of sequence
uint32_t m // max allowed sequence element value

>
class Sequence<n, k, m>
{

std::vector<uint32_t> dp_;

public :

Sequence() : dp_((n + 1) * (m + 1) * (k + 1))
{

auto dp = reinterpret_cast<uint32_t(*)[m + 1][k + 1]>(dp_.data());

std::vector<uint32_t> dp_sum_((n + 1) * (k + 1));
auto dp_sum = reinterpret_cast<uint32_t(*)[k + 1]>(dp_sum_.data());

for (uint32_t x = 0; (x <= n) && (x <= m); x++)
dp[x][x][1] = 1;

for (uint32_t l = 0; l < 2; l++)
for (uint32_t s = 0; s <= n; s++)

for (uint32_t x = 0; x <= m; x++)
dp_sum[s][l] += dp[s][x][l];

for (uint32_t l = 2; l <= k; l++)
for (uint32_t s = 0; s <= n; s++)

for (uint32_t x = 0; (x <= s) && (x <= m); x++)
{

dp[s][x][l] = dp_sum[s - x][l - 1];
dp_sum[s][l] += dp[s][x][l];

}

for (uint32_t x = 0; x <= m; x++)
for (uint32_t l = 0; l <= k; l++)

for (uint32_t s = 1; s <= n; s++)
dp[s][x][l] += dp[s - 1][x][l];

}

auto sequence(uint64_t rank) const
{

auto dp = reinterpret_cast<const uint32_t(*)[m + 1][k + 1]>(dp_.data());

++rank;
uint32_t s = n;
std::array<uint32_t, k> result;

for (uint32_t i = 0; i < k; i++)
for (uint32_t x = 0; x <= m; x++)
{

auto cur = dp[s][x][k - i];
if (cur < rank)
{

rank -= cur;
continue;

}
s -= x;
result[i] = x;
break;

}

return result;
}

};

Listing 18: A stateful function for sequencing constrained combinations in
∑k

i=0 ei ≤ n
mode.
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template<
uint32_t n, // sum-constrained sequence elements sum
uint32_t k1, // length of sum-constrained sequence
uint32_t m1, // max allowed sum-constrained sequence element value
uint32_t k2, // length of unconstrained sequence
uint32_t m2 // max allowed unconstrained sequence element value

>
static uint32_t rank(const uint32_t* sequence)
{

auto result1 = rank<n, k1, m1>(sequence);

// https://stackoverflow.com/questions/56695041/it-is-possible-to-get-the-index-of-a-combination-without-generating-it
uint32_t mul = 1;
uint64_t result2 = 0;
for (uint32_t i = 0; i < k2; i++, mul *= (m2 + 1))

result2 += mul * sequence[k1 + (k2 - i - 1)];

return result1 * mul + result2;
}

Listing 19: A stateless function for ranking combined constrained and unconstrained
combinations in

∑k
i=0 ei = n mode.

template<
uint32_t n, // sum-constrained sequence elements sum
uint32_t k1, // length of sum-constrained sequence
uint32_t m1, // max allowed sum-constrained sequence element value
uint32_t k2, // length of unconstrained sequence
uint32_t m2 // max allowed unconstrained sequence element value

>
static std::array<uint32_t, k1 + k2> sequence(uint32_t rank)
{

auto popcount2 = combinations::Combinations::popcount(k2, m2);

auto result2 = sequence<n, k1, m1>(rank / popcount2);
std::array<uint32_t, k1 + k2> result;
memcpy(result.data(), result2.data(), result2.size() * sizeof(result2[0]));

rank %= popcount2;

for (uint32_t i = 0; i < k2; i++)
{

if (!rank)
{

result[k1 + k2 - i - 1] = 0;
continue;

}

result[k1 + k2 - i - 1] = rank % (m2 + 1);
rank /= (m2 + 1);

}

return result;
}

Listing 20: A stateless function for sequencing combined constrained and uncon-
strained combinations in

∑k
i=0 ei = n mode.
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template<
uint32_t n, // sum-constrained sequence elements sum
uint32_t k1, // length of sum-constrained sequence
uint32_t m1, // max allowed sum-constrained sequence element value
uint32_t k2, // length of unconstrained sequence
uint32_t m2 // max allowed unconstrained sequence element value

>
class Sequence<n, k1, m1, k2, m2>
{

std::vector<uint32_t> dp_;

uint64_t popcount2;

public :

Sequence() : dp_((k1 + 1) * (m1 + 1) * (n + 1)),
popcount2(combinations::Combinations::popcount(k2, m2))

{
auto dp = reinterpret_cast<uint32_t(*)[m1 + 1][n + 1]>(dp_.data());
dp[k1][0][0] = 1;

{
std::vector<uint32_t> dp_sum_((k1 + 1) * (n + 1));
auto dp_sum = reinterpret_cast<uint32_t(*)[n + 1]>(dp_sum_.data());

for (uint32_t i = k1; i >= 1; i--)
{

for (uint32_t s = 0; s <= n; s++)
for (uint32_t d = 0; d <= m1; d++)

dp_sum[i][s] += dp[i][d][s];

for (uint32_t d = 0; d <= m1; d++)
for (uint32_t s = 0; s <= n; s++)

if (d + s <= n)
dp[i - 1][d][d + s] += dp_sum[i][s];

}
}

}

auto sequence(uint64_t rank) const
{

auto dp = reinterpret_cast<const uint32_t(*)[m1 + 1][n + 1]>(dp_.data());

std::array<uint32_t, k1 + k2> result;

uint64_t id1 = rank / popcount2;
uint64_t id2 = rank % popcount2;
id1++;

for (uint32_t i = 0, sum = n; i < k1; i++)
{

uint32_t d = 0;
for ( ; d <= m1; d++)
{

uint32_t cur = dp[i][d][sum];
if (cur >= id1) break;

id1 -= cur;
}

result[i] = d;
sum -= d;

}

for (int i = 0; i < k2; i++)
{

result[k1 + k2 - i - 1] = id2 % (m2 + 1);
id2 /= m2 + 1;

}

return result;
}

};

Listing 21: A stateful function for sequencing combined constrained and uncon-
strained combinations in

∑k
i=0 ei = n mode.
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Ranking in
∑k

i=0 ei ≤ n mode

template<
uint32_t n, // sum-constrained sequence elements sum
uint32_t k1, // length of sum-constrained sequence
uint32_t m1, // max allowed sum-constrained sequence element value
uint32_t k2, // length of unconstrained sequence
uint32_t m2 // max allowed unconstrained sequence element value

>
static uint32_t rank(const uint32_t* sequence)
{

uint32_t result1 = rank<n, k1, m1>(sequence);

uint32_t result2 = 0, mul = 1;
for (uint32_t i = 0; i < k2; i++, mul *= (m2 + 1))
{

result2 += mul * sequence[k1 + (k2 - i - 1)];
}

return result1 * mul + result2;
}

Listing 22: A stateless function for ranking combined constrained and unconstrained
combinations in

∑k
i=0 ei ≤ n mode.

A.6 Usage

The combinations engine could be deployed either from the C++ or from the Python

code. In C++, the user-defined function plugs into the engine as a lambda function, as

shown in Listing 24. In Python, the user may choose to plug a Python function directly

or to plug an embedded C++ function, which has an infrequently-used connection to

Python objects of the main code. In the latter case, performance will be better because

the Python interpreter will not be involved in each iteration of the multiloop. The

conservation of end-to-end native binary representation of a combinatorial program

code is an essential prerequisite for the best performance. We do, however, acknowl-

edge the importance of Python scripting in research code; therefore, we believe the

proposed interfacing option could be a reasonable compromise.
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A.6 Usage

template<
uint32_t n, // sum-constrained sequence elements sum
uint32_t k1, // length of sum-constrained sequence
uint32_t m1, // max allowed sum-constrained sequence element value
uint32_t k2, // length of unconstrained sequence
uint32_t m2 // max allowed unconstrained sequence element value

>
static std::array<uint32_t, k1 + k2> sequence(uint32_t rank)
{

auto popcount2 = combinations::Combinations::popcount(k2, m2);

auto result2 = sequence<n, k1, m1>(rank / popcount2);
std::array<uint32_t, k1 + k2> result;
memcpy(result.data(), result2.data(), result2.size() * sizeof(result2[0]));

rank %= popcount2;

for (uint32_t i = 0; i < k2; i++)
{

if (!rank)
{

result[k1 + k2 - i - 1] = 0;
continue;

}

result[k1 + k2 - i - 1] = rank % (m2 + 1);
rank /= (m2 + 1);

}

return result;
}

Listing 23: A stateless function for sequencing combined constrained and uncon-
strained combinations in

∑k
i=0 ei ≤ n mode.
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#include "combinations/combinations.h"
#include <iostream>

int main(int argc, char* argv[])
{

// Define the combinations dimensions
// (must be compile-time constants).
constexpr const uint32_t

length_of_sequence = 3,
max_allowed_sequence_element_value = 4;

// Generate combinations on-the-fly and consume
// (use) each combination right away, just once
// it is generated.
combinations::Combinations::iterate<

length_of_sequence,
max_allowed_sequence_element_value
>([&](auto... args)

{
// Use the current combination (here, we just
// print it via C++17 parameter pack expansion).
((std::cout << args << ' '), ...);
std::cout << std::endl;

});

return 0;
}

Listing 24: A usage example of the combinations API.
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