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Key points 10 

 Subglacial drainage networks are modeled in two dimensions through a combination of 11 

physical and geostatistical methods. 12 

 Bayesian inference is used to retrieve channel networks that honor water pressure and 13 

tracer-transit times within a framework of uncertainty. 14 

 Expected channel network physical characteristics are captured for each water recharge 15 

scenario. 16 

Abstract 17 

Characterizing subglacial water flow is critical for understanding basal sliding and processes 18 

occurring under glaciers and ice sheets. Development of subglacial numerical models as well as 19 

acquisition of water pressure and tracer data have provided valuable insights into subglacial 20 

systems and their evolution. Despite these advances, numerical models, data conditioning and 21 

uncertainty quantification are difficult, principally due to high number of unknown parameters 22 

and expensive forward computations. In this study, we aim to infer the properties of a subglacial 23 

drainage system in two dimensions using a framework that combines physical and geostatistical 24 

processes. The methodology is composed of three main components: (i) a channel generator to 25 

produce networks of the subglacial system; (ii) a physical model that computes pressure and 26 

mass transport in steady state; and (iii) Bayesian inversion in which the outputs (pressure, tracer-27 

transit times) are compared with synthetic data, thus allowing for parameter estimation and 28 

uncertainty quantification. We evaluate the ability of this framework to infer the subglacial 29 

characteristics of a synthetic ice sheet produced by a physically-complex deterministic model, 30 

under different recharge scenarios. Results show that our methodology captures expected 31 

physical characteristics for each meltwater supply condition, while the precise locations of 32 

channels remain difficult to constrain. The framework enables uncertainty quantification and the 33 

results highlight its potential to infer properties of real subglacial systems using observed water 34 

pressure and tracer-transit times.  35 
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1 Introduction 36 

Subglacial water flow processes, which take place at the base of glaciers and ice sheets, 37 

play a crucial role in ice flow dynamics [e.g.: Cuffey and Paterson, 2010; Iken, 1981], bedrock 38 

erosion [e.g.: Herman et al., 2011; Koppes et al., 2015], catchment hydrology [e.g.: Verbunt et 39 

al., 2003], and potential hazards such as glacial outburst floods [e.g.: Huss et al., 2007]. As 40 

climate change occurs, temperature and precipitation patterns are altered, which affects glacier 41 

dynamics, with ultimately wide-ranging consequences such as a reduction of fresh water storage 42 

and sea level rise [e.g.: Benn and Evans, 2010]. The processes that occur at the ice-bedrock 43 

interface are still poorly understood because of the difficulty to observe and quantify subglacial 44 

systems. 45 

Subglacial hydrological systems have been conceptualized as a combination of two main 46 

types of drainage systems: a distributed slow system and a channelized efficient system 47 

[Fountain and Walder, 1998]. Distributed slow drainage can occur as a water sheet or film flow 48 

[Weertman, 1972], as flow through linked cavities [Kamb, 1987; Walder, 1986], or through 49 

permeable sediments, while efficient drainage corresponds to a fast-flowing channel network 50 

formed during periods of high discharge. Channelized drainage occurs either through conduits 51 

melted into the base of the ice, known as Röthlisberger (R) channels [Röthlisberger, 1972], or 52 

through channels incised into the bedrock or sediments [e.g.: Nye, 1976]. It is recognized that 53 

channels are often formed by a combination of ice melting and sediment/bedrock incision 54 

[Gulley et al., 2014]. The relative contribution of the distributed versus channelized systems has 55 

a strong impact on the distribution of water pressure in subglacial systems. During winter, low 56 

water fluxes at the glacier bed combined with ice creep result in channel closure. Consequently, 57 

the late-winter configuration is often described as a slow and inefficient system. During spring 58 

and summer, greater amounts of meltwater imply an enlargement of the channels. During 59 

transition periods a sudden increase in meltwater discharge might surpass the capacity of the 60 

channelized system, thereby, increasing the water pressure and causing abrupt acceleration in ice 61 

motion [Schoof, 2010], until channels become large enough to accommodate the discharge.  62 

Several types of data provide insights into the temporal evolution of subglacial systems 63 

[e.g.: Gulley et al., 2014; Nienow et al., 1996]. These include tracer-transit times measured 64 

throughout the day [e.g.: Schuler et al., 2004] and at different periods of the year [e.g.: Chandler 65 

et al., 2013]; water-pressure measurements in boreholes drilled into the glacier {e.g.: \Schoof, 66 

2014 #191;Hubbard, 1995 #142;Rada, 2018 #263}; and the analysis of seismic tremor produced 67 

by water flow in the channels [Gimbert et al., 2016]. Only in a few instances have scientists been 68 

able to directly access subglacial systems via moulins or crevasses to acquire direct observations 69 

in parts of the channel network [Gulley et al., 2012].  70 

As most of the above data are indirect, numerical models have been increasingly used to 71 

study subglacial systems. One of the first models, proposed by Shreve [1972], was based on the 72 

premise that subglacial channels follow the gradient of the hydraulic potential on the glacier bed. 73 

Recent models have included the spontaneous formation of channels and subsequent switching 74 

from a distributed to a channelized flow regime and vice versa. Channels and cavities are 75 

described such that they are able to open through wall melting or open/close by ice creep, and 76 

water flow is computed according to the Darcy-Weisbach law for turbulent flow [Hewitt, 2011; 77 

Schoof, 2010; Werder et al., 2013]. While basal drainage models can reproduce many types of 78 

subglacial physical processes, they suffer from an absence of direct and independent data for 79 

calibration [Flowers, 2015]. Moreover, the geometry of the subglacial drainage systems is an 80 
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emergent property of the modelled process when considering advanced physically based model 81 

[Schoof, 2010; Werder et al., 2013], which makes it difficult to perform uncertainty 82 

quantification and data conditioning, chiefly because of the need for multiple repeated 83 

simulations using very time-consuming simulation tools. 84 

Similar challenges exist when modeling karstic systems that can be seen as analogues to 85 

subglacial drainage systems [Covington et al., 2012]. It is difficult to map preferential hydraulic 86 

pathways in karst systems, yet hydrogeologists have been able to improve their characterization 87 

by incorporating geostatistical methods and inversion procedures [e.g.: Borghi et al., 2012; 88 

Mariethoz et al., 2010; Rongier et al., 2014]. Geostatistical methods aim to characterize the 89 

spatial behaviour of a variable by inferring statistical relationships in space. For example, Borghi 90 

et al. [2012] presented a pseudo-genetic framework to generate karst conduits in a three-91 

dimensional regional model. At a smaller scale, Rongier et al. [2014] model realistic-looking 92 

karst conduits by combining the observed conduit skeleton with Gaussian random fields. One of 93 

the benefits of using geostatistical approaches compared to process-based models is that they 94 

provide structure-imitating realizations at low computational cost. While uncertainty 95 

quantification is important given the scarcity of observations, the large computing times of 96 

process-based models can quickly overwhelm computational resources as Monte-Carlo 97 

approaches require a considerable number of forward model runs [Linde et al., 2015]. In this 98 

regard, combining geostatistical and inverse approaches has been successfully used for inference 99 

of conduit geometry and data conditioning in karst aquifer models [e.g.: Borghi et al., 2016; 100 

Vuilleumier et al., 2012]. Therefore, it is possible to distinguish two main approaches: adding 101 

complexity to physically-based models as has been the trend in subglacial hydrology; or building 102 

parsimonious geostatistical models, which offer limited physical insights but allow for practical 103 

inversion approaches that enable data conditioning and uncertainty quantification, following 104 

recent advances in karstic systems modelling. In this study, we explore the feasibility of the latter 105 

approach in a subglacial context. 106 

The aim of this paper is to develop and test a framework to infer channel network 107 

geometr and hydraulic properties of subglacial drainage systems in two dimensions. The overall 108 

proposed strategy is to build a channel generator, which is a geostatistical tool to produce prior 109 

channel networks at low computational cost. These prior networks are evaluated against 110 

observed data using a fast steady-state water flow model. Bayesian inference allows us to 111 

retrieve the probability distribution of network parameters that are in agreement with the data. 112 

Because of the typical data scarcity in such systems, the inverse problem is underdetermined and 113 

does not have a unique solution [e.g.: Linde et al., 2017; Mosegaard and Tarantola, 1995]. As a 114 

result, it is important to explore the model space and obtain an ensemble of parameters that 115 

honour the observations. Such a probabilistic approach is different from optimization, in which 116 

only one solution is sought and a rigorous assessment of uncertainty is often not possible. Note 117 

that, although Brinkerhoff et al. [2016] used a Bayesian inference framework to explore the 118 

uncertainty and covariance structure of the parameters of a spatially aggregated (1D) model for 119 

glacier hydrology, the approach presented here differs in that we perform our analysis in 2D 120 

using a model that combines physical and geostatistical approaches. 121 

The proposed framework has three main components: 1) a geostatistical channel 122 

generator, which combines geostatistical and physical processes to create channels; 2) a steady-123 

state water-flow and mass-transport forward model, and 3) a Bayesian inverse framework used to 124 

condition water-pressure and tracer-transit-time observations in order to provide estimates of the 125 
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model parameters and their uncertainties. To test our framework, we define a synthetic ice sheet 126 

configuration under three different forcings extracted from the Subglacial Hydrology Model 127 

Intercomparison Project (SHMIP) [De Fleurian et al., 2018]. To validate our model, we consider 128 

as a reference the outputs produced by GLaDS [Werder et al., 2013] under identical forcing 129 

conditions. This provides a scenario in which errors and uncertainties are controlled and 130 

understood, which is necessary to test the capabilities of the approach. The GLaDS model is a 131 

physically-based model, which accounts for channel and sheet system evolution. Therefore, 132 

GLaDS outputs provide an ideal scenario to work towards an inversion of subglacial drainage 133 

systems in 2D, as we can fully access the reference channel networks for comparison, which 134 

would be impossible for real systems. Indeed, to date researchers have not fully explored or 135 

mapped subglacial system that could be used for validation. The downside of using GLaDS as a 136 

reference is that we implicitly assume that it is a good approximation of a real unobserved 137 

system. In particular, it has been shown that GLaDS is mesh-sensitive [Werder et al., 2013], 138 

resulting in additional uncertainty in channel locations. Nevertheless, we believe that the mesh-139 

dependency does not significantly affect the use of GLaDS in our case, because our framework 140 

aims to identify characteristics related to the topology of the network as a whole, rather than to 141 

match the exact location of individual channels. 142 

2 Methodology 143 

A specificity of our framework is that the channel network is not emerging from physical 144 

rules. Instead, it is generated with a geostatistical process that is guided by physical constraints. 145 

This allows us to produce a large number of channel models, which are thereafter used in the 146 

inversion procedure to condition the networks to available observations of borehole water 147 

pressure and tracer-transit times.  148 

Our framework is divided into three components, which are illustrated in Figure 1. The 149 

first component corresponds to the subglacial channel network generator, which is a 150 

geostatistical tool that from a set of parameters (to be inferred) outputs a two-dimensional 151 

channel network. This component is based on Shreve’s approximation [Shreve, 1972], 152 

considering water pressure as a function of the ice overburden pressure, and provides the likely 153 

location of channels. A radius for each channel segment is assigned based on a stream order. The 154 

second component is the subglacial drainage water flow model, in which water pressure is 155 

computed in the domain through a laminar/turbulent finite element flow model. This component 156 

receives as input the previously generated channel network and computes steady-state water 157 

pressure and tracer-travel-time. Finally, the third component is the inversion procedure, which 158 

compares the simulated water pressure and tracer-transit times with observations through a 159 

likelihood function. Depending on the computed residuals, it will propose new input parameters 160 

to the subglacial channel network generator, until convergence. Each step is described in detail in 161 

the following subsections. All constants, variables and units used in our modeling framework are 162 

summarized in Table 1. 163 

The model is framed in a two-dimensional domain where water flows according to the 164 

fluid potential 𝜙, which is the total mechanical energy per unit volume, given by 165 

𝜙 = 𝜙𝑧 + 𝑝𝑤 . (1) 166 

http://epic.awi.de/44772/
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Here, 𝑝𝑤 is the water pressure, and the 𝜙𝑧 = 𝜌𝑤𝑔𝐵 is the elevation potential with water density 167 

𝜌𝑤, acceleration of gravity g, and bedrock elevation B=B(x,y). The effective pressure at the 168 

ice-bedrock interface is defined as: 169 

𝑁 = 𝑝𝑖 − 𝑝𝑤, (2) 170 

with ice overburden pressure defined by 𝑝𝑖 = 𝜌𝑖𝑔𝐻 , where 𝜌𝑖 is the ice density and H=H(x,y) 171 

is the ice thickness. 172 

2.1 Subglacial channel network generator 173 

The channel generator uses a combination of physical and geostatistical concepts to 174 

create different types of networks, modulated by six free parameters. It is based on previous 175 

studies that used Shreve’s hydraulic potential [Shreve, 1972] and routing algorithms to determine 176 

the approximate location of the channel network [e.g.: Arnold et al., 1998; Chu et al., 2016; 177 

Livingstone et al., 2015; Willis et al., 2012]. Additionally, we incorporate a stream order rule that 178 

assigns channel radii following Borghi et al. [2016]. Within our inversion framework, the 179 

networks are compared with observed data using a water flow model that produces water 180 

pressure and tracer-transit times.  181 

For the channel generator we consider Shreve’s approximation, i.e., with N = 0. Shreve’s 182 

hydraulic potential 𝜙𝑠 = 𝜙𝑠(𝑥, 𝑦) is obtained by combining equations 1 and 2: 183 

𝜙𝑠 = 𝜌𝑤𝑔𝐵 + 𝜌𝑖𝑔𝐻. (3) 184 

 In this paper we add a perturbation component 𝜙𝑅 = 𝜙𝑅(𝑥, 𝑦), which is a spatially 185 

correlated random field, with the aim to add variability in order to enable creation of different 186 

types of networks (equation 4). Note that 𝜙𝑅 does not represent a physical feature per se, but 187 

rather can be seen as a spatially-correlated field that accounts for preferential hydraulic 188 

pathways, such as cavities or basal crevasses that could influence the channel network structure. 189 

This term is modeled as a two-dimensional multivariate Gaussian random field 𝜙𝑅 having 190 

integral scales lx and ly that represent the correlation distance along each axis. As a result, the 191 

perturbed hydraulic potential 𝜙𝑠
∗
 becomes: 192 

𝜙𝑠
∗ = 𝜌𝑤𝑔𝐵 + 𝜌𝑖𝑔𝐻 + 𝜙𝑅 . (4) 193 

Starting from equation (4), our channel generation algorithm consists of three main steps 194 

(Figure 2): (a) generate 𝜙𝑠
∗
 by adding a perturbation component to the hydraulic potential 195 

assuming N = 0; (b) compute the channel network; and (c) assign channel radii and hydraulic 196 

parameters. These steps are implemented using Matlab and several functions of the Topotoolbox 197 

2 library [Schwanghart and Scherler, 2014]. 198 

In step (a) (Figure 2a), 𝜙𝑠 is computed over the domain using equation (3), and 𝜙𝑅 is 199 

generated according to the FFT-MA approach and structural deformation technique {Hu, 2000 200 

#184;Hu, 2004 #204;Le Ravalec, 2000 #226}. For this, we select: a mean, a variance, the 201 

integral scales which measure the correlation distance in space in the x-y axis (lx and ly), a 202 

Gaussian covariance model and a uniform white noise or uncorrelated uniform random field. 203 

Structural deformation makes it possible to gradually vary the integral scales lx and ly (Figure 3). 204 

All realizations of 𝜙𝑅 rely on the same white noise, implying that the positions of the high and 205 

low features remain at similar locations regardless of lx and ly. Initial tests (not shown) suggested 206 

that changing the white noise for a fixed lx and ly did not greatly influence the overall topology of 207 
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the network, whereas changing the values of lx and ly was found to have a strong impact on the 208 

topological structure of the network (e.g., arborescent, long parallel channels, rectangular, etc.). 209 

For example, a given set of lx and ly values may result in a network of long parallel channels with 210 

a well-determined sinuosity, regardless of the white noise considered (Figure 3d). Indeed, the 211 

white noise defines the location of channel turns and intersections, but not the overall topological 212 

properties of the network. Here, we aim to infer the lx and ly values that correctly describe the 213 

topology of the channel network, regardless of the exact position of channelized features. Once 214 

𝜙𝑅 has been generated, we add it to the hydraulic potential to obtain the perturbed hydraulic 215 

potential 𝜙𝑠
∗(𝑥, 𝑦), denoted 𝜙𝑠

∗
 for simplicity. From this point, similar to Arnold et al. [1998] 216 

and Chu et al. [2016], the hydraulic potential is treated as the digital elevation model of a 217 

subaerial catchment to obtain preferential hydraulic pathways. 218 

In step (b) (Figure 2b), the channel network is generated. For this, 𝜙𝑠
∗
 is pre-processed to 219 

ensure connectivity of the channels. This is done through removing sinks by filling internally 220 

drained basins, at a later stage the routing algorithm proposes the centerline for filled flat areas. 221 

In addition, no-flow boundary conditions are imposed on the sides of the ice sheet. This is done 222 

by temporarily creating an outside boundary of higher hydraulic potential. Then, the flow 223 

direction is computed using the D8 algorithm [O'Callaghan and Mark, 1984]. Previous work 224 

computed Shreve’s hydraulic potential up-stream or up-glacier area for each cell, in order to 225 

identify the most likely channel locations [e.g.: Arnold et al., 1998; Chu et al., 2016]. Here we 226 

compute the flow accumulation, which provides for each cell the sum of the up-stream water 227 

recharge (assuming steady-state and mass conservation). The water recharge is prescribed 228 

considering a distributed homogeneous water input to represent basal melt and punctual recharge 229 

for moulins. Note that for a homogeneous distributed water recharge (with no moulins) the up-230 

stream area equals the flow accumulation normalized by the recharge input. From this point, we 231 

extract a network where the accumulated water is over a threshold (c), which is modelled as 232 

channels. 233 

In step (c) (Figure 2c), a radius r is assigned to each channel section of the network. We 234 

assume that channel radii increase downstream and depend on a hierarchical stream order (ui) 235 

and two parameters (a and b) to be determined during the inversion. We use a modified version 236 

of Shreve’s stream order [Borghi et al., 2016; Shreve, 1966], where the upper branches are first 237 

given a number equal to the accumulated flow at this point. Then, the stream order is computed 238 

downstream by adding the accumulated flow from tributaries (Figure 2c). Finally, ui is 239 

normalized by dividing all values by the highest accumulated value (the lowest channel section). 240 

Once the stream order ui has been obtained, parameters a and b are used to transform the stream 241 

order into a channel radius using equation (5), where a is a linear scaling factor, and b controls 242 

the relative difference between the radii upstream and downstream: 243 

𝑟(𝑢𝑖) = 𝑎𝑒𝑢𝑖𝑏. (5) 244 

Additionally, a rejection rule is introduced to avoid channel radii larger than a maximum 245 

value, which is not deemed realistic. In this study we use a maximum of 15 m. Furthermore, a 246 

transmissivity value Td is assigned to the distributed system, which is represented as a 247 

homogeneous layer. To finish, a finite element mesh is generated that represents the distributed 248 

and channelized systems. It consists of a set of 2D quadrangular elements representing the 249 

distributed system and whose corners are the black dots in Figure 1c. Using the shared nodes 250 

(white dots in Figure 1c), an additional set of 1D elements is generated which represents the 251 
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channelized system. The nodes that are in common between channelized and distributed systems 252 

ensure that both systems behave in a coupled way. 253 

The approach described above enables generating a variety of channel networks 254 

presenting different geometric and hydraulic characteristics. To summarize, the networks depend 255 

on six parameters: the integral scales lx and ly; the channel threshold for the accumulated flow c; 256 

a and b that transform the hierarchical stream order to channel radii; and the transmissivity of the 257 

distributed system Td. Note that there are no spatial constraints regarding the channel locations, 258 

besides moulins that signal the channels’ starting points. If a channel location is known (e.g., 259 

outlet position), further conditioning could be achieved by extending the gradual deformation 260 

method at the cost of extra parameters [Hu, 2000]. Figure 3 presents several examples of channel 261 

networks plotted on top of 𝜙𝑅. The channel networks were generated using basal and moulin 262 

recharge for a synthetic ice sheet. Figures 3a-b have isotropic 𝜙𝑅 with different integral scales. 263 

Figures 3c-d have anisotropic 𝜙𝑅 and Figures 3e-f show the influence of parameter c for the 264 

densification of the channels. In the figures, the channel width (blue lines) is proportional to the 265 

radius. Note that moulins may become disconnected if parameter c is set to a very low value 266 

(e.g.: Figure 3e). 267 

2.2 Subglacial drainage systems water flow model. 268 

 269 

The subglacial drainage system water flow model computes water pressure and tracer-270 

transit times in the domain for a channel network realization. The model is framed in a two-271 

dimensional domain where water movement in the subglacial drainage systems is controlled by 272 

the gradient of the hydraulic potential 𝜙. In equation 1, pw is unknown and thus determined in 273 

the inversion. Water flow is computed under steady-state conditions for a fixed channel 274 

geometry and distributed system. Note that we do not consider transient melt-opening and creep-275 

closure of the channels [e.g.:Werder et al., 2013].  276 

The distributed system is modeled as a two-dimensional equivalent-porous-medium 277 

layer, and is discretized in uniformly sized quadrangle elements. Water mass conservation 278 

assuming incompressibility and pressurized flow is given by the volume conservation equation 279 

𝛻 ∙ 𝑞 = 𝑚, (6) 280 

with q corresponding to the flux, and m to a prescribed source term. Laminar flow is considered 281 

under the assumptions of a non-deformable porous medium: 282 

𝑞 = −𝑇𝑑𝛻𝜙, (7) 283 

with Td the transmissivity of the distributed system, and ∇𝜙 the gradient of the hydraulic 284 

potential. Inserting Eq.(7) into Eq.(6) results in a linear, elliptic equation for 𝜙. Note that other 285 

studies have modeled flow in the linked cavity system using the Darcy-Weisbach law, which 286 

represents turbulent flow [Flowers, 2015; Werder et al., 2013].  287 

The channel network is modeled using one-dimensional cylindrical elements of radius r, 288 

which are coupled to the distributed system. As mentioned above, we assume that under steady-289 

state flow, the channel opening and closing terms balance and, therefore, are not considered. 290 

Similarly, water mass conservation assuming incompressibility and pressurized flow is given by 291 

𝛻 ∙ 𝑄 = 𝑚, (8) 292 
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with Q the water flow and the derivative taken along the channel axis. In equation (8), the time 293 

derivative term of the channel cross-sectional area is not included as it is zero due to pressurized 294 

flow and a temporally fixed channel cross-sectional area (Eq.(5)). The discharge Q is computed 295 

using the non-linear Manning-Strickler law for turbulent flow 296 

𝑄 = −𝐾𝛻𝜙, (9) 297 

with 298 

𝐾 =
𝛼(𝑟

2⁄ )
2/3

𝑛𝑚√|𝛻𝜙|
, (10) 299 

where K corresponds to the channel hydraulic conductivity, with a circular cross-section α=πr
2
, 300 

nm is the Manning friction coefficient [Cornaton, 2007]. Inserting equations (10) and (9) into (8) 301 

leads to a non-linear, elliptic equation for 𝜙.  302 

Both components of subglacial drainage systems (channels and distributed systems) are 303 

coupled by using a finite-element mesh with shared nodes, assuming continuity of the pressure 304 

field [Cornaton, 2007]. This allows water and mass exchanges between the distributed system 305 

and channels and vice-versa driven by the pressure gradient. This type of coupling has been used 306 

in previous subglacial models, for example Schoof [2010], Hewitt [2011] and Werder et al. 307 

[2013]. Following such previous work, our model is set up with prescribed water recharge and 308 

boundary conditions, such that the bedrock is considered impermeable and the discharge at the 309 

outlet is modeled as a fixed pressure (Dirichlet) boundary condition set to atmospheric pressure.  310 

Along the rest of the boundary we impose no-flow (Neumann) conditions. The flow equations 311 

are solved using the finite element code GROUNDWATER [Cornaton, 2007]. 312 

As transient mass transport is computationally expensive, we compute transit time using 313 

a particle-tracking method based on the advective velocity field obtained from the water pressure 314 

field. From an injection point (e.g., moulin), the advective velocity along the particle path is 315 

integrated to obtain the transit time. If a particle reaches a channel, it then follows the channel 316 

until the outlet. 317 

2.3 Inversion procedure 318 

We use Bayesian inversion to obtain channel networks that are conditioned to 319 

observations of water pressure and tracer-breakthrough-curves. Our goal is to determine the 320 

combination of model parameter values m = [a, b, c, Td, lx, ly] describing the network that are 321 

able to reproduce the observed data. 322 

The previous sections have described how, starting from a set of model parameters, we 323 

can simulate pressure and mass transport in the domain. This is typically referred to as the 324 

forward problem, often represented in geophysics and hydrogeology as dsim=g(m), where m is 325 

the vector of model parameters, g(m) is the corresponding forward response, and dsim 326 

corresponds to the simulated values (water pressure and tracer-transit times) [Mosegaard and 327 

Tarantola, 1995]. In the forward setting, the input parameters m are known and are mapped to a 328 

particular set of model outputs dsim. Solving the inverse problem amounts to finding values for m 329 

such that the outputs dsim match the observations dobs to within a prescribed margin of error. 330 

Given the typical data scarcity and measurement errors, geophysical and hydrogeological inverse 331 

problems are often underdetermined, meaning that many different sets of model parameters can 332 

explain the data. One general framework to solve such inverse problems is to use a probabilistic 333 
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inverse approach based on Bayes’ theorem [e.g.: Linde et al., 2015; Mosegaard and Tarantola, 334 

1995]: 335 

𝑝(𝒎|𝒅) ∝ 𝑝(𝒅|𝒎)𝑝(𝒎), (11) 336 

where the left-hand term corresponds to the distribution of the model parameters m conditioned 337 

to the data d, or posterior distribution. According to Bayes’ theorem, the posterior distribution is 338 

proportional to the product of the likelihood 𝐿(𝐦|𝐝) ≡ 𝑝(𝐝|𝐦), which describes how likely it is 339 

that a proposed model gave rise to the observed data, and the prior 𝑝(𝐦), which corresponds to 340 

the assumed distribution of model parameters before consideration of the data. The log-341 

likelihood is often used, denoted ℓ(m|d). Assuming independent Gaussian observation errors, the 342 

log-likelihood function is given by [Rosas-Carbajal et al., 2014]: 343 

ℓ(𝒎|𝒅) =  −
𝑛

2
𝑙𝑜𝑔 2𝜋 −

1

2
𝑙𝑜𝑔(∏ 𝜎𝑖

2𝑛
𝑖=1 ) −

1

2
∑ (

𝑔𝑖(𝒎)−𝑑𝑖

𝜎𝑖
)

2
𝑛
𝑖=1  (12) 344 

where n corresponds to the number of observations and σi is the standard deviation of the 345 

observation errors. In practice, σi incorporates not only measurement errors, but also attempts to 346 

account for structural and epistemic errors. The observations in this case correspond to water 347 

pressure and tracer-transit times. The error variance for the pressure is considered absolute, that 348 

is, σi is not dependent on the value of the measurement. However, for tracer-transit times we 349 

considered 𝜎𝑖 = 𝝐 di, where 𝝐 is the relative error as it is expected that longer transit times will 350 

present larger error variances than shorter transit times. 351 

The posterior distribution is estimated using a Markov-chain-Monte-Carlo (MCMC) 352 

approach, which generates samples proportionally to the posterior probability of occurrence. The 353 

procedure consists of: 1) Choosing an arbitrary starting point mold from the prior distribution; 2) 354 

Proposing a new model mnew by perturbing the current model using a symmetric proposal 355 

distribution; 3) Rejecting or accepting the model with probability [Mosegaard and Tarantola, 356 

1995]: 357 

P𝑎𝑐𝑐𝑒𝑝𝑡 = min {1, exp[ℓ(𝐦𝑛𝑒𝑤|𝐝) − ℓ(𝐦𝑜𝑙𝑑|𝐝))]}.     (13) 358 

If the new model is accepted, then set mnew=mold. Otherwise, the Markov chain remains 359 

at the current point mold. 360 

Steps 2-3 are iterated until enough samples are computed to represent the posterior 361 

distribution. The posterior distribution is computed based on the last 30% of the chains to leave 362 

out the burn-in period. Convergence is assessed by the Gelman-Rubin statistic [Gelman and 363 

Rubin, 1992], which compares the posterior distribution for all the parameters of different 364 

MCMC chains for the same inversion configuration. The smaller the difference between the 365 

posterior distributions, the smaller is the Gelman-Rubin statistic. Generally, it is consider that the 366 

posterior reaches convergence when the Gelman-Rubin statistic is smaller than 1.2 [Rosas-367 

Carbajal et al., 2014]. One of the challenges of using this approach is to define an appropriate 368 

symmetric proposal distribution to move from mold to mnew, as it greatly influences the 369 

computational performance of the inversion and the number of iterations needed to reach 370 

convergence. To this end, we use an adaptive MCMC algorithm: DREAM(ZS) [Laloy and Vrugt, 371 

2012]. This algorithm uses multiple parallel chains and an adaptive proposal distribution based 372 

on an archive of past states. This enables fast convergence without compromising ergodicity 373 

properties.  374 
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3 Model setting and context 375 

To test our model in a controlled setting, we apply it to a synthetic configuration based on 376 

SHMIP from Werder et al. [2017]. SHMIP provides a series of synthetic subglacial settings with 377 

diverse recharge scenarios that enables the comparison of subglacial models. From this, we 378 

selected as our reference the outputs generated by the subglacial drainage model GlaDS [Werder 379 

et al., 2013]. Note that GlaDS represents channels as emergent features of physical processes, 380 

such as channel opening by melt and closing by ice creep, which are not considered in our 381 

model. Nevertheless, outputs of GLaDS correspond to steady-state simulations where the 382 

difference between the opening and closing terms is small. In addition, GLaDS uses the Darcy-383 

Weisbach law to model the water flow whereas we use the Darcy law in the distributed system 384 

and the Manning-Stickler law for the channels. Even though GLaDS is a state-of-the-art process-385 

based model, it does not represent the real complexity of subglacial drainage systems and issues 386 

still need to be addressed (e.g.: mesh sensitivity). This is discussed in Section 5. This setting 387 

enables us to evaluate whether our methodology allows us to infer a channel structure and 388 

hydraulic properties that were generated by a much more complex model involving processes 389 

that are not explicitly taken into account in our formulation. Water pressure data and tracer-390 

transit times are extracted from the GlaDS simulations, which constitute the synthetic data set. 391 

By using a synthetic case, we are able to explore different recharge conditions, different amounts 392 

of data, and quantify uncertainty against a fully known reference, which is currently not available 393 

for real glacier systems.  394 

All test cases have identical geometries and boundary conditions: a rectangular domain of 395 

20 km by 100 km with an ice sheet geometry consisting of a flat bedrock and an ice sheet 396 

elevation approximated with a parabolic function varying with the distance to the glacier snout. 397 

As a result, the ice thickness increases from zero at x=0 to 1521 m at x=100 km. No-flow 398 

boundary conditions are imposed on the three inner boundaries and a fixed pressure boundary 399 

condition is set to atmospheric pressure at the x=0 boundary. The model is discretized in 2D 400 

square finite elements of 500 × 500 m that form the distributed system. Channels are represented 401 

by 1D elements along the edges of the square grid elements. Channels are not allowed to cross 402 

no-flow boundaries. All models are run in steady-state to compute pressures and tracer-transit 403 

times. 404 

Three recharge scenarios are considered herein: A4, A5 and B3 (keeping the names used 405 

in SHMIP). Scenario A4 has a relatively low basal recharge of 2.5×10
-8

 m s
-1

 (equivalent to 50 406 

m
3
 s

-1
 on the entire domain); A5 has a high recharge of 4.5×10

-8
 m s

-1
 (90 m

3
 s

-1
); B3 has a basal 407 

recharge of 7.93×10
-11

 m s
-1

 (0.1586 m
3
 s

-1
) and additionally a punctual recharge at 20 moulins 408 

(Figure 4a), totaling 90 m
3
 s

-1
 (4.5 m

3
 s

-1
 for each moulin). Each scenario has associated water 409 

pressure measurements and tracer travel times extracted from GLaDS (Figure 4a and  410 

Table 2). We also designed scenarios with different amounts of data to test the influence 411 

of data availability, which are presented in the supplementary material. 412 

Because of the absence of moulins in scenarios A4 and A5, tracer is injected at the 413 

locations denoted by a green circle in Figure 4a. As basal recharge is homogeneous and, as noted 414 

previously, we do not attempt to infer the exact location of the channels (but rather the network 415 

structure), therefore tracer injection point is moved to the closest channel within a radius of 1 416 

km. With this, we aim not to force and bias the network structure to condition it in some specific 417 

location. If no channel passes within this distance, the tracer is injected in the distributed system, 418 
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which can result in a large delay in the transit times. For case B3, injection is done in the moulins 419 

marked with a green circle in Figure 4b. 420 

For the subglacial channel generator, we generate 𝜙𝑅 using zero mean and a variance of 421 

0.49 MPa. This value was chosen empirically based on a sensitivity analysis (not shown), that 422 

established that this is value is enough to influence the structures of the networks. Note that the 423 

hydraulic potential varies from 0 to ~15 MPa in the upper part of the ice sheet. For this case of 424 

flat bedrock and idealized ice sheet geometry, a small variance in 𝜙𝑅 is enough to influence 425 

channel orientation. 426 

For the inversion procedure, the variance of the synthetic data errors for the log-427 

likelihood function (eq. 11) has to be defined. Because field observations have shown that water 428 

pressure in nearby boreholes can show dissimilar behavior [Hubbard et al., 1995; Schoof et al., 429 

2014]. Also, we need to account for the differences in the physics assumed in this model and in 430 

the reference model from GLADs. These suggest that a large variance in water pressure should 431 

be considered. For this, we choose a value of 0.5 MPa. Similarly, for the tracer-transit times we 432 

consider a relative error equivalent to the 20% of the observed tracer-transit time. 433 

The prior distributions of the model parameters are uniform and log-uniform within 434 

bounds, as summarized in Table 3.  435 

4 Results: Inversion of subglacial drainage systems 436 

In this section, we first provide the results of the inversion for each water recharge 437 

scenario (A4, A5 and B3), to finish with a section that compares these cases. The value of data 438 

varying number of observational settings is presented in the supplementary material.  439 

For each case, a total of 200,000 iterations were run. This number was chosen according 440 

to our computational budget. We consider the posterior distribution based on the last 30% of the 441 

chain, ensuring that the convergence criteria of the Gelman-Rubin statistic <1.2 has been met and 442 

that enough independent posterior samples have been considered. 443 

4.1 Distributed low recharge case (A4) 444 

The inversion results for this case show a marked reduction in the uncertainty of model 445 

parameters a, and Td, as shown in the marginal probability density function (pdf) or the posterior 446 

histogram of these parameters (the diagonal elements of Figure 5). For example, parameter Td, 447 

shows a narrow distribution around 10
-0.93

 m
2
 s

-1
. Note that the prior ranges from 10

-4
 to 10

-0.5
 m

2
 448 

s
-1

 and in Figure 5 the x-axis ranges from 10
-2

 to 10
-0.5

 m
2
 s

-1
. The joint probability distributions 449 

of each pair of variables are shown as density plots below the diagonal. It is important to note 450 

that the prior distributions are uniform or log-uniform (Table 3). Therefore, a reduction in 451 

uncertainty occurs when the posterior pdf takes on preferred values within these ranges. Case A4 452 

has a distributed recharge; therefore, the narrow distribution of Td confirms the importance of the 453 

distributed system when most of the recharge is homogenously distributed. Another parameter 454 

that shows significant uncertainty reduction is a (the linear scaling of the channels’ radii), 455 

suggesting a value close to zero, which implies very small channels. Parameters lx and ly, are not 456 

well constrained and exhibit multiple modes, none dominant. 457 

To illustrate the spatial characteristics of the channel networks, we present a selection of 458 

models: three models randomly chosen from the posterior distribution (r1, r2 and r3), the 459 

maximum likelihood model (mx), the mean effective pressure of all posterior models (x), and the 460 
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reference from SHMIP A4. The models are presented in Figure 6a. Models r1, r2 and r3 show a 461 

tendency to have one dominant channel concentrating most discharge. Model mx shows one 462 

dominant channel with a secondary parallel channel having common characteristic to the 463 

reference model. Nevertheless, it is important to keep in mind that these are only samples of 464 

posterior models. In the effective pressure profile for the selected models (Figure 6b), it can be 465 

seen that even though there is a generally good match with the reference, the main mismatch 466 

occurs at the same location for most the models, around 10 km away from the outlet. Lastly, 467 

Figure 6c presents the distribution of the transit times for the two tracer tests. The transit time 468 

distribution is narrower for the injection point that is closer to the outlet (Figure 4). 469 

4.2 Distributed high recharge case (A5). 470 

Posterior inversion results for recharge case A5 show a significant uncertainty reduction 471 

of parameters a, b and Td compared to the prior (see Figure 7). In addition, parameter c shows a 472 

threshold at 10
-2

, which corresponds to the minimum required for channelization. Moreover, 473 

parameters lx and ly show little uncertainty reduction from their prior distribution. One 474 

explanation is that the amount of data does not allow distinguishing between different channel 475 

structures. Several correlations are visible in the joint density plots. Parameters a and b are 476 

inversely related and Td shows significant dependences, especially with a and b. Indeed, it is 477 

expected that Td influences other parameters as it controls the redistribution of water fluxes in the 478 

glacier. 479 

Posterior model samples for case A5 show the common characteristic of two roughly 480 

parallel channels (Figure 8a). The channels are mostly straight and show no major branching, as 481 

in the A5 reference model. From the effective pressure profile (Figure 8b), it seems that the 482 

pressure is well constrained around the reference model (black line). Again, there is an important 483 

mismatch in the first 10 km. Note that model r3 is able to reproduce the 10 km effective pressure 484 

peak 485 

4.3 Moulins and distributed recharge case (B3) 486 

Case B3 is a particularly interesting example because it has input from moulins.  487 

Parameters a, b and Td are well constrained although the distribution includes one or multiple 488 

modes (Figure 9). Parameter c shows a uniform distribution between 10
-1.3

 and the lower bound, 489 

meaning that there is a minimum necessary connectivity or channel densification to fit the data 490 

(10
-1.3

 percent of the total water recharge is approximately 4.5 m
3
 s

-1
, the recharge on the 491 

moulin). Parameter Td, shows one mode, but not as pronounced as in case A5. Since most of the 492 

water recharge occurs via moulins, channel-related parameters are more influential. Another 493 

notable feature is that parameters lx and ly present multiple modes. This is consistent with other 494 

channel-dependent parameters, as in this case most of the flow is channelized. Consequently, the 495 

information provided in this case enables inferring spatial properties of the network structure.  496 

Similar to previous cases, a selection of posterior models is presented to explore the 497 

results for this case (Figure 10). One distinct feature observed is that the discharge in some 498 

channels decreases downstream (Figure 10a, case r3 and mx). This is also observed in the 499 

reference model (Figure 10a, reference case B3). A cross section of the effective pressure is 500 

presented in Figure 10b, where it can be seen that the pressure is constrained and most of the 501 

models are between 0.5 MPa apart from the reference. The first 10 km of the effective pressure 502 

present an important mismatch. Figure 10c presents the histogram of the transit times for three 503 
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tracer-tests carried out in moulins. The mode of the histogram for the first two tracer tests show 504 

good agreement with the reference value. However, the third tracer-test shows an important 505 

mismatch of 10 hours (3 hours for the mx model). 506 

4.4 Comparison of recharge scenarios 507 

To highlight the differences in the subglacial systems under different recharge conditions,  508 

the posterior distribution of the model parameters for the three recharge scenarios is shown in 509 

Figure 11a. The first parameter a represents a linear scaling of the network, b the relative size 510 

between the different stream order of the channel network, and c the threshold where channels 511 

are modelled explicitly. The Td correspond to the transmissivity of the distributed system and to 512 

explore the global changes in the channel network, we introduce an aggregated variable: the total 513 

channelized volume (tcv) which depends on the parameters a, b, c, lx and ly.  514 

The channelized total volume is computed as the sum of the channels length, times the cross 515 

section of each channel segment. 516 

A first remark is the gradual increase in a from A4 (low water recharge) to A5 (high 517 

water recharge), then from A5 to B3 (similar recharge). For the distributed system Td increases 518 

from A4 to A5, however for case B3 it is relatively lower. The channel network plays an import 519 

role in case B3 because of the presence of moulins. This explains the high value for a and the 520 

low value for Td. Parameter b, which represents the range of radii within the channel network, 521 

takes a lower value for case B3, meaning similar radii for the upper and lower parts of the 522 

network. In case A5, b is centered on 2.5, meaning that matching the data requires larger 523 

channels downstream in the network. Case A4 presents multiple modes, which is not surprising 524 

since the channels are relatively small in radius (parameter a). Moreover, the distributed system 525 

(controlled by Td) being dominant in this system, parameter b does not play an important role in 526 

this case. Additionally, the mode of tcv is low for A4 and higher for A5 and B3. This confirms 527 

that in A4, the channel network has a relatively smaller volume.  528 

The relation between the distributed and channelized system for the different recharge 529 

cases is best represented by a scatter plot of Td vs tcv (Figure 11b) Case B3 is dominated by 530 

channels, therefore variations in Td do not affect the overall behavior, represented by tcv. This is 531 

not the case for A4 and A5, where a small variation in Td has a large effect on tcv, suggesting a 532 

dominance of the distributed system. However, for case A5, there is a bigger constrain on tcv, 533 

meaning that the channelized system is still relevant. 534 

In summary, the higher recharge scenarios B3 and A5 result in larger values for 535 

parameter a. This is accompanied by an increase of Td by one order of magnitude. It can be seen 536 

that the tcv increases for case A3 to A5 and B3, whereas for case B3 it is much more constrained. 537 

This can be explained by the presence of moulins (case B3) that result in the distributed system 538 

being less influential.  539 

5 Discussion 540 

5.1 Model validation 541 

 Results show that the developed framework in this study is able to capture main features 542 

of the reference model. The effective pressure field of the synthetic ice-sheet is generally well 543 

represented, with the notable exception of the first 10 km as discussed below. The middle and 544 

upper sections of the ice-sheet present low hydraulic gradients and water flow is dominated by 545 
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the distributed system. Basal recharge strongly influences the transmissivity of the distributed 546 

system (Td). This is captured in the Bayesian inference by a constrained posterior distribution for 547 

this parameter. One reason for the pressure misfit in the lower section of the ice sheet is the 548 

different representation of the flow in our model and in GLaDS. We chose the radius equation 549 

(eq. 5) and a homogeneous transmissivity, whereas the approach used in GLaDS considers an 550 

opening-closure channel relationship determining the radius and varying water sheet thickness. 551 

Close to the terminus, hydraulic gradients are larger and a laminar model in the distributed 552 

system is not favored by this behavior. Case B3 that includes moulins shows a stronger 553 

dominance of the channelized system compared to cases A4 and A5. This can be seen in the 554 

posterior distribution of parameter a, which scales the radii sizes, as well as in the total 555 

channelized volume (tcv). 556 

Another reason for this mismatch is the location of the pressure measurements. In the 21-557 

borehole spatial array, none of the boreholes is close to the effective pressure peak at 10 km. 558 

Different spatial arrays are presented in the supplementary material, showing a better match in 559 

cases where boreholes are located in the first few kilometers from the outlet. Note that we are 560 

able to observe this misfit because we have access to the exhaustive synthetic outputs from 561 

GLaDS. In the supplementary material, we show an analysis of the uncertainty reduction by 562 

considering 1, 3, 8 and 21 boreholes, with and without tracer-test measurements.  563 

5.2 Forward model: Limitations and further work 564 

The core idea of our channel generator is the incorporation of a perturbation term 𝜙𝑅 in 565 

the hydraulic potential. The impact of 𝜙𝑅 will depend on the shape of the hydraulic potential 566 

field. In this study, the synthetic flat bedrock and idealized ice sheet result in a smooth hydraulic 567 

potential field, and consequently 𝜙𝑅 is a determining factor for the channel-network structure. 568 

However, in cases where ice sheets or glacier valleys lie on top of known complex topography, 569 

𝜙𝑅 will play a less important role by influencing, for example, only the channel sinuosity within 570 

limits imposed by the bedrock topography. Another assumption of our channel generator is that 571 

of N = 0 (eq. 3). Other models use the assumption of pw = f pi where f is spatially uniform a 572 

flotation factor usually varying between 0.6 to 1.1 [Chu et al., 2016]. This assumption is 573 

insignificant for a flat-bed setting, but for complex topographies it has been shown that 574 

variations in f can be significant [Chu et al., 2016]. While the variance of 𝜙𝑅 and f are prescribed 575 

in this paper, for applications with more complex topographies it is possible to include the  𝜙𝑅 576 

variance and f as additional parameters in the inversion. Another modeling choice we make is 577 

that the structural Gaussian deformation is carried out by modifying lx and ly in directions parallel 578 

and perpendicular to the ice flow. This allows producing a variety of channel networks, from 579 

arborescent to long parallel channels. Nevertheless, this could be revisited in case of complex 580 

topography, considering for example cases of asymmetry or curved flow lines in glaciers and ice 581 

sheets. 582 

In the A4 and A5 scenarios, the channel locations are poorly constrained. This is not the 583 

case for B3 where the presence of moulins determines the channel locations. By fixing the white 584 

noise (or random seed) of 𝜙𝑅 in case A3, we reduce the number of degrees of freedom, enabling 585 

us to infer the network structure, but not the exact location of channels. 586 

A further improvement could be to consider the outlet location or any known channel 587 

segments. For ground-terminating glaciers, the outlet location is often known and channels-end 588 

could be pinned to the known location. This could be incorporated as an acceptance/rejection 589 
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rule in the prior networks (before running the water flow model), where only the channel 590 

networks matching the known locations are considered for the next step. Additionally, the 591 

proportion of water discharge at each outlet could be used as information as well. For this study, 592 

we focused on the overall network geometry, but further studies should include known channel 593 

sections. If a large amount of such local data are to be considered, the approach of Gaussian 594 

gradual deformation [Hu, 2000] could be considered, along with the additional parameterization 595 

it involves. 596 

An assumption of our model is the continuity of channels along the hydraulic potential. 597 

This excludes the possibility of channels splitting downwards the hydraulic potential. This is the 598 

results of levelling the local depressions in the perturbed hydraulic potential, inherent to the D8 599 

routing algorithm [O'Callaghan and Mark, 1984]. Several studies [e.g.: Chu et al., 2016] 600 

propose to use D∞ routing algorithm [Tarboton, 1997] to account for the divergence of flow 601 

paths. Additionally, not levelling the local depressions in the perturbed hydraulic potential map 602 

could be used to stop channels in areas of flat or negative gradient. The incorporation of these 603 

features would require extra parameters, but is possible and could be explored in further 604 

research. Note that our results for case B3 show that channels can already be present on pressure 605 

ridges where water leaks to the distributed system, as also found in Werder et al. [2013].  606 

Regarding the flow model, Darcy’s laminar flow was considered in the distributed 607 

system. Results for case A5 inferred the highest values for the transmissivity to be on the order 608 

of 10
-0.6

 m
2
s

-1
; a value at which the laminar flow assumption should be considered with caution. 609 

Therefore, in our study some of the obtained values of Td may not correspond to physical 610 

parameters, but instead might correspond to surrogate parameters.  611 

5.3 Inversion framework 612 

The likelihood function was defined assuming: (i) uncorrelated independent Gaussian 613 

errors; and (ii) known variances of the observations (water pressure and tracer-transit times) and 614 

known model errors. Here, we arbitrarily assigned the error variance (model errors and 615 

observation errors considered together) which enables us to compare the different posteriors in 616 

relative terms. However, increasing or decreasing the error variance will lead to a wider or 617 

narrower posterior distribution. Quite importantly, further work should also explore retrieving 618 

the uncertainty from model errors as well as a general likelihood function considering non-619 

Gaussian errors and correlation of errors in non-linear problems [Schoups and Vrugt, 2010] 620 

We emphasize that parsimony is an important requirement for geostatistical approaches 621 

involving inversion. It is a price to pay for models capable of data conditioning and uncertainty 622 

quantification. More realistic models for the networks could include heterogeneous channel 623 

friction coefficients and more complex network parameterization, but this would in turn imply 624 

having additional parameters, which would be difficult to estimate using a Bayesian inversion 625 

framework. Note that the posterior models are not a description of the subglacial system itself, 626 

but a set of surrogate parameters that characterize geostatistical properties of the subglacial 627 

drainage system. For example, we model a homogeneous distributed system with transmissivity 628 

Td, but there are an infinite number of heterogeneous transmissivity fields that could fit the data 629 

equally well. We could add more complexity to the channel generator, but without observations 630 

it would result in the parameters becoming more undetermined.  631 
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6 Conclusions 632 

In this study, we propose a framework to generate an ensemble of channel networks that 633 

honor water-pressure and tracer-transit-time data. The subglacial channel network connectivity 634 

and spatial structure are inferred through an inversion of pressure and tracer-transit times. An 635 

important benefit is that it enables uncertainty quantification of the model parameters, at the cost 636 

of limited physical insights and no time evolution of the system. One of the novelties of this 637 

framework is that the subglacial channels are generated through a combination of geostatistical 638 

and physical processes. This contrasts to purely physical-process-based models [e.g.: Schoof, 639 

2010; Werder et al., 2013], where channels are an emerging property of physical or empirical 640 

laws, but which are difficult to condition to data. Our framework can be seen as complementary, 641 

because it proposes channel networks constrained by observations rather than a result of a 642 

process-based model. 643 

Three recharge scenarios were tested, representing the state of subglacial drainage 644 

systems at different periods of the year. It was found that each recharge scenario has distinctive 645 

model parameters, where a low water recharge produces smaller channels and less total 646 

channelized volume, associated with lower values of transmissivity for the distributed system, 647 

suggesting that the approach could be used to capture snapshots of subglacial systems across a 648 

season. As including temporal variations of the system could be computationally challenging, 649 

insights in the evolution of the system can be gained by comparing the system at different 650 

instantaneous states and recharge conditions. 651 

Further work should consider a real case scenario as well as incorporating other data 652 

sources, such as the location of multiple outlets and their relative discharge or seismic tremor 653 

data [e.g.: Gimbert et al., 2016]. This study was limited in assessing the uncertainty of the model 654 

parameters, but the uncertainties from water recharge, boundary conditions, bedrock topography 655 

and other variables of interest could be addressed as well. It also remains to be tested if the 656 

posterior model realizations can be used to make predictions. For example, one could consider 657 

the effective pressure maps to explore the variability on basal sliding when coupled with an ice 658 

flow model or test the channel networks response to outburst floods or sediment transport 659 

capacity. 660 
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8 Tables and figures 825 

Table 1.  Constants, variables and units. 826 

Parameter Definition Value Units 

Model constants   

𝜌𝑤 Water density 1000 kg m
-3

 

𝜌𝑖 Ice density 917 kg m
-3

 

g Gravitational acceleration 9.81 m s
-2

 

nm Manning roughness coefficient 0.04 m
-1/3

 s 

f Flotation factor 1  

Synthetic geometry by SHMIP   

B Bedrock elevation  m 

H Ice thickness m 

Derived from geometry and constants   

𝜙𝑧 Elevation potential 

 

MPa 

pi Ice overburden pressure MPa 

𝜙𝑠 Shreve’s hydraulic potential MPa 

Water flow model variables   

𝜙 Hydraulic potential 

 

MPa 

pw Water pressure MPa 

q Sheet discharge m
2
 s

-1
 

Q Channel discharge m
3
s

-1
 

N Effective pressure MPa 

Variables determined by inversion procedure   

r Channel radius 

 

m 

Td 
 

Transmissivity distributed system
 a

 m
2 

s
-1

 

𝜙𝑅 Gaussian random perturbation (channel 

network topology)  

MPa 

Channel generator variables   

a Radius scaling factor 

 

 

b Radius hierarchical order factor  

c Flow accumulation channel threshold % of recharge 

lx Integral scale east direction km 

ly Integral scale north direction  km 
a
Correspond to a variable of the channel network generator as well. 
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 827 

Table 2. Summary of the test cases. 828 

Case 

Basal 

recharge 

(m s
-1

) 

Moulin 

recharge 

Water pressure 

data (boreholes) 

Tracer 

injection 

Distance from 

outlet (km) 

Observed 

transit time 

(h) 

A4 2.5x10
-8

 - 21 
2 from 

boreholes 
17.5 and 49 17 and 51 

A5 4.5x10
-8

 - 21 
2 from 

boreholes 
17.5 and 49 7 and 19 

B3 
7.93x10

-

11
 

20 

moulins, 

4.5 m
3
s

-1
 

each 

21 
3 from 

moulins 
19, 33 and 47 2.8, 5 and 18 

 829 

Table 3. Channel generator variables 830 

Parameter Description Units Prior 

lx Integral scale east direction km U [1.5 – 6.5] 

ly Integral scale north direction km U[1.5-6.5] 

a Radius scaling factor  U[0.1-5] 

b Radius hierarchical order factor  U[0.1-5] 

c Flow accumulation channel threshold % of total recharge 10
U[-3.6 - -0.6]

 

Td Transmissivity of the distributed system m
2
 s

-1
 10

U[-4 - -0.5]
 

 831 

  832 
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Figure 1: Workflow diagram. The first component produces a two-dimensional channel 833 

network. Variables a, b and c define channel radii (r), lx and ly controls channel locations, and Td 834 

the transmissivity of the distributed system. Then, the second component computes the water 835 

flow and tracer-transit times in the previously generated channel network. Finally, the third 836 

component compares outputted water pressure and tracer-transit times with data, and proposes a 837 

new set of parameters following a probabilistic framework 838 

 839 

 840 

 841 
Figure 2. Subglacial channel network generator. (a) The Shreve’s hydraulic potential (color 842 

scale from 0 – 15 MPa) is computed  and a Gaussian random field 𝜙𝑅 (color scale from -0.2 to 843 

0.2 MPa) with integral scales lx and ly is added to generate the perturbed hydraulic potential 844 

(color scale from 0 – 15 MPa). (b) Distributed and punctual (red dots) water recharge, together 845 

with the flow routing D8 algorithm on the perturbed hydraulic potential are used to generate the 846 

flow accumulation map. Then, a threshold c is applied to the flow accumulation to obtain the 847 

channel network. (c) From the channel network, the stream order (gray numbers) is used to 848 

compute the radius of each channel segment. Note that the threshold c is set to 3 and the moulin 849 

input is set to 8. Distributed system mesh nodes (black) and common nodes between channels 850 

and distributed system (white) are displayed. 851 

 852 

Figure 3. Illustration of different channel networks (blue lines) plotted on top of different 𝜙𝑅 for 853 

a synthetic ice sheet of 100 × 20 km. The general flow direction is from right to left, and basal 854 

and punctual moulin recharge (red dots) are considered. Integral scales lx and ly are increasing 855 

from (a) to (b). In (c) and (d), we show the effect of anisotropy obtained by introduced by 856 
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selecting lx>ly and lx<ly respectively. In (e) and (f), we show the influence of the threshold c on 857 

the densification of the channel network.  858 

 859 
Figure 4. Modeled domain, position of boreholes and moulins. (a) Boreholes location for 860 

pressure data (cases A4, A5 and B3) and tracer injection (cases A4 and A5). (b) Moulins and 861 

tracer injection locations for case B3 (channels correspond to one realization, for illustration). 862 

 863 
Figure 5. Posterior distributions of the model parameters for case A4_BH21_T2. The diagonal 864 

shows the marginal posterior pdf for each parameter. Off-diagonal elements show the joint 865 

distribution of pairs of parameters. Higher probability is represented in red and lower probability 866 

in blue (white color for probability under 10
-4

). 867 

 868 
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 869 
Figure 6. Posterior models for A4. (a) Effective pressure (color scale) and channel discharge over 870 

a threshold of 0.5 m
3
  s

-1
 (black dots) for a selection of posterior models. Each model represent 871 

100x20 km. The selection includes: three random posterior models (r1, r2 and r3), maximum 872 

likelihood model (mx), mean effective pressure (x), and the reference model (A4) from SHMIP. 873 

Note that for the mean effective pressure (x) channels are not shown, and profile line for plots in 874 

panl b is shown . (b) Effective pressure for the selected models along profiles cutting through the 875 

centerline of the ice sheet. (c) Two tracer-transit-time posterior pdf for the two injection points, 876 

and its corresponding reference transit time (A4) marked with a vertical black line. The transit 877 

times for the selected models are shown in color dots on top of the pdf for each of the injection 878 

point. 879 
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 880 
Figure 7. Posterior distributions of the model parameters for case A5. The diagonal shows the 881 

posterior pdf for each parameter. Off-diagonal elements are the joint pdf of pairs of parameters. 882 

Higher probability is represented in red and lower probability in blue (white color for probability 883 

under 10
-4

). 884 
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 885 
Figure 8. Posterior models for A5. (a) Effective pressure (color scale) and channel discharge over 886 

a threshold of 0.5 m
3
  s

-1
 (black dots) for a selection of posterior models. Each model represent 887 

100x20 km. The selection includes: three random posterior models (r1, r2 and r3), maximum 888 

likelihood model (mx), mean effective pressure (x), and the reference model (A4) from SHMIP. 889 

Note that for the mean effective pressure (x) channels are not shown, and profile line for plots in 890 

panl b is shown . (b) Effective pressure for the selected models along profiles cutting through the 891 

centerline of the ice sheet. (c) Two tracer-transit-time posterior pdf for the two injection points, 892 

and its corresponding reference transit time (A5) marked with a vertical black line. The transit 893 

times for the selected models are shown in color dots on top of the pdf for each of the injection 894 

point. 895 
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 896 
Figure 9. Posterior distributions of the model parameters for case B3. The diagonal shows the 897 

posterior pdf for each parameter. Off-diagonal elements are the joint pdf of pairs of parameters. 898 

Higher probability is represented in red and lower probability in blue (white color for probability 899 

under 10
-4

). 900 
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 901 
Figure 10. Posterior models for B3. (a) Effective pressure (color scale) and channel discharge 902 

over a threshold of 0.5 m3  s-1 (black dots) for a selection of posterior models. Each model 903 

represent 100x20 km. The selection includes: three random posterior models (r1, r2 and r3), 904 

maximum likelihood model (mx), mean effective pressure (x), and the reference model (A4) 905 

from SHMIP. Note that for the mean effective pressure (x) channels are not shown, and profile 906 

line for plots in panl b is shown. (b) Effective pressure for the selected models along profiles 907 

cutting through the centerline of the ice sheet. (c) Two tracer-transit-time posterior pdf for the 908 

two injection points, and its corresponding reference transit time (B3) marked with a vertical 909 

black line. The transit times for the selected models are shown in color dots on top of the pdf for 910 

each of the injection point. 911 

 912 
Figure 11. Comparison of the three recharge scenarios A4, A5 and B3. a) Marginal posterior 913 

distribution of model parameters plus tcv. b) Plot of Td v/s tcv.  914 

 915 
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