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Abstract

We consider a risk averse and prudent social planner who has access to different energy
sources to produce electricity: hydroelectricity produced with a dam and thermal electricity
with unlimited supply at some exogenous cost. The dam is supplied with a random water
flow. The presence of constraints on a minimal and on a maximal storage capacity makes
electricity consumption smoothing possible only when the quantity of water available to the
agent lies in a certain range that we determine. Consumption smoothing is possible even
when the dam is almost empty thanks to the alternative costly energy source. Moreover a
comparative static analysis reveals that the marginal propensity to produce hydroelectricity
is an increasing function of the cost of the second technology. Therefore, the availability at a
low cost of the fossil source improves time diversification. Finally, the optimal electric park
is composed of a number of dams that is increasing with the cost of the second technology.
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1 Introduction

The aim of this work is to determine the optimal structure of an electric park that generates

power with different energy sources. To preserve the environment and the energy sources that

are exhaustible, governments are increasingly concerned with the use of renewable energy sources

besides classic thermal power sources. However, renewable energy sources are not easy to use

as their availability is not constant over time. Therefore an electric park must be designed by

taking into account this random availability and its management has to solve the problem of

providing enough electricity even when renewable sources are not available in the short run.

Norway, for instance, is the sixth largest hydropower generator in the world and the biggest

in Europe. Hydropower accounts for 99% of the electricity generated and annual production

varies to a great extent in line with precipitation levels. Thus, when the country faces dry

periods as it was the case in 2002 and 2003, hydropower reservoirs work as buffers between

output and consumption. Besides hydropower, electricity is also generated from sources such as

natural gas and wind. Indeed, “gas-fired power station” can be started up and closed down at

short notice. They are suitable for providing peak-load power but have a relatively high cost.

In fact, during dry periods, the loss of hydropower output is offset by increasing thermal power

generation1.

In this work, we mainly focus on two energy sources. The renewable energy source has a

random availability whereas the thermal power source is available at an exogenous market price.

The possibility to store the renewable energy source in a dam allows to smooth consumption

over time. During a dry episode, some of the water stored in the dam is consumed and the

water reserve goes down, potentially to the lower limit of the reservoir. In that case, it may be

possible that electricity consumption be limited or rationed. On the contrary, when the water

inflow is higher, the dam is replenished potentially up to the maximum capacity of the reservoir.

Therefore, the capacity of the dam is a key factor of the optimal management policy as the

Norwegian example shows us. Besides this renewable energy source, the permanent availability

of the thermal power source softens the effect of the uncertainty of the water inflow.

A large body of literature concerning commodity storage presents meaningful results. Williams

and Wright [26, 27] developed a model where the supply is stochastic and where production and

storage are performed by competitive profit maximizers. They found that “storage is much more

effective in eliminating excessive levels of consumption and low prices than in preventing low

levels of production and high prices”. They explained this result by evoking the non symme-

try of storage. Indeed, storage has to be non negative or, said in other words, water cannot be

“borrowed” during a drought. Deaton and Laroque [6, 7] also worked on the topic of commodity

prices and commodity storage. In the second paper, they tried to explain some stylized facts

of commodity price behavior by fitting a competitive storage model directly to the data. They
1See Ministry of Petroleum and Energy of Norway [22].
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proposed two ways to model productivity shocks: either iid shocks or time dependent (autore-

gressive) shocks. But finally none of the two models fits the data well. Deaton and Laroque

explained this failure as follows: “all the autocorrelation in the data has to be attributed to

the underlying processes. Although speculation is capable of increasing the autocorrelation that

would otherwise exist in an unmoderated price series, it cannot raise it to the levels that we

observe”.

Concerning the analysis of the use of energy sources, many directions have been explored.

On the one hand, equilibrium models have been developed. So, Garcia et al. [9] analyzed the

price formation process and its policy implications in an infinite horizon duopoly model. They

focused on two hydroelectricity producers who engage in dynamic Bertrand competition. At

each date, water reservoirs are replenished with some strictly positive probability and a price

cap affects the opportunity cost of producing electric power. They found that hydroelectricity

producers might sell less today to have more capacity tomorrow: they adopt a strategic pricing

behavior. They explained that the introduction of a price cap may shift down the entire price

distribution. Crampes and Moreaux [4] studied a model where two energy sources are available:

hydroelectricity and thermal electricity. They focused on a model of two time periods and did not

introduce uncertainty in the hydroelectric technology. They studied the case of a central planner,

of a monopoly that is regulated or not and the case of Cournot competition. They concluded that

in the presence of hydroelectricity, thermal plants have to be dynamically planned. Moreover

the optimized output for the thermal station is determined by the intertemporal specification

of costs and utility. On the other hand, Hotelling [17] did not focus on equilibrium situations

but rather analyzed the optimal rate of depletion of an exhaustible resource. He found that

the rate at which consumption falls over time should equal the ratio of the discount rate and

the elasticity of marginal utility of consumption. As Heal [14] noted in his review on the

optimal use of exhaustible resource, many extensions to this initial model have been developed.

Hoel [15], for instance, introduced uncertainty in a setting with two energy sources: the date

when the substitute will become available is known, but its unit cost is uncertain. He found

that an increase in uncertainty may increase the consumption depending on the shape of the

utility function. Ayong Le Kama [1] studied the problem of the use of one energy source under

uncertainty in a finite horizon model. He found that the introduction of two types of constraints,

one on the availability of the resource and another on the agent’s solvency, modifies the agent’s

behavior. In order to determine the optimal consumption, the agent takes into account the

energy stock but also his anticipations on the realizations of future shocks. In the fifties, different

authors addressed the question of minimizing dispatch cost in a hydrothermal system. Thus,

Little [21] determined the optimal water use in an uncertain setting close to the one we use,

but he did not focus on the way an electric park is valued. Two years later, Koopmans [19]

developed a model with two energy sources without uncertainty and aimed at determining the

optimal water storage policy that minimizes the operating cost of thermal generation. In a

second step, he tried to obtain the value of the power generated and of the water used and/or
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stored.

A parallel can be drawn between a dam that contains water and the savings of an agent

and between the water flow that enters a dam and the random revenue of the agent. In models

used to study the consumption/saving behavior of agents, one usually takes into account the

fact that the agent is not allowed to borrow at each period of time. Without such liquidity

constraints, agents would perfectly smooth their consumption over time. But with liquidity

constraints, agents are not able any more to use an anticipated increase in their revenue in the

future by increasing today the amount they are allowed to borrow. Therefore, the introduction

of such constraints decreases the consumption level even if they are not binding. Agents indeed

are afraid of not being able to borrow. Such models have been studied by Deaton [5], Zeldes

[29], Carroll [2] and Gollier [12].

In this paper, we aim at determining the optimal electric park that generates power with two

energy sources. This model is an extension of the initial Hotelling model in which uncertainty

has been added. Indeed, it is assumed here that the level of the stock of one of the energy

sources is uncertain and the analysis concerns the optimal management of random stocks. We

are in a setting close to the one of Crampes and Moreaux (when they study the case of a central

planner) as far as we consider the optimal allocation between two energy sources. However,

two main features have been added: not only do we consider an infinite horizon model, but we

also introduce uncertainty on the water inflow. A social planner chooses the energy production

at each period depending on the state of the system and his expectations on its evolution. He

maximizes the discounted sum of the expected utility he gets from the use of different energy

sources. In a first step, the optimal production flow when only hydroelectricity is available is

analyzed. Hydroelectricity generation comes from water stored in a dam that is supplied with

a random inflow. Unlike Ayong Le Kama, we do not consider any solvency constraint since

future water inflows are assumed to be always positive. However, we add a second constraint

on the availability of the resource since it must be finite. Therefore, a second kind of “liquidity

constraint” is introduced: not only is the social planner unable to produce electricity from water

not yet fallen in the reservoir, but it is also not possible to store more water in the dam than its

capacity. We find that the use of the dam allows electricity smoothing when the quantity z of

available water is in a given range [z∗, z∗∗] that we determine. Indeed in this region, the social

planner prefers cutting down on total consumption today to let enough water in the dam for the

future. But when the quantity of available water is too low (lower than some threshold z∗), it

is completely consumed since the social planner expects that future rainfalls will replenish the

dam. A second energy source is then added and the optimal combination between the two energy

sources allows for a better smoothing of electricity consumption even when the costly energy

source is not consumed. Moreover the introduction of the second energy source shifts up water

production. Besides the study of the allocation between the two sources, we consider the effect of

an increase in uncertainty of the water inflow. For some values of the quantity of available water,
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more water is consumed under uncertainty than under certainty. Once the optimal allocation

has been determined, we consider a long term situation where the characteristics of the electric

park have to be determined. We compute the optimal number of dams and find that it is an

increasing function of the price of the alternative energy source. Lastly, as an extension, we

focus on the efficiency of time diversification when a second random energy source is introduced

that is non storable.

In the next section of this paper, the model is presented. A benchmark case is studied in

section 3 when there is no uncertainty on the water inflow. Section 4 is devoted to the resolution

of the model in a general setting. Section 5 deals with the characteristics of an optimal electric

park in the long term. In section 6, we propose as an extension to introduce a third energy

source that is uncertain and non-storable. Section 7 concludes.

2 Basic Model

We consider a small economy in which a social planner produces electricity using two different

technologies: hydroelectric energy and thermal power. Hydroelectricity is obtained from water

extracted from a dam. The dam is supplied with a random water flow ỹt and is characterized

by its capacity Z. Thermal power is available at any time at a constant exogenous market

price2. In this setting, hydroelectricity is a renewable resource whereas the relative scarcity of

the thermal power is expressed in its price: there is no constraint on its availability given its

market price. Therefore, thermal power is a backstop technology of hydroelectricity in the sense

used by Nordhaus [23] and Heal [14]: “a technology that can provide substitutes for the resource

once it is fully depleted, and can provide these substitutes on a very large scale indeed”.

We consider the standard setting where a social planner chooses at each period the energy

production depending on the state of the system and its expectations on its evolution. He aims

at maximizing the expected intertemporal utility he gets from the flow of future production.

The use of the dam introduces some constraints. On the one hand, consumption is limited by

the quantity of stored water in the dam, but on the other hand, the quantity of water consumed

has to be high enough since the amount of water stored is limited by the dam capacity Z.

Concerning thermal power, the only constraint is a non-negativity one. Let us introduce

• wt the amount of water in the dam at the beginning of period t,

• ỹt the constant flow of water that enters the reservoir,

• zt the total amount of water that is available to the agent in period t, that is zt = wt + ỹt.

This implies that zt ≥ min ỹ ∀t,

• ct the amount of water that is extracted from the dam in period t,
2In this setting of a competitive market for thermal electricity, the price corresponds to the marginal cost.
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• Z the dam capacity. wt, µ, zt, ct and Z are measured in cubic meters and refer to volumes

of water in the reservoir. We assume min ỹ < Z,

• xt the quantity of electricity produced with thermal power consumed in period t and

measured in kWh,

• p the unit price of thermal power,

• R the coefficient that allows to convert a volume of water into a quantity of electricity

produced in kWh. It depends on the characteristics of the dam (its height, its flow),

• β the discount factor with β < 1,

• u the utility function: it is strictly increasing and strictly concave.

The timing is represented on Figure 1.

Figure 1: Timing

The dynamics of the water that is available to the social planner is equal to zt+1 = zt −
ct + ỹt+1. Water consumption is limited by the quantity of available water, therefore the first

constraint reduces to ct ≤ zt. Finally, the remaining stock of water has to be lower than the

dam capacity: wt+1 ≤ Z. But as the dynamics of the quantity of water stored in the dam is

wt+1 = wt + ỹt − ct = zt − ct, the constraint comes down to zt − ct ≤ Z. The social planner’s

program is

max
{ct,xt}t≥0

E0

∞∑

t=0

βt [u (Rct + xt)− pxt] (1)

subject to

zt+1 = zt − ct + ỹt+1, (2)

ct ≤ zt, (3)

ct ≥ zt − Z, (4)

ct ≥ 0, (5)

xt ≥ 0, (6)

z0 given. (7)
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We choose a CRRA utility function where the concavity coefficient γ is equal to the inverse of

the constant price elasticity of the demand for thermal power x (p) taken in absolute value

u (x) =
x1−γ

1− γ
+ constant.

We assume moreover that γ > 1.

Before solving the model, we state a first result on the shape of both consumption flows.

Proposition 1 Thermal power is consumed after having consumed all available water in the

reservoir: xt > 0 ⇒ ct = zt.

This result means that the electricity consumption path can be decomposed into two phases.

As in Hotelling, the cheapest energy source is consumed first. Once the water reserve is fully

depleted, thermal power is used in combination with the constant water inflow. The driving force

for this result is the willingness of the social planner to postpone energy expenditure because

β < 1.

Proof : Suppose the proposition does not hold: xt > 0 and ct < zt. Let t′ be the first time

period for which ct′ > 0 (it exists else constraint 4 would be violated). Consider the following

strategy

• {ĉt, x̂t} with ĉt = ct + ε
R and x̂t = xt − ε,

• {ĉt+1, x̂t+1} with ĉt′ = ct′ − ε
R and x̂t′ = xt′ + ε.

In period t, ∆ut = p, in period t′, ∆ut′ = −p. Therefore, the total effect, ∆u = βtp − βt′p =

βtp
(
1− βt′−t

)
is strictly positive, and strategy {ĉ, x̂} is strictly preferred to strategy {c, x} that

is the optimal one. This leads to a contradiction. 2

In the light of this result, to solve the initial maximization program, we first determine the

optimal consumption of thermal power in the second stage of the process, i.e., when the dam is

empty. We then use this information to determine the optimal consumption of hydroelectricity

in the first stage. To do so, we introduce function

û (Rc; p) = max
x≥0

u (Rc + x)− px.

If ν is the Lagrangian multiplier associated with the constraint x ≥ 0, the FOC reads u′ (Rc + x)−
p + ν = 0. With e∗ = u′−1 (p), two cases occur:

• either ν = 0, what implies x ≥ 0. It follows that u′ (Rc + x) = p = u′ (e∗) , x = e∗−Rc ≥
0, and Rc ≤ e∗,

• or ν > 0, what implies x = 0 and u′ (Rc + x) = p− ν < u′ (e∗) , x = 0, and Rc > e∗.
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Therefore, function û is equal to

û (Rc; p) =
{

u (e∗ (p))− p (e∗ (p)−Rc) if Rc ≤ e∗ (p),
u (Rc) if Rc ≥ e∗ (p).

We present the shape of û on Figure 2. When c ≤ e∗ (p) /R, it is a straight line and once this

threshold is crossed, it is equal to the utility function u.

Figure 2: Indirect utility function û

The social planner’s program reduces to

max
{ct}t≥0

E0

∞∑

t=0

βtû (Rct) (8)

subject to

zt+1 = zt − ct + ỹt+1, (9)

ct ≤ zt, (10)

ct ≥ zt − Z, (11)

ct ≥ 0, (12)

z0 given. (13)

Before we characterize the solution of this program, we study, as a benchmark, the case

where there is no uncertainty on the water inflow.

3 Benchmark: model under certainty

In this section, the water inflow that fills the dam at each period is assumed to be constant:

∀t, ỹt = µ > 0. Total consumption is at each period greater or equal than µ: ∀t, ct ≥ µ and the

constraint (12) is thus always satisfied.
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With this indirect utility function û, we note that, at each period, electricity production is

at least equal to e∗ = u′−1 (p), since ∀t, x (t) + Rc (t) ≥ e∗. x (t) + Rc (t) = e∗ happens if the

constant water inflow is not sufficient (or just sufficient) to satisfy all the demand, i.e. µ ≤ e∗/R.

Two cases may occur. Either µ < zt ≤ e∗/R: there remains a strictly positive quantity of water

in the dam before the precipitation replenishes the reservoir (wt > 0). Or zt = µ ≤ e∗/R: there

is no water stock in the dam any more and at each time period, water consumption is equal to the

rainfall. x (t)+Rc (t) > e∗ implies that no thermal power is consumed (x (t) = 0) and electricity

is produced using only the hydroelectric technology. Optimal thermal power consumption path

is therefore equal to x (t) = max (e∗ (p)−Rc (t) , 0).

Recalling that ∀t, zt ≥ µ, two cases may occur:

1. e∗
R ≥ µ: either z0 ≥ e∗

R and the water consumption flow is decreasing until it reaches µ.

Once it reaches e∗
R , thermal power consumption becomes strictly positive and equal to

x (t) = max (e∗ (p)−Rc (t) , 0). Or z0 < e∗
R and water consumption is decreasing until it

reaches µ. Thermal power consumption is strictly positive from the first period on and is

equal to e∗
R − ct,

2. z0 ≥ µ > e∗
R : water consumption flow is decreasing until it reaches µ and it is equal to µ

thereafter. No thermal power is consumed.

The resolution of the program is in the Appendix. We present the shape of the optimal water

consumption path for the first case on Figure 3. γ is taken to be equal to 5. This is consistent

with the estimation of the price elasticity for different European countries found in Söderholm

[24] whose mean amounts to -0.2. The constant inflow of water, µ, is equal to 2. Concerning the

other parameters, the values chosen are β = 0.95, R = 0.7, Z = 10, z0 = 10 and p = 0.05. e∗ (p)

is therefore equal to 1.82. These values will be used for all graphical representations if nothing

else is mentioned.

Hydroelectricity consumption is decreasing until the dam is empty. Afterwards, it is constant

and equal to Rµ. Thermal power consumption is equal to max (e∗ (p)−Rc (t) , 0). When there

is still some water in the dam, total electricity consumption is greater than e∗ (p). On the

contrary, once thermal power is consumed, the total electricity consumption amounts to e∗ (p).

In order to be able to draw comparisons with the case where the inflow of water is uncertain

(see following section), we give the shape of the water consumption flow c relative to the quantity

of available water z on Figure 4.

There is a kink: indeed, for low levels of stored water, all the available water is consumed.

But afterwards, this is a step function because of the definition of the time T from which thermal

power is consumed. As we work in discrete time, T has to be integer.

We focus now on the general case.
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Figure 3: Optimal power consumption path

Figure 4: Optimal water consumption path in function of the quantity of water available
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4 General case: model with uncertainty

We assume now that each realization of the random variable ỹt is positive. At each time period,

we have that zt > min ỹ.

The resolution of problem (8) is made more convenient by using the Bellman equation

v (z) = max
c
{û (Rc) + βEv (z − c + ỹ)} (14)

subject to

c ≤ z, (15)

c ≥ z − Z, (16)

c ≥ 0. (17)

The following lemma gives a first result on the shape of the value function v.

Lemma 1 The value function v is strictly concave.

Proof : See the Appendix. 2

This technical result is a first step before obtaining results on the shape of both consumption

flows (see the following subsection). If λ, η1 and η2 are the Lagrangian multipliers associated

with constraints (15), (16) and (17), the FOC reduces the three following cases

Rû′ (Rc)




≥ βEv′ (z + ỹ − c) if (15) is binding,
≤ βEv′ (z + ỹ − c) if (16) or (17) is binding,
= βEv′ (z + ỹ − c) otherwise.

The second order conditions, ∂2L
∂c2

= R2û′′ (Rc) + βEv′′ (z + ỹ − c) ≤ 0, are satisfied because of

the concavity of u and v.

In this case where the water inflow is uncertain, there are two means for the social planner

to smooth electricity consumption: consuming thermal power when water extraction is low or

storing water in the dam when precipitation is large. Proposition 1 explains how consumption

smoothing is possible in this uncertain setting. When water is scarce, the social planner does

not use the dam to store water. He prefers consuming all the water available and smoothing

electricity consumption with the consumption of thermal power. On the contrary, when there is

more water in the dam, the social planner does not use the alternative energy source any more,

but the dam to smooth electricity consumption. Analytically, we have:

−∀z such that Rz ≤ e∗, c (z) = z, and x (z) = e∗ (p)−Rz

−∀z such that Rz ≥ e∗, x (z) = 0, and c (z) is the solution of Rû′ (Rc) = βEv′ (z − c + ỹ)+λ−η1−η2,

where λ, η1 and η2 are the Lagrange multipliers associated with the constraints (15), (16) and (17).
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As in the certain case with two energy sources, a minimum amount of electricity is produced

at each period. It is equal to e∗ (p): ∀z, x (z) + Rc (z) ≥ e∗. If x (z) + Rc (z) = e∗, electricity

is produced through a combination of the thermal power and water. In this case, the role of

thermal power is to complete the level of electricity consumed up to e∗ because there is not

enough water in the dam. When x (z) + Rc (z) > e∗, no thermal power is consumed (x (z) = 0)

and electricity is only produced with hydroelectric technology. It can be the case that all the

available water is consumed (c (z) = z), but in most cases, water is stored and smoothing is

possible (except if z is too high and we are in the case where the constraint on the lower bound

is binding).

In the next two subsections, we analyze the consumption flow of each energy source.

4.1 Analysis of the water consumption flow

We begin this section with a result on the shape of function c.

Lemma 2 Electricity consumption is strictly positive when the quantity of available water is

strictly positive: ∀z > 0, c (z) > 0.

Proof : See the Appendix. 2

This result tells that constraint c ≥ 0 in program (14) is never binding when z > 0. Therefore,

η2 = 0 and we replace η1 with η.

The numerical resolution of the problem is represented on Figure with the usual parameters’

values. We consider a random inflow ỹ that takes the values 0, 3 and 6 with equal probabilities,

thus ∀t, zt ≥ 0.

Figure 5: Consumption of water in function of the quantity of available water when ỹ ∈ {0, 3, 6}

12



According to Figure 5, there exist two thresholds3 z∗ and z∗∗ such that

• ∀z ≤ z∗, c(z) = z,

• ∀z ≥ z∗∗, c(z) = z − Z.

In order to understand how hydroelectricity consumption smoothing is possible for different

levels of stored water, we compute the marginal propensity to consume ∂c/∂z from the first

order conditions. It is a measure of the efficiency of intertemporal smoothing: if smoothing were

perfect, c′(z) would be equal to zero. On the contrary, when c′(z) = 1, there is no smoothing at

all since all the water added in the reservoir is immediately consumed.

∂c

∂z
=





1 if z ≤ z∗,
βEv′′(z+ỹ−c(z))

û′′(c(z))+βEv′′(z+ỹ−c(z)) if z∗ < z < z∗∗,
1 if z ≥ z∗∗.

First, c′(z) is positive implying that c is an increasing function. Next, note that when neither

(15) nor (16) is binding, the marginal propensity to consume is strictly less than 1 and time

diversification is possible. Note that because of Proposition 1, z∗ ≥ e∗/R. Indeed, imagine this

were not the case, then the social planner would consume thermal power whereas there is still

water left in the reservoir and this would contradict Proposition 1. However, it might be the

case that z∗ > e∗/R meaning that the social planner empties out the reservoir and consumes

more than the minimal amount e∗.4 He knows indeed that at the next time period there will be

a water inflow greater or equal then min ỹ, there is thus no need to keep water in stock. Once

e∗/R (and thus z∗) is crossed, thermal energy is not consumed anymore. On [z∗, z∗∗], as the

social planner knows that in the future he could not produce the quantity of water he would

like, he prefers cutting down on the production today to let enough water in the dam for the

future. When c (z) ≤ z∗, the social planner modifies the consumption behavior and there is no

consumption smoothing. Indeed, the social planner knows that, in the next period, the water

flow that will replenish the dam will be greater or equal to min ỹ. Therefore, he empties the

water out of the reservoir.

Note that the marginal propensity to consume is first decreasing and then increasing. At

the approach of z∗ (when z > z∗), the social planner realizes that consumption smoothing

is not possible any more. Indeed there is not enough water any more and he is better off

emptying out all the stock. Similarly, at the approach of z∗∗ (when z < z∗∗), the social planner

suddenly increases hydroelectricity production because of the risk of a very rainy period for

many successive periods. Therefore, function c is successively concave then convex5.
3The existence of z∗ has already been proven by Deaton [5] and Deaton and Laroque [6, 7]. In Deaton’s model

studying the consumption/saving behavior of agents, there is only one constraint on the maximal amount that
can be borrowed which corresponds to (15).

4In the case where p → +∞ (the alternative energy source is not available), it can be shown that z∗ ≥ min ỹ
(see Appendix C).

5The difference with the concavity result of the consumption function proven by Carroll and Kimball [3] comes
from the second constraint: consumption has to be high enough in our model.
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It is also meaningful to look at the evolution of hydroelectricity production over time. On

Figure 6, the consumption flow for 100 time periods is represented together with the water

stock. It has been obtained through a simulation of the random variable ỹ (in this numerical

illustration, we consider the extreme case where p → +∞, meaning that thermal energy is not

available).

Figure 6: Evolution of the stock and of the consumption with the time

The path of water consumption has a completely different shape than in the certainty case

where it was a decreasing function of time. The variations in the consumption flow are indeed

smaller than the stock variations. When the water stock approaches the dam capacity (i.e. the

constraint on the lower bound is binding), consumption smoothing is less efficient. This is also

the case when the dam is almost empty (i.e. the constraint on the upper bound is binding). In

this two cases, the dam does not play its smoothing role because of the technical constraints.

4.2 Description of the thermal energy consumption flow

Once the water consumption flow is known, thermal power consumption is straightforward

to obtain as we noted at the beginning of the section that x(z) = max(e∗(p) − Rz, 0). The

production of thermal power decreases linearly with z down to 0. The next step is to see how

both flows evolve according to p.

4.3 Comparative static relative to price

On Figures 7 and 8, we present the production of thermal power and water in function of the

water stock for different values for p (for p = 0.1 to p = 0.01).

It is straightforward to note that thermal electricity production is decreasing with p.
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Figure 7: Consumption of thermal power in function of the quantity of available water for
different p

Figure 8: Consumption of water in function of the quantity of available water for different p
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The numerical resolution reveals that c (z; p) is decreasing with p. When p increases, the

social planner knows that he is going to decrease thermal power production since it is more

expensive. That is why, for a given value of z, he prefers decreasing hydroelectricity production

too in order to keep water stock for the future. This shift of the consumption flow when the

price of the second energy source increases expresses a precautionary behavior of the social

planner. Note that as p decreases, ∂c/∂z decreases: the existence of thermal power at a low

price improves intertemporal diversification even when the fossil source is not consumed (for

values of z such that e∗ (p)−Rz = 0).

Table 1 presents the proportion of thermal power and water in the total amount of electricity

consumed for different values for p. These values have been obtained by simulating the random

variable ỹ 10000 times: one obtains a path for the water stock for 10000 periods and consequently

both consumption flows. Then, we compute the proportion of electricity from water and from

thermal power for those 10000 periods.

p electricity (from water) electricity (from thermal power)
0.1 98.51% 1.49%
0.075 97.73% 2.27%
0.05 95.89% 4.11%
0.025 92.42% 7.58%
0.01 86.77% 13.23%

Table 1: Proportion of hydroelectricity and thermal power in the total consumption for different
values for p

As p decreases, the proportion of thermal power increases and the proportion of hydroelec-

tricity decreases. This happens in an exponential way. This result completes the result on the

precautionary behavior of the social planner developed at the beginning of the subsection. When

p increases, although, for a given quantity z of available water, the social planner reduces hydro-

electricity production to keep water stock for the future, the share of hydroelectricity production

relative to thermal power production increases.

4.4 Comparative static relative to uncertainty

We study the impact of an increase in uncertainty of the water inflow on electricity production.

We consider three mean preserving spreads of random water inflows: where there is no uncer-

tainty
(
ỹ =

{
2, 2, 2; 1

3 , 1
3 , 1

3

})
, when there is a low level of uncertainty

(
ỹ =

{
1, 2, 3; 1

3 , 1
3 , 1

3

})
and

when there is a higher level of uncertainty
(
ỹ =

{
0, 2, 4; 1

3 , 1
3 , 1

3

})
. In Figure 9, we zoom on the

low levels of available water.

According to Leland [20], an agent is prudent (in the sense where he consumes less today and

saves more) if and only if the marginal utility of future consumption is convex. With the Bellman

formulation, the maximization problem reads maxc û (c)+βEv (z − c + ỹ). As the maximization
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Figure 9: Water consumption for different levels of uncertainty when the dam is almost empty

operator preserves prudence6, in this case an agent is prudent if and only if û′ is convex. Recall

that û′ that is represented on Figure 10 is equal to

û′ (Rc; p) =
{

Rp if Rc ≤ e∗ (p),
Ru′ (Rc) < Rp if Rc ≥ e∗ (p).

Function û′ is neither concave nor convex. Therefore, no general conclusion can be drawn

about the effect of uncertainty on the optimal extraction. However, it is locally concave for

values of c close to e∗
R and is convex for higher values of c.

As we focus on the effect of an increase in uncertainty at date t + 1 on consumption at

date t, we look at values of z satisfying the following equation: c (z − c (z) + µ) = e∗
R . The

solution to this equation is z = 2.55. For values of z around 2.55, the marginal utility of future

consumption is concave, therefore consumption is larger under uncertainty than under certainty.

Intuitively, for values of z around the kink of the marginal utility function, if there is an increase

in uncertainty, two cases occur:

• either the random flow is very low. In this case, the marginal utility is constant and

electricity consumption is equal to the minimum demand e∗ (p),

• or the random flow is very high and thus consumption is increased.

The presence of the alternative energy source makes the social planner less prudent for this

state of the system. But this increase in consumption does not hold any more for values of z

higher than this threshold because, in this case, the marginal utility of the future consumption

is convex. Therefore, for a given quantity of available water z, consumption is lower under
6See Gollier [12], chapter 14.

17



Figure 10: The marginal value of the indirect utility function û
′

uncertainty. And for values of z lower than this threshold, consumption in both cases are equal

since the marginal utility of future consumption is linear and all the water is consumed (at least

in the certain case). Let us just note that this result on the prudence of the social planer is close

to the one obtained by Hoel [15] when he studied the optimal exhaustible resource extraction

when the future substitute has an uncertain cost. Indeed, he found that if the marginal utility

of future consumption is concave, the resource extraction will be increased by a mean cost

preserving increase in uncertainty.

We now turn to the determination of the optimal size of an electric park that generates

power with two kinds of power plants: a hydroelectric power plant and a thermal power plant.

5 What is the optimal infrastructure?

With the previous section, we are able to compute the value the social planner gets from the use

of the dam and from the production of thermal power. The next step is to compute the optimal

number of dams7. Let us first introduce the number of dams as a parameter in program (14)

v (z; α, p) = max
c,x

{u (Rc + x)− px + βEv (z − c + αỹ; α, p)} (18)

subject to

c ≤ z, (19)

c ≥ z − αZ, (20)
7We choose to focus on the optimal number of dams although other interpretations would have been possible

(optimal size of the dams...).
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x ≥ 0. (21)

Variable α stands for the number of dams. If α dams are used, the total flow of water that fills

then amounts to αỹ and the total capacity is equal to αZ. ỹ and Z are exogenous parameters.

We slightly modify the values taken until now: we choose ỹ = {0.25, 0.75, 1.25} and Z = 2.5.

Thus, we recover the former values for α = 4. As α increases, two opposite effects appear:

• as α increases, it is as if the size of the dam increased. If there were no increase in the

flow of water at the same time, this would tend to decrease the consumption flow. Indeed,

with a larger dam, the social planner can smooth consumption in a more efficient way and

therefore is tempted to decrease total production today and to store more water for the

future.

• as α increases, the quantity of rainfalls that fills the dams increases also. If this increase

was taken independently without considering the increases in the size of the dam, it would

clearly increase total production. Indeed, the social planner knows that at each period,

there will be more water.

The second effect dominates for value of z comprised between 0 and αZ, therefore c (z, α)

increases as α increases ∀z ∈ [
0, αZ

]
. Once v (z; α, p) has been obtained, the social planner is

going to focus on the utility extracted from α empty dams v (0;α, p).

Figure 11: Utility retired from empty dams: v (0;α, p) for different thermal power prices

v (0;α, p) is an increasing function of α and it is straightforward to prove that v (0;α, p) is

a decreasing function of p (see Figure 11). In order to obtain the optimal number of dams, the

social planner maximizes the utility he gets from α empty dams, from which he subtracts the

cost of building α dams. This maximization program reads
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max
α

v (0;α, p)− C (α) (22)

We choose a linear cost function: C (α) = kα + K where K is a constant. The numerical

resolution whose results are reported on Table 2 reveals that α∗ (p) is an increasing function of

p.

p number of dams
0.1 5
0.075 4
0.05 4
0.025 3
0.018 3

Table 2: Optimal number of dams for different values for p

When thermal power price increases, it is optimal to build more dams. Indeed when p

increases, the social planner uses less thermal power. In order to smooth electricity consumption,

the second way of smoothing (the dam) will be more used.

6 Extensions

In this part, we suppose that a third energy source is available, wind energy for instance. We

focus on hydro power and wind power. Indeed, we know from section 2 that introducing thermal

power will be equivalent to using utility function û instead of utility function u.

Suppose the social planner can provide hydroelectricity and wind electricity. The dam is

supplied with a random inflow. Wind energy is also random. Two cases occur: either there is

no wind, in which case no wind electricity can be consumed (which happens with probability

q), or there is wind and the quantity of wind electricity amounts to W (which happens with

probability (1− q)). Let c0 (respectively c1) be the water consumption flow when wind electricity

is available (respectively not available) and v0 (z) (respectively v1 (z) ) be the value function when

wind electricity is available (respectively not available). The social planner’s program is then

the following




v0 (z) = maxc0 u (Rc0) + β [qEv0 (z − c0 + ỹ) + (1− q)Ev1 (z − c0 + ỹ)]
subject to c0 ≤ z, c0 ≥ 0, c0 ≥ z − Z,

v1 (z) = maxc1 u
(
Rc1 + W

)
+ β [qEv0 (z − c1 + ỹ) + (1− q)Ev1 (z − c1 + ỹ)]

subject to c1 ≤ z, c1 ≥ 0, c1 ≥ z − Z.

Let us denote λ0, µ0 and ν0 (resp. λ1, µ1 and ν1) the three Lagrange multipliers associated

with the constraints defining c0 (resp. c1). We first have some results on the shape of the

consumption flows.

Lemma 3 Consumption flows c0 (z) and c1 (z) have the following properties:

20



1. ∀z > 0, c0 (z) > 0,

2. if c1 (z) = 0, then Rc0 (z) < W ,

3. if c1 (z) = z, then c0 (z) = z. The opposite is not true,

4. if c0 (z) = z − Z, then c1 (z) = z − Z. Once more, the opposite is not true.

Proof : See the Appendix. 2

As ∀z > 0, c0 (z) > 0, the constraint c0 (z) ≥ 0 can be omitted. When there is no wind,

as soon as there is a strictly positive quantity of available water, it is consumed. Unlike the

case where wind power was not available, c1 (z) might be equal to zero even when the quantity

of available water is strictly positive. Indeed, when there is wind power, the social planner is

tempted to keep water in stock for the future in case wind power and/or precipitation are low the

following time period. Thus, when z is very low, he prefers not producing hydropower. However

this only happens for some quantity of available water z such that if there were no wind, the total

quantity of hydroelectricity produced would be less than than the quantity of wind electricity

W . This means that, when the quantity of available water is high enough, water is consumed

whatever the quantity of wind power. The last two results represent a first step completed with

the following proposition. They allow a preliminary ranking of both consumption flows c0 and

c1 when one of the constraints is binding.

Proposition 2 For any level of available water in the dam z:

1. hydroelectricity consumption is higher when there is no wind: c1 (z) ≤ c0 (z),

2. electricity consumption is higher when there is wind: Rc0 (z) ≤ Rc1 (z) + W .

Proof : See the Appendix. 2

When wind power is available, the social planner prefers saving water and taking advantage

of wind power. However, when looking at the total electricity consumption, it is higher when

there is wind power. Let us now introduce an auxiliary problem: the social planner’s problem

when a quantity W of wind power is available with certainty at each period.

v (z;W ) = max
c
{u (Rc + W ) + βEv (z − c + ỹ; W )} (23)

subject to

c ≤ z (24)

c ≥ z − Z (25)

Let us denote c (z; W ) the solution to this program. The consumption flow c (z; W ) is

represented for different values of W on Figure 12.
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Figure 12: Consumption flows c(z;W ) for different values of W

We observe that as the quantity of available wind power increases, the consumption of hydro

power also increases. The social planner adopts a precautionary behavior. Knowing that less

wind power is available to him, he prefers cutting down today on hydro power production. But

contrary to the case where hydroelectricity and thermal power were available in section 4, here

the introduction of wind power does not modify a lot the marginal propensity to consume ∂c/∂z:

the slope does not significantly decrease when W increases. Note that when W = 0, we have

c0 (z) = c1 (z) = c (z; 0). The three consumption flows c0 (z), c1 (z) and c (z; 0) are represented

on Figure 13.

We observe that ∀z, c1 (z) ≤ c (z; 0) ≤ c0 (z). It is difficult to compare the consumption flows

that correspond to the case where there is uncertainty on the quantity of available wind power

and the consumption flow when a certain quantity of wind power is available at each period.

The introduction of this third energy source that is random but non-storable increases electricity

consumption but does not produce a visible effect on time diversification.

7 Concluding remarks

We study the optimal allocation between different energy sources that are uncertain. When

only hydroelectricity is available, the central objective of the management of the water resource

is to limit the volatility of electricity consumption coming from the uncertain precipitation.

Dams should thus be used as a buffer stock. The main aim of the first model was to determine

the optimal strategy of water extraction. We showed that the optimal extraction strategy is a

function of the quantity z of water that is available to the consumer. It is characterized by two

thresholds z∗ and z∗∗. When the water stock is smaller than z∗, the social planner is rationed by
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Figure 13: Consumption flows c0 (z), c1 (z) and c (z; 0)

the limited amount of water in the dam. If the water stock is greater than z∗∗, the social planer

immediately consumes the surplus that comes from the random water flow that fills the dam in

order not to waste water. If the water stock is in the interval [z∗, z∗∗], the marginal propensity

to consume, ∂c/∂z, is positive and strictly less than 1, expressing the intertemporal smoothing

of hydroelectricity consumption. The social planner prefers storing water in the dam in order

to face a potential unfavorable future in the case of low levels of precipitation.

The introduction of a second energy source improves intertemporal smoothing. When the

price of this alternative energy source decreases, the marginal propensity to consume electricity

decreases, illustrating an improvement of the time diversification effect. This result even holds on

ranges of the water stock for which hydroelectricity is the only energy source that is consumed.

Indeed, with two energy sources, there exists a minimum level of electricity that is produced at

each period and thermal power is used to reach this level when there is not enough water. But as

soon as the quantity of water is sufficient to touch or to exceed this level, the social planner does

not use the costly energy source any more and prefers consuming water exclusively. Moreover,

the presence of thermal power shifts up the consumption flow. Indeed, when the price of thermal

power increases, the social planner adopts a precautionary behavior. He prefers producing less

to constitute a greater stock for the future.

Concerning the optimal capacity of the total infrastructure, it is increasing with the thermal

power price. The less thermal power is produced (what occurs when p is high), the more dams

are needed to smooth consumption.

The introduction of a second uncertain energy source that is not storable allows to increase

hydroelectricity consumption for a given quantity of available water. However, water consump-
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tion smoothing is not significantly increased since the new energy source is uncertain. It is the

certain availability of thermal energy that allows to improve time diversification.
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A Computation of the optimal consumption flows in the certain
case (Section 2)

We present the computations concerning the cases 1 and 2.

Case 1:

Denoting by T the last time period for which no thermal power is consumed, the program

of the social planner reads

max
c(t)

T∑

t=0

βtu (Rc (t)) + βT+1 [u (e∗)− p (e∗ −Rc (T + 1))]−
+∞∑

t=T+2

βt (u (e∗))− p (e∗ −Rµ))

subject to

zt+1 = zt − ct + µ,

c (T ) >
e∗

R
,

c (T + 1) = z0 + (T + 1)µ−
t=T∑

t=0

ct,

c (T + 1) ≤ e∗

R
,

c (T + 1) ≥ µ,

z0 given.

The first constraint is the usual one on the dynamics of available water, the second inequality

means that at time T , no thermal power is consumed yet. The third equation means that at

time T + 1, all the available water increased by the flow of water is consumed. Indeed, if it was

not the case, water would remain in the dam in period T +1. Therefore no thermal power would

be consumed in this time period what would not be consistent with the definition of T . The

fourth inequality means that at time T + 1, thermal power is consumed and the last equality

ensures that until T , no more water than the quantity stored in the dam has been consumed.

The resolution of this program leads to the following results:

c (t) =





β
−T−t

γ c (T ) if t ≤ T

z0 + (T + 1)µ− c (T )β
−T

γ 1−β
T+1

γ

1−β
1
γ

if t = T + 1

µ if t ≥ T + 2

where T is the lowest integer t 8 such that:

z0 + (t + 1)µ

1 + β
− t+1

γ 1−β
t+1
γ

1−β
1
γ

<
e∗

R
.

8

Indeed, t 7→ f (t) =
z0 + (t + 1) µ

1 + β
− t+1

γ 1−β
t+1

γ

1−β
1
γ

is a decreasing function.
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and where c (T ) is given by the following expression:

c (T ) =





e∗
R β

− 1
γ if z0 + (T + 1)µ− e∗

R
β
−T+1

γ −1

1−β
1
γ

< e∗
R

(z0+Tµ)

(
1−β

1
γ

)

β
−T

γ −β
1
γ

else.

Case 2:

We now give the solution of the problem in the third case when µ > e∗
R , that is to say when

thermal power is never consumed:

c (t) =

{
β
−T−t

γ c (T ) if t ≤ T
µ if t ≥ T + 1

where T is the highest integer t 9 such that:

(z0 + tµ)
(
1− β

1
γ

)

β
− t

γ − β
1
γ

> µ.

and where c (T ) is given by the following expression:

c (T ) =
(z0 + Tµ)

(
1− β

1
γ

)

β
−T

γ − β
1
γ

.

B Computation of the value function v in the certain case (Sec-
tion 2)

We begin with the most interesting case when e∗
R > µ.

The water consumption path has the following expression (as we already noted in section 2,

this amounts to studying c0 with respect to z0:

c (z) =

{
max

(
β
−T

γ c (T ) , z − Z
)

if z > e∗
R β

− 1
γ

z else

The shape of the value function depends on the initial quantity of water. Three cases have

to be distinguished:

1. z < e∗
R

In this case, in the first period, all the water is consumed and thermal power is consumed
9

Indeed, t 7→ g (t) =
(z0 + tµ)

(
1− β

1
γ

)

β
− t

γ − β
1
γ

is a decreasing function.
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in order to reach e∗. In the following periods, water is consumed in quantity µ and thermal

power in quantity e∗ −Rµ. Therefore, the value function takes the following form:

v (z) = u (e∗)− p (e∗ −Rz) +
+∞∑

t=1

βt (u (e∗)− p (e∗ −Rµ))

=
(e∗)1−γ

1− γ
− p (e∗ −Rz) +

β

1− β

(
(e∗)1−γ

1− γ
− p (e∗ −Rµ)

)

2. e∗
R < z < e∗

R β
− 1

γ

The only difference with the previous case is that no thermal power is consumed in the

initial period because there is enough water:

v (z) = u (Rz) +
+∞∑

t=1

βt (u (e∗)− p (e∗ −Rµ))

=
(Rz)1−γ

1− γ
+

β

1− β

(
(e∗)1−γ

1− γ
− p (e∗ −Rµ)

)

3. z > e∗
R β

− 1
γ

In this case there are three periods:

• until period T , only water is consumed

• in period T +1, all the water that remains in the dam is consumed and thermal power

is consumed to reach the level e∗ of electricity

• from period T + 2 on, there is no water in the dam any more. Only the consumption

flow µ is consumed, therefore thermal power is consumed in quantity e∗ −Rµ.

Therefore, the value function has the following expression:

v (z) =
T∑

t=0

(
βtu (RcT )

)
+βT+1 (u (e∗)− p (e∗ −Rc (T + 1)))+

+∞∑

t=T+2

(
βt (u (e∗)− p (e∗ −Rµ))

)

It follows that:

v (z) =
(Rc (T ))1−γ β

− 1−γ
γ

T

1− γ

1− β
T+1

γ

1− β
1
γ

+ βT+1

(
(e∗)1−γ

1− γ
− p (e∗ −Rc (T + 1))

)
+

+

(
((e∗)1−γ

1− γ
− p (e∗ −Rµ)

)
βT+2

1− β

For sake of completeness, we now focus on the case where e∗
R < µ.

First of all, in this case:

c (z) =





max




(
1−β

1
γ

)
(z+Tµ)

1−β
T+1

γ
, z − Z


 if z > µ

z else
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Following the same steps that above, we have to compute the value function for the different

value taken by the initial level of water in the dam.

1. z < e∗
R

In this case, thermal power and water are consumed in the initial period, and from the

second period on, water is only consumed in quantity µ.

v (z) = u (e∗)− p (e∗ −Rz) +
+∞∑

t=1

βt (u (Rµ))

=
(e∗)1−γ

1− γ
− p (e∗ −Rz) +

β

1− β

(Rµ)1−γ

1− γ

2. e∗
R < z < µ

Here also, the only difference with the previous case is that in the first period, no thermal

power is consumed. But, from the second period on, the consumption path is the same.

v (z) = u (Rz) +
+∞∑

t=1

βtu (Rµ)

=
(Rz)1−γ

1− γ
+

β

1− β

(Rµ)1−γ

1− γ

3. z > µ

In this case, there exists the threshold T that defines the time from which on thermal

power is consumed:

v (z) =
T∑

t=0

(
βtu (RcT )

)
+

+∞∑

t=T+1

βtu (Rµ)

It follows that:

v (z) =
(Rc (T ))1−γ β

− 1−γ
γ

T

1− γ

1− β
T+1

γ

1− β
1
γ

+
βT+1

1− β

((Rµ)1−γ

1− γ

C Lemma

Lemma 4 When p → +∞, the threshold z∗ is higher than the minimum water inflow min ỹ.

Proof : Suppose this result does not hold: min ỹ > z∗. Denoting z = min ỹ and c = c (z),

we have c < z. The FOC leads to

Ru′ (Rc) = βEv′ (z − c + ỹ) ,

< βv′ (2z − c) ,

< βv′ (z) (since c < z),

< v′ (z) ,

= Ru′ (Rc) (envelope theorem).

Therefore, min ỹ ≤ z∗. 2
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D Proofs

Proof of Lemma 1:

We are going to apply the proof of Theorem 9.8 page 265 in Stokey and Lucas [25]. All the

assumptions are satisfied:

1. X =
[
0, Z + max ỹ

]
is a convex subset of R,

2. ỹ is a discrete random variable that takes a finite number of values: ỹ ∈ {y1, y2, ..., yn},

3. the correspondence Γ : X → X describing the feasibility constraints is non empty, compact

valued and continuous (see Figure 14),

4. û (x) is bounded and continuous, and β < 1,

Figure 14: Correspondence Γ

5. u is strictly concave (γ < 1),

6. Γ is convex (see Figure 14).

Thus, according to Theorem 9.8 p. 265 of Stokey and Lucas [25], function v is strictly

concave.

Proof of Lemma 2:

Let us suppose that there exists z0 > 0 such that c (z0) = 0. In this case, constraint (15)

does not bind and the FOC reads

Rû′ (Rc (z0)) ≤ βEv′ (z0 − c (z0) + ỹ) ,

= βEv′ (z0 + ỹ) ,

≤ βv′ (z0) because v is concave,
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< v′ (z0) because β < 1,

= Rû′ (Rc (z0)) because of the envelope theorem.

Therefore there is a contradiction and c (z0) > 0 (and eventually that constraint (15) binds

leading to c (z0) = z0 > 0). 2

Proof of Lemma ??:

Consider p1 < p0 and recall that

v (zt; p) = max
ct,xt

E
+∞∑

t=0

βt (u (Rct + xt)− pxt)

subject to

zt+1 = zt − ct + ỹt,

ct ≤ zt,

ct ≥ zt − Z,

xt ≥ 0.

Suppose that we have the optimal policy c∗ (z; p0) and x∗ (z; p0) at price p0. This allocation is

feasible at price p1. Therefore

v (z, p0) ≤ E
+∞∑

t=0

βt (u (Rc∗ (z, p0) + x∗ (z, p0))− p1x
∗ (z, p0)) ,

≤ E
+∞∑

t=0

βt (u (Rc∗ (z, p1) + x∗ (z, p1))− p1x
∗ (z, p1)) ,

= v (z, p1) .¥

Proof of Lemma 3:

We are going to successively prove the four assertions.

1. Suppose there exists z0 > 0 such that c0 (z0) = 0. This implies that µ0 ≥ 0. The FOC of

the maximization program leads to

Ru′ (Rc0) = β
[
qEv′0 (z0 − c0 + ỹ) + (1− q)Ev′1 (z0 − c0 + ỹ)

]− µ0,

≤ β
[
qEv′0 (z0 − c0 + ỹ) + (1− q)Ev′1 (z0 − c0 + ỹ)

]
,

< qv′0 (z0) + (1− q) v′1 (z0) because v is concave,

= qRu′ (c0) + (1− q) Ru′
(
Rc1 + W

)
because of the envelope theorem.

This leads to Rc0 = 0 > Rc1 + W what is not possible since c1 ≥ 0. Therefore, the

constraint c0 (z) ≥ 0 never binds for strictly positive z and µ0 = 0.
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2. Suppose z0 is strictly positive and c1 (z0)=0. The FOC of the maximization program gives

Ru′
(
Rc1 + W

)
< qEv′0 (z0 + ỹ) + (1− q)Ev′1 (z0 + ỹ) ,

< qRu′ (Rc0) + (1− q)Ru′
(
Rc1 + W

)
.

This leads to Rc0 (z0) < W .

3. We suppose c1 (z) = z and c0 (z) < z.

c1 (z) = z implies that Ru′
(
Rz + W

)
= β [qEv′0 (ỹ) + (1− q)Ev′1 (ỹ)] + λ1. c0 (z) < z

implies that

Ru′ (Rc0) = β
[
qEv′0 (z − c0 + ỹ) + (1− q)Ev′1 (z − c0 + ỹ)

]
,

≤ β
[
qEv′0 (ỹ) + (1− q)Ev′1 (ỹ)

]
,

= Ru′
(
Rz + W

)− λ1,

≤ Ru′
(
Rz + W

)
.

The concavity of function u implies that Rc0 ≥ Rz + W , what cannot happen. Therefore

there is a contradiction and c0 (z) = z.

4. As for the previous result, let us suppose that c0 (z) = z − Z and c1 (z) > z − Z. The

equality gives Ru′
(
Rz −RZ

)
= β

[
qEv′0

(
Z + ỹ

)
+ (1− q) v′1

(
Z + ỹ

)]−ν0. The inequality

implies that

Ru′
(
Rc1 + W

)
= β

[
qEv′0 (z − c1 + ỹ) + (1− q) v′1 (z − c1 + ỹ)

]
,

> β
[
qEv′0

(
Z + ỹ

)
+ (1− q) v′1

(
Z + ỹ

)]
,

= Ru′
(
Rz −RZ

)
+ ν0,

> Ru′
(
Rz −RZ

)
.

This leads to W < 0, a contradiction. Therefore c1 (z) = z − Z. 2

Proof of Proposition 2:

Concerning the first result, suppose by contradiction there exists z0 such that c0 (z0) <

c1 (z0). When neither constraint is binding and by the concavity of u, this implies that:

Ru′ (Rc0 (z0)) > Ru′
(
Rc1 (z0) + W

)
. Depending on the first order conditions, we have then:

q
[
Ev′0 (z0 − c0 (z0) + ỹ)− Ev′0 (z0 − c1 (z0) + ỹ)

]
> (1− q)

[
Ev′1 (z0 − c1 (z0) + ỹ)− Ev′1 (z0 − c0 (z0) + ỹ)

]
.

As c0 (z0) < c1 (z0) and as z 7→ v′ (z; 0) is a decreasing function, the left hand side is strictly

negative. Similarly, the right hand side is strictly positive and we have a contradiction.

When one of the constraint is binding, we know according to the results of Lemma 3 that

c1 (z) ≤ c0 (z).
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Concerning the second point, suppose there exists z1 such that Rc0 (z1) > Rc1 (z1) + W .

When neither constraint is binding, this implies that: Ru′ (Rc1 (z1) + W ) > Ru′ (Rc0 (z1)), and

therefore:

(1− q) [Ev′0 (z1 − c1 (z1) + ỹ)− Ev′0 (z1 − c0 (z1) + ỹ)] > q [Ev′1 (z1 − c0 (z1) + ỹ)− Ev′1 (z1 − c1 (z1) + ỹ)].

Once more, the assumptions imply that the left hand side is strictly negative and the right hand

side strictly positive, we have a contradiction.

We consider rapidly the cases where one of the constraints is binding:

• If c1 (z) = 0, then according to the previous lemma, Rc0 (z) < W .

• If c0 (z) = z and c1 (z) < z, then the FOC lead to

Ru′
(
Rc1 + W

)
< β

[
qEv′0 (ỹ) + (1− q)Ev′1 (ỹ)

]

= Ru′ (Rc0)− λ0

< Ru′ (Rc0)

Therefore, Rc1 + W > Rc0.

• If c1 (z) = z − Z and c0 (z) > z − Z, a similar reasoning leads to the result. 2
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