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Summary 

Mood disorders, which include major depressive disorders and bipolar disorders, are complex 

neuropsychiatric diseases and are among the leading causes of disability worldwide. Studies 

over the past decades have highlighted the heterogeneity of these troubles and suggest that 

they result from complex interactions between genetic or molecular alterations and 

environmental stressors. Numerous findings have shown the importance of neuroplasticity-

related processes, and it is hypothesized that a defective and dysfunctional neurocircuitry 

would underlie these diseases.  

The pleiotropic transcription factor CREB has been widely involved in mood disorders, as it is 

crucial for the expression of genes underlying synaptic plasticity, such as brain-derived 

neurotrophic factor (BDNF). The expression of this neurotrophin mainly relies on CREB, but 

also on CREB-regulated transcription coactivator 1 (CRTC1), a potent activator of CREB-

dependent transcription involved in mechanisms such as synaptic plasticity and long-term 

potentiation.  

To further investigate the role of CRTC1 in the brain, our group generated a CRTC1-deficient 

mouse line that presented several behavioral and molecular phenotypes related to mood 

disorders.  

The aim of the present thesis was to further investigate the involvement of CRTC1 in mood 

disorders etiology, as well as in antidepressant response, through the use of the Crtc1-/- mice 

model. We found that these animals are resistant to the therapeutic effects of classical 

antidepressants. We indeed showed that CRTC1 was necessary for the antidepressant-

induced upregulation of neurotrophic genes. Correspondingly, by pharmacologically acting on 

epigenetic gene regulation, we were able to restore Bdnf expression in Crtc1-/- mice, which 

was paralleled by a partial rescue of their depressive-like phenotype.  We also demonstrated 

that Crtc1-/- mice present impairments of several systems, including the agmatinergic system 

which importantly contributes to their phenotype. Finally, we provided evidence that 

agmatine might be a new fast-acting antidepressant. 

Altogether, the results presented here confirm CRTC1 as a potent mediator of several 

molecular pathways, impairments of which participate in the establishment of mood 

disorders.  Furthermore, they also provide new insights into the role of CRTC1 in such troubles, 

as well as in antidepressant response.  
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Résumé 

Les troubles de l’humeur, comprenant la dépression et les troubles bipolaires, sont des 

troubles neuropsychiatriques complexes, et font partie des principales causes d’invalidité 

dans le monde. Les recherches menées durant les dernières décennies mettent en évidence 

l’hétérogénéité de ces troubles, et suggèrent qu’ils résultent d’interactions complexes entre 

altérations génétiques ou moléculaires et stress environnemental. De nombreuses études ont 

montré l’importance de la neuroplasticité et des mécanismes qui lui sont liés, car il semblerait 

que ces maladies découlent d’une circuiterie neuronale altérée et dysfonctionnelle.  

Le facteur de transcription CREB est très impliqué dans les troubles de l’humeur. Il est en effet 

crucial pour l’expression de gènes liés à la plasticité synaptique, tels que BDNF (brain-derived 

neurotrophic factor). L’expression de cette neurotrophine est principalement régulée par 

CREB, mais également par CRTC1 (CREB-regulated transcription coactivator 1), un important 

co-activateur de CREB. Il est aussi impliqué dans des mécanismes tels que la plasticité 

synaptique et la potentialisation à long terme. Afin d’étudier plus en détails le rôle de CRTC1, 

notre groupe a généré une lignée de souris déficientes en CRTC1 qui présentent plusieurs 

altérations comportementales et moléculaires liées aux troubles de l’humeur.  

L’objectif de cette thèse était d’investiguer plus en profondeur l’implication de CRTC1 dans 

l’étiologie des troubles de l’humeur ainsi que dans la réponse aux antidépresseurs, par 

l’utilisation des souris Crtc1-/-. Nous avons observé que ces animaux ne répondent pas aux 

antidépresseur classiques. En effet, nous avons vu que CRTC1 était nécessaire pour 

l’expression de gènes liés à la neuroplasticité induite par les antidépresseurs. En 

conséquences, nous avons démontré qu’en agissant sur le système épigénétique de ces souris, 

nous avons pu restaurer l’expression de Bdnf, en parallèle d’une restauration partielle de leur 

comportement. Nous avons également démontré que les souris Crtc1-/- présentent une 

dysfonction de certains systèmes physiologiques, incluant le système agmatinergique qui 

contribue grandement à leur phénotype. Finalement, nous avons aussi montré que l’agmatine 

pourrait être un nouvel antidépresseur à action rapide.  

D’une manière générale, ces résultats confirment que CRTC1 est un régulateur-clé de 

nombreux processus cellulaires dont la dysfonction pourrait contribuer à l’établissement des 

troubles de l’humeur. De plus, ils amènent également de nouvelles informations sur le rôle de 

CRTC1 dans ces troubles, ainsi que dans la réponse aux antidépresseurs.  
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1. INTRODUCTION 

 Mood disorders 

1.1.1. Prevalence and burden of mood disorders  

Mood disorders are among the most prevalent and debilitating psychiatric illnesses 

worldwide. These complex and chronic multifactorial diseases mainly comprise two major 

disorders: major depressive disorders (MDD) and bipolar disorders (BD) 1. As of 2005, MDD 

and BD had a lifetime prevalence of respectively 16.6% and 4.4% in the U.S.A. 2. While BD has 

an overall equivalent prevalence in men and women, MDD is nearly twice more frequent in 

women (10% to 25%) than in men (5% to 12%)2,3.   The varying rates depend greatly on age, 

ethnicity, residential area, health condition and general social environment 1,2,4. Mood 

disorders are a serious health concern, as MDD is predicted to become the second leading 

cause of disability worldwide by 2020 5. In addition to health and social life deterioration, 

mood disorders also have a severe economic impact. In 2010, total cost of mood disorders 

was estimated around 113.4 billion € in Europe 6. These troubles also exhibit high comorbidity 

with anxiety disorders, but also with aggressive behaviors and weight imbalance7–9, thus 

worsening their social, health and economic burden. Furthermore, mood disorders are life-

threatening, as they are strongly associated with suicidal behavior. It has been indeed 

observed that around 60% of committed suicides  are related to mood disorders 10, thus urging 

the need to extensively investigate these illnesses.  

1.1.2. Major depressive disorders 

MDD, also known as depression or unipolar depression, are the most frequent of mental 

troubles as around 17% of the population is affected at some point in life11 . Depression is a 

heterogenic and complex disease with both genetic and environmental components12,13. 

According to the diagnostic and statistical manual of mental disorders (DSM V), MDD are 

characterized by the presence of one or more depressive episodes. A depressive episode is 

defined as a period of two weeks at least, during which the patient exhibit a depressed mood 

and/or anhedonia (loss of pleasure), plus at least four symptoms of the list summarized in 

Table 1 14 . In addition, depressive episodes are often recurring, as 80% of depressed people 

display multiple episodes 15. Finally, a subset of the depressive population (34%) also present 

increased irritability and anger attacks 8.  
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1.1.3.  Bipolar disorders 

 In BD, also known as bipolar depression or manic-depressive disorders, patients alternate 

between depressive episodes (as described above) and manic or hypomanic episodes. A manic 

episode is characterized by a period of two weeks at least, during which the patient exhibits 

an elevated, euphoric and irritable mood, in addition with some other manic symptoms 

summarized in Table 114 . A hypomanic episode is a milder and shorter form of manic episode. 

It lasts 4 days at least and is defined by a less severe elevated and euphoric mood. BD type I 

are characterized by a rapid cycling between depression and mania, while in BD type II, 

depressive and hypomanic episode often co-occur in mixed episodes14.  

 

Depressive episode Manic Episode 

Presence of at least five of the following 

symptoms during at least two weeks. Symptoms 

1 and /or 2 must be present.  

(1)    Depressed mood most of the day, nearly 

every day.  

(2)    Diminished interest or pleasure in most      

activities (anhedonia), nearly every day. 

(3)    Significant weight gain or loss.  

(4)    Insomnia or hypersomnia.  

(5)    Psychomotor retardation or agitation.  

(6)    Fatigue, tiredness or loss of energy.  

(7)    Feeling of worthlessness and guilt.  

(8)    Cognitive impairments.  

(9)    Recurrent thought of death, suicidal 

ideation, suicide plan or attempt.  

Presence of at least 3 of the following symptoms 

during at least two weeks.  

 

(1)     Elevated and euphoric mood. 

(2)     Irritability, anger or aggression.  

(3)     Increased self-esteem and grandiosity.  

(4)     Decreased need for sleep.  

(5)     More talkative than usual.  

(6)     Flight of ideas or racing thoughts.  

(7)     Distractibility.  

(8)     Increase in goal-directed activity or 

psychomotor agitation.  

(9)    Excessive involvement in pleasurable 

activities with high potential for painful 

consequences.  

(10)  Hallucinations and delusions. 

Table 1.1 : Major features and diagnostic criteria for depressive and manic episodes. Adapted from the DSM 
V 14.   
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 Neurobiological pathways involved in the etiology of mood disorders 

As indicated above, mood disorders are complex heterogenic diseases. There have been 

several lines of evidence that genetic factors play a major role in the etiology of these troubles 

16–18. However, genetic susceptibility is not solely responsible for the disease, as it would only 

account for 37% for the occurrence risk of depression19. Thus, it is now widely accepted that 

mood disorders originate from both genetic and/or environmental causes. Numerous 

hypotheses have been and are being developed regarding the etiology of mood disorders, as 

numerous physiological systems were found to be disturbed in these troubles. This chapter 

will review some of these said hypotheses, with a special focus on the various systems that 

were studied in this thesis.  

1.2.1.  Role of the monoaminergic system 

This first hypothesis focus on the involvement of the monoaminergic system (specifically 

serotonin, noradrenaline and dopamine) in mood disorders. It is based on the mechanisms of 

actions of the first antidepressants that were discovered in the early 1950’s20. Initially 

developed for the treatment of other diseases, these drugs were found to have strong 

antidepressant effects and to provoke an overall increase in monoaminergic signaling21. These 

drugs are now classified as tricyclic antidepressants (TCA) and monoamine oxidase inhibitors 

(MAOI). Their mechanisms of action rely respectively on the increase of monoamines reuptake 

and on the inhibition of the monoamine catabolic enzyme 22. Later on, other types of 

antidepressants were developed and all of them focused on the monoaminergic system as 

well. These include selective serotonin or noradrenaline reuptake inhibitors (respectively SSRI 

and SNRI) and tetracyclic antidepressants. All these drugs were found to significantly increase 

monoamine availability, therefore the monoaminergic hypothesis of depression was 

developed. This latter proposes that mood disorders are caused by a deficiency in monoamine 

signaling, which would be reversed upon antidepressant treatment 21,23–25.  

There are several pieces of evidence supporting this theory. Serotonin (5HT) and 

noradrenaline (NA) are important neurotransmitters implicated in several behaviors and 

functions that are impaired in mood disorders. These include mood regulation, appetite, 

arousal, sexual function, sleep and cognitive functions. In human, 5HT decrease has been 

related with suicidal behaviors in mood disorders patients26–29 , and plasma levels of NA were  
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found to be higher in bipolar manic patients than bipolar depressed patients 30,31. Clinical 

studies have also shown that MDD patients display a decreased sensitivity of the serotonin 

receptor 1A (5-HT1A), thus leading to a dysfunction of 5HT signaling26. Interestingly, post-

mortem studies have highlighted the role of p11 (a protein enhancing serotonin 1B receptor 

activity) in mood disorders, as it is decreased in the brain of depressive patients. Furthermore, 

p11 knock-out mice exhibit a depressive-like behavior and reduced response to 

antidepressants32. 

Secondary messengers of the monoamines signaling have also been studied, such as the cyclic 

AMP (cAMP) and the phosphatidylinositol pathways. Post-mortem brains of persons who 

committed suicide exhibit reduced levels of inositol, which was further observed in MDD 

patients by magnetic resonance spectroscopy experiments33,34. Molecules acting downstream 

of these pathways have also been investigated, such as the cAMP response element-binding 

protein (CREB), whose role in mood disorders has been extensively investigated and will be 

developed in a later section.  

However, all available antidepressants require weeks of treatment to produce a clinical 

response. This indicates that the acute (and rapid) monoamines neurotransmission 

enhancement produced by antidepressants is not sufficient to explain their effects. Instead, 

studies point to long-lasting changes in neuronal plasticity (see chapter 1.2.3). Nevertheless, 

the monoamine hypothesis remains a strong theory because of its predictive power and its 

derivation from the mechanisms of action of all currently available antidepressants23,35.  

1.2.2.  Involvement of stress and HPA axis regulation 

Stress has been associated for a long time with mood disorders, as they often (but not always) 

occur following traumatic life events or chronic stress36,37. The brain reacts to acute and 

chronic stress through the activation of the hypothalamic-pituitary-adrenal axis (HPA axis) (Fig 

1.1). In this pathway, neurons of the paraventricular nucleus (PVN) of the hypothalamus 

secrete vasopressin and corticotrophin-releasing hormone (CRH or CRF) in response to stress. 

Through its receptors in the anterior pituitary, CRH stimulates the synthesis and the release 

of corticotrophin (ACTH) in the systemic circulation. This will stimulate the adrenal cortex to 

release cortisol (corticosterone in rodents), which, besides its peripheral actions to restore 
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homeostasis, will decrease the 

hypothalamic secretion of CRH through a 

feedback inhibition38,39. 

Several brain structures control the activity 

of the HPA axis, such as the hippocampus 

and prefrontal cortex (PFC) , which have an 

inhibitory effect on the hypothalamic CRH 

secretion, whereas the amygdala has an 

enhancing effect23,39.  

Several pieces of evidence have shown a dysfunction of the HPA axis in mood disorders. Post-

mortem studies have pointed out that CRH levels are increased in the brain of depressive 

persons, who also exhibit higher cortisol levels in plasma23,40,41. Furthermore, HPA axis 

hyperactivity has been observed in untreated depressed and bipolar patients with an absence 

of the feedback response, and these features were corrected by antidepressant treatment42–

44. Similar observations could be done in rodents, as animals that underwent early maternal 

separation presented abnormal HPA axis function45,46.  

While normal levels of glucocorticoids seem to promote the hippocampal inhibition of the 

HPA axis, chronic high levels (in the occurrence of chronic stress) could cause damages on 

hippocampal neurons, a phenomenon that could contribute to the establishment of mood 

disorders23,35. In line with this hypothesis,  it has been observed that the size of the adrenal 

cortex and the anterior pituitary was increased in depressed patients47, while the size of the 

hippocampus was decreased, possibly because of cellular damages and death, as well as 

reduced neurogenesis caused by high cortisol levels48–50 . Indeed, chronic stress has been 

shown to produce atrophy and death of hippocampal neurons, and magnetic resonance 

Figure 1.1 : The HPA axis. PVN neurons secrete 
corticotrophin releasing hormone (CRH or CRF) in 
response to stress. CRH will then stimulate 
corticotrophin (ACTH) release in the blood from the 
anterior pituitary. In response to ACTH signaling, 
the adrenal cortex will secrete glucocorticoids 
which will reduce CRH production, in a negative 
feedback response. The amygdala has an enhancing 
effect on the HPA axis, whereas the hippocampus 
has an inhibitory effect. Taken from 23.   
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imaging (MRI) studies have revealed reduced hippocampal volumes in patients with post-

traumatic stress disorder51 and rodent studies have confirmed these findings52–54 . In parallel, 

antidepressants and mood stabilizers were found to stimulate neurogenesis in the 

hippocampus, which could then explain their action53–56.  

To summarize, the stress hypothesis proposes that hyperactivation of the HPA axis (due to 

recurrent stress) causes hypercortisolism and enhanced CRH and glucocorticoid signaling, thus 

causing hippocampal damages. This would induce impairments in neuronal circuitry, 

therefore leading to the disease51.    

Although there is undeniable evidence of the implication of stress in mood disorders, its role 

is however not totally clear. Indeed, mood disorders also occur in the absence of early-life or 

chronic stress, and not all patients show dysfunction of the HPA axis35,57. Therefore, the link 

between stress and mood disorders is not completely established.  

1.2.3.  The network hypothesis of mood disorders 

As explained above, the monoamine and stress hypotheses of mood disorders are pertinent 

propositions regarding the etiology of mood disorders, yet they are not sufficient. Thus, the 

network hypothesis allows to combine these two hypotheses into a new one. This latter 

proposes that mood disorders are caused by impairments in neuronal communication and 

decreased neurogenesis, following chronic stress and/or disturbances in monoaminergic 

signaling. Antidepressants and mood stabilizers would then stimulate neurogenesis and 

restore the functionality of neuronal network21.  

This hypothesis finds its origins in the evidence of the role of neurogenesis in depression and 

the neurogenic effects of antidepressants. Also, the serotoninergic system has an important 

role in brain development, and SSRI treatments in juvenile mice produce several behavioral 

impairments58–61. This suggests that the serotoninergic system is involved in neuronal network 

formation, and that antidepressants might act on such processes. As explained above, mood 

disorders patients exhibit decreased hippocampal size, which can be explained by a loss of 

neuronal circuitry48,49,62. Correspondingly, chronic lithium and antidepressants administration 

stimulates the generation of new neurons in the rat hippocampus55,56, and this is paralleled 

by behavioral improvements63. Furthermore, generation and maturation of new neurons 

require several weeks, which would then explain the time required to see the effects of an 
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antidepressant treatment. Thus the network hypothesis integrates those two processes: the 

time required for neurogenic processes would be the time required for the appearance of 

therapeutic effects21,23,64. 

1.2.3.1. Key role of BDNF in the network hypothesis  

Neurotrophic factors are critical mediators of neurogenesis during development, as well as 

regulation of neuronal survival in the adult brain. Therefore, they are thought to be key 

mediators of neuronal plasticity-related process underlying mood disorders etiology, in the 

frame of the network hypothesis.  In particular, the brain-derived neurotrophic factor (BDNF) 

has been widely investigated and is thought to play a prominent role in mood disorders.  

BDNF is involved in a wide repertoire of neuronal processes such as neuronal growth, 

migration, differentiation, axonal and dendritic growth and survival, and synapse 

formation25,65. BDNF is produced in an activity-dependent manner and is thought to be 

implicated in the selection and the stabilization of active synapses66.  

In the frame of mood disorders, several clinical and post-mortem studies have associated 

BDNF with MDD, BD and suicide67–71. BDNF and its receptor, the tropomyosin receptor kinase 

B (TRKB), were observed to be downregulated in the brain of suicide victims, while protein 

levels of BDNF were lowered in the serum and brain of mood disorders patients69,72–74. The 

specific BDNF polymorphism val66met has been strongly associated with mood disorders and 

its replication in rodents resulted in depressive, anxious and aggressive behavior75–79.  

In line with the network hypothesis of depression, BDNF has been shown to be involved in the 

development and function of serotoninergic neurons. Indeed, BDNF and TRKB are strongly 

expressed in 5-HT neurons of the raphe nuclei and in vitro studies have demonstrated that 

BDNF particularly stimulates differentiation, survival, and axon sprouting of 5-HT neurons80–

86. In addition, BDNF expression has been found to be increased in the rat hippocampus by 

chronic, but not acute, antidepressants 87–89. More importantly, BDNF and TRKB are required 

for antidepressant effects89–91. Furthermore, direct BDNF injection in the hippocampus 

produces antidepressant-like effects in several depression tests, while heterozygote and 

conditional BDNF knock-out mice are resistant to antidepressants90,92. In parallel, several 

studies have shown that acute and chronic stress provoke decreased expression of BDNF in 

the hippocampus93–95.  
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Therefore, the network hypothesis proposes that in mood disorders, neuronal circuitry is 

damaged following chronic stress. This will lead to decreased monoaminergic signaling, and 

diminished BDNF expression and function. Upon antidepressant treatment, monoaminergic 

and BDNF signaling are increased, leading to increased neuronal growth and arborization, thus 

restoring neuronal connectivity (Fig. 1.2).  

Bdnf gene expression is highly complex as it contains at least 9 known alternative promoters96. 

Bdnf expression is regulated both by DNA accessibility through epigenetic mechanisms (which 

will be discussed in a later section) and the binding of transcription factors. CREB is a potent 

transcription factor that strongly regulates Bdnf expression, particularly its promoter IV, in an 

Figure 1.2 : The network hypothesis of depression. The left panel shows a normal hippocampal neuron 
receiving monoaminergic and glutamatergic innervation, among others. It also receives neurotrophic signaling 
such as BDNF. This leads to CREB-dependent BDNF expression and circuitry regulation. The middle panel shows 
a hippocampal neuron under chronic stress conditions. Constant increased glucocorticoid signaling leads to 
neuronal damages including reduction of dendritic arborization. BDNF signaling and expression are also 
reduced, and possibly mediate the effects on the dendrites. The right panel shows the effects of 
antidepressants. They increase monoaminergic and BDNF signaling, thus leading to CREB-dependent BDNF 
expression and restoration of neuronal connections. Taken from 23.   
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activity-dependent manner97,98. The exon IV of Bdnf (BdnfIV) is of particular interest in mood 

disorders, as it is prominently expressed in brain structures associated with mood disorders 

(i.e. hippocampus, PFC). In vitro and in vivo studies have observed that BdnfIV accounts for 

approximately 50% to 75% of total Bdnf expression in the cortex97, and it seems to have a 

critical role in synaptic plasticity in the same regions99,100. In addition, a recent study 

highlighted the role of BdnfIV in the regulation of numerous monoamine-related genes in the 

PFC and hippocampus101. Finally, antidepressants and mood stabilizers, as well as 

electroconvulsive therapy (ECS) were found to specifically increase BdnfIV expression102–104.  

Altogether, the numerous statements above strongly suggest a key role for BDNF in mood 

disorders. It is however important to know that BDNF function is not as clear as it seems. 

Indeed, numerous results in the literature might contradict the network hypothesis, or at least 

nuance it. For example, the effects of acute and chronic stress on BDNF are not as direct as 

they are presented in the hypothesis. Indeed, several studies have shown no effect of stress 

on BDNF expression, or even an increased expression of BDNF following stress105–107. 

However, the effects of stress on BDNF seem to be highly differential depending on the type 

of stress applied (acute vs. chronic, stressor used…)105, brain region, time elapsed between 

stress application and BDNF measure, and BDNF promoter. Therefore, this rather suggests a 

very complex and dynamic regulation of BDNF by stress, and the underlying mechanisms of 

this regulation are still unclear. Also, it is important to notice that BDNF function seem to 

highly vary depending on the brain regions. Indeed, direct BDNF injection in the nucleus 

accumbens (Nac) and in the ventral tegmental area (VTA) produces pro-depressive 

effects108,109.  

All in all, while BDNF is undoubtedly highly involved in the etiology of mood disorders, its role 

and regulation tend to be far more complex than initially thought and still have to be widely 

investigated.   

1.2.3.2. Involvement of the NR4A receptors family in the network hypothesis 

The orphan nuclear receptors (NR4As) family is a subset of CREB-regulated genes of particular 

interest in the network hypothesis and for the present thesis. NR4AS are a family of 

transcription factors highly expressed in the brain, including regions such as the hippocampus 

and cortex110,111. NR4As are mainly involved in long-term memory mechanisms and learning 
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tasks112,113, yet they have been associated with mood disorders. Indeed, mood disorders 

patients were found to exhibit lower levels of NR4A1 and NR4A2 (also known respectively as 

Nurr77 or NGFIB and Nurr1) mRNA and protein in the PFC114. In line with this, NR4A2 and 

NR4A3 (also known as Nor1) have been shown to be involved in neuronal growth, migration 

and survival, as well as in synaptic formation115–118. Rodent studies further highlighted the 

involvement of NR4As in mood disorders, as their expression is decreased following social 

isolation119.  

In line with the network hypothesis, NR4As were shown to be involved in the regulation of the 

HPA axis, particularly in CRH regulation120,121. Also, NR4As seem to be specifically involved in 

the differentiation and maturation of monoaminergic neurons, particularly dopaminergic 

neurons122–124. Finally, NR4A2 was found to regulate Bdnf expression in vitro125. However, the 

molecular pathways involved in such regulation, and more generally in the processes activated 

by NR4As are still widely unknown.  

1.2.4.  Epigenetic regulation of stress and mood disorders 

The recent emergence of findings regarding epigenetic mechanisms has provided new insights 

on mood disorders and stress regulation. Indeed, many studies have highlighted the 

importance of epigenetic gene regulation (including modifications such as DNA methylation 

and chromatin remodelling) in stress response and particularly in depression. Furthermore, it 

has also allowed a better understanding of how stress could durably affect gene expression 

and lead to the development of depressive symptoms.  

1.2.4.1. Overview of epigenetic mechanisms 

Epigenetic mechanisms involve all changes in gene expression that are not due to the DNA 

sequence itself. They mainly consist of changes on DNA methylation and chromatin 

remodelling. Additional mechanisms such as small non-coding micro-RNA are also considered 

as epigenetic mechanisms126,127. DNA and histone modification will be briefly described here, 

as these two mechanisms were found to be critically involved in mood disorders.  

DNA methylation is a mechanism by which a methyl group is added on the cytosine/guanine 

repeats (CpG) on the DNA sequence. When occurring at a gene promoter, DNA methylation 

will generally repress the transcription of such gene. It will also promote the binding of several 
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proteins, such as methyl-CpG-binding protein 2 (MeCP2), which will further repress gene 

transcription126,128–130. DNA methylation is achieved by DNA methyl-transferases (DNMTs) 

which will covalently bind a methyl group on CpG (Fig. 1.3). While DNMT3a and DNMT3b 

catalyse de novo methylation on previously unmethylated DNA, DNMT1 maintains 

methylation patterns during DNA replication126,129.  

Histone modifications affect DNA accessibility, as they act on chromatin conformation. DNA 

strands are densely folded around octamers of histone proteins whose N-terminal tails are 

exposed and can therefore be modified at distinct amino acid residues. These modifications 

include acetylation, ubiquitylation and SUMOylation at lysine residues, methylation at lysine 

and arginine residues, phosphorylation at serine and threonine residues and ADP-ribosylation 

at glutamate residues130. Histone acetylation on lysine residues is mediated by histone acetyl 

transferases (HAT) and is associated with transcriptional activation, as it will lead to chromatin 

unfolding, thus providing better accessibility to DNA sequence. Histone deacetylation is 

catalyzed by histone deacetylases (HDACs) (Fig. 1.3). Other histone modifications can either 

promote or repress gene expression, depending on the residue modified131–133.   

 

Figure 1.3 : Overview of the principal epigenetic mechanisms. Epigenetic modifications can be influenced by 
both environmental and/or genetic factors. Histone acetylation (Ac), regulated by histone acetyl transferases 
(HAT) and histone deacetylases (HDAC) generally increases transcriptional activity. On the opposite, histone 
methylation (Me) at some specific sites, regulated by histone methytransferases and histone demethylases, 
reduces transcriptional activity. Finally, direct DNA methylation of cytosines at  CpG dinucleotides in DNA, 
catalyzed by DNA methyltransferases (DNMT) represses gene transcription. Taken from 139.   
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1.2.4.2. Involvement of epigenetic mechanisms in mood disorders 

As already mentioned earlier, depression is thought to occur through complex interactions 

between genetic predispositions and environmental factors such as chronic or early-life stress. 

Epigenetic modifications might be underlying stress-induced long-lasting alterations in gene 

expression. Several pieces of evidence towards this hypothesis have been gathered over the 

last decades and mainly involve DNA methylation and histone acetylation.  

1.2.4.2.1. DNA Methylation 

There are several pieces of evidence of the involvement of DNA methylation modifications in 

the regulation of stress response. Most interestingly, post-mortem studies have shown 

increased methylation at the promoter of the glucocorticoid receptor (GR) gene in suicide 

victims with a history of childhood abuse134. This hypermethylation was correlated with 

decreased hippocampal GR expression, thus suggesting impaired feedback inhibition of the 

HPA axis, which is in line with the stress hypothesis of mood disorders mentioned above. In 

rodents, GR methylation has also been widely studied and found to be a critical regulator of 

stress response. It was indeed demonstrated that maternal behavior had a high influence on 

GR regulation135. In this study, they observed that rat mothers naturally showed different 

levels of maternal care, as measured by pup licking and grooming (LG) behavior. Interestingly, 

they showed that pups of mothers with high LG behavior displayed lower methylation at GR 

promoter than pups of low-LG mothers, indicating lower stress reactivity. On the opposite, 

pups of low LG mothers presented increased GR promoter methylation and lower 

hippocampal GR expression. This was correlated with increased behavioral and physiological 

stress reactivity. Of note, these epigenetic markings could be inherited, but they also could be 

reversed by acting on histone acetylation with the HDAC inhibitor trichostatin A (TSA).  

Epigenetic effects of stress at the adult age have also been investigated in rodents. The chronic 

social defeat protocol is a behavioral paradigm that induces depressive-like symptoms, 

accompanied by increased levels of CRF136. This increase in CRF levels was correlated with 

decreased methylation on its gene promoter. Treatment with the antidepressant imipramine 

was able to restore normal CRF levels and normal methylation profile of its gene. Chronic 

stress also induced increased methylation on specific Bdnf promoters, therefore causing 

hippocampal damages137–139.  Again, these effects could be reversed by imipramine treatment. 
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However, imipramine seemed to rather act on histone acetylation at specific Bdnf promoters, 

rather than on DNA methylation138.  

These various findings highlight the importance of DNA methylation as a critical modulator of 

gene expression in response to early-life and adult stress. While these long-lasting 

modifications can be inherited, it is also interesting to note that they can be reversed through 

the use of various treatments, such as antidepressants of HDAC inhibitors.   

1.2.4.2.2. Histone acetylation 

First evidence of the involvement of histone acetylation in MDD came through the study of 

the effects of ECS. Several studies have shown that ECS in rodents induced significant increases 

of histone H4 acetylation, prominently at Bdnf promoters, as well as histone H3 

hyperacetylation in the hippocampus103,140,141. These first results suggested that chromatin 

remodelling might be an important mechanism underlying depression etiology.  

This was further studied and confirmed by Tsankova et al. in 2006138. In this landmark study, 

it was found that chronic social defeat stress induced a repressive histone methylation at 

several promoters of Bdnf, correlated with decreased expression of this factor. Imipramine 

treatment was able to reverse these effects by inducing hyperacetylation of histones at Bdnf 

promoters. This was also paralleled by a downregulation of HDAC5.  This study highlighted the 

dynamic chromatin remodelling occurring following chronic stress and upon antidepressant 

treatment. 

These new insights were followed by the finding that HDAC inhibitors have strong 

antidepressant effects in rodents. Indeed, several molecules such as sodium butyrate, valproic 

acid or suberoylanilide hydroxamic acid (SAHA) were found to have a selective HDAC inhibitory 

activity that had strong antidepressant effects in several animal models of depression138,142–

144. Of interest, some of these molecules were found to regulate the expression of a subset of 

genes, in a similar way as the antidepressant fluoxetine142. In line with this, imipramine was 

also found to induce histone H3 hyperacetylation, therefore further suggesting the 

involvement of this mechanism in antidepressant response138. 

In summary, epigenetic mechanisms provide new insights about the molecular mechanisms 

of mood disorders and antidepressant response. They also bring a new understanding of the 

possible pathways underlying the interaction between gene and environment, which is critical 



26 
 
 

for the development of these troubles.  Furthermore, they give a solid hypothesis as to how 

stress can sustainably affect gene expression and thus lead to the development of such 

troubles.  

1.2.5.  Involvement of the agmatinergic system in psychiatric disorders 

Besides the frame of the monoamine-stress-neurotrophic hypothesis of mood disorders, 

recent studies have highlighted that other more peculiar molecular pathways and 

physiological processes were affected in these troubles. The agmatinergic system is one of 

them and it has been particularly investigated in the present thesis.  

1.2.5.1. Overview of the agmatinergic system 

Agmatine is a ubiquitous and highly conserved compound, found in a wide variety of living 

organisms, including mammals145. It is a decarboxylation product of L-arginine, and its 

biosynthesis is catalyzed by arginine decarboxylase (ADC). This process competes with other 

arginine-dependent pathways: the urea cycle (occurring only in the liver), nitric oxide (NO) 

synthesis and creatine synthesis (Fig. 1.4) 146. Agmatine is degraded by the enzyme agmatinase 

(Agm) into putrescine, which is the precursor of the higher polyamines spermine and 

spermidine. The latter have been associated with glutamate and gamma-aminobutyric acid 

(GABA) synthesis, thus placing agmatine as a potential mediator of polyamine and 

neurotransmitter production in the brain 146,147. The importance of agmatine is also 

strengthened by its competition with the urea cycle and NO synthesis.  Furthermore, agmatine 

has been found to specifically inhibit NO synthase 148,149. It has been questioned whether 

agmatine degradation by Agm rather serves a purpose of polyamines synthesis or agmatine 

inactivation, the latter being apparently privileged150,151. 

Agmatine is distributed in many body tissues, including the brain, stomach, intestines and 

aorta146,152. The few studies on agmatine and Agm distribution in the brain, suggest a high 

activity in the hypothalamus, medulla oblongata, hippocampus, striatum and cortex151,153,154.  

Both agmatine and Agm seem to be present in several cell types, such as principal neurons, 

interneurons and glial cells155–158. Interestingly, they were also observed to be particularly 

present in mitochondria154,159.  
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While agmatine has been observed to have an overall regulatory and cytoprotective effect in  

peripheral organs146,160 (such as in the heart161, kidney162–164 and stomach152), its physiological 

function in the brain is still not completely understood.  

Several pieces of evidence have emerged and suggest an important role for agmatine in 

neuromodulation and in neurotransmission. There is actually a hypothesis that proposes 

agmatine as a potential new neurotransmitter. This proposition is based on several findings.  

First, agmatine concentration in the brain is similar to other classic neurotransmitters145,165. 

Second, agmatine is synthesized and stored in synaptic vesicles166, in several types of 

neurons155,156, and released from axons by Ca2+-dependent depolarization167,168. Third, once 

released, agmatine can bind to a wide variety of receptors. Indeed, it binds with high affinity 

to all subclasses of α2-adrenergic receptors and imidazoline receptors169–172, and it specifically 

blocks ligand-gated ion channels, particularly glutamatergic NMDA receptors (NMDAR)173. 

Some studies suggest that agmatine can also bind nicotinic receptors174 and serotoninergic 

5HT-2A and 5HT-3 receptors175. Finally, agmatine can be either reuptaken, possibly via 

Figure 1.4 : Pathways involved in agmatine biosynthesis and degradation. Arginine is metabolized into 
agmatine, through the action of arginine decarboxylase. Agmatine is then degraded either by agmatinase into 
putrescine (leading to polyamine synthesis) or by diamine oxidase into guanidinobutyric acid. Arginine 
decarboxylation into agmatine is a pathway that competes with other arginine-related pathways such as the 
urea cycle (occurring only in the liver), nitric oxide synthesis and creatine synthesis. Agmatine also inhibits 
nitric oxide synthases. Adapted from 146.   
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voltage- or ligand-gated Ca2+ channels, or specifically degraded by Agm173. In addition, 

agmatine has also been observed to be synthesized and released in astrocytes, thus proposing 

these cells as potential agmatine reservoirs157 (Fig. 1.5).  

While this hypothesis is being debated, a wide variety of studies have helped unravelling the 

physiological effects of agmatine in the brain. Most notably, agmatine has been found to have 

an overall protective effect against neurotoxic and ischemic brain injuries, pain, epileptic 

seizures, and opioid addiction (for comprehensive reviews of these actions, see146,153,160). But 

agmatine has also been associated with several psychiatric disorders, such as schizophrenia, 

addiction and, of particular interest with the present work, MDD153.  

1.2.5.2. Evidence for the involvement of the agmatinergic system in MDD 

There is substantial evidence that agmatine might contribute to modulate MDD, as observed 

by several clinical and preclinical studies. In humans, plasma levels of agmatine were found to 

Figure 1.5 : Schematic representation of a putative agmatinergic synapse. L-arginin (ARG) is metabolized into 
agmatine (AGM) through the action of mitochondrial arginine decarboxylase (ADC). Agmatine is then stored 
in vesicles or degraded by mitochondrial agmatinase (AGMase) into putrescine. Inside the cell, AGM can inhibit 
monoamine oxidase (MAO), via imidazoline I2 receptor (i2R), and nitric oxide synthase (NOS). Agmatine can 
also be released into the synaptic cleft, where it can interact with a wide variety of pre- and post-synaptic 
receptors: activation of α2 adrenergic (α2) and  imidazoline receptors(IR), and blockade of nicotinic cholinergic 
(NIC) and NMDA receptors. Agmatine might also activate 5HT3 receptors. Through its action on α2-adrenergic 
and imidazoline receptors, agmatine might regulate noradrenaline (NA) release. Through the same receptors, 
it also regulates blood pressure in the periphery. After release, agmatine might possibly be reuptaken, through 
an as yet unknown transporter, or go into the post-synaptic neuron through nicotinic cholinergic receptors. 
Agmatine can also enter glial cells and regulate nitric oxide synthesis. Agmatine can also be synthetized and 
stored in astrocytes, which would then act as reservoirs (not shown here). Taken from158.   
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be higher in depressed patients than in healthy control, which was normalized upon treatment 

with the antidepressant bupropion176. It is important to notice though, that to our knowledge 

no human studies on agmatine levels in the depressed brain had been performed yet. 

However, Agm levels have been measured in post-mortem tissues of MDD patients and 

revealed higher levels of this enzyme in the hippocampus, thus rather suggesting decreased 

agmatine levels in the brain150. This is further supported by several rodent studies that showed 

decreased agmatine levels in the hippocampus and PFC upon acute stress, alongside structural 

changes, such as reduced dendrite density177,178. In line with these findings, exogenously 

administered agmatine was found to have neuroprotective effects against both acute and 

chronic stress, as it prevented stress-induced neuronal damages, both in vitro and in vivo177–

181. It also has a protective effect against the induction of inflammation-induced depressive 

symptoms through the administration of the pro-inflammatory cytokine tumor necrosis factor 

α (TNFα)182. Finally, acute and sub-chronic agmatine treatment were found to have behavioral 

antidepressant effects in rodents, in paradigms such as the forced-swim test (FST) and tail 

suspension (TS) test183,184.  

The molecular mechanisms underlying agmatine antidepressant effects have been 

investigated, but are still not well understood. It was observed that agmatine treatment has 

the ability to reverse monoamine reduction and Ca2+ overloading, in a similar way as classical 

antidepressants185. A certain amount of co-administration studies have shown that the 

antidepressant effects of agmatine were abolished when preventing its binding to imidazoline 

I1 and I2receptors, 5HT-2A and 5HT-3 receptors, α2-adrenergic receptors, and NMDA receptors 

186–188. This suggests that the behavioral effects of agmatine are certainly due to its ability to 

bind to a wide variety of receptors, thus activating numerous signaling pathways. Indeed, 

several target receptors of agmatine have been shown to be involved in stress and mood 

regulation. For example, imidazoline receptors have the ability to regulate monoamines 

levels189, and activation of I2 receptors inhibits MAO-A  and has antidepressant effects189,190. 

Furthermore, tricyclic antidepressants were found to regulate both imidazoline and α2-

adrenergic receptors binding sites191–195, thus suggesting pleiotropic effects of agmatine 

treatment. Agmatine has not been considered yet for a potential antidepressant use in 

human. However, one pilot study has observed that chronic agmatine administration 
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produces antidepressant effects and seems to be well tolerated, while not producing harmful 

secondary effects196, thus opening the door for a potential therapeutic use of agmatine.  

Altogether, the different findings presented above strongly suggest an important role for 

agmatine in the brain, and have helped raise interest in this compound. Of note, two recent 

studies have highlighted the fact that chronic and sub-chronic agmatine treatment induced 

the phosphorylation of CREB, as well as activation of synaptic plasticity and cell survival 

pathways, accompanied by increased BDNF protein levels in mouse hippocampus184,197. These 

results are of particular interest considering the network hypothesis of MDD presented above, 

and contribute to the suggested role of agmatine as a potent neuromodulator.  

 The role of the transcription factor CREB and its coactivator CRTC1 in 

mood disorders 

As mentioned several times above, the transcription factor CREB is a converging point of many 

pathways involved in mood disorders, and it is by far the most extensively studied 

transcription factor implicated in these diseases. This pleiotropic factor is involved in many 

processes in the central nervous system and a wide variety of studies have shown its 

involvement in mood disorders, thus highlighting the complexity of its functions in these 

troubles. The newly discovered CREB-regulated transcription coactivators (CRTCs), and 

particularly CRTC1, are a major interest for our group and have been associated with the 

pathological process leading to mood disorders. Thus, this section will specifically describe the 

involvement of CREB and CRTC1 in these psychiatric diseases.  

1.3.1.  CREB 

CREB was first identified in 1987 by Montminy et al. 198 and since then,  it is known to be a 

major pleiotropic transcription factor implicated in several crucial neuronal processes, such as 

neuron’s survival and growth, neurogenesis, synaptogenesis, synaptoplasticity, and in long-

term potentiation (LTP)199,200. CREB is present in three isoforms (CREBα, CREBΔ and CREBβ), 

all three of them having the capacity to induce CRE-dependent transcription in response to 

increased levels of cAMP201. CREB belongs to the basic leucine zipper (bZip) superfamily of 

transcription factors, and with two other proteins (cAMP-response element modulator 

(CREM), and activating transcription factor 1 ATF-1)) it forms the CREB family199. CREB binds 
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to the gene promoter CRE sequence as a dimer, through its bZip domain, but can also 

heterodimerize with ATF1 and CREM199,202–204.  

CREB is activated through its phosphorylation at serine 133 (Ser133), which promotes the 

association of CREB with CREB-binding protein (CBP), therefore leading to the assembly of a 

protein complex205,206, which will then stimulate gene transcription partly through CBP’s 

acetyltransferase activity.  

Two principal pathways can trigger CREB phosphorylation and activation (Fig. 1.6): 

(1) The adenylate cyclase/cAMP/PKA pathway, which is activated by noradrenaline (NA) and 

serotonin (5HT).  The activation of G protein-coupled receptors (GPRCs), with a Gαs 

protein, by a monoamine neurotransmitter, activates the adenylate cyclase (AC), which 

in turn produces cAMP. The latter activates the protein-kinase A (PKA), which translocates 

to the nucleus, where it phosphorylates dimerized CREB207,208. 

(2) The Ca2+ pathway, which is activated by increased Ca2+ levels in the cytoplasm.  This 

phenomenon can be achieved through different mechanisms: 1) GPCRs with a Gαq 

protein activate IP3, which opens Ca2+ channels present on the endoplasmic reticulum, 

leading to the increase of intracellular concentration of Ca2+; 2) Voltage-dependent Ca2+ 

channels open in the presence of depolarization; 3) Glutamate receptors (NMDA 

receptors) open and let Ca2+ enter in the neuron. These different events all lead to 

cytoplasmic Ca2+ increase, an event that activates calcium-calmodulin-dependant kinases, 

which in turn phosphorylate CREB208–211. 

The implication of CREB in mood disorders is firstly supported by several genetic and clinical 

studies. Indeed, the chromosomal region 2q33-q35 containing the CREB gene has been 

observed as a susceptibility locus for recurrent MDD in women212,213, and several CREB 

polymorphisms have been associated with MDD, BD, suicidal behavior, as well as 

aggressiveness214–217. Post-mortem CREB levels were found to be decreased in the temporal 

cortex of depressed patients, whereas an increase in CREB levels was found in patients taking 

antidepressants at the time of death218,219. Also, CREB levels and DNA binding activity were 

significantly decreased in the prefrontal cortex and the cingulate gyrus of BD patients220.  

In parallel, several mood disorders treatment have been showed to regulate CREB levels and 

activity. Antidepressants were found to provoke an increase in mRNA levels of CREB in the rat 

hippocampus. Some of them, such as fluoxetine, also produced an increase in CREB 
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phosphorylation, binding and protein levels221. Chronic lithium treatment increases the 

phosphorylation of the existing CREB, while not increasing its levels, and promotes its binding 

to DNA, leading to an increase of CREB-mediated gene transcription222. Human studies have 

correspondingly observed that lithium-treated patients present increased levels of 

phosphorylated CREB223. 

However, changes in CREB activity may vary depending on the type of treatment, the brain 

region, and the signaling pathway activated. Indeed, overexpression of CREB in the dentate 

Figure 1.6 : The CREB-CRTC1 pathway. CREB can be activated by the cAMP pathway (right side). Upon binding 
of a neurotransmitters (NT) to its G-protein coupled receptor, adenylate cyclase (AC) is activated and 
catalyses cAMP production, which in turn activates the protein kinase A (PKA). The protein kinase A 
translocates then to the nucleus and phosphorylates dimerized CREB, thus leading to gene transcription. 
CREB can also be activated following increased intracellular Ca2+ concentration, which leads to activation of 
calcium-calmodulin-dependent kinases that will also phosphorylate and activate CREB (not shown here). 
CRTC1 (represented here as TORC) is present in its phosphorylated (inactivated) form in the cytoplasm, 
sequestrated by the scaffolding protein 14-3-3. CRTC1 is controlled by the opposing effects of the calcium-
sensitive phosphatase calcineurin (Cn) and the AMP kinase family (AMPK, SIK, MARK). Upon neuronal 
excitation, increase in intracellular Ca2+ leads to the activation of calcineurin, which will catalyze CRTC1 
dephosphorylation. Additionally, activation of PKA leads to the inhibition of AMP kinases, thus preventing 
CRTC1 phosphorylation. When activated, CRTC1 translocates to the nucleus and interacts with CREB in order 
to facilitate the recruitment of the transcription complex (including CREB binding protein (CBP) and the 
TAFII130 polymerase subunit). Taken from236.   
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gyrus of rat produces antidepressant effect in several depression-related behavioral 

paradigms, whereas it has no effect when overexpressed in the CA1 region or in the prefrontal 

cortex224. Furthermore, an overexpression of CREB in the amygdala or in the NAc produces a 

pro-depressive behavior225,226. Interestingly, transgenic CREB-deficient mice exhibit 

antidepressant-like behaviors and exhibit a significant increase in hippocampal neurogenesis, 

but not in BDNF levels227,228. However, CREB-deficient mice still respond to 

antidepressants228,229.   

Altogether, these findings suggest that the implication of CREB in mood disorders, while being 

undeniable, is not clear and may depend on the brain region and the pathway involved. 

1.3.2.  CRTC1 

The family of CRTCs, formerly known as transducers of regulated CREB activity (TORCs), was 

first discovered in 2003 by Conkright et al. 230. These coactivators were found to promote 

CREB-regulated gene transcription, independently of CREB Ser133 phosphorylation. This 

happens via CRTCs binding as tetramer to the bZIP domain of CREB, thus favoring the 

interaction between CREB and the RNA polymerase II preinitiation complex component 

TAFII130230. CRTCs can also directly interact with CBP and help its recruitment on CREB target 

genes promoter231.  

Three CRTCs isoforms have been characterized: CRTC1, CRTC2 and CRTC3, with CRTC1 being 

particularly highly expressed in cortical and hippocampal post-mitotic neurons232,233. Several 

studies have shown that CRTC1 and CRTC2 activate the transcription of several CREB-

regulated genes when Ca2+ and cAMP are simultaneously present in the neuron, therefore 

acting as cAMP/Ca2+ coincidence detectors232–236.  

In resting conditions, CRTC1 is found in the cytoplasm in a phosphorylated form, bound to 14-

3-3 proteins235. Synaptic activity inducing both Ca2+ and cAMP signals leads to the 

dephosphorylation of CRTC1 via two actions: cAMP inhibits salt-inducible kinase (SIK) 1/2 

(promoting CRTC1 phosphorylation) and calcium signaling directly dephosphorylates CRTC1 

via calcineurin. Dephosphorylated CRTC1 translocates to the nucleus and activates CREB-

regulated gene transcription. (Fig.1.6)232,233,235.  

Several studies have demonstrated that CRTC1 is essential to many important neuronal 

processes, including dendritic growth, long-term synaptic plasticity and glucose 
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metabolism232,233,237,238. Several pieces of evidence also suggest that CRTC1 might play an 

important role in the etiopathogenesis of mood disorders. Indeed, CRTC1 has been 

demonstrated to be critical for activity-induced dendritic growth of cortical neurons during 

development233. Furthermore, BDNF expression occurs in a CRTC1-dependent manner in the 

adult rat hippocampus232,237. CRTC1 has also been shown to be required for the maintenance 

of L-LTP in the hippocampus232,237 . In addition, the interaction of CRTC1 with CREB is required 

for the BDNF-dependent dendritic growth of cortical neurons239. The same study also 

demonstrated that the nuclear translocation of CRTC1 is induced by the activation of NMDAR 

by glutamate, which is also essential for BDNF effects on dendritic growth. Finally, CRTC1 has 

been shown to be a primary target of lithium, which enhances CREB-CRTC1 association, by 

helping CRTC1 oligomer formation, and preparing it for its association with CREB240–242 . In 

parallel with its role in mood disorders, several recent studies have highlighted the importance 

of CRTC1-dependent gene transcription in spatial memory formation and its possible 

implication in Alzheimer’s disease243,244.  

All these different findings suggest that CRTC1 might be a mediator of mood disorders 

etiology, possibly through its prominent role in CREB-regulated neuroplasticity gene 

transcription. 

 Mood disorders treatments 

Although the etiology and the neurobiological bases of mood disorders are not clearly 

understood, there is a broad range of treatments available, which will be briefly summarized 

here.  

1.4.1. Antidepressants 

Regarding MDD, a wide variety of drug and non-drug treatments are currently available, with 

significant positive effects on patients, and are summarized in Table 1.2.  

Non-drug treatments mainly include psychotherapy (however only effective for mild 

depression) and electro-convulsive therapy (efficient, but only used for the most severe 

cases)24. In the last decade, deep brain stimulation (DBS) has emerged as a potential new 

therapy and has been proven very effective245. Yet, for the vast majority of cases, classical 

antidepressant drugs remain the most frequent treatment24.  
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As previously explained, all the currently available antidepressants focus on the monoamine 

metabolism. First generation antidepressants, monoamine oxidase inhibitor and tricyclic 

antidepressants, provided template for the development of second generation 

antidepressants: selective serotonin reuptake inhibitors (SSRIs), noradrenaline reuptake 

inhibitors (NRIs), and serotonin and noradrenaline reuptake inhibitors (SNRIs), which are more 

specific, but still acting on the same system24,246. Although all these drugs have a clear 

efficiency, they however need weeks of treatment before producing a response. Moreover, 

they are associated with a lot of side effects and only less than 50% of depressed patients 

reach total remission.  In fact, treatment-resistant depression (TRD), a condition in which the 

patient does not show any response to one or more treatment trials, is estimated to occur  in 

12 to 20% of depressed patients247.  

Table 1.2 : Table of currently available antidepressant drug and non-drug treatments. Taken from24.   
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Although most antidepressant drugs are effective (except for treatment-resistant depression), 

and can be combined with non-drug therapies (e.g.; combination of antidepressant treatment 

and psychotherapy have been proven very effective248), intensive study of neurobiological 

bases of depression is needed in order to develop alternative drugs, acting beyond the 

monoaminergic system.  

1.4.2. Mood stabilizers 

Mood stabilizing agents are the most frequent drugs used to treat BD, and lithium is by far the 

most used of these agents249. Indeed, it efficiently treats both manic and depressive episodes, 

reduces the recurrence of such episodes and also decreases suicidal behaviors249–251. As 

mentioned above, lithium has neuroprotective properties, which probably underlie its effects, 

but its mode of action is still unknown. Lithium freely enters in cells through sodium channels 

and inhibits several enzymes in the cytoplasm, mainly the inositol monophosphatase (IMPase) 

and the glycogen synthase kinase 3 (GSK-3). These enzymes have critical roles in pathways 

such as the phosphoinositol (PI) pathway and the Wnt signaling pathway249,252–255. The PI 

pathway is involved in processes such as cell division and neuronal excitability, and is therefore 

thought to play a crucial role in the mood stabilizing effects of lithium256–258. However, lithium 

inhibitory action on GSK-3 is also of interest, as this inhibition leads to increase in CREB 

activity222,253,259. Of note, GSK-3 inhibition is also a signaling pathway elicited by BDNF260,261. 

Lithium effects could therefore also rely on this process.  

Although its mechanisms of action are still extensively investigated, lithium remains a highly 

frequent drug for the treatment of BD; yet it is associated with many side effects.  

Apart from lithium, other mood stabilizing agents are currently used and valproate (VPA) is 

one of them. It mainly acts on manic behavior, it has been indeed shown that it dampens the 

high-frequency Na+ channel firing occurring in manic phases, and it also enhances the release 

of GABA262–264. VPA has another interesting characteristic, as it can act as a HDAC inhibitor, 

which further strengthens the role of epigenetic modifications in mood disorders (developed 

in a previous section)265,266. 

As for MDD, combination of treatments are often used, especially when it comes to treat both 

manic and depressive symptoms. Combination of antipsychotic and antidepressant drugs 

have been proven effective, and can be further combined with psychotherapy. Similarly as for 
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MDD, BD treatments also require weeks before producing a visible therapeutic effect, and 

they are also associated with non-negligible side effects, thus increasing the need for 

investigating new therapeutic opportunities267.  

1.4.3. New focus on NMDA receptor inhibitors 

In the last decade, NMDAR antagonist have received increased interest as potential new 

antidepressant drugs, because of their newly discovered rapid antidepressant effects. This 

new field of investigation started when it was observed that a single sub-anesthetic dose of 

the NMDAR antagonist ketamine had rapid (72h) and long-lasting (up to 2 weeks) 

antidepressant effects, even in patients exhibiting treatment-resistant depression268,269. 

Several studies could replicate these effects, however with a certain variability of response270–

273. Nevertheless, the effect of ketamine was repeatedly assessed and proven effective, also 

in BD patients269,274. Yet the psychomimetic properties of this agent and its abuse potential 

renders it impossible to be used as a long-term antidepressant. But this allowed to discover a 

new mechanism potentially involved in mood disorders and provided new lines of 

investigation for the development of new treatments275,276. Therefore, the molecular 

mechanisms underlying NMDAR antagonists effects have been heavily investigated.  

The antidepressant effects of ketamine and other NMDAR blockers could be reproduced in 

rodents, in several paradigms. Most studies focused on the FST, a paradigm in which ketamine 

is highly effective. It showed rapid (30min) effects that could last up to 1 week after a single 

injection276–282. Yet, the amplitude and duration of the effect were different depending on the 

mouse or rat strain, and the protocol used276. Ketamine also had antidepressant effects in 

paradigms such as the TS277,278,283–285, novelty-suppressed feeding286–289, learned helplessness 

(LH)284,286,290,291 and sucrose preference test292–294. It was also effective at reversing 

depressive-like behavior and molecular alterations of animals which underwent a chronic 

stress procedure289,292,295–298.  

The molecular cascades activated by ketamine were also investigated and have been partly 

unraveled. Ketamine inhibition of NMDAR leads to a suppression of tonic glutamate input to 

GABAergic neurons, a mechanism that results in a general disinhibition of glutamate signaling 

in the PFC276,299. This will lead to an upregulation of glutamatergic AMPA receptor (AMPAR)  
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and an overall increased neuronal activity299. AMPAR have been shown to be critical for 

ketamine effects and the NMDA/AMPA ration is a critical mediator of such effects293. 

Ketamine and other NMDAR antagonists have also been demonstrated to rapidly (30 min) 

activate the mammalian target of rapamycin (mTOR) pathway, which is involved in several 

neuroplasticity pathways, such as LTP286. Through this pathway, ketamine rapidly activates the 

expression of immediate-early genes involved in glutamate-mediated synaptic plasticity. This 

mTOR activation also induces the dephosphorylation and inhibition of the eukaryotic 

elongation factor (eEF2)287,289. This inhibition leads to an overall increase in protein 

translation, including increased BDNF translation. It has been recently demonstrated that 

rapid antidepressant effect of ketamine and MK-801 (another NMDAR antagonist) depend on 

BDNF translation, induced by eEF2 dephoshorylation289 (Fig. 1.7). An even more recent study 

has also determined, through optogenetic experiments, that the rapid and sustainable effects 

of ketamine were dependent on the infralimbic PFC activity300. Furthermore, ketamine 

treatment significantly increased the number and function of spine synapses in this region300. 

In line with the involvement of epigenetic mechanisms in mood disorders, it has also been 

very recently observed that ketamine produces increased histone acetylation in cultured 

neurons, alongside repression of HDAC5 activity301.  Although these various new findings still 

have to be confirmed, compounds acting similarly as NMDAR antagonists might constitute an 

interesting new line of investigations.   

In summary, while many treatments are available for mood disorders, there are still 50% of 

patients that are not responding, therefore urging the need for alternate therapies. However, 

new promising agents, such as the NMDAR antagonists, suggest that the development of such 

Figure 1.7 : Mechanisms underlying 
ketamine effects on BDNF translation. 
Upon normal NMDAR activity, the 
eukaryotic elongation factor 2 (eEF2) 
kinase phosphorylates and activates eEF2, 
which prevents protein translation. Upon 
NMDAR blockade by ketamine, inhibition 
of eEF2 kinase occurs and leads to 
dephosphorylation and inactivation of 
eEF2. This will enhance protein 
translation, including BDNF translation. 
BDNF can therefore bind and activates its 
receptor TrKB, thus activating synaptic 
plasticity-related pathways.  Taken 
from289.   
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therapies might be possible in the future. But it also highlights once again the complexity of 

the mechanisms involved in mood disorders, and the need to understand their etiology, in 

order to better treat them.   

 Animal models of mood disorders 

As demonstrated above, mood disorders are complex and heterogenic diseases, resulting 

from several environmental and physiological factors. They are characterized by a wide range 

of highly variable physical and psychological symptoms, as underlined by the variety of 

systems that are observed to be disturbed in these troubles. Hence, animal models of mood 

disorders are difficult to develop. Indeed, face validity in animal models of mood disorders is 

restrained to some symptoms of the disease that can be modulated in animals, whereas 

others cannot (such as psychological troubles)302. An animal model presenting all the aspects 

of the disease is therefore impossible to obtain, and the ones available only reflect a small 

subset of the complexity of mood disorders. Yet, many different animal models of mood 

disorders have been developed over the years and are commonly used in today’s research302–

305. This section will summarize these different models.  

1.5.1.  Rodent models of mood disorders 

An ideal animal model of mood disorders (or any other condition) should present three 

criteria:  

(1) Construct validity, in which the etiology of the disease is similar as observed in 

humans. 

(2) Face validity, in which the animal presents similar symptoms and endophenotypes 

as in humans.  

(3) Predictive validity, in which the animal model responds to the same treatments as 

humans305.  

No animal model combining these three features exists for mood disorders306. As explained 

above, many symptoms and aspects of these troubles cannot be modeled in animals, 

therefore complete face validity cannot be obtained. However, construct and predictive 

validity can be modeled in some animal models and can be tested in a wide variety of 

behavioral paradigms (Table 1.3).  
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Depressive-like behaviors can be observed in animals following acute or chronic stress306. 

Therefore, most behavioral paradigms currently used rely on the application of one or several 

stressors.  Some of the most commonly used tests rely on the application of one acute stress. 

These include the FST, TS and LH paradigms:  

- FST: in this test, the animal is put in the water (which is a stress for rodents) for a short 

period of time, with no possibility to escape. The animal will start to present an 

immobile floating behavior, which is interpreted as a reflector of the stressed state of 

the animal, as well as a resignation facing the inescapability of the situation307–310.  

- TS: in this paradigm, the animal is briefly suspended by the tail, which is a highly 

stressful event. During this time, the animal will seek to escape by actively moving. 

However, it will soon start to give up and stay completely immobile. As in the FST, this 

immobility time is measured and considered as “depressive-like behavior”311,312.  

- LH: in this test, the animal is first subjected to short electric shocks, with no possibility 

to escape. In a second phase, the electric shocks are repeated, but this time the animal 

has the possibility to escape to another compartment. The latency to escape is 

Table 1.3 : Table of the most current animal models of depression and their main features. Taken from23.   
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measured and if this latency time is high, it is interpreted as a depressive-like behavior, 

as the animal does not seek to escape the stressful situation313,314.  

These three paradigms allow to measure what is called the “behavioral despair” of the 

animals. It is described as the resignation of the animal facing the stressful event and a lack of 

motivation to seek an escape. This interpretation has however been extensively debated as it 

could also be explained by a learning process, in which the animal might have learned that 

there is no escape315. Furthermore, these paradigms present poor construct validity, as they 

do not reflect the development of depression as observed in humans (as it generally occurs 

following chronic and not acute stress). Nevertheless, these tests are widely used, mainly 

because of their high predictive validity. Indeed, the behavioral despair measured in these 

paradigms can be efficiently reversed by nearly all available antidepressant and mood 

stabilizing drugs, when administered acutely. Therefore, these tests, especially the FST, are 

commonly used as screening procedures for potential new antidepressant agents302,306.   

Another subset of depression-related behavioral tests involves the application of a chronic 

stress protocol. These tests have a good construct validity as they better reflect the 

development of depression as observed in humans. In these paradigms, one or several 

stressors are applied chronically (several weeks) and this leads to the establishment of a 

chronic stressed state in the animal, which will also present depressive-like symptoms such as 

anhedonia and social impairments316–318. There are several existing chronic stress protocols 

that can be applied. The chronic unpredictable mild stress (CUMS) procedure is based on the 

application of several mild stressors (circadian perturbation, swimming session, injections…) 

in an unpredictable schedule. This protocol is known to induce anhedonia in rodents, which is 

a core symptom of depression, thus providing good construct and face validity to this 

model316. Anhedonia can be measured in rodent by the sucrose preference test. In this test, 

the animal can freely access either water or sweetened water. The animals would naturally 

prefer sweetened water, yet when they present anhedonia this preference is strongly 

diminished318–320.  

Anhedonia also occurs in rodents following a chronic social defeat stress protocol. Here the 

experimental animal is put daily in the presence of an aggressive dominant mouse. This 

procedure mimics the social stress that can occur in humans and that leads to depression. The 

consequence of this protocol is the development of an anhedonic behavior, but also of social 
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withdrawal as well as a metabolic syndrome (weight gain and leptin resistance), which is also 

a clinical feature of MDD321–323.  

Chronic corticosterone administrations, as well as long term isolation can also be used as 

stressors and induce depressive-like behavior in rodents302,324,325. Maternal separation is also 

a stress procedure that can be used to study the effects of early-life stress, as it induces long 

term and heritable behavioral impairments that can be related to MDD45,326. As already 

mentioned in a previous section, chronic stress procedures also induce durable chemical and 

morphological changes in the brain, such as neuronal death and cellular damages. These 

chronic stress models also have good predictive validity as their effects can be reversed by 

chronic, but not acute, antidepressant treatment, which is similar to what is observed in 

humans.  

Recently, the open-space forced swim test (OSFS) procedure was developed327,328. This model 

is based on repeated swimming sessions, similar as the FST, for several weeks. During the first 

days of the test, the animals will progressively develop a stressed state, as reflected by 

progressive increased immobility time in each swimming session. The swimming sessions then 

continue, while in parallel a chronic antidepressant treatment is administered. Floating time 

is measured in each session and progressively decreases as the treatment starts to be 

effective. This procedure is interesting as it allows to chronically stress the animals in a first 

phase, and then assess the effects of antidepressant in a second phase. Furthermore, it is only 

sensitive to chronic antidepressant treatment.  

In the frame of BD, there is currently no existing animal model that combines features of both 

depressive and manic phase, as well as a cyclic alternation of these two phases306,329. 

Therefore, the models focus on either one of the two phases. Regarding depressive episodes, 

the same paradigms as detailed above are used. On the opposite, there are few models of 

mania available. It can however be modeled in animals, either pharmacologically of 

genetically. The most used model includes a treatment with psychostimulants, such as 

amphetamines or cocaine. These can produce a wide spectrum of mania-like behaviors, such 

as hyperactivity, heightened alertness, insomnia, and changes in sleep patterns, and these 

behaviors can be reversed by mood stabilizers330–332. There are also several genetically-

engineered mice exhibiting manic-like behaviors333. One mutant model is based on a Clock 

gene downregulation334. These mice exhibit several symptoms of mania as they are 
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hyperactive, need less sleep, and show an increased inclination for stimulants and reward, and 

chronic administration of lithium reduces these behaviors. Another transgenic model relies on 

the overexpression of GSK-3, which induces hypophagia, hyperlocomotion, and reduces 

immobility in the FST335. 

In summary, although mood disorders are difficult to model in animals, several paradigms 

allow to reproduce some aspects of these troubles in rodents. However, there is not a single 

“test for depression” or “test for BD”.  Instead, to be qualified as “depressive” or “bipolar” an 

animal should rather present the phenotypes of interest in different types of behavioral assays 

that include several aspects of the diseases: stress, anhedonia, social behavior, activity, 

treatment response. One should also be very careful with the high risk of anthropomorphism 

that comes along with behavioral observation. Furthermore, molecular changes in the 

different pathways presented above should also be investigated and correlated to the 

behaviors observed.  

1.5.2.  Crtc1-/- mice 

As described above, CRTC1 is a key modulator of many important neuronal processes and 

might be an important mediator of mood disorder etiology. To further investigate the role of 

CRTC1 in the brain, we and others have generated simultaneously a line of complete Crtc1-/- 

mice by using the same genetrap strategy238,336. Altarejos et al. first observed that CRTC1-

deficient mice exhibited a hyperphagic, obese and infertile phenotype. Therefore, the CREB-

CRTC1 pathway was thought to mediate the effects of hormones and nutrients on the energy 

balance and fertility238. However, these findings were partly contradicted by our laboratory, 

that found no major infertility in Crtc1-/-mice336. Therefore, it was concluded that the CREB-

CRTC1 pathway is involved in the hypothalamic control of energy balance, but its effect on 

mice fertility is less clear.  

Our group then undertook an extensive behavioral and molecular characterization of Crtc1-/- 

mice and found that they exhibited many endophenotypes related to mood disorders337. 

Indeed, in addition to their mild obese phenotype (which starts to appear only after the age 

of 14 weeks), these mice also presented several social impairments:  male Crtc1-/- mice 

presented increased aggressiveness, as well as decreased social interaction and sexual 

motivation. Mutant mice also exhibited increased behavioral despair in the FST, as well as 
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anhedonia in the sucrose preference test. Their emotional response was found to be 

exacerbated in the fear-conditioning paradigm, and Crtc1-/- mice also presented higher anxiety 

and neophobia337.  

Interestingly, Crtc1-/- mice presented a blunted response to the antidepressant fluoxetine. 

Indeed, in the OSFS paradigms, mutant animals exhibited increased immobility time, which 

could not be reduced by fluoxetine. They also showed no response to this treatment in the TS 

test. Interestingly however, fluoxetine could successfully reverse their aggressiveness, as well 

as their anxiety in the novelty-induced hypophagia (NIH) paradigm337.   

At the molecular level, Crtc1-/- mice presented several interesting alterations, as a reduced 

dopamine and serotonin turnover was observed in the prefrontal cortex. Furthermore, 

downregulation of several neuroplasticity-related genes in significant regions involved in 

mood disorders could be seen: total Bdnf and its exon IV were both reduced significantly in 

the hippocampus and the PFC. The same observation was done for BDNF receptor, TrkB. 

Moreover, the three Nr4as were also significantly reduced in the hippocampus and the PFC. 

Other neuroplasticity-related genes were also analyzed, such as c-fos, FosB, Crem-Icer, 

Somatostatin and Cartpt, which were all found to be downregulated in the PFC and 

hippocampus of mutant mice337.  

Altogether, these results suggest that Crtc1-/- mice can be considered as a potent new animal 

model for mood disorders, as these animals encompass several aspects of both MDD and BD: 

increased behavioral despair, social impairments, anxiety, exacerbated aggressiveness and 

metabolic troubles. Furthermore, most of the key genes known to be involved in mood 

disorders are strongly downregulated in these mice. Moreover, Crtc1-/- mice could also be 

considered as potential model for treatment-resistant depression, as they are insensitive to 

fluoxetine.  

This highly interesting mouse line also further highlights the importance of CRTC1 in mood 

disorders and its potential role in the etiology of these diseases. It also suggests its 

involvement in antidepressant response.  

The main aim of this thesis was therefore to further investigate the involvement of CRTC1 in 

the etiology of mood disorders, by determining which systems are affected by CRTC1 deletion 

and contribute to their behavioral and molecular phenotype.  
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2.1.1. Summary 

Following our previously published paper showing the blunted response to the antidepressant 

fluoxetine displayed by Crtc1‒/‒ mice337, we further investigated the involvement of CRTC1 in 

behavioral and molecular antidepressant response. In this study, we showed that Crtc1‒/‒ mice 

similarly responded to the tricyclic antidepressant desipramine: their immobility in the OSFS 

could not be reduced by the treatment, while it decreased their anxiety in the NIH paradigm. 

Supporting the blunted response to this tricyclic antidepressant, we found that desipramine 

significantly increased the expression of Bdnf, Bdnf IV and Nr4a1-3 in the hippocampus and 

prefrontal cortex of wild-type (WT) mice, but failed to do so in Crtc1‒/‒ mice. As already 

described, epigenetic regulation of neuroplasticity gene expression has been associated with 
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depression and antidepressant response, and histone deacetylase (HDAC) inhibitors have 

been shown to have antidepressant-like properties. We therefore tested the effects of the 

HDAC inhibitor SAHA on WT and Crtc1‒/‒ mice. We showed that unlike conventional 

antidepressants, chronic systemic administration of the HDAC inhibitor SAHA could partially 

rescue the depressive-like behavior of Crtc1‒/‒ mice, as it significantly decreased their 

immobility in the OSFS. This behavioral effect was accompanied by an increased expression of 

Bdnf, but not Nr4as, in the prefrontal cortex of Crtc1‒/‒ mice, suggesting that this epigenetic 

intervention was able to restore the expression of a subset of genes, by acting downstream of 

CRTC1. 

2.1.2. Contribution  

I contributed to the experimental design and planning of this study. I performed all the 

experiments as well as the analysis of the results (behavioral recordings, calculations and 

statistical analyses). Finally, I wrote the entirety of the article. 
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2.2.1. Summary 

In order to complete the analysis of the molecular phenotype of Crtc1‒/‒ mice, a microarray 

gene expression profiling was performed and revealed an upregulation of agmatinase in the 

cortex of Crtc1‒/‒ mice. Knowing the involvement of the agmatinergic system in mood 

disorders, we further investigated the possible dysregulation of this system in Crtc1‒/‒ mice. 

Quantitative polymerase chain reaction and Western blot analyses confirmed Agmat 

upregulation in both male and female Crtc1‒/‒ prefrontal cortex (PFC) and hippocampus. 

Agmat staining and confocal immunofluorescence microscopy further revealed an increased 

number of Agmat-expressing cells, notably parvalbumin- and somatostatin- interneurons. We 

therefore hypothesized that the dysregulated agmatinergic system of Crtc1‒/‒ mice might 

contribute to their depressive-like phenotype. Indeed, acute agmatine treatment improved 

the depressive-like behavior of Crtc1‒/‒ mice in the forced swim test, suggesting that 

exogenous agmatine has a rapid antidepressant effect through the compensation of agmatine 

deficit due to upregulated Agmat. Through western blot analyses, we observed that in WT 

mice PFC, agmatine rapidly increased BDNF levels and decreased eEF2 phosphorylation, 

indicating that agmatine might be a fast–acting antidepressant with NMDA receptor 

antagonist properties. Interestingly, the induction of BDNF translation was only observed in 

female mice, thus suggesting sex-specific molecular effects of agmatine and BDNF regulation. 

Also, the effects of agmatine on BDNF and eEF2 were not present in Crtc1‒/‒ mice, which 

implies that the behavioral antidepressant effects of agmatine do not solely rely on BDNF.  

2.2.2. Contribution 

I contributed to most of the experimental design and planning of this study. I performed all 

the experiments and result’s processing (behavioral recordings, calculations and statistical 

analyses), except for the microarray profiling, which was performed by Dr. L. Breuillaud, Dr. T. 

Seredenina and  Prof. R. Luthi-Carter. Finally, I wrote the entirety of the article, except for the 

parts related to the microarray, which were written by Dr. J.R. Cardinaux.  
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3. MATERIAL AND METHODS 

 Mice production and housing 

3.1.1. Animals 

Mice were bred and housed under a 12 light-dark cycle with ad libitum access to tap water 

and standard rodent chow diet (3436 Kliba Nafag, Provimini Kliba AG, Kaiseraugst, 

Switzerland). Crtc1‒/‒ mice were generated as previously described336,337. For the present 

experiments, WT and Crtc1‒/‒ mice result from a crossing between heterozygous Crtc1+/‒ mice, 

previously backcrossed for seven generations with C57BL/6N mice (Charles River Laboratories, 

Saint-Germain-sur-l’Arbresle, France). Animals were weaned at the age of 21 days and group 

housed. At the age of 5 weeks, animals were isolated in order to avoid excessive 

aggressiveness from Crtc1‒/‒ mice. Treatments, behavioral and molecular procedures began 

when the animals reached the age of 8 weeks.  

3.1.2. Genotyping 

Genotyping was performed shortly after weaning. Genomic DNA from ear biopsy was 

extracted using a 20 min incubation at 95°C with solution A (25mM NaOH, 0.2mM EDTA) and 

addition of solution B (40mM TrisHCl pH 5.0). Samples were genotyped by PCR amplification 

of WT and Crtc1‒/‒ alleles. The following primers were used: (a) forward 5’-

GGCAGTACATAGCTTCTCTGGTGA-3’, (b) reverse 5’-TGCAGGGCAGAGTCAGAGTTGGT-3’ and (c) 

reverse 5’-GACAGTATCGGCCTCAGGAAGAT CG-3’. WT allele was amplified using primers (a) 

and (b), and Crtc1‒/‒ allele using primers (a) and (c). The following PCR program was used: 

3min at 94°C, 35 cycles of 15s at 94°C, 45s at 58°C, 90s at 72°C, and finally 7min at 72°C. 

Amplified DNS fragments were resolved in a 1% agarose gel. 

 Drugs and treatment 

3.2.1. Lithium treatment 

At the age of 8 weeks, male WT and Crtc1‒/‒ mice received a  4-week chronic lithium treatment 

in the food, as previously described338. This treatment protocol was chosen because of its 

ability to reach and maintain blood lithium levels within the human therapeutic range (0.4-

1.2mM). Lithium-enriched chow (Rodent diet, grain-based, LiCO4 2.4g/kg) and its equivalent 

control (Rodent diet, grain-based, Fat (4.5%)) were purchased from Custom Animal Diets, LLC 
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(Bangor, PA, USA). Mice fed with lithium-enriched food received an additional bottle of saline 

(0.9% NaCl) to prevent electrolyte imbalances resulting from lithium administration. To assess 

the effects of the treatment, and to monitor possible harmful effects, mice body weight was 

regularly measured, as well as food and liquids consumptions for the whole treatment 

duration. 

 Behavioral experiments 

3.3.1. Lithium experiment protocol 

Chronic lithium treatment began when mice reached the age of 8 weeks. WT and Crtc1‒/‒ mice 

were randomly split in two subgroups: one was fed with lithium-enriched chow, and the other 

one was fed with control chow. Behavioral experiments started 2 weeks after the beginning 

of the treatment on day D70 (70 days of age) while continually treated until the end of the 

experiment. All behavioral tests were conducted in the dark phase of the inverted 12-hr light-

dark cycle according to standard procedures. Behavioral experiments were carried out in the 

following order and at the following days: forced-swim (D70-D71), tail suspension (D73), social 

interaction (D77), and resident-intruder (D79). Mice were then sacrificed on day D81.  

3.3.2. Forced-swim test 

A two-day test (day 1 and day 2) was performed. Mice were put during 5min in a glass beaker 

(26cm tall x 18cm diameter) filled to a depth of 22cm with tap water (26 ± 0.5°C), in a room 

with a light intensity of  ~35 lux. This depth was sufficient to ensure that mice could not escape 

or touch the floor of the container. Sessions were videotaped from above and manually 

analyzed with Ethovision 3.1 software (Noldus Information Technology, Wageningen, the 

Netherlands) for floating and climbing behavior. Mice were judged immobile when they 

remained floating passively in the water, except for minor movements to keep their heads 

above the water.  

3.3.3. Tail suspension test 

Mice were individually suspended by their tail on a horizontal metal rod at ~35cm height using 

medical adhesive tape placed approximately 2cm from the tip of the tail. Each assay was 

videotaped during 5min and immobility time was manually scored with Ethovision. Mice were 

judged to be immobile when they hung passively without moving. 
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3.3.4. Social interaction test 

The experiment was conducted in a room with a low light intensity of ~25 lux, to avoid any 

stressful condition. A social interaction box was built with two different compartments (A and 

B, 38x29x21cm each), separated by a wooden wall with a small door allowing the mouse to 

freely access to the two zones. Each zone contains a small compartment (10x10x21cm) made 

of plastic walls with small holes, to allow the mice to smell and see the content of the plastic 

container, without permitting a direct interaction (Figure 3.1). 

The test was separated in two phases: in the first phase (habituation, 5 min), the experimental 

mouse was allowed to explore the new environment during 5min, in order to assess whether 

the mouse has already a zone preference before beginning the test. Immediately after the 

habituation, the second phase started (test, 15min). An unfamiliar adult male mouse (CD-1 

mice, Charles River Laboratories) was put in one of the plastic containers with a box on the 

top, to prevent it from climbing the wall, and an inanimate object was put in the other plastic 

container. Location of the stranger mouse and the inanimate object was randomly changed 

between each experimental mouse tested. Between each experimental mouse and before 

beginning the experiment, the social interaction chamber was washed with water and 70% 

ethanol. 

A zone of ~6cm was defined around the periphery of each plastic container (interaction zones 

A and B). During the 15 min of the test, time spent and distance moved in each of the four 

zones (compartment A, compartment B, interaction zone A and interaction zone B) were 

 

 

 

Figure 3.1 : Social Interaction  Test 
set-up. A plastic box was 
sperataed by a wooden wall with 
a hole, creating two different 
zones (A and B, 38 x 29 x 21 cm 
each). Each zone contained a 
smaller plastic compartment (10 x 
10 x 21 cm) with holes on the 
walls.  Virtual zones of ~6cm 
(interaction zones A and B) were 
created around both of the 
smaller plastic compartments.  
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measured with Ethovision. A preference ration was then calculated as follows:  

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑡𝑖𝑚𝑒 𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑚𝑜𝑢𝑠𝑒 𝑧𝑜𝑛𝑒 (𝑡𝑒𝑠𝑡)

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑡𝑒𝑠𝑡)
−

𝑡𝑖𝑚𝑒 𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑚𝑜𝑢𝑠𝑒 𝑧𝑜𝑛𝑒 (ℎ𝑎𝑏𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛)

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (ℎ𝑎𝑏𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛)
 

3.3.5. Resident-intruder test 

Cages were changed for all the experimental mice (residents) 8 days prior to conducting the 

test and no more changes were done afterwards. On test day, an unfamiliar adult WT male 

mouse of the same genetic background (C57BL/6N, Charles River Laboratories) was placed in 

the resident male cage. The intruder mice were group-housed and matched with resident 

mice for weight (intruder mice always had ~2-3 g less than resident mice). The two mice were 

allowed to interact for 15min. Each intruder mouse was only used once. The interaction 

between the two mice was videotaped and scored manually with Ethovision for attack latency, 

frequency and duration.  

3.3.6. Stress procedure 

For the experiment on the effects of stress on CRTC1, male C57BL/6N mice of 3 and 6 weeks 

old were purchased (Charles River Laboratories) and group-housed. When mice reached the 

age of 5 weeks (adolescents) and 8 weeks (adults), they were submitted to a stress procedure. 

Mice underwent the first four days of the OSFS as previously described337, i.e. a 15 min forced-

swimming session during 4 consecutive days. 24h after the last swimming session, animals 

were sacrificed.  

 Molecular experiments 

3.4.1. Animal sacrifices and brain samples 

For the lithium experiments, animals were sacrificed two days after the last behavioral tests 

(at 81 days of age). Mice were sacrificed through cervical dislocation, decapitated and the 

brain was rapidly placed in a stainless steel adult mouse brain slicer matrix with 1 mm coronal 

section slice intervals. Six coronal slices were made from the second frontal slice channel of 

the matrix. Brain slices were placed on microscope slides and immediately frozen in dry ice, 

and then stored at -80°C. Medial PFC and dorsal HIP were collected with a micropunch (ø 1 

mm, Stoeltling, Wood Dale, IL, USA) in corresponding brain slices. PFC and hippocampus 

samples were kept at -80°C.  



52 
 
 

For the experiment on the effects of stress on CRTC1, adolescent and adult mice were 

sacrificed 24h after the last swimming session. For this experiment, the samples were 

obtained as follows: mice were sacrificed through cervical dislocation and decapitated. The 

brain was rapidly placed in a stainless steel adult mouse brain slicer matrix with 1 mm coronal 

section slice intervals. A first cut included the PFC from which the olfactory bulbs and 

associated structures were removed. Total hippocampi were unrolled from the cortex. All the 

structures were quickly frozen in dry ice and stored at -80°C until further processing. Half of 

each sample was used for RNA extraction and the other half for protein extraction.  

For the ELISA experiments, male WT and Crtc1‒/‒ mice were sacrificed at 8 weeks of age. Brain 

micropunches were obtained with a similar procedure as for the lithium experiment. 

Micropunches of the hippocampus and striatum were collected on the corresponding slices 

and stored at -80°C.   

For the qPCR experiment, male WT and Crtc1‒/‒ mice were sacrificed at 8 weeks of age. PFC 

and hippocampus samples were obtained using the same procedure as for the stress 

experiment.  

3.4.2. RNA extraction and RT-qPCR 

RNA was extracted and purified from the PFC and the hippocampus using the RNeasy Plus 

Minikit (Qiagen) according to manufacturers’ instructions. RNA concentrations were 

measured with the help of a NanoDrop Lite (Thermo Scientific, Wilmington, DE, USA). cDNA 

was obtained performing a 50μl reverse transcription reaction, using 100ng of RNA with 

Taqman RT Reagents and random hexamers (Applied Biosystems, Foster City, CA, USA). A 

10μl-mix containing 0.87μl of cDNA, 0.5μl of primers (F+R, 5μM each), 4.96μl of the SYBR 

Green PCR Master Mix (Applied Biosystems) and 3.67μl of water was added in each well of a 

96-well plate, where the amplification was conducted using an ABI PRISM 7500 real-time PCR 

system (Applied Biosystems). The following RT-qPCR program was used: 2min at 50°C, 10min 

at 95°C, 45 cycles of 15s at 95°C, and 1min at 60°C. PCR reactions were run followed by a 

dissociation reaction to determine specificity of the amplified product. Relative gene 

expression was then quantified with the ΔΔCT method339, using the housekeeping β-actin 

gene for normalization. All primers used for the various experiments, at a concentration of 

250nM, are presented in Table 3.1.  
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3.4.3. Cytokines ELISA 

Proteins were extracted from hippocampus and striatum. Samples were manually 

homogenized with a microtube pestle in RIPA buffer [50 mM Hepes (pH 7.6), 150 mM NaCl, 1 

mM EDTA (pH 7.5), 2.5 mM EGTA (pH 8.0), 10% Glycerol, 1% NP-40, 1% Deoxycholate, 0.1% 

SDS, with a protease inhibitor cocktail (Sigma, St-Louis, MO, USA), and extracted for 20 min at 

4°C. Protein quantification was done with the Pierce BCA Protein Assay Kit (Thermo Scientific). 

Samples were then measured for protein levels of the cytokines TNFα, IL-1β, IL-6 and IFN-γ 

using corresponding enzyme-liked immunosorbent assay (ELISA) kits (eBioscience, San Diego, 

CA, USA), according to manufacturer’s instructions. Cytokine concentrations were normalized 

over total protein levels.  

 

 

 

Gene Forward Sequence Reverse Sequence 

β-Actin 5’-GCTTCTTTGCAGCTCCTTCGT-3’ 5’-ATATCGTCATCCATGGCGAAC-3’ 

Bdnf total 5’-AAAACCATAAGGACGCGGACTT-3’ 5’-GAGGCTCCAAAGGCACTTGA-3’ 

Bdnf I 
Bdnf II 
Bdnf III 
Bdnf IV 
Bdnf V 

5’-AAGTCACACCAAGTGGTGGGC-3’ 
5’-AAGCCGGTGTCGCCCTTA-3’ 
5’-TTGGAGGGCTCCTGCTTCTC-3’ 
5’-GTAAGAGTCTAGAACCTTGGGGACC-3’ 
5’-TGGGGCAGACGAGAAAGCG-3’ 

 
 
5’-GGATGGTCATCACTCTTCTCACCT-3’ 
 

Cart 5’-TTCCTGCAATTCTTTCCTCTTGA-3’ 5’-GGGAATATGGGAACCGAAGGT-3’ 

Crtc1 5’-CAGGACTTGGGCCTGGAA-3’ 5’-AGACAGACAAGACCCTTTCTAAGCA-3’ 

Dnmt1 5’-CCATTGGCCTGGAGATTAAG-‘3 5’-GGCTCTGGGTGAGAGCACTA-‘3 

Dnmt3a 5’-GAGGGAACTGAGACCCAC-‘3 5’-CTGGAAGGTGAGTCTTGGCA-‘3 

Dnmt3b 5’-GCCCATGCAATGATCTCTCT-‘3 5’-CCAGAAGAATGGACGGTTGT-‘3 

Gad1 5’-CAGAAAACGCCCCCAGAAC-3’ 5’-CGGGAGACCAAGTTTCATTTCC-3’ 

Gad2 5’-AAAATCCCTGGCTTCATTGAG-3’ 5’-TTAGATCGGTATGCCAGGCG-3’ 

GR 5’-CGGTTTCAGAAGTGCCTAGC-3’ 5’-TTGCCTGGAACCTGGAATAG-3’ 

IDO 5’-GCCCTGGGTTGGAGATCATAC-3’ 5’-CATGCAGGGTAGAGTCATTCTC-3’ 

Npy 5’-TGCTTACTCTCTTTTCCCTTCC-‘3 5’-CATCAGACCTGGTGCTTCA-‘3 

Nr4a1 5’-CACAGGTCACCCTCGATTTTT-‘3 5’-ACCATCCAACGATCTCTCTCATC-‘3 

Nr4a2 5’-TCCGGCTTTTGGTCCTTCG-‘3 5’-ATGCCGCCCGTGAACTTTT-‘3 

Nr4a3 5’-TGGCTCGACTCCATTAAAGAC-3’ 5’-TGCATAGCTCCTCCACTCTCT-3’ 

Tet1 5’-GAGCCTGTTCCTCGATGTGG-‘3 5’-CAAACCCACCTGAGGCTGTT-‘3 

Table 3.1 : Table of primers used.   



54 
 
 

 Statistical analyses 

Statistical analyses were performed using the Statistica 8.0 Software (StatSoft Inc., Tulsa, OK, 

USA). All data are presented as mean ± SEM. P-values of p < 0.05 were considered as 

statistically significant. A Shapiro-Wilk test was first performed to assess data normality. All 

results were found to follow normal distribution; therefore parametric tests could be used.  

For the behavioral and molecular data of the lithium experiment, two-way ANOVAs (with 

genotype and treatment as independent variables) were performed, followed by a Fisher LSD 

post-hoc test. For the assessment of physiological effects of lithium treatment on mice, a two-

way ANOVA with repeated measures was performed, as the weight, and the food and liquids 

consumptions were repeatedly measured throughout the entirety of the protocol. A Fisher LSD 

post-hoc test was carried out afterwards. 

For the stress experiment, qPCR data were analyzed with a Student t-test, as only two groups 

were compared each time (stress vs. control).  

For the qPCR and ELISA experiments, a Student t-test was performed, as only two groups were 

compared each time (WT vs. Crtc1‒/‒).  

  



55 
 
 

4. RESULTS 

 Effects of lithium on Crtc1-/- mice 

Note: All the data presented in this section were obtained and analyzed by a master student, Sara 

Dias, under my direct supervision. Figures were reworked by myself.  

As presented in the introduction, Crtc1-/- mice present a certain amount of behavioral and 

molecular features of depressive but also bipolar disorders. As demonstrated by Breuillaud et 

al.337, and in section 2.1, Crtc1-/- mice have a blunted response to classical antidepressants. 

We were therefore interested in studying the behavioral and molecular response of Crtc1-/- 

mice to a chronic lithium treatment. Male WT and Crtc1-/- mice were thus exposed to an oral 

Figure 4.1: Physiological effects of lithium. (A) Cumulative weight difference. All groups of mice, except for 

lithium-treated Crtc1-/- mice, progressively gained weight throughout the procedure. Control WT mice 

displayed a slight weight loss on the last five days of treatment. Lithium-treated Crtc1-/- mice showed a 

significant weight loss during the five first days of treatment, but slowly regained weight afterwards, until 

reaching back to baseline after 20 days (+++p<0.001, vs. themselves on day 0). At the end of the procedure, they 

had gained significantly less weight than control Crtc1-/- mice (+p<0.05, vs. Crtc1-/- mice). (B) Cumulative food 

consumption. All groups of mice ate a similar amount of food throughout the procedure, except for lithium-

treated Crtc1-/- mice which ate slightly less food. At the end of the treatment, they had eaten less food than 

control Crtc1-/- mice (+p<0.05, vs. Crtc1-/- mice). (C) Cumulative water consumption. Control WT and Crtc1-/- 

mice drank a similar amount of water throughout the procedure. Both lithium-treated WT and Crtc1-/- mice 

drank significantly more water, starting from day 10 (***p<0.001, vs. WT mice) until the end of the treatment. 

(D) Cumulative saline consumption of lithium-treated WT and Crtc1-/- mice. Both groups drank a similar 

amount of saline solution during the entirety of the treatment.  
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2-week lithium treatment, followed by several behavioral tests, under continuous treatment 

(see 3.3.1). 

4.1.1. Physiological effects of lithium 

Through the entirety of the treatment, mice weight was regularly measured, as well as food, 

water and saline consumption (Figure 4.1). Measure of mice cumulative weight difference 

(Figure 4.1 A) revealed that both WT groups and untreated Crtc1-/- mice presented a normal 

progressive weight gain, apart from control WT group which showed a slight weight decrease 

in the last five days of the treatment. Lithium-treated Crtc1-/- mice significantly lost weight 

during the five first days of the treatment (-1.94 g, ### p<0.001). After that, mice progressively 

regained weight until the end of the treatment. However, they still presented a decreased 

weight as compared to control Crtc1-/- mice at the end of the experiment (-1.34g, +p<0.05).   

Cumulative food consumption (Figure 4.1 B) was significantly lower for Crtc1-/- mice 

throughout the experiment (+p<0.05), which correlated with their weight loss. Measure of 

cumulative water consumption (Figure 4.1 C) showed that both lithium-treated groups 

consumed significantly more water, after day 10 and until the end of the procedure, than the 

control groups (***p<0.001). Saline consumption (Figure 4.1 D) did not differ between the 

two lithium-treated groups.  

Figure 4.2: Effects of lithium on the behavioral despair of WT and Crtc1-/- mice. (A) Floating behavior in the 
FST. On both days of test, untreated Crtc1-/- mice displayed a significant increased immobility time (+++p<0.001, 
vs. WT mice). Lithium significantly decreased the immobility time of Crtc1-/- mice (##p<0.01, ###p<0.001, vs. 
Crtc1-/- mice), Lithium had no effect on the immobility time of WT mice. (B) Climbing behavior in the FST. No 
difference in the climbing time could be observed between the different groups. (C) Mobility and immobility 
in the TS. Both groups of Crtc1-/- mice displayed an increased mobility and a corresponding decreased 
immobility compared to WT mice (++p<0.01, vs. WT mice). Lithium had no effect on the mobile and immobile 
behavior of Crtc1-/- mice, while it significantly increased the mobility (and thus decreased the immobility) of 
WT mice (*p<0.05, vs. WT mice).  
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4.1.2. Behavioral effects of lithium 

4.1.2.1. Behavioral despair 

The behavioral effects of lithium were first assessed in the FST during two consecutive days. 

On day 1, untreated Crtc1-/- mice presented an increased immobility time compared to 

untreated WT mice (+23.7%, +++p<0.001) (Figure 4.2 A). Lithium significantly decreased the 

immobility time of Crtc1-/- mice (-21.9%, ###p<0.001). No effect of lithium could be seen on the 

behavioral despair of WT mice. On day 2, untreated Crtc1-/- mice spent again more time 

immobile than WT mice (+32.1%, +++p<0.001) and this immobility was once more reduced by 

lithium (-14.8%, #p<0.05). No effect of lithium could be observed on WT mice on day 2. 

Regarding climbing behavior (Figure 4.2 B), no effect of genotype or treatment could be 

observed on both days of test.  

WT and Crtc1-/- mice were next tested in the TS test (Figure 4.2 C). Lithium treatment 

significantly decreased the immobility time of WT mice (-11.7%, *p<0.05), with a 

corresponding increase in mobility time. Both groups of Crtc1-/- mice presented a lower 

immobility time (and a corresponding higher mobility time) (-13.8%, ++p<0.01) than WT mice.  

Altogether, these results showed that lithium was able to reduce the behavioral despair of 

Crtc1-/- mice in the FST, but not in the TS. Surprisingly, in the latter paradigm, Crtc1-/- mice 

presented a decreased behavioral despair as compared to WT mice.  

4.1.2.2. Social behavior 

The effects of lithium were then assessed in the social interaction test. A social preference 

ratio was calculated (see 3.3.4) in order to measure the preference of the experimental mice  
 

 

Figure 4.3: Effects of lithium in the social 
interaction test. The preference ratio is presented 
for both the time spent and the distance travelled 
in the mouse zone. No significant effect of 
genotype or treatment could be seen on the time 
parameter. Lithium has however a strong 
tendency to decrease the time spent in the mouse 
zone. Both lithium-treated WT and Crtc1-/- mice 
displayed a decreased preference ratio in the 
distance moved in the mouse zone (*p<0.05, vs. 
WT mice, #p<0.05, vs. Crtc1-/- mice).   
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for the unknown mouse without any influence of some initial zone preferences in the  

habituation phase (data not shown). This ratio is presented in Figure 4.3.  No significant effect 

of lithium could be seen on the time spent in the mouse zone. However, a strong tendency to 

a decreased time spent in this zone could be observed in the two lithium-treated groups. 

Regarding the distance travelled in the mouse zone, lithium significantly decreased this 

parameter in WT (*p<0.05) and Crtc1-/- mice (#p<0.05) compared to their respective control 

groups. These results suggest that lithium might have a negative effect on the social behavior 

of both WT and Crtc1-/- mice.   

4.1.2.3. Aggressive behavior 

The effects of lithium on aggressive behavior were finally assessed in the resident intruder 

test (Figure 4.4). Both control and lithium-treated Crtc1-/- mice presented an increased 

frequency of attack, as compared to WT mice (+13.4 attacks, ++p<0.01), with no effects of 

lithium on this parameter (Figure 4.4 A). Regarding attack duration, untreated Crtc1-/- mice 

attacked the intruder for a significant longer time than WT mice (+4.1%, +p<0.05). Lithium 

significantly reduced the attack duration of Crtc1-/- mice (-4.3%, #p<0.05), while showing no 

effect on the attacks duration of WT mice (Figure 4.4 B). Finally, both groups of Crtc1-/- mice 

presented a shorter latency to attack the intruder than WT mice (-99 s, ++p<0.01), and lithium 

 

Figure 4.4: Effects of lithium on the aggressive behavior of Crtc1-/- mice. (A) Frequency of attacks. Both groups 
of Crtc1-/- mice attacked more frequently the intruder than the WT mice (++p<0.01, vs. WT mice). Lithium had 
no effect on the frequency of attacks. (B) Duration of the attacks. Untreated Crtc1-/- mice attacked the intruder 
for a longer time than WT mice (+p<0.05, vs. WT mice). Lithium significantly decreased the attacks duration of 
Crtc1-/- mice (#p<0.05, vs. Crtc1-/- mice) but had no effects on WT mice. (C) Latency to the first attack. Both 
groups of Crtc1-/- mice attacked the intruder significantly earlier than WT mice (++p<0.01, vs. WT mice). Lithium 
had no effect on this parameter.  
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had no effect on this parameter (Figure 4.4 C). These results suggest that lithium is able to 

reduce the aggressiveness of Crtc1-/- mice by reducing the duration of the attacks, but has no 

effects on the frequency of the attacks or the latency to the first attack.  

4.1.3. Molecular effects of lithium 

After the behavioral assessments presented above, mice were sacrificed and gene expression 

analysis was performed in the hippocampus and PFC. The effects of lithium were assessed on 

several CREB-regulated genes that are presented below.  

4.1.3.1. Crtc1 

Crtc1 gene expression was measured in control and lithium-treated WT mice (Figure 4.5). No 

difference of Crtc1 levels could be observed, therefore suggesting that lithium did not 

interfere with Crtc1 gene regulation.  

4.1.3.2. Bdnf and BdnfIV 

The expression of Bdnf and its exon BdnfIV were next measured (Figure 4.6). In the 

hippocampus, no significant effect of genotype or treatment could be seen (Figure 4.6 A).  

However, lithium had a strong tendency to decrease Bdnf expression in WT mice, while having 

no effect on BdnfIV. Also, both groups of Crtc1-/- mice presented a non-significant decrease of 

Bdnf and BdnfIV expression compared to WT mice. In the PFC, control and lithium-treated 

Crtc1-/- mice presented significant lower levels of Bdnf and BdnfIV compared to WT mice 

(respectively -44%, ++p<0.01; -38%, +p<0.05) (Figure 4.6 B). In WT mice, lithium significantly 

reduced the expression of Bdnf (-32%, 

*p<0.05), but had no effect on BdnfIV 

expression. These results suggest that lithium 

decreased the expression of Bdnf in WT mice, 

but did not affect Bdnf expression in Crtc1-/- 

mice.  

4.1.3.3. Npy and Cart 

The metabolism-related genes neuropeptide 

Y (NPY) and the cocaine and amphetamine- 

Figure 4.5: Effects of lithium on Crtc1 expression. The 
expression of the Crtc1 gene was not influenced by 
lithium treatment in the hippocampus and PFC of WT 
mice.   
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regulated transcript (Cart) were then assessed, because of their involvement in mood 

disorders and their regulation by CREB340–342 (Figure 4.7). Npy was observed downregulated 

in control Crtc1-/- mice in both the hippocampus and PFC (respectively -41%, ++p<0.01; -42%, 

Figure 4.6: Effects of lithium on Bdnf and BdnfIV expression. (A)  Gene expression of Bdnf and BdnfIV in the 
hippocampus. No significant effect of genotype or treatment could be seen in this structure. Lithium however 
had a tendency to decrease Bdnf expression in WT mice, and both groups of Crtc1-/- mice presented apparent 
lower levels of Bdnf and BdnfIV. (B) Gene expression of Bdnf and BdnfIV in the PFC. Both groups of Crtc1-/- mice 
displayed lower levels of Bdnf and BdnfIV mRNA (+p<0.05, ++p<0.01, vs. WT mice) with no effect of lithium. In 
WT mice, lithium significantly decreased Bdnf expression in the PFC (*p<0.05, vs. WT mice) but had no effect 
on BdnfIV expression.  

Figure 4.7: Effects of lithium on Npy and Cart expression. (A)  Gene expression of Npy and Cart in the 
hippocampus. Both groups of Crtc1-/- mice presented a decreased expression of Npy (++p<0.05, vs. WT mice) 
with no effect of lithium. Lithium significantly increased Npy expression of WT mice (*p<0.05, vs. WT mice). 
Cart was downregulated in untreated Crtc1-/- mice (+p<0.05, vs. WT mice). Lithium had a non-significant 
tendency to decrease Cart expression in both WT and Crtc1-/- mice. (B) Gene expression of Npy  and Cart in the 
PFC. Untreated Crtc1-/- mice displayed decreased Npy expression (++p<0.01, vs. WT mice). Lithium had no effect 
on Npy expression in WT mice, but showed a non-significant tendency to increased Npy mRNA in Crtc1-/- mice. 
No difference of Cart expression could be seen between the different groups.  
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++p<0.01). Lithium significantly increased Npy expression in the hippocampus of WT mice 

(+51%, *p<0.05) but had no effect in the PFC (Figure 4.7 A and B). Lithium did not significantly 

affect Npy expression in Crtc1-/- mice, although it had a slight non-   significant tendency to 

increase Npy in the PFC.    

Regarding Cart expression, control Crtc1-/- mice presented lower Cart levels in the 

hippocampus, compared to WT mice (-52%, +p<0.05) (Figure 4.7 A). Lithium had no significant 

effects on Cart, but showed a strong tendency to decrease its expression in both genotypes. 

In the PFC, no genotype or treatment effects could be observed (Figure 4.7 B).  

These data show that both Npy and Cart are downregulated in Crtc1-/- mice. Lithium increased 

Npy expression in the hippocampus of WT mice but was apparently ineffective in Crtc1-/- mice. 

On the opposite, lithium seemed to downregulate Cart expression in both WT and Crtc1-/- 

mice.  

4.1.3.4. Nr4a1-3 

Finally, the effects of lithium on Nr4a1-3 were measured (Figure 4.8). In the hippocampus, 

lithium had no effect on Nr4a1 expression, and both control and lithium-treated Crtc1-/- mice 

 

 

 

 

Figure 4.8: Effects of lithium on Nr4a1-3 
expression. (A)  Gene expression of 
Nr4a1-3 in the hippocampus. Both 
untreated and lithium-treated Crtc1-/- 
mice displayed lower levels of Nr4a1 
expression (+p<0.05, vs. WT mice). 
Lithium had no effect on Nr4a1 
expression, but significantly increased 
Nr4a2 levels in WT mice (*p<0.05, vs. WT 
mice). Nr4a3 was downregulated in 
Crtc1-/- mice (+p<0.05, vs. WT mice), and 
lithium significantly decreased Nr4a3 
levels in both WT (*p<0.05, vs. WT mice) 
and Crtc1-/- mice (#p<0.05, vs. Crtc1-/- 
mice). (B) Gene expression of Nr4a1-3 in 
the PFC. Both groups of Crtc1-/- mice 
presented lower levels of Nr4a1 and 
Nr4a2 expression (+p<0.05, ++p<0.01, vs. 
WT mice). Lithium had no effect on any 
Nr4a mRNA levels in this structure.  
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presented lower Nr4a1 levels (-36%, +p<0.05) (Figure 4.8 A). Lithium strongly increased Nr4a2 

expression in WT mice (+116%, *p<0.05) but had no effect on Crtc1-/- mice. Lithium also 

significantly decreased the expression of Nr4a3 in both WT (-42%, *p<0.05) and Crtc1-/- mice 

(-30%, *p<0.05). Untreated Crtc1-/- mice also presented lower basal Nr4a3 levels (-41%, 

+p<0.05). In the PFC, lithium did not have any effects on the expression of the three Nr4as  

(Figure 4.8 B). Both groups of Crtc1-/- mice exhibited lower levels of Nr4a1 (-53%, +p<0.05) and 

Nr4a2 (-64%, ++p<0.01) as compared to control WT mice. These results confirmed the 

previously observed Nr4as downregulations observed in Crtc1-/- mice. Lithium also seemed to 

have differential effects on Nr4a2 and Nr4a3 in both genotypes.   

 Effects of stress on Crtc1 and Bdnf expression in adult and 

adolescent mice 

To further investigate the role of CRTC1 in mood disorders etiology, we were interested in 

studying the regulation of Crtc1 gene in response to stress. We also investigated the effect of 

Figure 4.9: Effects of stress on Crtc1, Bdnf and GR expression in adult and adolescent mice. (A) Hippocampus 
of adult mice. No effect of stress could be seen on Crtc1 and GR expression, while it induced a significant 
increase in Bdnf expression (***p<0.001, vs. control mice). (B) PFC of adult mice. Stress had no effect on the 
expression of Crtc1, Bdnf or GR. (C) Hippocampus of adolescent mice. Stress had no effect on Crtc1 mRNA 
levels, but significantly upregulated the expression of Bdnf and GR (*p<0.05, vs. control mice). (D) PFC of 
adolescent mice. Stress had no influence on Crtc1, Bdnf and GR gene expression.  
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stress on Bdnf and its different exons, as well as the regulation of the glucocorticoid receptor 

gene (GR). We were also interested in knowing if the regulation of these various genes might 

be different depending on the brain development. In this pilot study, male adult and 

adolescent WT mice underwent 4 consecutive days of swimming sessions, corresponding to 

the first part of the OSFS protocol. Gene expression analysis was performed afterwards in the 

hippocampus and prefrontal cortex.  

4.2.1.1. Effects of stress on Crtc1, Bdnf and GR expression 

We first assessed the effects of the stress procedure on the expression of Crtc1, Bdnf and GR 

(Figure 4.9). A significant increase of Bdnf expression was observed in the hippocampus of 

adult stressed mice (+43%, ***p<0.001), while Crtc1 and GR levels were unchanged (Figure 

4.9 A). Stress did not affect Crtc1, Bdnf or GR expression in the PFC of adult mice. In juvenile 

animals, stress increased the expression of Bdnf (+21%, *p<0.05) and GR (+27%, *p<0.05) in 

the hippocampus, but had no effect on Crtc1 levels (Figure 4.9 C). In the PFC, Crtc1, Bdnf or 

GR expression was unchanged (Figure 4.9 D). These results suggest that the stress protocol 

Figure 4.10: Effects of stress on the BdnfI-V exons. (A) Hippocampus of adult mice. Stress significantly 
upregulated the exons II and V of Bdnf (*p<0.05, vs. WT mice) and had no effect on the other exons. (B) PFC of 
adult mice. Stress didn’t affect any Bdnf exon. (C) Hippocampus of adolescent mice. Stress significantly 
upregulated exons III and IV of Bdnf (**p<0.01, *p<0.05, vs. WT mice) and had no effect on the other exons.  
(D) PFC of adolescent mice. No Bdnf exon was affected by stress in this structure.  
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used had no influence on Crtc1 gene regulation, but induced an increase in Bdnf expression in 

both adult and adolescent mice.  Stress also induced the expression of GR, but only in juvenile 

animals.  

4.2.1.2. Effects of stress on BdnfI-V exons 

The effects of stress in the different Bdnf exons I to V were measured to better understand 

the stress-induced increase in total Bdnf (Figure 4.10). In adult mice, stress upregulated BdnfII 

and BdnfV in the hippocampus by stress (respectively +31%, *p<0.05; +27%, *p<0.05), while 

the expression of the other exons was unchanged (Figure 4.10 A). In the PFC, stress had no 

significant effect on the different Bdnf exons could be observed (Figure 4.10 B). In adolescent 

mice, BdnfIII and BdnfIV were upregulated by stress in the hippocampus (respectively +84%, 

**p<0.01; +25%, *p<0.05), with no other changes observed (Figure 4.10 C). In the PFCstress 

did not have any effect on the various Bdnf exons (Figure 4.10 D). These data suggest that the 

stress-induced total Bdnf upregulation is due to a differential regulation of its various exons, 

depending on the development stage of the animal.  

 Future investigation lines in Crtc1-/- mice 

Because of the pleiotropy of CREB, and possibly of CRTC1, and because of the numerous 

behavioral alterations observed in Crtc1-/- mice as well as the fact that these latter are 

complete knock-out animals, we hypothesize that many physiological processes might be 

altered in these mice. Furthermore, each of these processes might participate in the 

establishment of their mood disorder-like phenotype, as these diseases are multifactorial. We 

therefore performed several pilot studies, investigating different physiological systems of 

these mice, in order to determine several investigation lines for future studies in these mice.  

4.3.1. Epigenetic system of Crtc1-/- mice 

Because of the involvement of epigenetic mechanisms in stress response and in mood 

disorders, we were interested in studying possible alterations of the expression of epigenetic 

enzymes in Crtc1-/- mice. As observed in our article presented in section 2.1, we observed no 
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major difference in Hdacs expression in Crtc1-/- mice. In this study we performed gene 

expression analysis of the different DNA methyltransferases (Dnmts) and of the tet-

methylcytosine-dioxygenase (Tet1) (Figure 4.11).  

The expression of Dnmt1, Dnmt3a and Dnmt3b was assessed in the hippocampus and PFC of 

WT and Crtc1-/- mice. In the hippocampus, we observed no difference in expression levels of 

Dnmt1, but Dnmt3a and Dnmt3b were upregulated in Crtc1-/- mice (respectively +16%, 

*p<0.05; +31%, *p<0.05) (Figure 4.11 A). Similar observations were made in the PFC, where 

Dnmt1 expression was unchanged, while Dnmt3a and Dnmt3b expression were increased in 

Crtc1-/- mice (respectively +17%, **p<0.001; +24%, *p<0.05) (Figure 4.11 B). Regarding Tet1 

expression, Crtc1-/- mice displayed higher levels of Tet1 mRNA than WT mice in the 

hippocampus (+43%, *p<0.05). Tet1 expression in the PFC was similar in both groups (Figure 

4.11 C). These results suggest a possible alteration of epigenetic regulation in Crtc1-/- mice, 

particularly concerning DNA methylation.  

 

 

 

Figure 4.11: Expression of Dnmts and Tet1 in WT and Crtc1-/- 
mice. (A) Dnmts expression in the hippocampus. Dnmt3a and 
Dnmt3b were observed to be upregulated in Crtc1-/- mice 
(*p<0.05, vs. WT mice), while Dnmt1 expression was 
unchanged. (B) Dnmts expression in the PFC. Dnmt1 mRNA 
levels were similar in both groups, while Dnmt3a and Dnmt3b 
expression was higher in Crtc1-/- mice (*p<0.05, **p<0.01, vs. 
WT mice). (C) Tet1 expression in the hippocampus and PFC. 
Tet1 was upregulated in the hippocampus of Crtc1-/- mice 
(*p<0.05, vs. WT mice). Tet1 expression was unchanged in 
the PFC.  
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4.3.2. GABAergic system 

Dysregulation of the two isoforms of the glutamate decarboxylase (GAD), GAD67 and GAD65, 

which catalyze the decarboxylation of glutamate into GABA, have been associated with several 

psychiatric disorders. Dysregulation of GAD67 has been particularly associated with BD343,344. 

To determine whether Crtc1-/- mice might have similar alterations of the GABAergic system, 

we measured the expression of Gad1 and Gad2 (respectively encoding for GAD67 and GAD65) 

in the hippocampus and PFC of WT and Crtc1-/- mice (Figure 4.12). 

In the hippocampus, we observed no difference of Gad1 expression, whereas Gad2 was 

downregulated in Crtc1-/- mice (-18%, *p<0.05) (Figure 4.12 A). In the PFC, both Gad1 and 

Gad2 were downregulated in Crtc1-/- mice (respectively -12%, *p<0.05, -10%, *p<0.05) (Figure 

4.11 B). This suggests that Crtc1-/- mice might present impairments of their GABAergic system.   

4.3.3. Inflammatory system 

Several recent findings have highlighted the role of the immune inflammatory system in mood 

disorders. Several pro-inflammatory cytokines have been found to be involved in MDD 

etiology, but also in synaptic plasticity regulation345,346. The tryptophan-degrading enzyme 

indoleamine-2,3- dioxygenase (IDO) has been found to be a key enzyme for the development 

of depressive symptoms induced by pro-inflammatory cytokines347. Here, we measured the 

levels of several cytokines, as well as IDO gene expression in WT and Crtc1-/- mice, in order to 

investigate whether these latter might present alterations of their inflammatory system.    

Figure 4.12: Expression of Gad1 and Gad2 in WT and Crtc1-/- mice. (A) Gad1 and Gad2 expression in the 
hippocampus. Gad1 expression was similar in both groups of mice, while Gad2 was downregulated in Crtc1-/- 
mice (*p<0.05, vs. WT mice). (B) Gad1 and Gad2 expression in the PFC. Both Gad1 and Gad2 were 
downregulated in the PFC of Crtc1-/- mice (*py0.05, vs. WT mice).  
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4.3.3.1. Cytokines measurements 

Hippocampus and striatum concentration of the pro-inflammatory cytokines TNFα, 

interleukine-1β (IL-1β), interleukine-6 (IL-6) and interferon γ (IFNγ) were measured by ELISA 

assay in male WT and Crtc1-/- mice (Figure 4.13). In the hippocampus, Crtc1-/- mice presented 

lower levels of TNFα (-15%, *p<0.05), IL-1β (-14%, *p<0.05) and IL-6 (-22%, *p<0.05) (Figure 

4.13 A). In the striatum, Crtc1-/- mice displayed lower levels of IL-1β (-12%, *p<0.05) and TNFγ 

(-26%, *p<0.05) than WT mice (Figure 4.13 B). No difference in levels of TNFα and Il-6 were 

observed.  

4.3.3.2. IDO gene expression 

Gene expression of IDO was assessed in the 

hippocampus and PFC of male WT and Crtc1-/- mice 

(Figure 4.14). IDO was upregulated in the 

hippocampus of Crtc1-/- mice (+32%, *p<0.05). No 

difference of IDO expression between the two 

genotypes was observed in the PFC.  

Altogether, these preliminary data suggest a possible 

alteration of the inflammatory system of Crtc1-/- mice, 

as they display lower levels of several cytokines, as 

well as an increased expression of IDO.  

Figure 4.13: Cytokines measurements in WT and Crtc1-/- mice. (A) Cytokines concentrations in the 
hippocampus. Crtc1-/- mice displayed decreased levels of the cytokines TNFα, IL-1β and IL-6 in this structure 
(*p<0.05, vs. WT mice). IFNγ levels were unchanged. (B) Cytokines concentration in the striatum. Similar levels 
of TNFα and IL-6 were observed, while Crtc1-/- mice presented lower concentrations of IL-1β and IFNγ than WT 
mice (*p<0.05, vs. WT).  

Figure 4.14: Expression of IDO in WT and 
Crtc1-/- mice. In the hippocampus, Crtc1-/- 
mice displayed an upregulation of IDO mRNA 
(*p<0.05, vs. WT mice). IDO levels in the PFC 
were similar in both genotypes.  
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5. DISCUSSION 

The principal aim of the present thesis was to provide a further and deeper characterization 

of the role of CRTC1 in the pathophysiology of mood disorders. More specifically, the 

importance of CRTC1 in CREB-related gene regulation was particularly investigated in order to 

unravel the importance of such regulation in the etiology of mood disorders. Targeted 

characterization of behavioral and molecular response of Crtc1-/- mice to several drug 

treatments was used and has allowed us to identify several etiologic and therapeutic 

mechanisms in which CRTC1 plays a critical role.  

 The effects of desipramine and SAHA on Crtc1-/- mice 

As previously demonstrated by our group, Crtc1-/- mice present a blunted response to the 

classical antidepressant fluoxetine337. While the behavioral and molecular phenotype 

characterization of Crtc1-/- mice highlighted a role for CRTC1 in mood disorder etiology, this 

particular feature also suggested its involvement in the therapeutic response to 

antidepressants. We further investigated this finding by first assessing the effect of another 

classical antidepressive drug, the tricyclic antidepressant desipramine (article presented in 

section 2.1).  

As for fluoxetine, Crtc1-/- mice were resistant to the effects of desipramine in the OSFS 

protocol, but responded to this antidepressant in the NIH paradigm. These results suggest that 

for both serotoninergic- and adrenergic-targeting drugs, CRTC1 is required for a proper 

behavioral response to their antidepressant effects. On the other hand, CRTC1 is not required 

for the anxiolytic effects of these two drugs in the NIH test, or it could suggest that these 

effects are not solely mediated by CRTC1-dependant pathways.  

Gene expression analysis of Bdnf and Nr4as allowed us to better characterize the molecular 

mechanisms underlying the behavioral response of Crtc1-/- mice to desipramine. Indeed, this 

treatment induced an increased expression of Bdnf, its exon IV, Nr4a1 and Nr4a2 in WT mice, 

but failed to do so in Crtc1-/- mice. These interesting results imply that CRTC1 is required for 

the desipramine-induced expression of these genes, and that such induction might be 

regulating the behavioral response. In the light of these results, we hypothesized that the 

restoration of the expression of the above-cited genes might potentially rescue the phenotype 

of Crtc1-/- mice.  
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We therefore decided to assess the effects of the HDAC inhibitor SAHA in Crtc1-/- mice. This 

treatment was chosen because of the strong involvement of epigenetic mechanisms in mood 

disorders348, and because HDAC inhibitors have been shown to induce Bdnf and Nr4as 

expression116,143,349, as well as to regulate several patterns of genes similarly as 

antidepressants142,350. Behavioral experiments showed that Crtc1-/- mice responded to SAHA 

in the OSFS protocol, as their immobility was progressively decreased by the treatment. 

However, they never reached back the level of WT mice, thus suggesting only a partial effect 

of SAHA. In the NIH paradigm however, SAHA seemed inefficient on mutant animals, yet WT 

animals presented an abnormally high anxious behavior in this test, thus these results should 

be interpreted cautiously. Gene expression analysis revealed that SAHA was able to restore 

normal Bdnf and BdnfIV expression in the PFC of Crtc1-/- mice, but was unable to restore Nr4as 

expression in these animals.    

The partial antidepressant effect of SAHA on Crtc1-/- mice might be explained by its ability to 

restore normal Bdnf levels in the PFC. Indeed, Bdnf expression and levels, particularly in the 

PFC, have been negatively correlated with immobility time in the FST351,352, thus suggesting a 

key role in behavioral despair regulation.  We could therefore hypothesize that SAHA was able 

to reduce Crtc1-/- mice immobility in the OSFS through its restoration of normal Bdnf levels in 

these animals. However, SAHA could not restore normal Nr4a1-3 levels in mutant animals, 

while it strongly upregulated all Nr4as in WT mice. This corroborates previous findings 

showing that HDAC inhibitors could increase Nr4a1-3 expression, via CREB-CBP, a crucial 

mechanism for memory consolidation. The present results suggest that CRTC1 is also required 

for HDAC-induced Nr4a1-3 upregulation (which makes sense, as CRTC1 helps recruiting CBP). 

This would be in line with the recent findings about the involvement of CRTC1 in cognitive 

behaviors and in spatial memory244,353.  

The inability of SAHA to induce Nr4a1-3 expression in Crtc1-/- mice might be a cause of their 

incomplete behavioral response to this drug in the OSFS. Indeed, as previously explained, 

Nr4as have been tightly associated with mood disorders and Bdnf regulation114,125. There has 

been however very few studies about the possible regulation of behavioral despair by Nr4as. 

One study shows a negative correlation between floating behavior and Nr4a3 levels in the 

amygdala, suggesting a possible regulation of this behavior by these genes354.  Therefore, the 

lack of Nr4a1-3 induction by SAHA in Crtc1-/- mice might be a possible reason for their 
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incomplete behavioral response. Another possibility could be an abolished Nr4as-induced 

Bdnf expression. Indeed, Nr4a2 is known to regulate Bdnf expression, and it can also 

specifically bind its promoter IV,  a mechanism involved in neuroprotection355. One could 

therefore imagine that in the absence of SAHA-induced Nr4as upregulation, an additional Bdnf 

increase is abolished, thus preventing total behavioral response. Therefore, reversal of 

behavioral despair would be the results of several CRTC1-dependent and independent 

pathways converging to an overall increase of Bdnf expression.  

It is nevertheless quite obvious that Bdnf and Nr4as are not the only genes involved in 

behavioral response to antidepressants. It is indeed more plausible that several different 

pathways and molecules regulate this complex behavior. Furthermore, differential regulation 

of such pathways could occur depending on the brain structure. Indeed, we mainly focused 

here on the hippocampus and PFC as these are the main structures involved in mood 

disorders, but it would be interesting to study other regions. As explained above, Nr4a3 

regulation in the amygdala contributes to behavioral despair. Moreover, BDNF and CREB have 

pro-depressive effects when upregulated in the NAc. Regarding this statement, a very recent 

study has demonstrated that BDNF antidepressant effects greatly depended on TrkB levels in 

different cell types in the NAc, and that BDNF-TrkB effects were not always mediated by 

CREB356. The blunted or incomplete response of Crtc1-/- mice to the various treatments 

presented above could also be caused by many other features than a dysregulation of Bdnf or 

Nr4as.  

One of them could be the fact that these animals are complete knock-out animals. Indeed, 

CREB, BDNF and CRTC1 are all involved in processes such as neuronal growth, and CREB has 

been known for a long time to be involved in brain development, neuronal differentiation, as 

well as neurogenesis in adults357–359. Hence, complete CRTC1 deletion could have a great 

impact on brain development and thus, some endophenotypes of Crtc1-/- mice could be due 

not only to a direct effect of the lack of CRTC1 (i.e. genes dysregulation), but also to the results 

of an altered development. Consequently, it is then possible that some behavioral and 

molecular features of these mice are only partially reversible, and even irreversible.  

In the SAHA experiment, we also observed a peculiar result concerning Bdnf expression in 

Crtc1-/- mice. Indeed, we observed an upregulation of Bdnf in the hippocampus of mutant 

mice, instead of the usual downregulation displayed by these animals. Our hypothesis is that 
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the daily injections applied during several weeks have provoked a considerable stress on these 

animals, and thus has led to an abnormal stress-induced Bdnf regulation.  We investigated this 

hypothesis in a pilot experiment that will be discussed in a future section (see 5.4).   

To summarize, our findings have shown that CRTC1 is necessary for a proper behavioral and 

molecular response to classical antidepressants, probably because of its requirement for the 

induction of Bdnf and Nr4as expression. By acting on the epigenome of these mice, we were 

able to partially restore normal behavioral despair in these mice, paralleled by Bdnf levels 

restoration in the PFC. Complete gene expression rescue was however not possible and 

suggests the involvement of other mechanisms. To further characterize the importance of 

CRTC1 in the response to antidepressants, a region-specific rescue of Crtc1 should be done. 

Indeed, by restoring Crtc1 expression in Crtc1-/- mice in a specific area, we would be able to 

determine in which region(s) CRTC1 is mainly required for a normal behavior as well as for 

proper response to antidepressants. Furthermore, this experiment could also be performed 

at several developmental stages, and thus would help to determine the importance of CRTC1 

expression in brain development, and its consequences in adulthood.   

 The agmatinergic system of Crtc1-/- mice  

Our second article, presented in section 2.2, aimed at characterizing the involvement of the 

agmatinergic system in the depressive-like phenotype of Crtc1-/- mice. Genome-wide 

microarray analysis performed in the motor cortex of female mice revealed a considerable 

increase of Agm mRNA in Crtc1-/- animals. This upregulation was confirmed at both gene and 

protein levels specifically in the PFC and was also observed in the hippocampus, in both male 

and female mutant mice. Characterization and counting of Agm-expressing cells showed that 

mutant mice exhibited an increased number of such cells, and that these were mainly, but not 

only, interneurons. Agm was mainly co-localized with parvalbumin (PV)- and somatostatin 

(Sst)- interneurons, with very few colocalization with calretinin (CR)-interneurons.  

The fact that Crtc1-/- mice presented increased levels of Agm led us to hypothesize that they 

might have decreased levels of agmatine, as well as an overall dysregulated agmatinergic 

system. This is in line with the current knowledge that agmatine has strong neuroprotective 

and antidepressant effects. We therefore assumed that this agmatine impairment might be 

contributing to their depressive-like phenotype, and that by acting on this system, we might 
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be able to restore a normal phenotype. Male and female WT and Crtc1-/- mice were thus 

acutely treated with agmatine and tested in the FST. We found that agmatine was able to 

reverse the increased behavioral despair displayed by Crtc1-/- mice in this paradigm. These 

results strongly suggest that the impaired agmatinergic system of CRTC1-deficient animals 

contributes to their phenotype. In a final experiment, we were interested in investigating the 

molecular mechanisms underlying the fast-acting antidepressant effects of agmatine. Because 

of its rapid effect (30 min) and its ability to block NMDAR, we hypothesized that it might act 

in a similar way as ketamine. We therefore measured peEF2 and BDNF protein levels, and 

indeed observed that agmatine induced a dephosphorylation of eEF2 in the PFC of WT mice, 

but not in Crtc1-/- mice. Interestingly, agmatine also induced an increase in BDNF translation 

in the PFC, but only in female WT mice. It had no effect on BDNF levels in male WT mice and 

in mutant animals. These latter also displayed lower basal levels of both BDNF and peEF2.  

This study highlighted for the first time a link between the CREB-CRTC1 pathway and the 

agmatinergic system. As Crtc1-/- mice present a strong increase in Agm levels and Agm-

expressing cells, it suggests that CREB-CRTC1 might be able to impact on agmatine turnover. 

It is possible that Agm gene expression is directly regulated by this pathway, as well as possibly 

the other enzymes involved in agmatine regulation. But it could also be the result of an indirect 

effect of CRTC1 deletion. Indeed, we have shown that Agm-expressing cells were present in 

higher number in Crtc1-/- mice, and that these cells were mainly interneurons. It could thus be 

possible that the CREB-CRTC1 pathway is involved in the generation and differentiation of 

such neurons, and hence, that the lack of CRTC1 might impair the development of these cells, 

therefore being present in an increased number. The higher levels of Agm observed in these 

mice would then be a consequence of a dysregulation of GABAergic interneurons 

development.   

This would be possible because, as explained above, Crtc1-/- mice are complete knock-out 

animals and thus, CRTC1 deficiency during brain development might affect the overall 

neuronal circuitry. Furthermore, there has been evidence of the involvement of CREB, but also 

BDNF in the development of GABAergic interneurons in several regions of the brain360–363. To 

investigate a possible impairment of this system, a complete characterization of the various 

GABAergic interneuron subpopulations should be performed in Crtc1-/- mice. This has led us 
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to perform a pilot study in that direction, which will be discussed in a later section (see section 

5.5.2).  

We hypothesized that the increased Agm levels observed in Crtc1-/- mice might lead to 

decreased agmatine levels. This hypothesis is also supported by the fact that acute agmatine 

injections could rescue their depressive-like phenotype, by compensating this agmatine 

decrease. However, precise agmatine measurements in the brain should be performed in male 

and female Crtc1-/- mice, in order to confirm this hypothesis. In addition, measurement of 

levels of the other enzymes involved in agmatine metabolism (e.g. ADC) should be performed, 

in order to fully characterize the agmatinergic system of Crtc1-/- mice. 

Investigation of the molecular mechanisms underlying the antidepressant effects of agmatine 

revealed that it might be a fast-acting antidepressant, through NMDAR inhibition.  Indeed, we 

have showed that agmatine was able to induce the activation of the mTOR pathway, as 

highlighted by dephosphorylation of eEF2. This was paralleled by an increase in BDNF 

translation, and this precise mechanism has been shown to be critical for ketamine and other 

NMDAR antagonists antidepressant effect276,289. In addition, these effects were only seen in 

the PFC, which is in line with a recent study showing that ketamine’s effects were mediated 

by the infralimbic PFC300.  

However, the effects of agmatine on BDNF and eEF2 were only present in WT animal, and the 

effects on BDNF were only observed in females, thus suggesting other mechanisms mediating 

the behavioral response to agmatine.  Furthermore, Crtc1‒/‒ mice interestingly displayed basal 

lower levels of phospho-eEF2, which suggests a dysregulation of this pathway in these 

animals. Yet it is also possible that agmatine fails to induce visible BDNF increase in Crtc1‒/‒ 

mice, since these animals present decreased basal BDNF mRNA and protein levels. Decreased 

eEF2 phosphorylation might then be a possible compensatory mechanism in an attempt to 

maximize protein translation. Also, the differential regulation of BDNF in WT male and female 

mice is interesting, but its reasons remain unclear. Yet, it has already been observed that BDNF 

has different effects in male and female mice, and Bdnf heterozygous mice have different 

phenotype depending on the gender364,365. Moreover, there has been compelling evidence 

that BDNF, as well as other neuroplasticity mediators, can be regulated by female hormones, 

such as estradiol and progesterone, and by the estrus cycle366–372.  
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Nevertheless, activation of eEF2-dependent translation by agmatine is apparently not 

necessary for its behavioral effect, as the latter was present in both genotypes and both 

genders. This implies that other pathways influencing behavior can be activated by agmatine. 

This is in line with the fact that antidepressant effects of agmatine require the activation of 

several of its targets, as explained in the introduction183,186–188.    

While we have provided evidence that the agmatinergic system is involved in the depressive-

like phenotype of Crtc1-/- mice, it is however not yet possible to precisely determine what this 

contribution is. As explained before, agmatine can act on many systems; therefore, 

dysregulation of agmatinergic signaling could have a severe general impact. Indeed, agmatine 

also activates imidazoline and α2-adrenergic receptors, which have been both involved in 

mood disorders. Imidazoline receptor I2 ligands can inhibit monoamine oxidase A (MAO-A), 

thus regulating monoamines levels, and also produce antidepressant effects on rats in the 

FST189,190. The tricyclic antidepressant imipramine has also been shown to regulate imidazoline 

binding sites upon chronic treatment191,192, and this class of antidepressants also regulates α2-

adrenergic receptors193,195. These examples provide evidence that a dysregulation of 

agmatinergic pathways may impact several mood-associated processes, which could all 

contribute to the depressive-like phenotype of Crtc1‒/‒ mice. Moreover, dysregulation of 

agmatine levels might equally affect arginine availability. This would then impact other 

arginine-dependent pathways, such as NO synthesis and urea cycle, therefore causing 

important physiological effects. All in all, these observations strengthen the fact that agmatine 

dysregulation contributes to the phenotype of Crtc1‒/‒ mice; however, the specific pathways 

involved remain unknown yet. 

Finally, although we have demonstrated a link between the CREB-CRTC1 pathway and the 

agmatinergic system, it is however not known how these two systems are connected. Indeed, 

CRTC1 deficiency leads to agmatinergic dysregulation, but the mechanisms underlying this 

direct or indirect consequence are not known. A direct mechanism would be the regulation of 

the expression of Agm, and possibly other enzymes of the agmatinergic system (e.g. ADC) by 

CREB and CRTC1. Therefore, it should be investigated whether the transcription of these genes 

is directly regulated by CREB and CRTC1, either by bioinformatics analysis or in vitro assay. A 

more indirect mechanism could be a developmental effect of CRTC1 deletion that would have 

affected for instance their GABAergic circuitry (and possibly other systems), which would then 
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lead to impaired agmatinergic signaling. These various hypotheses should thus be investigated 

in order to better understand how CREB-CRTC1-regulated transcription could affect the 

agmatinergic system.  

 The effects of lithium on Crtc1-/- mice  

We have demonstrated that Crtc1‒/‒ mice present a blunted response to classical 

antidepressants, thus suggesting the involvement of CRTC1 in such response. Since mutant 

animals present a behavioral phenotype that can be related to both MDD and BD, we were 

then logically interested in studying the response of Crtc1‒/‒ mice to a mood stabilizing 

treatment. Consequently, we decided to treat Crtc1‒/‒ mice with lithium, as this agent is the 

most used and most efficient treatment for BD, and targets several signaling pathways (see 

1.4.2). Of particular interest for this study, lithium has also been shown to directly act on 

CRTC1-CREB association240–242. In order to investigate the importance of this effect in lithium 

action, we chronically treated male WT and Crtc1‒/‒ mice, and then assessed the effects of this 

treatment on their behavioral and molecular phenotype.  

5.3.1.  Physiological effects of lithium 

WT and Crtc1‒/‒ mice were chronically treated with lithium-enriched food, a protocol that we 

chose because of its proved ability to reach and maintain blood lithium levels within the 

human therapeutic range (0.4-1.2 mM)338. Yet, this study also stated that prolonged lithium 

treatment could cause electrolyte imbalance, hence the proposition to provide a bottle of 

saline solution to treated mice. We thus also chose to monitor the physiological effects of 

lithium through the entirety of the experiment, in order to investigate possible harmful effects 

of the treatment.  

Weight and food consumption measurements showed us that both WT groups and control 

Crtc1‒/‒ mice presented a normal weight evolution, and consumed similar amount of food. 

However, lithium-treated Crtc1‒/‒ mice displayed a weight decrease in the first five days of the 

treatment, which was paralleled by a decrease in food consumption. This decrease cannot be 

explained by a possible aversive taste of the food, as treated WT mice presented a normal 

food intake. But we had previously demonstrated that Crtc1‒/‒ mice seem to present 

neophobia (for example in the Open-field test)337. Therefore, the decrease in food 

consumption observed in mutant mice treated with lithium would rather be due to the 



76 
 
 

presence of a novel type of food. This explanation is supported by the fact that after these 

first days, Crtc1‒/‒ mice started to consume food in a normal amount. This initial difference of 

food consumption probably had no effect on the experiments afterwards, as weight gain and 

food intake evolved normally after the first days, over a period of 4 weeks.  

Water consumption monitoring showed that both WT and Crtc1‒/‒ mice treated with lithium 

progressively drank a much higher amount of water than control groups, thus resulting in 

polyuria. This feature is one of the core symptoms of a condition known as diabetes insipidus, 

one of the principal side effects of lithium373. Lithium enters cells of the renal collecting duct 

through epithelium Na+ channels (ENaC). It then accumulates in the cytoplasm, until reaching 

sufficient concentration to inhibit its target molecules, including GSK-3. This latter controls the 

regulation of aquaporin channels, regulating water reabsorption. Upon GSK-3 inhibition by 

lithium, aquaporins are downregulated, thus decreasing water reabsorption. This leads to 

polyuria and a consequent increased water consumption. Furthermore, ENaC subunits are 

also downregulated, which then results in decreased Na+ reabsorption (natriuresis), hence the 

need of the additional saline bottle, to counteract this Na+ loss. Saline consumption 

measurement showed that both treated WT and Crtc1‒/‒ mice drank similar amount of saline 

solution throughout the treatment, thus probably compensating for Na+ loss.  

In summary, the only harmful effect of lithium treatment that we could observe was the 

development of diabetes insipidus. This suggests that treated mice might present electrolytes 

imbalance, even if the saline bottle helped compensating this. Although treated animals 

seemed healthy until the end of the experiment, one must keep in mind that these animals 

presented a condition that could interfere with the behavioral and molecular assessments. 

There have been few studies about the effects of diabetes insipidus  on rodent behavior, but 

the ones existing suggest a possible decrease in cognitive function374–377. Therefore, 

behavioral analysis should be interpreted carefully, as a deleterious effect of this condition 

cannot be excluded.  

5.3.2. Behavioral effects of lithium 

We investigated the effects of lithium on several aspects of the behavioral phenotype of Crtc1‒

/‒ mice. The first behavior that we measured was the behavioral despair, in the FST and TS 

paradigms. In the FST, we observed again the characteristic behavioral despair of Crtc1‒/‒ 
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mice, as reflected by their increased immobility levels on both days of test. Interestingly, 

lithium significantly reduced the floating behavior of Crtc1‒/‒ mice on both days. This results 

shows that lithium is effective in knock-out animals in this test, thus suggesting that lithium 

effects on behavioral despair do not require the CREB-CRTC1 association. Surprisingly, we did 

not observe any antidepressant effect of lithium on WT mice, although a slight tendency to 

decrease immobility could be seen on day 2. The reasons of this lack of effect are unclear, as 

lithium has been shown to be effective in WT mice378. Yet, behavioral effects of lithium seem 

to be highly dependent on its plasmatic concentration379. Plasmatic lithium levels 

measurements in parallel to behavioral assessment should be performed to investigate this 

hypothesis.  

In the TS paradigm, both groups of Crtc1‒/‒ mice interestingly presented lower levels of 

immobility than WT mice, with no effect of lithium on this parameter, while in WT mice, it 

significantly decreased their immobility time. Since mutant animals presented increased 

behavioral despair in the FST, one could expect the same in the TS. However, in our previous 

study, we already observed no difference in immobility levels in the TS, rather even a slight 

tendency to decreased behavioral despair337. Here, both treated and untreated Crtc1‒/‒ mice 

displayed a significant decreased immobility. Interestingly, CREB knock-out mice similarly 

behave in the TS, which is explained by a possible overactivation of stress response, inducing 

overactivation of escaping behavior229. However, these CREB mutant mice present a general 

antidepressant phenotype in several other paradigms, which is not the case of Crtc1‒/‒ mice. 

Of particular interest for these results, Shank3 mutant mice, which are a model of manic-like 

behavior, display a similar behavior in the TS, with no effect of lithium380. This is in line with 

the fact that Crtc1‒/‒ mice present phenotypes of both MDD and BD. Thus, the behavior 

displayed by Crtc1‒/‒ mice in the TS might be the manifestation of manic-like behavior. The 

fact that lithium was ineffective at normalizing this behavior suggests that CRTC1 is required 

for lithium effect on this test. Moreover, results from both the FST and TS paradigms suggest 

that restoration of normal mobility in these two tests do not occur through the same 

mechanisms, as initially thought. This hypothesis should be further investigated, as it would 

help to better understand the mechanisms involved in these behavioral despair paradigms.  

We next investigated the effects of lithium on social behavior. While Crtc1‒/‒ mice have been 

shown to display social withdrawal337, we did not observe any impairment of social behavior 
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in mutant mice, probably because the paradigm used here was different. Interestingly, lithium 

seemed to decrease the preference for the new mouse in both genotypes. There have been 

few studies on the effects of lithium on social behavior in rodents. One study however 

suggests rather an increase of social behavior induced by lithium381, but again, a different 

paradigm was used in this study. Apathy has been known to be a side effect of lithium, which 

might explain this lack of social interest. However, this explanation is contradictory with the 

effects on mobility observed in the FST and TS. It is not impossible that the effects of lithium 

on social behavior might be due to diabetes insipidus, as we observed its manifestation in 

lithium-treated mice. As explained above, this condition can cause impairments in cognitive 

function. Its effects on social behavior have not been investigated, to our knowledge, but it 

might be an interesting hypothesis to follow up.  

Finally, the effects of lithium on aggressive behavior were assessed, in the resident-intruder 

test. The enhanced aggressiveness of Crtc1‒/‒ male mice was replicated here, as untreated 

mutant animals attacked the intruder sooner, more often, and for a longer time than WT mice. 

While lithium had no effect on attacks frequency and latency, it significantly decreased the 

attacks duration of Crtc1‒/‒ mice. No effect of lithium could be seen in WT mice, but duration 

was already very low in these animals (<5%). It is thus possible that lithium effects were not 

visible, or that WT mice had reached a minimum threshold. The results of this test show that 

lithium can reduce the aggressiveness of Crtc1‒/‒ mice, and therefore these effects are CRTC1-

independent.  

In summary, behavioral assessment of the effects of lithium showed that the depressive-like 

behavior of Crtc1‒/‒ mice could be successfully reversed in the FST. These mice displayed an 

interesting manic-like behavior in the TS, which could not be rescued by lithium. The 

treatment had however a negative effect on the social behavior of WT and Crtc1‒/‒ mice, 

nevertheless it partly reversed their aggressive behavior. Altogether, this suggests that the 

effects of lithium on behavioral despair and aggressiveness do not require CREB-CRTC1 

association, or that they are not exclusively mediated by this pathway. On the opposite, mood 

stabilizing effect of lithium in the TS seems to require CRTC1 presence.  

 

 



79 
 
 

5.3.3. Molecular effects of lithium  

After the different behavioral assessments discussed above, mice were sacrificed and the 

expression of several CREB-regulated genes was analyzed in the hippocampus and PFC, in 

order to investigate the molecular effects of lithium on WT and Crtc1‒/‒ mice.  

We first measured Crtc1 expression in WT mice and observed no effect of lithium on its 

regulation. This is in line with previous study showing that lithium did not act on Crtc1 mRNA 

expression, but rather on its oligomeric formation242. 

We then went on measuring Bdnf and BdnfIV expression, as lithium has been shown to induce 

Bdnf expression and to particularly activate its promoter IV104,382. Lithium had no effect in 

Crtc1‒/‒ mice, but it significantly decreased Bdnf expression in WT mice. The absence of lithium 

effect in mutant mice is possibly due to their basal lower levels of Bdnf, which might not be 

further decreased by lithium. As explained above, lithium was previously shown to upregulate 

Bdnf, but our results show the opposite. Another study has however shown no effect of 

lithium on Bdnf expression383.  The lithium-induced decrease in Bdnf levels could be explained 

by several hypotheses. Since molecular measurements were performed after the behavioral 

procedures, it is possible that the animals exhibited a certain amount of stress which would 

be evidenced in lithium-treated animals, showing Bdnf downregulation. Comparison with 

control animals which would not undergo the behavioral procedures should be done in order 

to investigate this hypothesis. It is also possible that the diabetes insipidus developed by 

lithium-treated mice interfered with Bdnf regulation. The effects of this condition on 

neurotrophic genes have not been investigated, yet diabetes insipidus might have some 

effects on general metabolism, which could then influence Bdnf expression, as this gene is 

also involved in metabolism and can be regulated by leptin, for example384. Beside the 

unexpected effect of lithium on Bdnf expression that merits further investigation, these results 

also suggest that the behavioral effects of lithium, particularly in the FST and TS, are not 

mediated by Bdnf or BdnfIV. 

We then measured Npy gene expression, as this orexigenic CREB-regulated neuropeptide has 

been shown to be involved in mood disorders and upregulated by lithium340,341. Crtc1‒/‒ mice 

presented basal lower Npy levels in the PFC and hippocampus, and this feature would merit 

further investigation in the frame of the obese phenotype displayed by mutant animals. 

Lithium also upregulated Npy in the hippocampus, which is in line with previous findings341. 
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However, this increase only occurred in WT animals. This suggests that CREB-CRTC1 

association is required for the effects of lithium on Npy expression.  

Regarding Cart expression, lithium showed a non-significant tendency to downregulate this 

transcript in both WT and Crtc1‒/‒ mice. Lithium effects on Cart have not been previously 

investigated, and this apparent downregulation should be confirmed and further investigated.  

Finally, the effects of lithium on the Nr4a family were investigated. As previously shown, Crtc1‒

/‒ mice displayed downregulation of Nr4a1-3 in the hippocampus and PFC337. Lithium 

significantly upregulated Nr4a2 in the hippocampus of WT mice, but was ineffective in Crtc1‒

/‒ mice. In the same structure, it also induced a downregulation of Nr4a3 in both genotypes. 

To our knowledge, the effects of lithium on Nr4a1-3 have not been previously investigated. In 

our study, lithium increased Nr4a2 and decreased Nr4a3 in the hippocampus. Although these 

effects need to be replicated and confirmed, they interestingly suggest that the Nr4as might 

be involved in lithium effects.  

In summary, this experiment with lithium has allowed us to see that the behavioral despair 

and the aggressiveness of Crtc1‒/‒ mice can be rescued by lithium to a certain extent. 

Therefore, lithium mood stabilizing effect might not necessarily require CREB-CRTC1 

association, or at least do not solely rely on it. Moreover, these effects are apparently not 

mediated by the action of lithium on Bdnf. We have also observed that Crtc1‒/‒ mice might 

present a manic-like behavior in the TS, which could not be restored by lithium. At a molecular 

level, we saw that CRTC1 was required for the lithium-induced upregulation of Npy and Nr4a2. 

This also suggests the involvement of these genes in the therapeutic effects of lithium. We did 

however obtain some peculiar results, particularly the effects of lithium on social behavior 

and on Bdnf expression. Two major factors that could contribute to this would be either the 

stress generated by the various behavioral procedures and/or the diabetes insipidus caused 

by the treatment. Control experiments with unstressed mice and other administration routes 

(e.g. intraperitoneal on direct intracerebral injections would allow a better control of the 

dosage and could reduce the side effects) could be performed to investigate these issues.  

Altogether, these results suggest that the mood stabilizing effects of lithium partly rely on 

CRTC1, although other alternative pathways contribute to its effects. This also highlights the 

fact that Crtc1‒/‒ mice might be considered as an animal model of BD, because they present 

depressive-like, as well as manic-like symptoms. Finally, it would be interesting to assess the 
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effects of another mood stabilizer, such as valproate, on Crtc1‒/‒ mice. Indeed, valproate has 

different mechanisms of action than lithium, and of interest, has an HDAC inhibitory activity. 

Knowing that we have demonstrated that this type of molecules can be effective in Crtc1‒/‒ 

mice, it would be an interesting experiment to perform.  

 Stress regulation of Crtc1 and Bdnf  

During the various experiments presented above, we observed several times contradictory 

Bdnf regulation (especially in the SAHA and lithium experiments). We hypothesized that it 

might be due to the stress generated by the various behavioral experiments or by chronic 

injections. We therefore sought to investigate the effects of stress on Bdnf expression, but 

also on Crtc1 gene regulation, in order to assess its possible involvement in stress response 

(which has never been studied before). These measurements were performed in adult and 

adolescent mice, as stress response might differ depending on brain development. In a pilot 

experiment, we thus assessed Bdnf, Crtc1 and also GR gene expression in the hippocampus 

and the PFC of adult and juvenile mice that had undergone four days of swimming sessions 

(corresponding to the first phase of the OSFS protocol).  

Crtc1 expression was unchanged by stress, neither in the hippocampus nor in the PFC, thus 

suggesting that changes in its levels are not involved in stress response. Bdnf however, was 

found to be upregulated by stress in the hippocampus of both adult and adolescent mice. This 

might be in line with the abnormally high Bdnf levels observed in the hippocampus of Crtc1‒/‒ 

mice in the SAHA experiment. This would then result from an abnormal Bdnf regulation in 

response to stress (probably caused by the daily injections). Bdnf expression measurements 

following stress in Crtc1‒/‒ mice should be done to investigate this hypothesis. In addition to 

Bdnf, GR expression was also upregulated in the hippocampus, but only in adolescent mice. 

This suggests an age-dependent differential response to stress.  

As Bdnf expression was found to be upregulated by stress, we measured the expression of the 

various Bdnf exons separately. One study has indeed shown that the different exons of Bdnf 

were differentially regulated by stress, depending on the brain region and stressor applied105. 

We could indeed observe a differential Bdnf regulation in the hippocampus: BdnfII and BdnfV 

were upregulated by stress in adult mice, while BdnfIII and BdnfIV were upregulated in 

adolescent mice. Therefore, both adult and juvenile mice present increased total Bdnf mRNA; 
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but this increase is mediated by different promoters depending on the age. Yet, the 

contribution of each exon to final Bdnf levels and function are unknown.  

The fact that GR expression was upregulated in juvenile mice suggests a lower stress reactivity 

due to an increased feedback inhibition of the HPA axis. This increase of GR expression could 

be therefore a protective mechanism against stress. The Bdnf increase observed in the same 

animals might even be related to the GR increase, as there is evidence that Bdnf expression 

can be regulated by glucocorticoids385–391. This hypothesis however needs further 

investigations.   

In the literature, we can find many different results regarding Bdnf regulation by stress. While 

the general consensus is that acute and chronic stress downregulate Bdnf88,352, there are many 

examples that show no effect of stress351,392–395, or an upregulating effect396. This discrepancy 

can be explained by a probable highly dynamic regulation of Bdnf by stress. Therefore, one 

can observe very different results depending on the type of stress applied (acute vs. chronic), 

the duration of the stress, and the time elapsed between the stress and the measure. To better 

characterize Bdnf regulation by stress, a complete and extensive experiment should be done, 

where acute and chronic could be compared, and Bdnf would be measured at different time-

points after the stress, and in different brain regions. This would help to obtain a better 

overview of the complex interaction of stress and Bdnf.  

We did not observe any change in Crtc1 regulation after the stress, yet it is still possible that 

CRTC1 mediates the effects of stress on Bdnf expression. Therefore, Bdnf levels after stress 

exposure should also be measured in Crtc1‒/‒ mice, in order to see whether CRTC1 deficiency 

abolishes or enhances the effects of stress on Bdnf.  

Altogether, these preliminary results show that stress can induce Bdnf expression, which could 

explain some of our results. We also demonstrate here that Bdnf regulation by stress is 

dynamic, and differentially regulated depending on the stage of brain development. This study 

therefore merits deeper investigations, as it would bring a better characterization of stress 

effects and its impact on Bdnf expression.  

 Future investigations in Crtc1-/- mice  

To conclude this thesis, we have performed several preliminary studies, investigating different 

physiological systems that could be altered in Crtc1‒/‒ mice. These results provide possible 
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investigation lines that should be further explored, in order to complete the characterization 

of Crtc1‒/‒ mice.  

5.5.1. Epigenetic system  

As detailed in the introduction, epigenetic gene regulation plays a major role in mood 

disorders (see 1.2.4). In our article presented in section 2.1, we showed that we were able to 

restore the expression of some genes in Crtc1‒/‒ mice, by acting on epigenetic mechanisms. 

We were also interested in investigating whether these animals might present an overall 

altered epigenome, as this might contribute to their mood disorders-like phenotype. 

Furthermore, CRTC1 helps recruiting CBP, which has an intrinsic HAT activity. We could thus 

hypothesize that CRTC1 deficiency would lead to a decreased CBP-mediated HAT activity, that 

would lead to impaired histone acetylation. The fact that the depressive-behavior of Crtc1‒/‒ 

mice could be partially reversed by the HDAC inhibitor SAHA corroborates this hypothesis. 

Nevertheless, we investigated other mediators of epigenetic regulation, namely Dnmts and 

Tet1.  

Our results suggest that Crtc1-/- mice might present epigenetic alterations. Indeed, while the 

expression of most Hdacs is unchanged, Dnmt3a and Dnmt3b expression was increased in the 

hippocampus and PFC of these animals, which might suggest overall increased DNA 

methylation. TET1 is involved in the process of DNA demethylation, and has been associated 

with neurogenesis and learning process397,398. The upregulation of Tet1 that we observed in 

Crtc1‒/‒ mice might be a possible compensatory mechanism for the increased Dnmts levels 

also seen in these mice. On the other hand, the upregulation of Dnmts could also be triggered 

by the increase of TET1, and therefore deeper investigations are needed to sort out this 

complex issue. Nevertheless, these preliminary results suggest an impaired epigenetic gene 

regulation, which is very likely to contribute to the molecular, and thus behavioral, phenotype 

of Crtc1‒/‒ mice.  

Further investigation of the epigenome of these mice will however be required to confirm or 

infirm these different hypotheses. It would also be interesting to look at the methylation 

profile of specific genes that are observed to be downregulated in Crtc1-/- mice. Nonetheless, 

these results unravel a new role for CRTC1 in epigenetic regulation. 
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5.5.2. GABAergic system 

As previously suggested, Crtc1‒/‒ mice might present impairments in GABAergic interneurons 

circuitry (see 5.2). This working hypothesis is plausible, as Crtc1‒/‒ mice present decreased 

levels of Bdnf, and particularly BdnfIV. The latter has been involved in the development of 

GABAergic interneurons, as mice lacking BdnfIV present a deficiency  in PV-interneurons100. 

Bdnf heterozygous mice also present dysregulation of interneuronal circuitry, mainly PV- and 

calretinin (CR)- interneurons399, and BDNF has also been shown to participate in the 

development of calbindin (CB-) and CR-interneurons400. In addition, several types of 

interneurons were found reduced in the PFC of BD patients343,344,401,402. To conclude, Crtc1‒/‒ 

mice also present a decreased expression of Sst gene, thus suggesting impairment of this 

interneuron subtype.  

To our surprise, characterization of Agm-expressing cells has revealed an increased number 

of such cells, which were mainly interneurons. This would then rather suggest an increased 

number of interneurons. To unravel this issue, a characterization of interneuronal circuitry 

should be performed in Crtc1‒/‒ mice. Here, we measured the expression levels of Gad1 and 

Gad2 genes, respectively coding for GAD67 and GAD65, the two isoforms of GAD, which 

catalyze GABA synthesis. Of interest, both isoforms have been associated with mood 

disorders, and CREB has been shown to mediate GAD65 expression343,344,361. In our pilot study, 

we could indeed observe a downregulation of both Gad1 and Gad2, in the hippocampus and 

PFC of Crtc1‒/‒ mice. This confirms that mutant mice might present impaired GABA 

metabolism, and thus an overall impairment of GABAergic signaling, which could contribute 

to their phenotype. However, a complete and quantitative morphological and 

electrophysiological study of this system is required, in order to investigate its potential 

contribution to the phenotype of Crtc1‒/‒ mice.  

5.5.3. Inflammatory system  

There have been several pieces of evidence over the past decade of the involvement of 

immune system activation in mood disorders, and particularly in MDD. Several pro-

inflammatory cytokines, mainly TNFα, have been shown to induce depressive-like behavior in 

various study, and to be increased in the brain of depressed patients403–410. Correspondingly, 

chronic stress induces increased levels of such cytokines in several brain regions411,412. 
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Moreover, injections of lipopolysaccharide (LPS), which elicits activation of the immune 

system and release of pro-inflammatory cytokines, is sufficient to elicit depressive-like 

behavior413–416.  The enzyme IDO has been shown to be critically involved in inflammation-

induced depression347,417. This enzyme can be activated by TNFα, IFNγ, IL-1β and LPS; among 

others. Its activation leads to the metabolism of tryptophan into tryptophan catabolites 

(TRYCATs), thus depleting available tryptophan levels, therefore leading to decreased 5HT 

synthesis, which would then provoke depressive symptoms.   

In this pilot experiment, we sought to investigate the potential imbalance of inflammatory 

mediators, as it might participate to the depressive-like phenotype of Crtc1‒/‒ mice. We first 

measured the levels of various pro-inflammatory cytokines in the hippocampus and striatum 

of Crtc1‒/‒ mice, as these regions seem to be involved in inflammation-mediated depression. 

We could observe decreased levels of TNFα, IL-1β and IL-6 in the hippocampus, and IL-1β and 

IFNγ in the striatum. These results indeed suggest imbalance of cytokines, yet they are 

contradictory with the evidence that cytokines induce depressive behaviors. However, there 

are some studies that have also suggested a protective role of TNFα and IFNγ, particularly in 

glial cells346,418–420. It is then possible that these cytokine depletions would lead to more 

vulnerable neurons or glial cells, which would be in line with the phenotype of Crtc1‒/‒ mice. 

Yet, the involvement of cytokines in depression is very complex and is still not well 

understood. Furthermore, cytokines might have both harmful and protective effects on 

neurons, but the trend to move towards one of these effects or the other might rely on a 

complex chemical balance. In any case, our results still show a dysregulation of the immune 

system in Crtc1‒/‒ mice that would merit further investigation.  

Finally, measurements of IDO showed that Crtc1‒/‒ mice presented increased expression of 

this gene in the hippocampus. This would suggest an increased activity of this enzyme, that 

would lead to serotonin depletion, and this might be a possible explanation for the decreased 

5HT levels observed in these mice337.  

Altogether, the present preliminary results show that the immune system of Crtc1‒/‒ mice 

might be altered and this alteration could participate in their phenotype. This also suggests 

the involvement of CRTC1 in a normal immune system regulation. To what extent CRTC1 

participates in this regulation, and to what extent does their immune system participate in 

their phenotype still have to be unraveled and should be a focus for future studies.  
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 General Discussion and Perspectives 

The aim of the present thesis was to provide a deeper characterization of Crtc1‒/‒ mice 

phenotype. More precisely, we wanted to investigate the impact of CRTC1 deficiency on 

several molecular mechanisms involved in mood disorders etiology. As these troubles are 

complex and heterogeneous, we sought to determine the contribution of such mechanisms 

to various behavioral and molecular features exhibited by knock-out animals. Through 

pharmacological approaches, we also attempted to rescue the behavioral and molecular 

phenotype of Crtc1‒/‒ mice by acting on several systems.  

The most striking result emerging from the numerous data presented here, is that CRTC1 can 

be definitely considered as a key mediator of a wide variety of cellular and physiological 

processes. This is mainly highlighted by the fact that our experiments have shown that Crtc1‒

/‒ mice are impaired in many systems, including the monoaminergic system, the agmatinergic 

system, the epigenome, the GABAergic metabolism and the inflammatory system. However, 

it is not yet possible to determine which of these impairments are direct or indirect 

consequences of CRTC1 deletion, as well as the possible interactions between these systems. 

Regardless of the mechanisms involved, these results definitely highlight the pleiotropic role 

and importance of CRTC1. 

We had previously demonstrated that CRTC1 is importantly involved in mood disorders 

etiology337. This study, as well as the one presented in section 2.1, provide also strong 

evidence that CRTC1’s function is critical for the therapeutic effects of classical 

antidepressants. Our results show that CRTC1 is indeed necessary for the induction of several 

genes by antidepressants, but also by lithium, including Bdnf and Nr4as. This suggests that the 

behavioral effects of antidepressants rely on CRTC1-mediated gene induction. To corroborate 

this hypothesis, we showed that Bdnf expression can be restored by counteracting CRTC1 

deletion and acting on epigenetic gene regulation, alongside a partial rescue of the depressive-

like behavior.    

On the opposite, CRTC1 apparently does not mediate the antidepressant effects of lithium, 

but might interestingly be involved in its anti-manic effects. Of interest, CRTC1 is not involved 

in the anxiolytic and anti-aggressive effects of antidepressants and lithium. While CRTC1 

deletion leads to the development of anxious and aggressive behaviors, these can be restored 

independently of its presence. 
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Although CRTC1 deficiency leads to the perturbation of many systems, we do not know yet to 

what extent these various impairments contribute to the phenotype of Crtc1‒/‒ mice. We have 

demonstrated that by acting on the altered agmatinergic system of these animals, we were 

able to restore a normal behavioral phenotype. These results provide evidence that this 

system might be one of the various causes of their conditions. Furthermore, they also 

strengthen the findings that agmatine is an important neuromodulator potentially involved in 

mood disorders. Our data also suggest that agmatine might be a fast-acting antidepressant 

with ketamine-like properties, which is particularly interesting regarding the development of 

new therapeutic strategies. 

Even if our various results allowed us to unravel some mechanisms underlying the phenotype 

of Crtc1‒/‒ mice, as well as the role of CRTC1 in mood disorders, there are still many unresolved 

issues. Indeed, the pilot experiments that we performed reveal the wide scope of the 

molecular alterations resulting from CRTC1 deletion. Our data provide evidence that many 

systems might be impaired in knock-out animals. These include the epigenetic system, 

GABAergic circuitry and immune system, all of which could equally contribute to the 

phenotype of these animals. Furthermore, our various Bdnf measurements, as well as our 

study on stress and Bdnf also suggest impaired stress response.  

This underlines again the broad complexity underlying mood disorders. It also suggests a 

pleiotropic regulatory role for CRTC1, and highlights it as a potent modulator involved in many 

important processes in the central nervous system. Thus, all the aforementioned systems 

impaired in mutant animals would merit a complete and further characterization, with the 

aim of characterizing the reach of CRTC1’s regulatory function.  

As already suggested above, a region-specific rescue of Crtc1 expression in Crtc1‒/‒ mice, 

followed by behavioral and molecular measurements, would be an important and interesting 

experiment to perform. It would indeed allow to better define the region(s) in which CRTC1 

plays a critical role for the development of depressive-like behavior and/or for antidepressant 

response. In addition, this experiment could be done at several time points of brain 

development, in order to characterize the possible developmental effect of a complete CRTC1 

deletion. As discussed before, this might contribute to their adult phenotype. To further 

investigate this issue, a characterization of CRTC1 expression and activity throughout brain 
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development could also be done. Correspondingly, punctual CRTC1 deletion or 

overexpression in WT animals, at different time points could be an interesting thing to do.  

As CRTC1 deficiency produces depressive-like behavior, we could expect that higher CRTC1 

levels would have opposite effects and produce an antidepressant effect.  Viral-mediated 

Crtc1 overexpression in different regions, at the adult age or during development would 

address this question, and the effects that it would induce would be of great interest.  

Another important assessment that should be performed in Crtc1‒/‒ mice would be to 

investigate the neurogenesis displayed by these animals. Indeed, as CRTC1 has been shown to 

be involved in CREB- and BDNF-regulated dendritic growth, and knowing the involvement of 

these two factors in neurogenesis239,421, we could expect that this process would be altered in 

mutant animals. Thus, measures of neurogenesis, neuronal growth and survival, as well as 

dendritic arborization in the hippocampus of these mice would be another step towards the 

understanding of the phenotype of these animals.  

To conclude, while some aspects of Crtc1‒/‒ mice phenotype are now better understood, these 

animals still hold many challenging issues that need to be investigated. Although the use of 

this mouse line can help resolving a certain amount of questions regarding CRTC1 role in mood 

disorders, translational studies should also be performed. CRTC1 expression and activity in 

human samples, or genomic studies in mood disorders patients could also provide interesting 

outcomes. One study in psychiatric patients has already revealed an association between a 

Crtc1 polymorphism and body weight gain422. Further research for CRTC1 mutations and their 

possible association with mood disorders should therefore be performed. This would lead to 

a more targeted preclinical research, and the results emerging from both animal and human 

studies might eventually lead to a better understanding of CRTC1 function and importance.   
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6. CONCLUSIONS 

For several years, our group has been working on CRTC1, and the generation of Crtc1‒/‒ mice 

has allowed to highlight the importance of this coactivator in the brain, and its involvement in 

mood disorders. One of the main features of these animals is their display of behavioral and 

molecular phenotypes that can be related to MDD but also to BD. Crtc1‒/‒ mice could therefore 

be considered as a new animal model of mood disorders. Here, we aimed at better 

characterizing this mouse line, as well as providing new hypothesis regarding CRTC1 

involvement in mood disorders etiology. There are several main points revealed by our results.  

First, the Crtc1‒/‒ mouse model is a highly valuable animal model of mood disorders. Indeed, 

it allows to investigate plenty of endophenotypes related to MDD and BD, both at the 

behavioral and molecular levels. Furthermore, we have demonstrated the resistance of these 

animals to classical antidepressant treatment. This fact renders these animals highly 

interesting for research focusing on treatment-resistant depression.  

Second, the phenotype observed in Crtc1‒/‒ mice seems to result from a combination of many 

impaired processes. This remarkably mimics the occurrence of mood disorders in human, as 

they often result from complex interaction between genetic factors, molecular and 

physiological alterations, and environmental stressors. This highlights again the intricacy and 

heterogenic nature of these diseases, and thus the difficulty to completely understand their 

etiology.  

Third, CRTC1 is a major regulatory factor, which impacts, directly or not, many important 

processes of the central nervous system. We have demonstrated its importance in mood 

disorders and in antidepressant response, but due to its pleiotropic role, it might be involved 

in other diseases. Its implication in Alzheimer’s disease has been recently highlighted244, thus 

it could also be related to other memory- and learning- related troubles. Due to its role in 

CREB-regulated gene transcription, it might also be a mediator of neuroplasticity-related 

processes. Therefore, dysfunction of CRTC1 could be involved in neuropsychiatric diseases 

associated with altered neuronal plasticity and activity (mood disorders but also schizophrenia 

or affective disorders).   

Finally, in the light of these various statements, clinical investigation of CRTC1 would be a 

major step towards the understanding of its function and its involvement in neuropsychiatric 



90 
 
 

disorders. The search for possible polymorphisms or mutations of CRTC1 in human affected 

with mood disorders, or other diseases, would help to better target the mechanisms that 

should be deeper investigated in vitro and in vivo. Thus, the knowledge gathered from both 

preclinical and clinical investigations might contribute to a better understanding of the 

involvement of CRTC1 in mood disorders, which eventually might unravel new perspectives 

for therapeutic research.  
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a b s t r a c t

Major depression is a highly complex disabling psychiatric disorder affecting millions of people world-
wide. Despite the availability of several classes of antidepressants, a substantial percentage of patients
are unresponsive to these medications. A better understanding of the neurobiology of depression and the
mechanisms underlying antidepressant response is thus critically needed. We previously reported that
mice lacking CREB-regulated transcription coactivator 1 (CRTC1) exhibit a depressive-like phenotype and
a blunted antidepressant response to the selective serotonin reuptake inhibitor fluoxetine. In this study,
we similarly show that Crtc1�/� mice are resistant to the antidepressant effect of chronic desipramine in
a behavioral despair paradigm. Supporting the blunted response to this tricyclic antidepressant, we
found that desipramine does not significantly increase the expression of Bdnf and Nr4a1-3 in the hip-
pocampus and prefrontal cortex of Crtc1�/� mice. Epigenetic regulation of neuroplasticity gene expres-
sion has been associated with depression and antidepressant response, and histone deacetylase (HDAC)
inhibitors have been shown to have antidepressant-like properties. Here, we show that unlike con-
ventional antidepressants, chronic systemic administration of the HDAC inhibitor SAHA partially rescues
the depressive-like behavior of Crtc1�/� mice. This behavioral effect is accompanied by an increased
expression of Bdnf, but not Nr4a1-3, in the prefrontal cortex of these mice, suggesting that this epigenetic
intervention restores the expression of a subset of genes by acting downstream of CRTC1. These findings
suggest that CRTC1 alterations may be associated with treatment-resistant depression, and support the
interesting possibility that targeting HDACs may be a useful therapeutic strategy in antidepressant
development.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Mood disorders (including major depressive disorders and bi-
polar disorders) are a major cause of disability worldwide, with an
estimated lifetime prevalence of 16% (Kessler et al., 2005). Although
the underlying etiological mechanisms are complex and still un-
clear, studies over the past decades have highlighted the impor-
tance of the transcription factor cyclic adenosine monophosphate
(cAMP) response element-binding protein (CREB) and one of its
euroscience, Department of
Switzerland.
. Cardinaux).
target genes brain-derived neurotrophic factor (Bdnf) (Blendy,
2006; Krishnan and Nestler, 2008; Martinowich et al., 2007).
CREB is a pleiotropic transcription factor involved, in particular, in
neuronal growth and survival, neurogenesis, synaptic plasticity and
long-term memory (Blendy, 2006; Carlezon et al., 2005; Lonze and
Ginty, 2002). BDNF is also implicated in these processes, partly
through the induction of its expression by CREB (Martinowich and
Lu, 2008; Martinowich et al., 2007). CREB and BDNF have both been
involved in depression and antidepressant treatment. Indeed,
overexpression of CREB and BDNF in the hippocampus (HIP) results
in antidepressant effects (Chen et al., 2001; Shirayama et al., 2002)
and inversely, chronic stress reduces Bdnf expression in the same
structure (Smith et al., 1995). Of note, antidepressants such as
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fluoxetine and desipramine were also shown to upregulate Bdnf
expression in the prefrontal cortex (PFC) and HIP of rodents in a
CREB-dependent manner (Conti et al., 2002).

CREB-regulated transcription coactivator 1 (CRTC1) is a potent
CREB coactivator activated by cAMP and Ca2þ signaling that trigger
its dephosphorylation and translocation to the nucleus, where it
binds to CREB, helps to recruit CREB-binding protein (CBP) and RNA
polymerase II, and thus activates CREB-dependent gene transcrip-
tion (Altarejos and Montminy, 2011; Ch'ng et al., 2012; Conkright
et al., 2003; Kovacs et al., 2007; Ravnskjaer et al., 2007; Screaton
et al., 2004). CRTC1 is involved in activity-induced dendritic
growth and late phase long-term potentiation (L-LTP) (Kovacs et al.,
2007; Li et al., 2009; Zhou et al., 2006). Moreover, Bdnf expression
as well as BDNF-dependent dendritic growth require CRTC1
(Finsterwald et al., 2010; Kovacs et al., 2007; Zhou et al., 2006).
Region-specific CRTC1's activation is critical for activity-dependent
immediate early genes regulation and long-term fear memory
(Nonaka et al., 2014a; Sekeres et al., 2012). CRTC1-dependent
transcription of Bdnf and orphan nuclear receptors 4a (Nr4a) is
also involved in cognitive impairments related to Alzheimer's dis-
ease (Parra-Damas et al., 2014).

To further investigate the role of CRTC1 in the brain, we
generated a CRTC1-deficient mouse line that exhibits several
endophenotypes related to mood disorders and a blunted response
to the antidepressant fluoxetine in behavioral despair-related par-
adigms (Breuillaud et al., 2009, 2012). At the molecular level,
Crtc1�/� mice have a decreased HIP and PFC expression of several
CREB-regulated neuroplasticity genes, including notably Bdnf and
Nr4a1-3 (Breuillaud et al., 2012). Altogether, this suggests that
CRTC1, as a key regulator of neuroplasticity-related genes, is critical
for mood regulation and antidepressant response. However, the
direct or indirect mechanisms linking CRTC1's deficiency and
behavioral consequences are still unclear. As CRTC1 promotes CBP
recruitment, which has an intrinsic histone acetyltransferase (HAT)
activity, these mechanismsmight include CRTC1-related epigenetic
gene regulation. Noteworthily, epigenetic mechanisms have been
widely associated with depressive disorders and with CREB and
Bdnf regulation in the frame of stress and antidepressant response
(Lin et al., 2012; Tsankova et al., 2006, 2007; Vecsey et al., 2007;
Vialou et al., 2013).

In this study, we were interested in further investigating the
involvement of CRTC1 in antidepressant response and the under-
lying molecular mechanisms. We first tested the effects of chronic
desipramine on the behavior of Crtc1�/� mice, which revealed a
blunted behavioral response to this antidepressant. We also
observed that desipramine failed to induce Bdnf and Nr4a1-3
expression in the HIP and PFC of Crtc1�/� mice. By acting at the
epigenetic levels and treating the animals with a HDAC inhibitor,
we were able to partially rescue the depressive-like behavior of
Crtc1�/� mice. This was paralleled by an increased expression of
Bdnf, but not Nr4a1-3, in the PFC of these animals.

2. Materials and methods

2.1. Animals

Crtc1�/� mice and wild-type (WT) littermates were generated
and genotyped as previously described (Breuillaud et al., 2009).
Mice were housed under a 12-h light-dark cycle with ad libitum
access to water and standard rodent chow diet. Male mice were
weaned at 21 days and group-housed until being isolated at 5
weeks of age in order to avoid wounding of cage mates by
aggressive Crtc1�/� males (Breuillaud et al., 2012). All animal ex-
periments were conducted in accordance with the Swiss Federal
Veterinary Office's guidelines and were approved by the Cantonal
Veterinary Service. Behavioral procedures began when mice
reached the age of 8 weeks.

2.2. Drugs and treatment

Desipramine hydrochloride was purchased from Sigma (St-
Louis, MO, USA). Mice received desipramine in the drinking water
at a concentration of 100 mg/l, which corresponds to approxi-
mately 20 mg/kg of body weight/day. Desipramine solution was
changed every week and concentrationwas adjusted depending on
the weight gain and average water consumption of the mice. Sub-
eroylanilide hydroxamic acid (SAHA, also known as vorinostat) was
purchased from Selleck Chemicals (Houston, TX, USA). Mice
received SAHA through daily intra-peritoneal injections. SAHA was
first dissolved in DMSO at a dose of 50 mg/ml. This stock solution
was diluted 1:10 every day in saline solution (final concentration:
5 mg/ml) prior to injections at a dose of 25 mg/kg of body weight.
Vehicle groups were injected with a solution of 10% DMSO in saline.

2.3. Repeated open-space forced swim procedure (OSFS)

The repeated OSFS procedure was performed as previously
described (Breuillaud et al., 2012; Stone and Lin, 2011). Briefly,
swimming was carried out in rat tub cages (24 � 43 � 23 cm) filled
with ~14 cm of lukewarm tap water (34 ± 0.5 �C) and colored with
~10 ml of milk. Mice undertook individual daily swim of 15 min
during 4 consecutive days (Days �4 to �1). On day 0, desipramine
or SAHA treatment started. Swimming sessions were repeated at 3
or 4 days of intervals during 3 weeks (Days 2, 5, 9, 12, 16, 19, 23)
under continuous treatment (Fig. 1A). Water was changed after 4
mice had swum, in order to maintain water temperature. Swim-
ming sessions were videotaped from above. Time spent immobile
(drifting with no observable movement of limbs or tail) was
manually recorded.

2.4. Novelty-induced hypophagia (NIH)

NIH procedure started on day 24, one day after the last swim-
ming session (Fig. 1A). Mice were trained to drink sweetened
condensed milk (1:3, condensed milk: water) for two consecutive
days (day 24 and 25), 2 � 1 h each day. Milk was presented in
homemade drinking tubes made of 10 ml conical tubes (Sarsedt)
with a hole at the bottom closed by a glass bead (5mm diameter) to
make a sipper. Tubes were placed through wire cage lids. On the
third day (day 26), mice were tested in homecage conditions (light
intensity: ~27 lux). Mice were videotaped during 15 min from the
side and latency to drink was measured. On the fourth day (day 27),
mice were placed in a novel cage without bedding, under bright
light (~1200 lux), and the same measurements were made. The
cage was cleaned with water and 70% ethanol between each mouse
and before the first mouse.

2.5. Brain microdissection and micropunching

On day 28, one day after the end of the NIH procedure, all mice
were sacrificed by cervical dislocation and decapitation. The brain
was rapidly placed in a stainless steel adult mouse brain slicer
matrix with 1 mm coronal section slice intervals. Six coronal slices
were made from the second frontal slice channel of the matrix.
Brain slices were placed on microscope slides and immediately
frozen in dry ice, and then stored at �80 �C. Medial PFC and dorsal
HIP were collected with a micropunch (ø 1 mm, Stoelting, Wood
Dale, IL, USA) in corresponding brain slices. PFC and HIP samples
were kept at �80 �C.



Fig. 1. Behavioral response of Crtc1�/� mice to desipramine. (A) Experimental design and timeline. The OSFS protocol started when mice reached the age of 8 weeks. Mice un-
derwent forced swimming session during the first four days (day �4 to �1). On day 0, desipramine treatment started and continued until the end of the experiment. Swimming
session were regularly repeated until day 24. The NIH test was then applied from day 24 until day 27. On day 28, animals were sacrificed. (B) Effects of chronic desipramine in the
OSFS model of depression on Crtc1�/� mice and WT littermates. During the four consecutive daily swimming sessions prior to treatment (Days �4 to �1), all groups increased their
immobility time. Crtc1�/� mice were significantly more immobile than WT mice during the two last sessions (þp < 0.05, þþþp < 0.001 vs. WT untreated). From day 0 to day 23, WT
and Crtc1�/� mice received either water (n ¼ 7 and n ¼ 11 respectively) or chronic desipramine treatment (20 mg/kg in drinking water, n ¼ 8 and n ¼ 11 respectively). Crtc1�/� mice
were significantly more immobile than WT mice, regardless of the treatment, during the whole procedure (þþþp < 0.001, vs. WT untreated). Desipramine-treated WT mice showed
a progressive decrease in immobility time starting from day 9 of treatment (xp < 0.05, xxp < 0.01, xxxp < 0.001, vs. themselves on day 2). Their immobility time was also significantly
lower that untreated WT mice (*p < 0.05, **p < 0.01, vs. WT untreated). No effect of desipramine was seen in Crtc1�/� mice. (C) Effects of chronic desipramine on the NIH paradigm
in Crtc1�/� andWTmice. Latencies to drink sweetened condensed milk are shown in the homecage and in the novel environment. Twomice were removed for having latency scores
>2 SD from the mean. One mouse was removed for never having drunk the milk during the habituation and test phases. No significant difference of latency between the different
groups was observed in the homecage conditions. In the novel environment, desipramine-treated WT mice (n ¼ 7) showed a non-significant trend to a decreased latency as
compared to untreated WT mice (n ¼ 6). Desipramine significantly reduced the latency of Crtc1�/� mice (n ¼ 10) compared to untreated Crtc1�/� mice (n ¼ 11) (##p < 0.05 vs.
Crtc1�/� mice). Data are mean ± SEM.
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2.6. Gene expression analysis

Total RNA was extracted and purified from the PFC and HIP
micropunches, using the RNAeasy Plus Minikit (Qiagen, Venlo,
Netherland) according to the manufacturer's instructions. RNA
concentrations were measured by UV spectrophotometry with a
NanoDrop Lite (Thermo Scientific, Wilmington, DE, USA). cDNAwas
prepared in a 50 ml reaction by reverse transcription, using 100 ng
of RNA with Taqman Reagents and random hexamers (Applied
Biosystems, Foster City, CA, USA). 0.8 ml of cDNAwas amplified on a
96-well plate using the SYBR Green PCR Master Mix (Applied Bio-
system). Amplificationwas performedwith an ABIPRISM 7500 real-
time PCR system (Applied Biosystem). The program was 2 min at
50 �C, 10 min at 95 �C, followed by 45 cycles of 15 s at 95 �C and
1 min at 60 �C. Relative gene expression was quantified using the
comparative DD Ct method and normalized with b-actin transcript
levels.

The following primers were used, at a concentration of 250 nM:
b-actin forward 50-GCTTCTTTGCAGCTCCTTCGT-30, b-actin reverse
50-ATATCGTCATCCATGGCGAAC-30, Crtc1 forward 50-CAG-
GACTTGGGCCTGGAA-30, Crtc1 reverse 50-AGACAGACAA-
GACCCTTTCTAAGCA-3’; Bdnf forward 50-AAAACCATAAGGACGC
GGACTT-30, Bdnf reverse 50-GAGGCTCCAAAGGCACTTGA-30; Bdnf
exIV forward 50-GTAAG AGTCTAGAACCTTGGGGACC-30, Bdnf exIV
reverse 50-GGATGGTCATCACTCTTCTCACCT-30; Nr4a1 forward 50-
AAAATCCCTGGCTTCATTGAG-30, Nr4a1 reverse 50-TTAGA
TCGGTATGCCAGGCG-30; Nr4a2 forward 50-CGGTTTCA-
GAAGTGCCTAGC-30, Nr4a2 reverse 50-TTGCCTGGAACCTGGAATAG-
30; Nr4a3 forward 50-TGGCTCGACTCCATTAAAGAC-30, Nr4a3 reverse
50-TGCATAGCTCCTCCACTCTCT-30; Hdac1 forward 50-TTCCAA-
CATGACCAACCAGA-30, Hdac1 reverse 50-GGCAGCATCCT-
CAAGTTCTC-30, Hdac2 forward 50-GGGACAGGCTTGGTTGTTTC-30,
Hdac2 reverse 50-GAGCATCAGCAATGGCAAGT-30, Hdac3 forward 50-
AGAGAGGTCCCGAGGAGAAC-30, Hdac3 reverse 50-ACTCTTGGGGA-
CACAGCATC-30, Hdac4 forward 50-CAATCCCACAGTCTCCGTGT-30,
Hdac4 reverse 50-CAGCACCCCACTAAGGTTCA-30, Hdac5 forward 50-
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TGTCACCGCCAGATGTTTTG-30, Hdac5 reverse 50-TGAGCA-
GAGCCGAGACACAG-30, Hdac7 forward 50-GGTGGACCCCCTTTCA-
GAAG-30, Hdac7 reverse 50-TGGGTAGCCAGGAGTCTGGA-30, Hdac9
forward 50-GCGAGACACAGATGCTCAGAC-30, Hdac9 reverse 50-
TGGGTTTTCCTTCCATTGCT-30.

2.7. Effects of SAHA on histone acetylation

Mice were weaned and housed according to 2.1. At the age of 8
weeks, Crtc1�/�mice andWT littermates received a single injection
of either SAHA or vehicle as in 2.2. Animals were sacrificed 2 h after
the injection, with a similar procedure as in 2.5. Histone acetylation
was measured by Western blotting.

2.8. Western blot

Histones were extracted from HIP and PFC micropunches using
the Histone Purification Minikit (Active Motif, Carlsbad, CA, USA)
according to the manufacturer's instructions. Samples with poor
histone yield were excluded.1 mg of extracted histones were diluted
1:1 with sample buffer [65.8 mM TriseHCl pH 6.8, 26.3% glycerol,
2.1% SDS, 100 mM DTT, 0.01% bromophenol blue], separated on a
15% SDS-polyacrylamide gel, and proteins were transferred to
polyvinylidene difluoride (PVDF) membranes with a Transblot
Turbo Transfer System (BioRad, Hercules, CA, USA). Blots were
blocked for 1 h at room temperature (RT) in TBST [10 mM TriseHCl
(pH 7.4), 150 mM NaCl, 0.1% Tween-20], supplemented with 5%
skim milk powder. Blots were subsequently incubated with a pri-
mary antibody in TBST plus 5% bovine serum albumin (BSA) over-
night at 4 �C. Finally, PVDFmembranes were incubated for 1 h at RT
with horseradish peroxidase (HRP)-conjugated secondary anti-
bodies in TBST plus 5% skim milk powder, and developed using a
Pierce ECL Western chemiluminescence detection kit (Thermo
Scientific). The following antibodies and dilutions were used: rabbit
a-Acetyl-Histone H3, 1:2500 (EMD Millipore, Temecula, CA, USA),
rabbit a-Histone H3, 1:2000 (Abcam, Cambridge, UK), rabbit a-
Acetyl-Histone H4, 1:2000 (EMD Millipore), rabbit a-Histone H4,
1:2000 (EMD Millipore), donkey HRP-a-rabbit 1:2000 (GE
Healthcare, Little Chalfont, UK). Quantification of band intensity
was performed with Image J software (National Institute of Health,
Bethesda, MD, USA). Acetyl-H3 and acetyl-H4 band intensities were
normalized with total H3 and H4 signals, respectively.

2.9. Statistical analyses

Statistical analyses were performed using the Statistica 8.0
Software (StatSoft Inc., Tulsa, OK, USA). All data are presented as
mean ± SEM. P-values of p < 0.05 were considered as statistically
significant. A Shapiro-Wilk test was first performed to assess data
normality. All results were found to follow normal distribution;
therefore parametric tests could be used. For both behavioral and
molecular analyses, a two-way ANOVA was performed to assess
statistical differences for two factors (genotype and treatment). A
Fisher LSD post-hoc test was carried out afterwards. For analyses of
the OSFS data, a two-way ANOVA with repeated measures was
performed as immobility time was repeatedly measured. A Fisher
LSD post-hoc test was carried out afterwards.

3. Results

3.1. Crtc1�/� mice have a blunted behavioral response to chronic
desipramine treatment

Behavioral effects of desipramine were first assessed in the
open-space forced swim (OSFS) model of depression (Fig.1A and B).
This protocol induces depressive-like symptoms that are reversed
by chronic, but not acute, antidepressant treatments, and thus it
has better face and construct validities than the conventional
forced swim test (Breuillaud et al., 2012; Stone and Lin, 2011; Stone
et al., 2008). All animals presented increased immobility time after
the four days of consecutive swimming with a significant effect of
time (F(1,37) ¼ 36.1, p < 0.001) and genotype (F(1,111) ¼ 13.7,
p < 0.001). Crtc1�/�mice had higher immobility time thanWTmice
during the last two sessions of the pre-test period (day �2 and �1)
(p < 0.001 for both days). This genotype effect remained significant
after the beginning of the desipramine treatment (F(1,35) ¼ 71.34,
p < 0.001), indicating that Crtc1�/� mice had higher immobility
time that WT mice during the whole procedure. WT mice pro-
gressively responded to desipramine, as their immobility time
significantly decreased over time. As compared to their own
immobility time on day 2 of treatment, the effect of desipramine
became significant starting from day 9 (p ¼ 0.029 on day 9,
p ¼ 0.003 on day 12, p < 0.001 on days 16, 19 and 23, vs. day 2).
Their immobility time was also lower than untreated WT mice,
starting from day 9 as well (p¼ 0.032 on day 9, p¼ 0.032 on day 12,
p ¼ 0.023 on day 12, p ¼ 0.016 on day 19, p ¼ 0.009 on day 23, vs.
WT untreated). Desipramine had no effect on the depressive-like
behavior of Crtc1�/� mice, indicating that these mice were resis-
tant to desipramine in this paradigm. At the end of the procedure,
mice were then tested in the novelty-induced hypophagia (NIH)
test, a depression- and anxiety-related paradigm sensitive to
chronic antidepressant treatment (Dulawa and Hen, 2005) (Fig. 1A
and C). In homecage conditions, genotype or treatment had no
effect on the latency to consume condensed milk, whereas a sig-
nificant effect of desipramine was found in the novel environment
(F(1,30) ¼ 6.52, p ¼ 0.016). Desipramine significantly decreased the
latency of Crtc1�/� mice (p ¼ 0.005, vs. untreated Crtc1�/� mice),
thus showing that these mice responded positively to desipramine
in this paradigm. Comparably to their response to fluoxetine
(Breuillaud et al., 2012), Crtc1�/� mice show a blunted response to
chronic desipramine in the OSFS test and a reduced latency to drink
sweetened milk in the anxiogenic environment of the NIH, which
suggest a differential involvement of CRTC1 in the behavioral
response to antidepressants.

3.2. Desipramine fails to induce expression of neuroplasticity-
related genes in Crtc1�/� mice

In order to investigate the molecular mechanisms underlying
the blunted behavioral response of Crtc1�/� mice to desipramine,
gene expression analysis was performed in the HIP and PFC of these
animals (Fig. 2). Crtc1�/� mice have a reduced expression of several
neuroplasticity-related genes in these brain regions involved in
depressive disorders (Breuillaud et al., 2012). We were first inter-
ested in assessing a possible effect of desipramine on Crtc1
expression in WT mice (Fig. 2A). Desipramine upregulated Crtc1
mRNA in the PFC of WT mice (t ¼ �2.35, df ¼ 12, p ¼ 0.037, vs. WT
untreated), which further suggests a role for CRTC1 in antidepres-
sant response. Total Bdnf expression was then measured in WT and
Crtc1�/� mice (Fig. 2B). In the HIP, genotype had a significant effect
on Bdnf expression (F(1,27) ¼ 4.53, p ¼ 0.042), unlike desipramine
that had no effect. Indeed, Crtc1�/� mice had lower levels of Bdnf
mRNA (p ¼ 0.044, vs. WT untreated) as previously observed in
these animals (Breuillaud et al., 2012). In the PFC, a significant effect
of treatment was found (F(1,22) ¼ 9.08, p ¼ 0.006), which revealed
that desipramine significantly induced Bdnf expression in WT mice
(p ¼ 0.003, vs. WT untreated), but failed to do so in Crtc1�/� mice.
Promoter IV-driven Bdnf expression (BdnfIV) analysis showed a
significant effect of treatment in the HIP (F(1,22) ¼ 13.46, p ¼ 0.001),
as desipramine induced an increased expression of BdnfIVmRNA in



Fig. 2. Molecular effects of desipramine in the HIP and PFC of Crtc1�/� mice andWT littermates. (A) Desipramine had no effect on Crtc1 expression in the HIP of WT mice. In the PFC,
WT mice treated with desipramine (n ¼ 8) showed increased levels of Crtc1 expression as compared to untreated WT mice (n ¼ 6) (*p < 0.05,vs. WT untreated). (B) Untreated
Crtc1�/� mice (n ¼ 8) displayed lower hippocampal Bdnf expression compared to WT mice (n ¼ 7) (þp < 0.05, vs. WT untreated). Desipramine had no effect on Bdnf expression of
WT and Crtc1�/� mice (n ¼ 8 and n ¼ 9 respectively). In the PFC, desipramine significantly increased Bdnf levels of WT mice (*p < 0.01 vs. WT untreated) but not Crtc1�/� mice. (C)
Hippocampal BdnfIV expression was increased in desipramine-treated WT mice (**p < 0.01, vs. WT untreated), but not in Crtc1�/� mice. In the PFC, desipramine did not have a
significant effect on both genotypes. (DeF) Effects of desipramine on the expression of Nr4a1-3. (D) Crtc1�/� mice displayed lower levels of Nr4a1 expression than WT mice in the
HIP and PFC (þp < 0.05, þþp < 0.01, vs. WT untreated). Desipramine increased Nr4a1 levels of WT mice in the PFC but had no effect in the HIP (*p < 0.05, vs. WT untreated). (E) Nr4a2
expression was found to be lower in the HIP and PFC of Crtc1�/� mice compared to WT mice (þp < 0.05, þþp < 0.01, vs. WT untreated). Desipramine had no effect on Nr4a2
expression in Crtc1�/� mice but increased its expression in the PFC of WT mice (*p < 0.05, vs. WT untreated). (F) Desipramine increased Nr4a3 expression in the HIP of WT animal
but had no effect on Crtc1�/� mice (*p < 0.05, vs. WT untreated). Crtc1�/� mice displayed lower Nr4a3 expression than WT animals in the PFC (þp < 0.05, vs. WT untreated). Data are
mean ± SEM.
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WT mice (p ¼ 0.002 vs. WT untreated), but not in Crtc1�/� mice
(Fig. 2C). No significant effect of genotype or treatment was
observed in the PFC.Wewere then interested inmeasuringNr4a1-3
gene expression, as these orphan nuclear receptors are down-
regulated in Crtc1�/� mice (Breuillaud et al., 2012). Furthermore,
NR4A1-3 have been shown to be involved in Bdnf regulation, in
mood disorders and in neuroprotection (Schaffer et al., 2010;
Volakakis et al., 2010; Volpicelli et al., 2007). Analysis of Nr4a1
expression (Fig. 2D) revealed a significant effect of genotype in the
HIP (F(1,27) ¼ 6.71, p < 0.015), showing that, independently of the
treatment, Crtc1�/� mice presented decreased levels of Nr4a1
(p ¼ 0.025 vs. WT untreated). In the PFC, genotype had a significant
effect (F(1,26) ¼ 23.84, p < 0.001). Desipramine significantly
increased Nr4a1 expression in WT mice (p ¼ 0.026 vs. WT un-
treated), but not in Crtc1�/� mice, which also presented decreased
Nr4a1 levels (p ¼ 0.003 vs. WT untreated). Similar results were
observed for Nr4a2 expression (Fig. 2E). A significant effects of
genotype was observed in both structures (HIP: F(1,27) ¼ 22.79,
p < 0.001; PFC: F(1,27) ¼ 39.04, p < 0.001), as Crtc1�/� mice pre-
sented lower levels of Nr4a2 expression (HIP: p ¼ 0.002; PFC:
p < 0.001, vs. WT untreated). Furthermore, desipramine induced
Nr4a2 expression in the HIP and PFC of WT mice (HIP: p ¼ 0.035;
PFC: p ¼ 0.008, vs. WT untreated). A significant genotype*treat-
ment interaction was found in the PFC (F(1, 27) ¼ 5.12, p ¼ 0.031) as
desipramine had no effect in Crtc1�/� mice. Finally, no effect of
genotype or treatment was observed for Nr4a3 in the HIP (Fig. 2F),
whereas only a genotype effect was found in the PFC,
(F(1,27) ¼ 27.59, p < 0.001), as Crtc1�/� mice presented decreased
Nr4a3 expression (p < 0.001, vs. WT untreated). Altogether, these
data show that desipramine fails to induce the expression of Bdnf,
Bdnf IV, Nr4a1 and Nr4a2 in the PFC and HIP of Crtc1�/� mice,
therefore possibly explaining their abnormal behavioral response
to this antidepressant.
3.3. SAHA partially rescues the depressive-like phenotype of
Crtc1�/� mice

As CRTC1 is helping phosphorylated CREB to recruit the histone
acetyltransferase CBP, we reasoned that HDAC inhibition might
compensate for the possible deficit of CBP recruitment in Crtc1�/�

mice, and thus rescue the expression of neuroplasticity genes
involved in mood regulation. Moreover, several lines of evidence
both in humans and in animal models have suggested that patho-
logical conditions may alter the expression of Hdac family mem-
bers, mainly of class I and IIa (Covington et al., 2009; Gr€aff et al.,
2012; Han et al., 2014; Morris and Monteggia, 2013; Tsankova
et al., 2006; Uchida et al., 2011). Therefore, we first measured the
expression of class I (Hdac1,2,3) and class IIa (Hdac4,5,7,9) members
in the HIP and PFC of WT and Crtc1�/� mice to determine whether
mutant mice may present a possible altered epigenetic profile



Fig. 3. Expression of Hdac1,2,3,4,5,7,9 and effects of SAHA in the HIP and PFC of Crtc1�/� andWTmice. (A) Hippocampal mRNA expression of most Hdac class I (1,2,3) and IIa (4,5,7,9)
was unchanged in Crtc1�/� mice (n ¼ 6) with the exception of Hdac9 which was upregulated as compared to WT mice (n ¼ 6) (**p < 0.01, vs. WT mice). (B) No difference of Hdac
expression in the PFC of Crtc1�/� mice. (CeF) Histone H3 and H4 acetylation 2 h after a single SAHA injection (25 mg/kg) in Crtc1�/� andWTmice. Immunoblot analysis of acetylated
histones H3 and H4 (acetyl-H3 and acetyl-H4) and total H3 and H4 revealed single bands at the expected sizes of 15 kDa and 10 kDa, respectively. Panel (C) shows a representative
western blot for acetylated histone H3 (Acetyl-H3) and total histone H3 (total H3) in the HIP and PFC of WT and Crtc1�/� mice. (D) SAHA-treated WT mice (n ¼ 5) presented higher
levels of acetyl-H3 than vehicle-treatedWTmice (n ¼ 5) in the hippocampus (*p < 0.05, vs. WT Vehicle) and PFC (**p < 0.01, vs. WT vehicle). SAHA-treated Crtc1�/� mice (n ¼ 4) also
presented increased histone H3 acetylation compared to vehicle-treated Crtc1�/� mice (n ¼ 4) in the HIP and PFC (#p < 0.05, vs. Crtc1�/� Vehicle). Panel (E) shows a representative
western blot for acetylated histone H4 (Acetyl-H4) and total histone H4 (total H4) in the HIP and PFC of WT and Crtc1�/� mice. (F) SAHA-treated WT mice (n ¼ 4) presented a non-
significant tendency to higher levels of acetyl-H4 than vehicle-treated WT mice (n ¼ 5) in the HIP. In the PFC, SAHA increased levels of H4 acetylation in WT mice (**p < 0.01, vs. WT
Vehicle). SAHA-treated Crtc1�/� mice (n ¼ 4) presented increased histone H4 acetylation compared to vehicle-treated Crtc1�/� mice (n ¼ 4) in the HIP and PFC (#p > 0.05, ##p < 0.01,
vs. Crtc1�/� Vehicle). Data are mean ± SEM.
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(Fig. 3A and B). We found that expression of most Hdac tested was
globally unchanged in the HIP and PFC of Crtc1�/� mice, except for
Hdac9 that was slightly upregulated in the HIP of mutant mice
(t ¼ �4.29, df ¼ 10, p ¼ 0.002, vs. WT mice) (Fig. 3A). However, this
increased expression of Hdac9 in the HIP of Crtc1�/� mice did not
influence global acetylation of histone H3 and H4, as revealed by
Western blot analysis (Fig. 3CeF). This suggested that the behav-
ioral andmolecular phenotypes of Crtc1�/�mice did not result from
a major alteration of Hdac expression and histone acetylation.

HDAC inhibitors have been shown to have antidepressant effects
in rodents and to regulate similar patterns of genes as antide-
pressants (Covington et al., 2009; Schroeder et al., 2007). SAHA is a
hydroxamic acid compound that inhibits class I and II HDACs (Gr€aff
and Tsai, 2013). Systemic administration of SAHA increases histone
acetylation in the brain and has antidepressant effects in mice
(Hockly et al., 2003; Uchida et al., 2011). Moreover, in primary
neuronal cultures, SAHA induces a rapid increase in histone acet-
ylation at Bdnf promoters I and IV, and an upregulation of Bdnf
expression (Koppel and Timmusk, 2013). Therefore, SAHA was
chosen to assess the behavioral response of WT and Crtc1�/� mice
to chronic HDAC inhibition. We first controlled that an
intraperitoneal injection of SAHA indeed triggered an increase of
histone acetylation in the brain of WT and Crtc1�/� mice
(Fig. 3CeF). Acetyl-H3 and Acetyl-H4 signals were quantified and
normalized over total H3 and total H4 signals. Analysis of histone
H3 acetylation (Fig. 3C and D) showed a significant effect of SAHA in
the HIP (F(1, 14) ¼ 11.17, p ¼ 0.004) and in the PFC (F(1,14), ¼ 13.86,
p ¼ 0.002) of WT (HIP: p ¼ 0.014, PFC: p ¼ 0.003, vs. WT vehicle)
and Crtc1�/� mice (HIP: p ¼ 0.017, PFC: p ¼ 0.032, vs. Crtc1�/�

vehicle). Similarly, SAHA had a significant effect on H4 acetylation
(Fig. 3E and F) in the HIP (F(1, 14) ¼ 9.28, p ¼ 0.008) and in the PFC
(F(1,13) ¼ 13.97, p ¼ 0.001) of WT (PFC: p ¼ 0.003, vs. WT vehicle)
and Crtc1�/� mice (HIP: p ¼ 0.003, PFC: p ¼ 0.034, vs. Crtc1�/�

vehicle).
Having shown that SAHA crosses the blood-brain barrier and

increases histone acetylation in the brain, we then tested the
behavioral response of WT and Crtc1�/� mice to chronic SAHA
treatment. Animals were first tested in the OSFS protocol (Fig. 4A
and B). During the initial four consecutive days (from day�4 to�1),
all groups showed an increase in their immobility time, with a
significant interaction of time and genotype (F(3,96) ¼ 3.89,
p ¼ 0.011), and Crtc1�/� mice progressively displayed increased



Fig. 4. Behavioral response of Crtc1�/� mice to SAHA. (A) Experimental design and timeline. The OSFS protocol started when mice reached the age of 8 weeks. Mice underwent
forced swimming session during the first four days (day �4 to �1). On day 0, SAHA treatment started and continued until the end of the experiment (last injection on day 27).
Swimming session were regularly repeated until day 24. The NIH test was then applied from day 24 until day 27. On day 28, animals were sacrificed. (B) Effects of chronic SAHA in
the OSFS model of depression on Crtc1�/� mice and WT littermates. All groups increased their immobility time during the pre-treatment period (Day �4 to day �1). Crtc1�/� mice
presented higher immobility time than WT mice starting from day �2 (þp < 0.05, þþþp < 0.001, vs. WT mice). From day 0 until day 23, WT and Crtc1�/� mice were daily injected i.p.
with either vehicle (n ¼ 9 and n ¼ 8 respectively) or 25 mg/kg SAHA (n ¼ 9 and n ¼ 8 respectively). Vehicle-treated Crtc1�/� mice were significantly more immobile that vehicle-
treated WT mice during the whole procedure (þþþp < 0.001, vs. WT Vehicle). SAHA-treated WT mice significantly decreased their immobility time starting from day 2 of treatment
(xxp < 0.01, xxxp < 0.001, vs. themselves on day 2). Their immobility time was also significantly lower than vehicle-treated WT mice during the last three sessions (*p < 0.05, vs. WT
Vehicle). SAHA-treated Crtc1�/� mice significantly decreased their immobility time starting from day 12 of treatment (##p < 0.01, vs. themselves on day 2). (C) Effects of chronic
SAHA on the NIH paradigm. Latencies to drink sweetened condensed milk are shown in the homecage and in the novel environment. Two mice were removed for having latency
scores >2 SD from the mean. One mouse was removed for never having drunk the milk during the habituation and test phases. In the homecage conditions, no effect of SAHA was
observed in any groups. In the novel environment, SAHA-treated mice (n ¼ 7) presented significant shorter latencies to drink the milk, as compared to vehicle-treated WT mice
(n ¼ 8) (*p < 0.05, vs. WT Vehicle). SAHA-treated Crtc1�/� mice showed a non-significant trend to a shorter latency than vehicle-treated Crtc1�/� mice (n ¼ 8 for each group). Data
are means ± SEM.
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immobility time as compared to WTmice (day�3: p¼ 0.02, day-2:
p ¼ 0.001, day-4: p < 0.001, vs. WT mice). After the beginning of
SAHA treatment, a significant effect of genotype (F(1,30) ¼ 20.21,
p < 0.001) and a significant interaction of time and treatment
(F(6,180) ¼ 6.23, p < 0.001) were observed. SAHA-treated mice
rapidly decreased their immobility time, as compared to their score
at the beginning of the treatment (day 5: p ¼ 0.01, day 9: p ¼ 0.007,
day 12e23: p < 0.001, vs. themselves on day 2). Their immobility
time was also significantly lower than vehicle-treated WT mice on
the last three sessions (day 16: p ¼ 0.037, day 19: p¼ 0.049, day 23:
p ¼ 0.046, vs. WT Vehicle). Vehicle-treated Crtc1�/� mice displayed
higher immobility time than WT mice during the whole procedure
(day 2e23: p < 0.001, vs. WT Vehicle). Crtc1�/� mice responded to
SAHA, as they progressively decreased their immobility time (day
12: p ¼ 0.007, day 16: p ¼ 0.001, day 19: p ¼ 0.005, day 23:
p¼ 0.009, vs. themselves on day 2). Animals were then tested in the
NIH paradigm (Fig. 4A and C). In the homecage conditions, there
was no effect of genotype or treatment, whereas a significant effect
of genotype was observed in the novel environment (F(1,26) ¼ 4.55,
p ¼ 0.042), where SAHA decreased the latency of WT mice
(p ¼ 0.039, vs. WT Vehicle). There was not however a significant
effect of SAHA on Crtc1�/� mice, although SAHA-treated mutant
mice presented a trend to a decreased latency. Taken together,
these results show that SAHA improves the phenotype of Crtc1�/�

mice, as it partially rescued their depressive-like behavior in the
OSFS paradigm.
3.4. SAHA partially restores normal gene expression in Crtc1�/�

mice

Gene expression analysis of Crtc1, Bdnf, BdnfIV and Nr4a1-3 was
performed in order to investigate the effects of chronic SAHA on
these genes (Fig. 5). SAHA had no effect on Crtc1 expression in the
HIP and PFC ofWTmice (Fig. 5A). A significant effect of genotype on
total Bdnf expression (Fig. 5B) was seen in the HIP (F(1,26) ¼ 18.06,
p < 0.001), as Crtc1�/� mice surprisingly displayed higher Bdnf



Fig. 5. Molecular effects of SAHA in the HIP and PFC of Crtc1�/� mice and WT littermates. (A) SAHA had no effect on Crtc1 expression in the HIP and PFC of WT mice (n ¼ 8 for both
group). (B) Untreated Crtc1�/� mice (n ¼ 8) displayed higher hippocampal Bdnf expression compared to WT mice (þp < 0.05, vs. WT mice). SAHA had no effect on Bdnf expression of
WT and Crtc1�/� mice (n ¼ 8 for each group). In the PFC, SAHA significantly increased Bdnf levels of Crtc1�/� mice (##p < 0.01 vs. Crtc1�/� Vehicle). (C) Hippocampal BdnfIV
expression was unchanged among the different groups. In the PFC, vehicle-treated Crtc1�/� mice showed a decreased expression of BdnfIV (þp < 0.05, vs. WT Vehicle). SAHA
treatment significantly restored BdnfIV expression in Crtc1�/� mice (##p < 0.01, vs. Crtc1�/� mice Vehicle). (DeF) Effects of SAHA on the expression of Nr4a1-3. (D) Crtc1�/� mice
displayed lower levels of Nr4a1 expression than WT mice in the PFC (þþp < 0.01, vs. WT Vehicle). Desipramine increased Nr4a1 levels of WT mice in the HIP but had no effect in the
PFC (**p < 0.01, vs. WT Vehicle). (E) Nr4a2 expression was found to be lower in the PFC of Crtc1�/� mice compared to WT mice (þþp < 0.01, vs. WT Vehicle). SAHA had no effect on
Nr4a2 expression in Crtc1�/� mice but increased its expression in the HIP and PFC of WT mice (*p < 0.05, vs. WT Vehicle). (F) SAHA had no effect on Nr4a3 expression in the HIP of all
groups. In the PFC, SAHA increased Nr4a3 expression of WT animal but had no effect on Crtc1�/� mice (*p < 0.05, vs. WT Vehicle). Data are mean ± SEM.
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mRNA levels than WT mice (p ¼ 0.02, vs. WT Vehicle). In the PFC, a
significant effect of treatment was observed (F(1,26) ¼ 8.52,
p¼ 0.007), as chronic SAHA increased BdnfmRNA levels in Crtc1�/�

mice (p ¼ 0.009, vs. Crtc1�/� Vehicle). Analysis of Bdnf promoter IV
expression (Fig. 5C) did not reveal any effect of genotype or treat-
ment in the HIP, whereas a significant genotype and treatment
effect was observed in the PFC (genotype: F(1,25) ¼ 4.82, p ¼ 0.037;
treatment: F(1,25) ¼ 10.11, p¼ 0.003), where Crtc1�/�mice displayed
lower expression of BdnfIV (p ¼ 0.039, vs. WT Vehicle). SAHA
treatment successfully restored BdnfIV levels in Crtc1�/� mice
(p ¼ 0.005, vs. Crtc1�/� Vehicle). Measure of Nr4a1 mRNA expres-
sion (Fig. 5D) showed a significant interaction of genotype and
treatment (F(1,25) ¼ 9.58, p ¼ 0.004), as SAHA increased Nr4a1
expression in the HIP of WT mice (p ¼ 0.001, vs. WT Vehicle), but
had no effect in Crtc1�/� mice. In the PFC, a significant effect of
genotype was observed (F(1,27) ¼ 15.57, p < 0.001), as Crtc1�/� mice
showed lower levels of Nr4a1 (p ¼ 0.005, vs. WT Vehicle). SAHA
had no effect on both genotypes in this structure. Similar effects of
SAHA on Nr4a2 expression were observed in the HIP (Fig. 5E),
where SAHA increased Nr4a2 levels in WT mice (p ¼ 0.001, vs. WT
Vehicle), but had no effect in Crtc1�/� mice. SAHA also increased
Nr4a2 levels in the PFC of WT mice (p ¼ 0.013, vs. WT mice). A
significant effect of genotype was also visible in the same structure
(F(1,24) ¼ 14.12, p < 0.001), as Crtc1�/� mice displayed decreased
expression of Nr4a2 (p ¼ 0.005, vs. WT Vehicle). Genotype or
treatment had no effect on Nr4a3 mRNA levels in the HIP (Fig. 5F).
In the PFC, a significant interaction of genotype and treatment
(F(1,25) ¼ 4.54, p < 0.042) was observed, as SAHA increased Nr4a3
expression in WT mice only (p ¼ 0.012, vs. WT Vehicle).
Taken together, these results interestingly show that chronic

SAHA treatment restored normal Bdnf and BdnfIV expression in the
PFC of Crtc1�/� mice, and that it increased Nr4a1-3 expression in
WT mice, but not in Crtc1�/� mice. However, it is worth noting that
the relative gene expression levels of vehicle-injected Crtc1�/�mice
(Fig. 5, black bars) displayed several discrepancies, mostly in the
HIP, as compared with those of mice that were exposed to the same
behavioral paradigms, but not chronically injected (Fig. 2, black
bars). The most striking difference was the surprising increased
Bdnf expression in the HIP of vehicle-injected Crtc1�/� mice
(Fig. 5B). In addition, contrary to our previous observations and the
results of Fig. 2, Nr4a1 and Nr4a2 levels were not reduced in the HIP
of Crtc1�/�mice. These inconsistencies prompted us to compare the
expression levels of Bdnf, BdnfIV, and Nr4a1-3 in WT and Crtc1�/�

mice control groups of Figs. 2 and 5 (supplementary Fig. S1). The
apparent increase of Bdnf expression in the HIP of vehicle-injected
Crtc1�/� mice (Fig. 5B) appeared to be rather due to a decreased
Bdnf expression in chronically injected WT mice (Fig. S1A). Simi-
larly, hippocampal Nr4a1-3 levels seemed to be reduced mostly in
WT mice chronically injected with vehicle (Fig. S1C and E). With a
few exceptions, Crtc1�/� mice appeared to be less affected by this
chronic injection stress, which might explain the inconsistent data
of Fig. 5. In conclusion, the behavioral effect of chronic SAHA
administration in Crtc1�/� mice might be related to the restoration
of normal Bdnf and BdnfIV expression in the PFC. However, unlike
its effect in WT mice, chronic SAHAwas not able to induce Nr4a1-3
expression in Crtc1�/� mice, which suggests that the upregulation
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of these genes is not required to improve the behavioral despair of
these animals in the OSFS paradigm.

4. Discussion

The generation and characterization of Crtc1�/� mice high-
lighted a key role of CRTC1 as a mediator of neuroplasticity-related
genes expression potentially involved in the pathophysiology of
mood disorders (Breuillaud et al., 2012). Moreover, we showed that
CRTC1 is required for proper behavioral response to chronic
fluoxetine treatment. In the present study, we further investigated
the role of CRTC1 in behavioral and molecular response to antide-
pressants. We were first interested to assess the effect of another
class of antidepressants. The tricyclic antidepressant desipramine
was selected as this type of compounds mainly acts on the norad-
renergic system, while fluoxetine is a selective serotonin reuptake
inhibitor. We observed that Crtc1�/� mice responded similarly to
desipramine and fluoxetine; i.e. desipramine had no effect on these
animals in the OSFS protocol, whereas it had anxiolytic effects in
the NIH paradigm. These results further suggest that CRTC1 is
involved in behavioral response to antidepressants, mainly in
behavioral despair-related paradigms, and that both noradrenergic
and serotonergic pathways activated by antidepressants converge
on CRTC1. We also observed that desipramine induced the
expression of Crtc1 in the PFC of WT mice, which strengthens the
hypothesis of a pivotal role of CRTC1 in antidepressant response.

Interestingly, desipramine, like fluoxetine in our previous study,
still elicited behavioral response in Crtc1�/� mice in the NIH para-
digm. This test has the advantage to be sensitive to chronic, but not
acute antidepressant treatment. However, hyponeophagic behavior
can be related to depressive but also anxious behavior (Dulawa and
Hen, 2005) and both fluoxetine and desipramine have anxiolytic
effects (Zohar and Westenberg, 2000). Therefore, the behavioral
response of Crtc1�/� mice observed in the NIH might be due to the
anxiolytic effects of these treatments. The fact that these drugs still
have anxiolytic effect in the absence of CRTC1 suggests that these
effects are either CRTC1-independent, or that alternative pathways
can be used to counteract the absence of CRTC1.

Gene expression analyses revealed that desipramine induced
the expression of Bdnf, BdnfIV, Nr4a1, and Nr4a2 in the HIP and PFC
of WT mice, but failed to do so in Crtc1�/� mice. While desipramine
has been known for a long time to induce the expression of Bdnf
(Nibuya et al., 1995), we report here that it also induces the
expression of Nr4a1 and Nr4a2, which have been linked with mood
disorders and Bdnf regulation (Buervenich et al., 2000; Volpicelli
et al., 2007; Xing et al., 2006). Furthermore, we show that CRTC1
is required for the induction of Nr4a1 and Nr4a2 by chronic desi-
pramine, thus suggesting a role for these nuclear receptors in the
behavioral response to antidepressants.

Considering this hypothesis, we attempted to counteract CRTC1
deletion and restore normal gene expression in Crtc1�/� mice by
treating them with a HDAC inhibitor. Epigenetic gene regulation
has been widely shown to be involved in mood disorders. Mecha-
nisms such as DNA methylation and histone acetylation (mecha-
nisms that respectively repress and activate gene transcription)
were found to be altered in depressed patients and in response to
chronic stress (Sun et al., 2013; Vialou et al., 2013). Antidepressants
also induce epigenetic changes, such as histone H3 hyper-
acetylation (Tsankova et al., 2006). HDAC inhibitors were found to
have antidepressant effects in rodents, and to regulate a subset of
genes in a similar way as antidepressants drugs (Covington et al.,
2009; Schroeder et al., 2007; Uchida et al., 2011). Of particular in-
terest for this study, Bdnf and Nr4a1-3 have been shown to be
induced by HDAC inhibitors (Hawk et al., 2012; Schroeder et al.,
2007; Vecsey et al., 2007). In the light of these results, we
injected intraperitoneally the HDAC inhibitor SAHA to WT and
Crtc1�/� mice, and confirmed that a systemic administration of
SAHA increased histone acetylation in the brain. Mutant mice
responded to chronic SAHA in the OSFS paradigm, as their immo-
bility time decreased over time, indicating a successful antide-
pressant effect of SAHA in these animals. However, the effect was
not complete, as treated Crtc1�/�mice did not reach the level ofWT
animals. This suggests that SAHAwas not able to completely rescue
the depressive-like behavior of these animals. It is important to
keep in mind that Crtc1�/� mice are complete knock-out animal,
therefore developmental effects of CRTC1 deficiency cannot be
excluded. Thus, some behavioral and molecular impairment might
not be completely reversible, and might explain the partial
behavioral effects of SAHA. Nevertheless, this result indicates that
the depressive-like behavior of Crtc1�/� mice can be partially
rescued by acting at the epigenetic level.

In the NIH, the effect of SAHAwas less clear.While it reduced the
latency of WT mice, it only produced a trend to a decreased latency
in Crtc1�/� mice. However, basal latency of vehicle-treated WT
animals was abnormally high, which might indicate that the ani-
mals had higher basal anxiety, as compared with the NIH experi-
ment of Fig. 1C. This might be explained by a possible effect of the
three-week stressful OSFS procedure combined with chronic in-
jections. All in all, NIH results suggest that SAHA had no effect on
the anxiety of Crtc1�/� mice, yet as WT animals seemed to present
unusual higher anxiety, results of this test should be taken with
caution.

Molecular investigation of SAHA effects allowed us to better
understand the behavioral effects of this treatment on Crtc1�/�

mice. In the PFC, the decreased Bdnf and BdnfIV expression was
successfully rescued by SAHA treatment. This rescue of Bdnf
expression may be related to the decreased immobility of Crtc1�/�

mice in the OSFS, as BDNF alterations have often been linked with
behavioral despair (Borsoi et al., 2014; Koponen et al., 2005;
Shirayama et al., 2002; Siuciak et al., 1997). While no effect of
SAHA was observed in the HIP, Crtc1�/� mice elusively displayed
higher Bdnf expression in this structure, instead of their usual lower
levels. The comparison of Bdnf levels in control groups of WT and
Crtc1�/�mice of Figs. 2 and 5 suggested that the stress generated by
chronic daily vehicle injections decreased Bdnf expression only in
WT and not in Crtc1�/� mice (Fig. S1). While it is generally sug-
gested that acute and chronic stress decrease Bdnf expression
(Duman and Monteggia, 2006), several studies have shown oppo-
site findings (Charrier et al., 2006; Marmigere et al., 2003; Nair
et al., 2007), thus revealing a complex interplay between stress
and BDNF. Crtc1�/� mice might thus present an altered reactivity to
stress, evidenced by differential Bdnf regulation. This highlights
again the importance of CRTC1 in the regulation of Bdnf and stress
response, and should be a focus for future investigations.

Interestingly, SAHAwas found to increase Nr4a1-3 expression in
the HIP and/or PFC of WT mice, which could be correlated with its
antidepressant effect in these mice. This is in line with previous
studies showing that HDAC inhibitors increase Nr4a1-3 expression
via the CREB-CBP pathway, which is a key mechanism for memory
enhancement (Hawk et al., 2012; Vecsey et al., 2007). However,
SAHA treatment was not able to increase Nr4a1-3 expression in
Crtc1�/� mice, and therefore these genes are apparently not
involved in the partial rescue of their depressive-like behavior.
These results suggest that CRTC1 is required for the CREB-CBP-
mediated Nr4a1-3 transcription induced by HDAC inhibitors. As
this pathway is involved in learning processes, these findings are in
keeping with the recently characterized important role of CRTC1 in
memory and cognitive behavior (Nonaka et al., 2014a, 2014b; Parra-
Damas et al., 2014). Further characterization of cognitive and
learning behaviors of Crtc1�/� mice should better characterize



E.M. Meylan et al. / Neuropharmacology 107 (2016) 111e121120
CRTC1 function in these processes.

5. Conclusions

In this study, we provide evidence that CRTC1 is a key regulator
of behavioral and molecular response to antidepressant. We show
that CRTC1 is required for complete behavioral antidepressant
response and for desipramine-induced expression of Bdnf and
Nr4a1-2. By acting downstream of CRTC1, the HDAC inhibitor SAHA
improves the depressive-like behavior of Crtc1�/� mice. This partial
rescue was paralleled by a restoration of Bdnf expression in the PFC,
whereas SAHA was unable to increase Nr4a1-3 expression in these
mice, thus suggesting that these orphan nuclear receptors do not
play a major role in the improvement of their depressive-like
behavior. In conclusion, several lines of evidence strongly suggest
that CRTC1-deficient mice are a valuable animal model of depres-
sive phenotypes and treatment resistance. As an important regu-
latory mediator of depression-related genes, CRTC1 provide a new
focus for future research aiming at a better understanding of
depression and new therapeutic approaches.
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Fig. S1  Effects on gene expression of chronic intraperitoneal injections of vehicle solution 

(controls of Figure 5) compared to uninjected WT and Crtc1‒/‒ mice (controls of Figure 2). (A) 

Effects of chronic injections on total Bdnf expression in the hippocampus (HIP) and prefrontal 

cortex (PFC). Chronic injections reduced Bdnf levels of WT in the HIP and PFC (**p<0.01, 

***p<0.001) and of Crtc1‒/‒ mice in the PFC (###p<0.001, vs. Crtc1‒/‒ mice). (B) Effects of chronic 

injections on BdnfIV expression in the HIP and PFC. Chronic injections had no effect on BdnfIV 

levels in the HIP. Injections significantly downregulated BdnfIV in the PFC of Crtc1‒/‒ mice 

(##p<0.01, vs. Crtc1‒/‒ mice), and they also presented lower BdnfIV levels than injected WT mice 

in the same structure (§p<0.05, vs. WT injected). (C-F) Effects of chronic injections on Nr4a1-3 

expression in the HIP and PFC. Chronic injections significantly decreased the expression of 

Nr4a1-3 in the HIP and of Nr4a2-3 in the PFC of WT mice (*p<0.05, ***p<0.001, vs. WT mice). 

Non-injected Crtc1‒/‒ mice presented lower Nr4a1-3 levels in the HIP and PFC than non-injected 

WT mice (+p<0.05, vs. WT mice), except for Nr4a3 in the HIP. Injected Crtc1‒/‒ mice also 

displayed lower levels of Nr4a1 and Nr4a2 in the PFC (§p<0.01, vs. WT injected). In Crtc1‒/‒ mice, 

chronic injections only reduced the levels of Nr4a3 in the HIP (###p<0.001). *: WT vs. WT 

injected, +: WT vs. Crtc1‒/‒, #: Crtc1‒/‒ vs. Crtc1‒/‒ injected, §: WT injected vs. Crtc1‒/‒ injected. 
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Involvement of the agmatinergic system in the depressive-like
phenotype of the Crtc1 knockout mouse model of depression
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Recent studies implicate the arginine-decarboxylation product agmatine in mood regulation. Agmatine has antidepressant
properties in rodent models of depression, and agmatinase (Agmat), the agmatine-degrading enzyme, is upregulated in the brains
of mood disorder patients. We have previously shown that mice lacking CREB-regulated transcription coactivator 1 (CRTC1) associate
behavioral and molecular depressive-like endophenotypes, as well as blunted responses to classical antidepressants. Here, the
molecular basis of the behavioral phenotype of Crtc1−/− mice was further examined using microarray gene expression profiling that
revealed an upregulation of Agmat in the cortex of Crtc1−/− mice. Quantitative polymerase chain reaction and western blot analyses
confirmed Agmat upregulation in the Crtc1−/− prefrontal cortex (PFC) and hippocampus, which were further demonstrated by
confocal immunofluorescence microscopy to comprise an increased number of Agmat-expressing cells, notably parvalbumin- and
somatostatin-positive interneurons. Acute agmatine and ketamine treatments comparably improved the depressive-like behavior of
male and female Crtc1−/− mice in the forced swim test, suggesting that exogenous agmatine has a rapid antidepressant effect
through the compensation of agmatine deficit because of upregulated Agmat. Agmatine rapidly increased brain-derived neurotrophic
factor (BDNF) levels only in the PFC of wild-type (WT) females, and decreased eukaryotic elongation factor 2 (eEF2) phosphorylation in
the PFC of male and female WT mice, indicating that agmatine might be a fast-acting antidepressant with N-methyl-D-aspartate
(NMDA) receptor antagonist properties. Collectively, these findings implicate Agmat in the depressive-like phenotype of Crtc1−/− mice,
refine current understanding of the agmatinergic system in the brain and highlight its putative role in major depression.

Translational Psychiatry (2016) 6, e852; doi:10.1038/tp.2016.116; published online 12 July 2016

INTRODUCTION
Major depressive disorder (MDD) is a complex neuropsychiatric
disease comprising one of the leading causes of disability
worldwide, with an estimated lifetime prevalence of 16%.1

However, the etiological mechanisms underlying MDD are not
clearly established. Studies over the past decades have suggested
that altered neuroplasticity is a cardinal feature of MDD,2 leading
to the network hypothesis of depression. This latter proposes that
impaired neuroplasticity related to problems in activity-dependent
neuronal communication might alter information processing in
the affected neural networks, and ultimately cause MDD.3 In line
with this hypothesis, antidepressants have been shown to
promote synaptogenesis, neurogenesis and dendritic growth in
the hippocampus (HIP) of rodents.4,5 These neurotrophic effects
correlate with positive behavioral responses to antidepressants
and are thought to rely, at least partly, on the activation of cAMP-
response element-binding protein (CREB)-regulated genes, includ-
ing increased signaling of the brain-derived neurotrophic factor
(BDNF)-TrkB pathway.4 We and others have previously shown
that CREB-dependent Bdnf expression requires CREB-regulated
transcription coactivator 1 (CRTC1).6–8 CRTC1 has been shown to
act as a neuronal calcium- and cAMP-sensitive coincidence

detector and to promote CREB-dependent transcription.6,9 In
addition to its important role in Bdnf expression, CRTC1 has also
been shown to be critical for specific aspects of neuroplasticity, as
evidenced by its role in dendritic growth of developing cortical
neurons10,11 and its requirement for maintenance of long-term
potentiation in the HIP.6,8

To further understand the role and function of CRTC1, we
generated a Crtc1-deficient mouse line.12 These mice present
behavioral and molecular features mirroring mood disorders, such
as increased behavioral despair, anhedonia, increased irritability/
aggressiveness, decreased sexual motivation, social withdrawal,
decreased dopamine and serotonin turnover in the prefrontal
cortex (PFC), as well as decreased HIP and PFC expression in several
neuroplasticity-related genes including Bdnf and its receptor TrkB.13

Furthermore, Crtc1−/− mice exhibit a blunted antidepressant
response to the selective serotonin reuptake inhibitor fluoxetine
and to the tricyclic antidepressant desipramine in a behavioral
despair paradigm.13,14 Taken together, these findings suggest an
important role for CRTC1 in the etiology of MDD and a possible
involvement in treatment-resistant depression.
Substantial evidence supports the involvement of the arginine-

decarboxylation product agmatine in MDD. This metabolite is
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widely expressed in several mammalian organs, including the
brain. Agmatine synthesis competes with other arginine-
dependent pathways, such as the urea cycle and nitric oxide
(NO) synthesis.15 It is degraded by the enzyme agmatinase
(Agmat) into putrescine, a key precursor for polyamine
synthesis.15,16 Accumulating evidence suggests that polyamines
and their precursors have a role in the etiology and pathology of
mental disorders, notably in mood disorders and suicidal
behavior.17,18 Agmatine has also been proposed to function as a
neurotransmitter: it is stored in synaptic vesicles and released
upon depolarization, followed by selective reuptake or
degradation.19 In addition, agmatine has the ability to bind a wide
range of receptors, including nicotinic receptors, imidazoline I1 and
I2 receptors, α2-adrenergic receptors and serotoninergic 5HT-2A
and 5HT-3 receptors.20–23 Remarkably, agmatine also acts as a
glutamate N-methyl-D-aspartate receptor (NMDAR) antagonist.24

This property is particularly interesting in light of the recent and
growing interest in glutamate-based rapid-acting antidepressants,
whose prototype is the NMDAR antagonist ketamine.25–29

Importantly, humans affected by depression show altered blood
levels of agmatine, and post-mortem studies have shown increased
Agmat levels in brain tissues from depressed individuals.30,31 In
rodents, cortical and hippocampal agmatine levels are decreased by
restraint stress, and agmatine demonstrates neuroprotection against
acute and chronic stress effects.32–35 Furthermore, acute agmatine
treatment has rapid antidepressant activities in depression-related
paradigms such as the forced swim test (FST) and tail suspension
test.36 These effects have been attributed to agmatine actions on
monoaminergic and opioid systems, imidazoline and α2-adrenergic
receptors, and NMDAR blockade.36–39 Moreover, agmatine has the
ability to modulate pro- and anti-oxidative balance in the HIP, which
might also underlie its behavioral effects.34 Finally, a recent study
has shown that in parallel to its antidepressant activity, agmatine
increases HIP CREB phosphorylation and BDNF levels, and induces
cell survival pathways.40 Altogether, these data suggest that
agmatine stimulates several endogenous mood-regulating mechan-
isms known to be altered in MDD, leading to the conclusion that
dysregulation of the agmatinergic system could play a role in the
etiopathogenesis of MDD and agmatine supplementation might
have a positive outcome on the disease.
In this study, we investigated the molecular basis for the

depressive-like phenotype of Crtc1−/− mice, which led us by
differential expression analysis to discover a cortical upregulation
of Agmat expression. Immunohistochemical studies revealed that
mutant mice have an increased number of Agmat-expressing cells
in the PFC and HIP, particularly parvalbumin (PV)- and somatos-
tatin (Sst)-positive interneurons. Based on this result, we
hypothesized that increased Agmat levels would result in reduced
agmatine bioavailability in the brains of Crtc1−/− mice, and that
supplementation with exogenous agmatine would improve their
depressive-like behavior. Indeed, we found that acute agmatine
administration had a rapid antidepressant effect both in wild-type
(WT) and Crtc1−/− mice, the latter requiring a higher dose than WT,
in accordance with their increased brain Agmat levels. Finally, we
also investigated the molecular mechanisms underlying the rapid
antidepressant effects of exogenous agmatine in WT and Crtc1−/−

mice. We found that agmatine induced BDNF translation in the
PFC of WT mice, paralleled by dephosphorylation of eukaryotic
elongation factor 2 (eEF2), suggesting NMDAR-mediated anti-
depressant mechanisms.

MATERIALS AND METHODS
Animals
Crtc1−/− mice and WT littermates were generated and genotyped as
previously described.12 Mice were housed under a 12-h light–dark cycle
with ad libitum access to water and standard rodent chow diet. All animal
experiments were conducted in accordance with the Swiss Federal

Veterinary Office’s guidelines and were approved by the Cantonal
Veterinary Service. All behavioral tests were carried out in the dark phase
of the reverse light cycle according to the standard procedures. Male and
female mice were weaned at 21 days and housed in same-sex sibling
groups until being isolated at 5 weeks of age in order to avoid wounding
of cage mates by aggressive Crtc1−/− male mice.13 At the age of 8 weeks,
animals were randomly assigned into treatment groups and either killed
for molecular experiments or used for behavioral assessments.

Brain microdissection
Male and female mice were killed by cervical dislocation, and the brain was
rapidly placed in a stainless steel adult mouse brain slicer matrix with 1-
mm coronal section slice intervals. A first cut included the PFC from which
the olfactory bulbs and associated structures were removed. Total
hippocampi were unrolled from the cortex. All the structures were
sequentially quick-frozen in dry ice for mRNA and protein extraction and
stored at − 80 °C until further processing.

Gene expression analysis
Total RNA was extracted and purified from the PFC and HIP using the
RNAeasy Plus Minikit (Qiagen, Hombrechtikon, Switzerland) according to
the manufacturers’ instructions. RNA concentrations were measured by
Ultraviolet spectophotometry with a NanoDrop Lite (Thermo Scientific,
Wilmington, DE, USA). Complementary DNA was prepared in a 50-μl
reaction by reverse transcription, using 200 ng of RNA with Taqman
Reagents and random hexamers (Applied Biosystems, Foster City, CA, USA).
Complementary DNA (0.8 μl) was amplified on a 96-well plate using the
SYBR Green PCR Master Mix (Applied Biosystem). Amplification was
performed with an ABIPRISM 7500 real-time PCR system (Applied
Biosystem). The program was 2 min at 50 °C, 10 min at 95 °C, followed
by 45 cycles of 15 s at 95 °C and 1 min at 60 °C. Relative gene expression
was quantified using the comparative ΔΔ Ct method and normalized with
β-actin transcript levels.
The following primers were used at a concentration of 250 nM: β-actin

forward 5′-GCTTCTTTGCAGCTCCTTCGT-3′, β-actin reverse 5′-ATATCGTCAT
CCATGGCGAAC-3′, Agmat forward 5′-TGGACAGCAAGCGAGTGGTACA-3′,
Agmat reverse 5′-GGACCAGTGACTTCATCCAACAG-3′.

Affymetrix gene expression arrays
Gene expression levels were evaluated using DNA microarrays (GeneChip
Mouse Genome 430 version 2.0, Affymetrix, Santa Clara, CA, USA) and RNA
from the cerebral cortices of female mice (n=5 for WT and n= 5 for
Crtc1−/−). Biotinylated cRNAs were prepared from 300 ng total RNA using
the GeneChip 3′ IVT Express Kit (Affymetrix) following the manufacturer’s
instructions. cRNA (15 μg) was hybridized to GeneChip arrays and
processed, stained and scanned according to the manufacturer’s
recommendations. The quality of input RNAs and cRNAs was verified with
the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) before
use. Microarray quality control was performed using the software package
provided on RACE.41 Chips with a median-normalized unscaled s.e. greater
than 1.05 were excluded. Affymetrix annotations (version 3.0) were used
for probeset-to-gene assignments. Mod t-statistics and false discovery rate
corrections for multiple testing with a significance threshold of Po0.05
were used as criteria for differential expression, as described in Hochberg
and Benjamini.42 Microarray data have been deposited in NCBI's Gene
Expression Omnibus (GEO) and are accessible through GEO Series
accession number GSE80633 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc =GSE80633).

Western blot
PFC and HIP samples were manually homogenized with a microtube pestle
in RIPA buffer (50 mM HEPES (pH 7.6), 150 mM NaCl, 1 mM EDTA (pH 7.5),
2.5 mM EGTA (pH 8.0), 10% glycerol, 1% NP-40, 1% deoxycholate, 0.1% SDS,
with a protease inhibitor cocktail (Sigma, St Louis, MO, USA) and a
phosphatase inhibitor cocktail (PhosSTOP, Roche, Rotkreuz, Switzerland)
and extracted for 20 min at 4 °C. Protein quantification was performed with
the Pierce BCA Protein Assay Kit (Thermo Scientific). Samples with low-
protein extract (o2 mg ml− 1) were excluded. Fifty μg of tissue homo-
genates were diluted 1:1 with sample buffer (50 mM Tris-HCl (pH 6.8),
100 mM dithiothreitol, 2% SDS, 9% glycerol, 1% bromophenol blue),
separated on a 12% SDS-polyacrylamide gel and proteins were transferred
to polyvinylidene difluoride membranes with a semi-dry blotting system
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(Bio-Rad, Hercules, CA, USA). Blots were blocked for 1 h at room
temperature (RT) in TBST (10 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.1%
Tween-20), supplemented with 5% skim milk powder. Blots were
subsequently incubated with a primary antibody in TBST plus 5% bovine
serum albumin overnight at 4 °C. Finally, polyvinylidene difluoride
membranes were incubated for 1 h at RT with horseradish peroxidase
(HRP)-conjugated secondary antibodies in TBST plus 5% skim milk powder,
and were developed using a Pierce ECL Western Chemiluminescence
Detection Kit (Thermo Scientific). The following antibodies and dilutions
were used: rabbit α-Agmat 1:400 (sc-98802, Santa Cruz Biotechnology,
Dallas, TX, USA), rabbit α-BDNF 1:500 (sc-546, Santa Cruz Biotechnology),
rabbit α-phospho-eEF2 1:1000 (#2331, Cell Signaling, Danvers, MA, USA),
rabbit α-eEF2 1:1000 (#2332, Cell Signaling), mouse α-β-actin 1:10 000 (Ab-
6276, Abcam, Cambridge, UK), donkey HRP-α-rabbit 1:2000 (#NA934, GE
Healthcare, Little Chalfont, UK) and sheep HRP-α-mouse 1:2000 (#NA931,
GE Healthcare). Quantification of band intensity was performed with the
Image J software (National Institute of Health, Bethesda, MD, USA). Agmat
and BDNF band intensities were normalized with β-actin signals; phospho-
eEF2 band intensities were normalized with total eEF2 signals.

Immunofluorescence
Eight-week-old male mice were deeply anesthetized using sodium
pentobarbital and intracardially perfused with saline followed by 4%
buffered paraformaldehyde. Brains were dissected out, postfixed for 1 h in
4% paraformaldehyde and cryoprotected in 30% sucrose. Brain sections of
35 μm were cut with a freezing microtome (Microm, Thermo Fisher
Scientific, Waltham, MA, USA) and stored at − 20 °C in a cryoprotectant
solution. Blocking (1 h, RT) as well as primary (overnight, 4 °C) and
secondary antibody incubation (1 h, RT) were performed in phosphate-
buffered saline+0.3% Triton X-100+2% normal horse serum+0.2% bovine
serum albumin. Slices were washed three times in phosphate-buffered
saline+0.3% Triton X-100 after each incubation. The following antibodies
and dilutions were used: rabbit α-Agmat 1:100 (sc-98802, Santa Cruz
Biotechnology), mouse α-Parvalbumin 1:2500 (PV235, Swant, Marly,
Switzerland), mouse α-Calretinin 1:2500 (CR7697, Swant), goat α-Somatos-
tatin 1:500 (sc-7819, Santa Cruz Biotechnology), Cy3-conjugated donkey α-
rabbit 1:500 (#711-165-152, Jackson Immunoresearch, West Grove, PA,
USA), Alexa Fluor 488-conjugated goat α-mouse 1:500 (A-21121, Molecular
Probes, Eugene, OR, USA) and Alexa Fluor 488-conjugated donkey α-goat
1:500 (A11055, Invitrogen, Carlsbad, CA, USA). After the secondary
antibody incubation, slices were washed, stained with 4,6-diamidino-2-
phenylindole 1:30 000 (Invitrogen), mounted on glass slides with the
antifade Vectashield medium (Vector Laboratories, Burlingame, CA, USA)
and analyzed with a Zeiss LSM 710 Quasar Confocal Microscope (Carl Zeiss,
Oberkochen, Germany). Image processing and cell counting were carried
out with the Image J Software (National Institute of Health).

Agmatine and ketamine treatment
Agmatine sulphate salt and ketamine (Ketanarkon) were, respectively,
purchased from Sigma and Streuli Pharma (Uznach, Switzerland) and
dissolved in saline solution. Male and female mice were intraperitoneally
injected with 10 ml kg− 1 of agmatine (10 or 50 mg kg− 1) or ketamine
(3 mg kg− 1). Controls were injected with saline. Injections were performed
30 min before the FST for two consecutive days.

FST
A 2-day test was performed (days 1 and 2). Mice were put during 5 min in a
5-l glass beaker (26 cm tall, ø18 cm) filled to a depth of 22 cm with tap
water (25 ± 1 °C). Sessions were videotaped from above and manually
analyzed non-blindly by the experimenter with the Ethovision 3.1 Software
(Noldus Information Technology, Wageningen, The Netherlands) for
immobility and climbing time. Mice were judged immobile when no
detectable movement was observed, except for minor movements to keep
their head above the water. The experiment was conducted in a room with
a light intensity of ~ 35 lux. Immediately after the test on day 2, mice were
killed for BDNF and phospho-eEF2 measurements.

Statistical analyses
The number of animals tested in each group is specified in the figure
legends. Owing to the small number of WT and Crtc1−/− mice per litter and
a limited breeding cage space, all experiments were performed
sequentially with several batches of mice, and their data were combined.
Sample sizes were determined based on power analysis and common
practice in behavioral experiments (~10 animals per group). Statistical
analyses (other than those employed for microarray analyses (see above))
were performed using the Statistica 8.0 Software (StatSoft, Tulsa, OK, USA).
All data are presented as mean± s.e.m. Po0.05 were considered
statistically significant. A Shapiro–Wilk test and a Levene test were first
performed to assess data normality and variance homogeneity. All results
were found to follow normal distribution and to display similar variance.
For immunofluorescence, quantitative PCR and western blot data, a two-
tailed Student's t-test was performed when only two groups were
compared (WT versus Crtc1−/− mice). For behavioral data, BDNF and
phospho-eEF2 data, a two-way analysis of variance (ANOVA; with genotype
and treatment as independent variables) was performed, followed by a
Fisher's Least Significant Difference (LSD) post hoc test.

RESULTS
Male and female Crtc1−/− mice exhibit increased levels of Agmat
mRNA and protein in the PFC and HIP
To identify gene expression changes associated with Crtc1
deficiency, we performed genome-wide transcriptomic profiling
analyses of cortical samples from Crtc1−/− and WT female mice
using oligonucleotide microarrays (Table 1). Among the down-
regulated genes were CREB target genes that we previously
showed to have a decreased expression in the PFC and HIP of
Crtc1−/− male mice.13 Interestingly, a few genes were upregulated
in Crtc1−/− mice, and amidst them Agmat, whose expression was
increased by 1.67-fold. To follow up and confirm this finding, we
measured Agmat messenger RNA (mRNA) and protein levels in
male and female Crtc1−/− mice (Figure 1). We focused our
investigations on the PFC and HIP, as these two regions are widely
implicated in mood disorders and are known to have high levels
of agmatine.43 Quantitative PCR analyses of Agmat mRNA levels
found a significant (t=− 3.31, degree of freedom (df) = 9, P= 0.013)
1.5-fold increase of Agmat mRNA in the HIP and a threefold
increase (t=− 6.72, df = 8, Po0.001) in the PFC of male Crtc1−/−

Table 1. Selection of genes differentially expressed in the cortex of Crtc1−/− mice

Symbol Gene GenBank Fold change FDR P

Cartpt CART prepropeptide NM_013732 0.42 0.0086
Nr4a1 Nuclear receptor subfamily 4, group A, 1 NM_010444 0.50 0.0181
Nr4a3 Nuclear receptor subfamily 4, group A, 3 NM_015743 0.52 0.0103
Crem cAMP responsive element modulator NM_001110859 0.59 0.0028
Bdnf Brain-derived neurotrophic factor NM_007540 0.61 0.0131
Nr4a2 Nuclear receptor subfamily 4, group A, 2 NM_013613 0.70 0.0476
Ntrk2 Neurotrophic tyrosine kinase receptor, 2 (TrkB) NM_008745 0.81 0.0108
Agmat Agmatine ureohydrolase (agmatinase) NM_001081408 1.67 0.0099

Abbreviation: FDR P, false discovery rate corrected P-value.
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mice (Figure 1a). In female Crtc1− /− mice, a significant (t=− 2.65,
df = 9, P= 0.029) threefold increase in Agmat mRNA was observed
in the HIP and a 2.5-fold increase (t= 5.45, df = 9, Po0.001) in the
PFC (Figure 1b). Western blot analysis of extracts from these same
structures showed an Agmat protein band at the expected size of
~ 35 kDa (Figures 1c and e), which was subsequently quantified
(normalized to β-actin signal). Crtc1−/− male mice had increased
levels of Agmat protein in the HIP (t=− 2.72, df = 6, P= 0.036),
whereas a nonsignificant trend (t=− 1.51, df = 9, P= 0.152) of
increased Agmat was observed in the PFC (Figure 1d). In female
Crtc1−/− mice, a similar increase was found in the HIP (t=− 2.58,
df = 9, P= 0.027), whereas no change in Agmat protein content
could be seen in the PFC (t=− 0.61, df = 9, P= 0.553; Figure 1f).
Taken together, these results confirm an upregulation of Agmat
gene expression in the HIP and PFC of Crtc1−/− mice, indepen-
dently of gender. Although Agmat protein levels only partially
correlated with the gene expression data (which might reflect
translational regulation or a complex subcellular protein localiza-
tion), these results strongly suggest that Crtc1−/− mice have an
altered agmatinergic system.

Crtc1−/− mice have an increased number of Agmat-expressing
cells in the PFC and in several regions of the HIP
To determine whether the increased Agmat expression in Crtc1−/−

mice was because of higher Agmat levels or an increased number
of Agmat-expressing cells, we visualized Agmat protein expression
using immunofluorescence in the PFC and in the CA1, CA3 and
dentate gyrus (DG) subregions of the HIP (Figure 2). Staining
revealed numerous cells in the PFC (Figure 2a), and in the DG
(Figure 2b), CA1 (Figure 2c) and CA3 (Figure 2d) regions of the HIP,
and its subcellular localization appeared mainly perinuclear within
those structures. In the HIP, staining could be observed in the
pyramidal cell layer, but appeared stronger in interneuron-like
cells. Agmat-expressing cells were counted and results were
normalized to total numbers of cells, counted with 4,6-diamidino-
2-phenylindole staining (Figure 2e). Agmat-positive cells counting
revealed a significant increased number of cells in the PFC of
Crtc1−/− mice (+60%, t=− 4.23, df = 9, P= 0.001) as compared with
WT littermates. This could also be observed in the DG (+45%,
t=− 2.55, df = 9, P= 0.029) and CA1 regions of the HIP (+70%,

Male Female

Figure 1. Increased levels of agmatinase (Agmat) in Crtc1−/− mice. (a) Real-time quantitative PCR measurements showed an increased
expression of Agmat in the hippocampus (HIP) and prefrontal cortex (PFC) of male Crtc1−/− mice (n= 5) compared with wild-type (WT)
littermates (n= 5). (b) Agmat was also overexpressed in the HIP and PFC of female Crtc1−/− mice (n= 6) compared with WT control mice (n= 5).
Representative western blot of Agmat and β-actin is shown in c for male mice and in e for female mice. Quantitative analyses of western blot
showed increased protein levels of Agmat in the HIP of male Crtc1−/− mice (n= 4) compared with WT mice (n= 5; d). Protein levels of Agmat
were also increased in the HIP of female Crtc1−/− mice (n= 6) compared with WT mice (n= 5; f). Results are presented as ratio between Agmat
and β-actin signals. Data are mean± s.e.m. *Po0.5, ***Po0.001.
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Figure 2. Increased number of agmatinase (Agmat)-expressing cells in male Crtc1−/− mice. Representative immunofluorescence staining of
Agmat-expressing cells (red) and total cells (4,6-diamidino-2-phenylindole (DAPI) staining) in the prefrontal cortex (PFC; a), and in the dentate
gyrus (DG; b), CA1 (c) and CA3 (d) regions of the hippocampus (HIP). Cell counting resulted in an increased number of Agmat-expressing cells
in the PFC, DG and CA1 regions of male Crtc1−/− mice (n= 6) compared with wild-type (WT) littermates (n= 5; e). No difference in number of
Agmat-expressing cells was found in the CA3 region. Results are expressed as ratio between number of Agmat-expressing cells and total
number of cells. Data are mean ± s.e.m. *Po0.5, **Po0.01. Scale bar, 50 μm.
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t=− 2.28, df = 9, P= 0.049). No differences in the numbers of
Agmat-expressing cells could be seen in the CA3 region of the HIP
(t=− 0.40, df = 9, P= 0.698). Overall, these data suggest that the
increased Agmat expression found in Crtc1−/− mice would be the
result of a higher number of Agmat-expressing cells in the PFC
and selected HIP subregions. Moreover, the morphology and
localization of the hippocampal cells expressing higher Agmat
levels indicated that they could be GABAergic interneurons.

Characterization of Agmat-expressing cells in the PFC and HIP
As hippocampal Agmat-expressing cells have an interneuron-like
morphology, we characterized Agmat-expressing cells with
markers for specific GABAergic interneuron types. Bernstein
et al.44 studied regional and cellular expression of Agmat in the
rat brain and found that Agmat colocalized with calretinin (CR)-
expressing interneurons in the cortex and CA1 region of the HIP.44

We therefore performed double immunolabeling of CR and Agmat
in the PFC and HIP of WT mice (Figure 3 and Supplementary
Figure S1). In the PFC, we observed very little colocalization
between CR and Agmat staining (Figure 3a, double-labeled cells
indicated with arrows). Little colocalization was also seen in the
CA3 region of the HIP (Figure S1b). Moreover, no colocalization
was observed in the DG and CA1 regions of the HIP (Figure 3b and
Supplementary Figure S1a, respectively). In order to further
investigate which type of interneurons expressed Agmat, we
performed double immunostaining of Agmat- and PV-expressing
cells. We observed high colocalization of Agmat and PV cells in all
studied structures: PFC, DG, CA1 and CA3 regions of the HIP
(Figures 3c and d and Supplementary Figure S1c and d,
respectively). Indeed, nearly all PV-expressing cells were also
Agmat-positive. On the other hand, there were some Agmat-
expressing cells that were not PV-positive, therefore suggesting
that other types of cells express Agmat.
Several lines of evidence involved somatostatin (Sst) in mood

disorders,45 and we previously observed that Sst was down-
regulated in the brain of Crtc1−/− mice.13 Therefore, we
investigated whether Agmat might be expressed in somatostati-
nergic interneurons by performing double immunostaining of
Agmat- and Sst-expressing cells. As for PV staining, most of Sst-
expressing cells were colocalized with Agmat in all regions
observed: PFC, DG, CA1 and CA3 regions of the HIP (Figures 3e
and f and Supplementary Figure S1e and f, respectively).
Colocalization was, however, less extended in the PFC; as some
Sst-expressing cells were not colocalized with Agmat staining.
Altogether, these data confirm the expression of Agmat in

specific GABAergic interneuron subpopulations, with apparent
high expression in PV and Sst interneurons, and slight colocaliza-
tion with CR interneurons.

Rapid ketamine-like antidepressant effect of acute agmatine in
male and female WT and Crtc1−/− mice
Given the possible role of an agmatine deficit in depression and
the observed increase in Agmat levels in the brain of Crtc1−/−

mice, we postulated that their depressive-like behavior is due, at
least in part, to a dysregulated agmatinergic system. To test this
hypothesis, we treated WT and Crtc1−/− mice with acute
intraperitoneal (IP) injections of agmatine and tested antidepres-
sant effects in the FST, a classical test for rodent depression-
related behavior. We hypothesized that restoring agmatine levels
by exogenous supplementation would normalize behavioral
response to the helplessness-inducing effects of FST. We first
treated the animals with agmatine at 10 mg kg− 1 and compared
their depressive-like behavior in the FST with saline-injected
control animals. This protocol was repeated a second time on the
next day. The antidepressant effects of agmatine were assessed by
measuring the floating (immobility) time of the mice. Agmatine
had a significant antidepressant effect on WT mice but failed to

significantly reduce Crtc1−/− mouse immobility time (data not
shown). However, a tendency to decrease the immobility time of
Crtc1−/− mice prompted us to repeat this experiment with an
increased dose of agmatine (50 mg kg− 1, IP; Figures 4a and b). For
male mice (Figure 4a), a significant effect of genotype on
immobility could be seen on both days of test, as shown by
two-way ANOVA (Day 1: F(1,29) = 6.74, P= 0.014; Day 2: F(1,29) = 19.4,
Po0.001). Post hoc analyses revealed that vehicle-treated Crtc1−/−

mice presented higher immobility time than WT mice (Day 1:
+13%, P= 0.031, Day 2: +22%, P= 0.004). A significant treatment
effect could be observed on the second day of test (F(1,29) = 12.38,
P= 0.001) as agmatine significantly decreased the immobility time
of WT and Crtc1−/− mice (P= 0.012 and P= 0.026, respectively). For
female mice (Figure 4b), the analysis of immobility time by two-
way ANOVA revealed a significant treatment effects for both days
of test (Day 1: F(1,28) = 10.28, P= 0.003; Day 2: F(1,28) = 23.46,
Po0.001). Post hoc analyses showed that agmatine significantly
reduced immobility time in WT female mice on day 1 (−30%,
P= 0.014) and of both genotypes on day 2 (WT: − 30%, P= 0.003;
Crtc1−/−: − 30%, P= 0.001). Thus, 50 mg kg− 1of agmatine reduced
the immobility time of male and female Crtc1−/− mice. Overall,
these data confirm the antidepressant effect of an acute agmatine
treatment in WT animals. Crtc1−/− mice also respond to the
antidepressant effect of agmatine, but require a higher dose
(50 mg kg− 1).
Ketamine and other NMDAR antagonists have been shown to

have rapid and long-lasting antidepressant effects in behavioral
despair paradigms such as the FST.27 As agmatine also acts as a
NMDAR antagonist,24 we assessed the antidepressant effect
of ketamine in male and female WT and Crtc1−/− mice
(Supplementary Figure S2). Interestingly, ketamine (3 mg kg− 1,
IP) significantly decreased the depressive-like behavior of WT and
Crtc1−/− mice of both sexes in a very similar way as agmatine did,
which suggested that the rapid antidepressant action of agmatine
and ketamine may involve the same molecular pathways.

Characterization of pathways involved in agmatine antidepressant
effect
Although agmatine antidepressant effects have been established,
the underlying molecular mechanisms remain unclear. A recent
study suggested that chronic agmatine treatment induces an
increase of BDNF protein levels, as well as an increased
phosphorylation of CREB, PKA and other kinases involved in
pathways associated with neuroplasticity.40 Although the under-
lying cellular and molecular mechanisms of ketamine’s antide-
pressant action are not completely understood, they involve the
rapid induction of BDNF translation via activation of the
mammalian target of rapamycin (mTOR) pathway as seen by
dephosphorylation of eEF2.27 Therefore, we investigated whether
agmatine’s rapid antidepressant effect involved NMDAR blockade-
associated changes in BDNF levels and eEF2 phosphorylation. We
measured the levels of phospho-eEF2 and BDNF proteins in the
PFC and HIP of male and female mice treated with 50 mg kg− 1

(Figures 4c-j). Western blot for phospho-eEF2 and total eEF2
showed a single band at the expected size of 95 kDa (Figures 4c
and d). Phospho-eEF2 signal was quantified and normalized over
total eEF2 signal. In male mice (Figure 4e), a two-way ANOVA
showed no effect of genotype or treatment in the HIP. A signi-
ficant effect of genotype could be seen in the PFC (F(1,23) = 13.34,
P= 0.001) as both groups of Crtc1−/− mice presented lower
levels of phospho-eEF2 (P= 0.001 and P= 0.002). Agmatine
treatment had no effect on p-eEF2 levels of Crtc1−/− mice, but it
significantly reduce p-eEF2 in WT mice (P= 0.04). In female mice
(Figure 4f), a two-way ANOVA showed no effect of genotype or
treatment in the HIP. A trend to decreased levels of phosphory-
lated eEF2 was present in agmatine-treated WT mice and in both
groups of Crtc1−/− animals. In the PFC, significant effects of
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Figure 3. Characterization of GABAergic interneuron subpopulations expressing agmatinase (Agmat) in the prefrontal cortex (PFC) and
hippocampus (HIP) of wild-type (WT) male mice. Double immunofluorescence labeling of (a, b) Agmat and calretinin (CR; c, d) Agmat and
parvalbumin (PV), and (e, f) Agmat and somatostatin (Sst) in (a, c, e) PFC and (b, d, f) dentate gyrus (DG) of the HIP. Total cells were identified
by nuclear 4,6-diamidino-2-phenylindole (DAPI) staining. Merged images showed few colocalization of Agmat and CR staining in the PFC (a)
as indicated by arrows. No colocalization could be observed in the DG (b). All PV and Sst interneurons also expressed Agmat in the PFC (c, e)
and DG (d, f). Scale bar, 50 μm.
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genotype (F(1,13), P= 0.011), treatment (F(1,13), P= 0.043) and
genotype× treatment (F(1,13), P= 0.011) were observed. Post hoc
analyses revealed that agmatine significantly decreased the
phosphorylation of eEF2 in WT mice (P= 0.003). Both groups of
Crtc1−/− mice also presented decreased levels of phospho-eEF2 as
compared with vehicle-treated WT mice (Crtc1−/− Vehicle:
P= 0.001; Crtc1−/− Agmatine: P= 0.002). Agmatine had no effect
on the phosphorylation of eEF2 in Crtc1−/− mice.

Western blot for BDNF revealed a single band at the expected
size of 14 kDa (Figures 4g–h). BDNF signal was quantified and
normalized with β-actin signal. In male mice (Figure 4i), no effect
of genotype or treatment could be observed in the HIP. In the PFC,
a two-way ANOVA showed an effect of genotype (F(1, 23) = 29.12,
Po0.001). Post hoc analysis revealed that both vehicle- and
agmatine-treated Crtc1−/− mice presented lower levels of BDNF
protein than WT mice (Po0.001 for both groups). Agmatine
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treatment had no effect on BDNF levels of WT and Crtc1−/− mice.
In female mice (Figure 4j), a two-way ANOVA revealed a significant
effect of genotype in both structures (PFC: F(1,22) = 6.78, P= 0.016;
HIP: F(1,22) = 6.27, P= 0.02). Post hoc analyses showed that both
groups of Crtc1−/− mice had significantly lower levels of BDNF
than WT animals in the HIP, independently of the treatment
(P= 0.01). No effect of agmatine treatment could be seen in the
HIP, whereas it was significant in the PFC (F(1,22) = 4.63, P= 0.042).
Post hoc analyses indicated that agmatine significantly increased
BDNF protein levels in the PFC, however, only in WT mice
(P= 0.024). Taken together, these results provide evidence that
agmatine induces eEF2 dephosphorylation in WT male and female
mice, thus suggesting activation of the mTOR pathway, through
its NMDAR antagonist property. Agmatine effects on BDNF levels
are gender-dependent, as agmatine rapidly induces BDNF
translation in WT female mice, but not in WT male mice.

DISCUSSION
In this study, we showed for we believe the first time a link
between downregulation of the CRTC1–CREB pathway and
alteration of the agmatinergic system in the context of a rodent
model of depression. We found that CRTC1-deficient mice exhibit
increased mRNA and protein levels of Agmat in the HIP and PFC.
We also determined that these higher Agmat levels are mainly
because of an increased number of Agmat-expressing cells in the
PFC and HIP of Crtc1−/− mice. These findings suggest that Crtc1−/−

mice have a dysregulated agmatinergic system resulting in
increased Agmat expression and ensuing decreased agmatine
levels. Hence, the depressive-like phenotype of these animals
would be in keeping with the protective and antidepressant role
of endogenous agmatine.
Immunofluorescent detection of Agmat revealed that this

enzyme is mainly expressed in interneurons in accordance with
a previous characterization in the rat brain.44 As Crtc1−/− mice
have more Agmat-expressing cells, these mice might also have
overall GABAergic system alteration. In line with this, agmatine
and GABA seem to be closely related because agmatine is
degraded into putrescine, whose derived polyamines can be used
as GABA precursors.16 Therefore, we hypothesize that dysregula-
tion of agmatine metabolism might lead to abnormal GABA
regulation and ultimately to overall impaired interneuronal
circuitry.

A characterization of the subpopulations of GABAergic inter-
neurons expressing Agmat showed that it mainly colocalizes with
PV and Sst interneurons, whereas no or little colocalization with CR
interneurons was observed. These findings are in contradiction
with the study of Bernstein et al.,44 which showed that Agmat was
mainly found in CR interneurons. The reason for this discrepancy is
unclear. Future studies should focus on a deeper characterization
of Agmat-expressing cells, as Agmat staining revealed that it is
present in many cells in the mouse brain and thus probably in a
wide range of cell types.
The depressive-like behavior of Crtc1−/− mice was successfully

normalized by acute agmatine treatment as efficiently as
ketamine’s effect. This suggests that their altered agmatinergic
system contributes to their phenotype. It is noteworthy that only a
higher dose of agmatine (50 mg kg− 1) was effective, suggesting
that the 10 mg kg− 1 dose was not sufficient to compensate for a
possible decrease in agmatine levels and to restore normal
agmatinergic functions.
When looking at the molecular effects of agmatine, we found

that it was able to induce an increase in BDNF protein levels in the
PFC of WT females. This agmatine-induced BDNF upregulation was
paralleled by eEF2 dephosphorylation, which stimulates protein
translation. This mechanism has been shown to underlie the rapid
antidepressant effect of NMDAR antagonists such as ketamine and
MK-801.26,27,46 Therefore, our results suggest that agmatine acts as
an antidepressant, possibly through this pathway. This is in line
with the ability of agmatine to block NMDAR and the involvement
of this function in its antidepressant effects.36,47,48 In contrast, the
behavioral effects of agmatine in WT males were apparently not
mediated by BDNF because agmatine did not increase its levels in
HIP and PFC. The mechanisms that underlie these sex differences
are still unclear, but not completely unexpected. These gender-
specific effects are actually of much interest in the light of the
female preponderance in major depression. Sex differences have
been reported in animal models of depression. For instance, the
impact of BDNF signaling on depression-like behavior is different
in male and female mice.49 Moreover, it has been shown that
hippocampal NO may contribute to sex difference in depressive-
like behaviors.50 This study showed that stress promotes
hippocampal NO production in male mice, whereas stress
suppresses it in female ones. Worthy of note, both NO excess in
male mice and shortage in female mice resulted in depressive-like
behaviors through affecting CREB activation.

Figure 4. Behavioral and molecular effects of agmatine treatment on male and female wild-type (WT) and Crtc1−/− mice. (a, b) Effects of acute
agmatine treatment (50 mg kg− 1, intraperitoneal (IP)) 30 min before a forced swim test (FST) during two consecutive days. In male mice
(a) vehicle-treated Crtc1−/− mice (n= 7) showed higher immobility levels than vehicle-treated WT mice (n= 9) on both days of test (+Po0.05,
++Po0.01). On Day 2, agmatine significantly decreased the immobility time of WT mice (*Po0.05) and Crtc1−/− mice (#Po0.05; n= 10 and
n= 7, respectively). In female mice (b) WT mice treated with agmatine (n= 8) showed significantly decreased immobility time (*Po0.05,
**Po0.01) compared with vehicle-treated WT mice (n= 9) on both days of test. On day 2, agmatine-treated Crtc1−/− mice (n= 8) also
presented significantly decreased immobility time (##Po0.01) than vehicle-treated Crtc1−/− mice (n= 8). (c–f) Effects of acute agmatine
treatment (50 mg kg− 1, IP) on eukaryotic elongation factor 2 (eEF2) phosphorylation. (c, d) A representative western blot for phospho-eEF2
and total eEF2 in the hippocampus (HIP) and prefrontal cortex (PFC) of WT and Crtc1−/− mice (V, vehicle-treated; A, agmatine-treated) in male
(c) and female (d) mice. (e, f) Quantitative analyses of p-eEF2 western blot in male (e) and female (f) mice. In male mice, no effect of agmatine
could be seen in the HIP of WT and Crtc1−/− mice. In the PFC, agmatine-treated WT mice (n= 8) presented lower levels of p-eEF2 than vehicle-
treated WT mice (n= 7; *Po0.05). Both vehicle- and agmatine-treated Crtc1−/− mice (n= 6 for both) displayed lower p-eEF2 levels than WT
mice (++Po0.01); agmatine treatment had no effect on p-eEF2 levels in these animals (e). In female mice, quantification showed no effect of
agmatine treatment in the HIP of WT and Crtc1−/− mice (f). In the PFC, agmatine-treated WT mice (n= 4) presented lower levels of eEF2
phosphorylation compared with vehicle-treated WT animals (n= 4; **Po0.01). Crtc1−/− mice treated with vehicle (n= 5) or agmatine (n= 5)
also displayed lower levels of eEF2 phosphorylation than WTmice (**Po0.01). Agmatine treatment had no effect on Crtc1−/− mice. Results are
presented as ratio between phospho-eEF2 and total eEF2 signals. (g–j) Effects of acute agmatine treatment (50 mg kg− 1, IP) on brain-derived
neurotrophic factor (BDNF) protein level. (g, h) A representative western blot for BDNF and β-actin in the HIP and PFC of WT and Crtc1−/− mice
in male (g) and female (h) mice. (i, j) Quantitative analyses of BDNF western blot in male (i) and female (j) mice. In male mice, no effect of
agmatine could be seen in the HIP of WT and Crtc1−/− mice. In the PFC, both vehicle- and agmatine-treated Crtc1−/− mice (n= 6 for both)
displayed lower BDNF levels than vehicle- and agmatine-treated WT mice (n= 7 and n= 8, respectively; +++Po0.001) (i). In female mice,
quantitative analyses of western blot showed decreased levels of BDNF in the HIP of all Crtc1−/− animals (n= 14) compared with WT animals
(n= 13), independently of the treatment (+Po0.05). In the PFC, agmatine-treated WT mice (n= 7) presented higher levels of BDNF compared
with vehicle-treated WT animals (n= 5; *Po0.05). Crtc1−/− mice treated with agmatine (n= 8) did not present different BDNF levels than those
treated with saline (n= 6; j). Results are presented as ratio between BDNF and β-actin signals. Data are mean± s.e.m.
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Interestingly, the effects of agmatine on BDNF and eEF2 were
restricted to WT animals. Crtc1−/− male and female mice displayed
basal lower levels of phospho-eEF2 in the PFC, and agmatine did
not decrease them further nor did it increase BDNF levels, which
suggest a dysregulation of this pathway and the involvement of
alternative mechanisms underlying agmatine’s antidepressant
effects in these animals.
In conclusion, our results provide evidence for the involvement of

the agmatinergic system in the Crtc1−/− mouse model of depression,
and lend support to previous reports of the antidepressant
properties of agmatine. The comparable rapid antidepressant effects
of agmatine and ketamine in WT and Crtc1−/− mice, as well as the
molecular effects that acute agmatine treatment causes in the brain
of WT mice suggest that agmatine possibly functions as a fast-acting
antidepressant through NMDAR blockade. The relationship between
the CRTC1–CREB pathway and agmatine regulation merits further
investigation, as it will bring better knowledge of these systems and
their contribution to MDD etiology.
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Supplementary Figure S2  Behavioral effects of acute ketamine treatment on male and 

female WT and Crtc1‒/‒ mice. (a-b) Effects of acute ketamine treatment (3 mg/kg, IP) 30 

min prior to a forced swim test (FST) during two consecutive days. In male mice (a) 

vehicle-treated Crtc1‒/‒ mice (n=6) showed higher immobility levels than vehicle-treated 

WT mice (n=6) on both days of test (+p < 0.05). Ketamine significantly decreased the 

immobility time of WT mice (*p < 0.05, n=6) on day 1, and Crtc1‒/‒ mice (#p < 0.05, ##p < 

0.01, n=7) on both days of test. In female mice (b) ketamine-treated WT and Crtc1‒/‒ 

mice (n=7, n=5 respectively) showed significantly decreased immobility time (*p < 

0.05,#p<0.05) compared to vehicle-treated WT and Crtc1‒/‒ mice (n=7, n=5 respectively) 

on both days of test. On day 2, vehicle-treated Crtc1‒/‒ mice also presented significantly 

increased immobility time (++p < 0.01) than vehicle-treated WT mice. Data are mean ± 

SEM. 



 
Supplementary Figure S1  Characterization of GABAergic interneurons subpopulations 
expressing agmatinase (Agmat) in the CA1 and CA3 regions of the hippocampus (HIP) 
of WT male mice. Double immunofluorescence labeling of (a, b) Agmat and calretinin 
(CR), (c, d) Agmat and parvalbumin (PV), and (e, f) Agmat and somatostatin (Sst) in WT 
(a, c, e) CA1 and (b, d, f) CA3 regions of the HIP. Total cells were identified by nuclear 
DAPI staining. Merged images showed no colocalization of Agmat and CR staining in 
CA1 (a). Few colocalization could be observed in CA3, as indicated by the arrow. All PV- 
and most of Sst- interneurons also express Agmat in the CA1 (c, e) and CA3 (d, f) 
regions of the HIP. Scale bar 50 μm. 
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