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REVIEW

Understanding the FLASH effect to unravel the potential of ultra-high dose rate
irradiation

Houda Kacema�, Aymeric Almeidaa�, Nicolas Cherbuinb�, and Marie-Catherine Vozenina

aDepartment of Oncology, Laboratory of Radiation Oncology, Radiation Oncology Service, CHUV, Lausanne University Hospital and University
of Lausanne, Lausanne, Switzerland; bDepartment of Medical Radiology, Institute of Radiation Physics, CHUV, Lausanne University Hospital
and University of Lausanne, Lausanne, Switzerland

ABSTRACT
A reemergence of research implementing radiation delivery at ultra-high dose rates (UHDRs) has
triggered intense interest in the radiation sciences and has opened a new field of investigation in
radiobiology. Much of the promise of UHDR irradiation involves the FLASH effect, an in vivo bio-
logical response observed to maintain anti-tumor efficacy without the normal tissue complications
associated with standard dose rates. The FLASH effect has been validated primarily, using inter-
mediate energy electron beams able to deliver high doses (>7Gy) in a very short period of time
(<200ms), but has also been found with photon and proton beams. The clinical implications of
this new area of research are highly significant, as FLASH radiotherapy (FLASH-RT) has the poten-
tial to enhance the therapeutic index, opening new possibilities for eradicating radio-resistant
tumors without toxicity. As pioneers in this field, our group has developed a multidisciplinary
research team focused on investigating the mechanisms and clinical translation of the FLASH
effect. Here, we review the field of UHDR, from the physico-chemical to the biological mecha-
nisms.
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Introduction

Today, radiation therapy is used in combination with other
therapies to treat over 50% of cancer patients. Radiotherapy
remains highly efficient at eradicate cancer cells and despite
significant technological improvements related to tumor tar-
geting by image-guidance, the dose required for tumor con-
trol is still limited by normal tissue toxicity. In addition,

so-
me
tumors remain highly radio resistant, escaping modern treat-
ment plans to recur and metastasize. Therefore, one major
challenge in our field is to develop novel radiotherapy strat-
egies to overcome these limitations.
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In this context, our team conceptualized and developed
FLASH radiotherapy (FLASH-RT), an innovative and trans-
forming approach in the field of radiation oncology based
on dose delivery at ultra-high dose rate (UHDR), typically
over 1000 times higher than irradiation at conventional dose
rates (CONV). The main interest of FLASH-RT lies on its
differential impact on tumors vs. normal tissue, where at a
given cytotoxic isodose for tumors, FLASH-RT spares nor-
mal tissue, an effect our group has coined as the FLASH
effect. We have since confirmed the FLASH effect in several
experimental animal models (mice, rat, zebrafish, pig, cats)
and multiple organs (lung, skin, gut, brain) (reviews in
Bourhis et al. 2019a, 2019b; Vozenin et al. 2019). The
FLASH effect has now been reproduced by many other
groups and will be reviewed in section ‘Biological steps after
irradiation at conventional and ultra-high dose rate’.

Back in the 1970s, description of normal tissue protection
triggered by UHDR irradiation was reported in the intestine
and skin (Hornsey and Bewley 1971; Field and Bewley 1974;
Hendry et al. 1982). Unfortunately at the time, most investi-
gations in normal and tumor cells were performed in vitro
and no differential effects were reported, leading to an aban-
donment of research using UHDR irradiation. It took more
than four decades until we rediscovered FLASH-RT. In add-
ition to its radiobiological advantages, several clinical bene-
fits may be derived from such a technology. The very short
exposure time provides the capability to deliver FLASH-RT
using a few, relatively large fractions (hypofractionation),
thereby reducing the number of treatment sessions, reducing
the number of clinical visits, as well as reducing workload
and cost. In addition, organ or tumor motion is minimized,
thereby resolving a long-standing and confounding factor
that still limits the precision of image-guided radiotherapy.

Today, development of FLASH-RT requires the contribu-
tion of a multidisciplinary team composed of physicists,
chemists, biologists and clinicians. Definition of the physical
parameters capable to produce the FLASH effect in bio-
logical tissue is needed and one major challenge of this
research is related to accurate and online dosimetry meas-
urements (recently reviewed by Sch€uller et al. 2020). More
importantly, only a few devices are able to deliver an UHDR
irradiation across a large volume of tissue (review in Mazal
et al. 2020; Wilson et al. 2020; Med Phys special issue 2021)
and therefore major technological improvements are still
needed to upgrade current devices to safely and accurately
deliver UHDR irradiation in the clinic. Although these phys-
ics related aspects are crucial for clinical translation of
FLASH-RT, they have been discussed recently in a special
issue of Med Phys (2021) and are beyond the scope of the
present article dedicated to the mechanistic understanding
of the FLASH effect.

Physico-chemical steps after irradiation at
conventional and ultra-high dose rate

The main difference between irradiation at CONV dose rate
and UHDR is related to the time of exposure and must
impact initial radiation chemistry as summarized in Figure
1. We thought that understanding differences in reactions
that might occur (or not) at early chemical steps after expos-
ure of carefully selected model systems to radiation would
enable us to identify the primary events of the
FLASH effect.

During the physical stage, energetic particles interact with
water within a femtosecond. The absorbed energy takes two
pathways: electronic excitation (H2O�): the transfer of an
electron from a fundamental state to the exited state.

Figure 1. Physico-chemical effects after water exposure to UHDR and CONV. The graph summarizes the early interaction of ionizing radiation with matter that are
chemical changes. They have been extensively investigated in the past and are generally described in liquid water, which happens to be a major component of liv-
ing organisms. Water molecules absorb the majority of the ionizing energy in a process called water radiolysis. The first physical phase is initiated at the time ‘0’ at
which the energy is deposited within the target and occurs during the first femtoseconds post-irradiation. Then after picosecond and millisecond, formation of free
radicals including reactive oxygen species (ROS) occurs via reactions that form the chemical non-homogenous and homogeneous phases. Experimentally, G�-value
can be determined to evaluate the initial yields of reactive species produced during the homogenous stage of chemistry (100 ns to 1 ms). ROS continue to diffuse
and interact with soluble substances (like oxygen) at later time points and can then be evaluated as G-values, also named radiolytic yields. Experiments done in
water have shown that UHDR produces less H2O2 than conventional irradiation.
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Ionization (H2O�þ), where one electron (e–) is removed
from the water molecule (Nikjoo et al. 1998). In water, a
strong polar solvent, the geminate recombination of elec-
trons with their positive parent cation is less favored; they
become separated within 10�15 s. The resultant ionized and
excited molecules are highly unstable and dissipate excess
energy in the form of energy transfer to neighboring mole-
cules. This physicochemical stage occurs between 10�15 and
10�12 s and surprisingly, is not well characterized experi-
mentally in liquid phase. However, by analogy with the
behavior of water molecules in gas phase under photolysis,
three steps of de-excitation events were proposed: proton
transfer to a neighboring molecule, dissociation of excited
water molecule and electron thermalization and solvation.
Proton transfer from the positive radical water ion H2O�þ to
neighboring water molecule is an important event since it
leads to the production of the hydroxyl (HO�) radical. The
electronically excited molecules, H2O� can return to their
fundamental state without dissociation by heat loss.
Alternatively, higher excitation states can dissipate energy by
emitting an electron, thus becoming an ion and dissociate
into hydrogen and hydroxyl radicals. Another dissociation
pathways can lead to formation of dihydrogen and oxygen
in a singlet state O�(1D). Singlet oxygen is not stable, and
reacts in a third step with water to form molecular hydrogen
(H2) and two hydroxyl radicals (2HO�) or hydrogen perox-
ide (H2O2). The formation of oxygen in a triplet state (O3P)
was also observed but in very low yield (Auclair 2001). The
dissociation reactions take place in �10�13 s, which is on
the same scale as the vibrational state of a water molecule
(10�13 to 10�14 s).

The electrons emitted in the medium, depending on their
kinetic energy, migrate either further and form secondary
ionizations themselves or lose energy in multiple steps
(Spotheim-Maurizot 2008). First, by vibrational and rota-
tional relaxation then becoming thermalized in 10�12 s.
Thermalized electrons orient the dipole moments of neigh-
boring water molecules, forming a ‘cage’, and are referred to
as aqueous electrons e–(aq).

For low LET radiations, such as accelerated electrons,
end products of the physico-chemical stage (H�, e-(aq),
HO�, H2, H2O2) are clustered together in small widely sepa-
rated spurs. On average, one spur can contain two or three
ion pairs (Baldacchino et al. 2019). Next, the non-homoge-
neous chemical stage starts between 10�12 and 10�6 s.
Radical species diffuse and react with each other at different
rates. Eventually, certain radical products encounter others
from different spurs and form new radical species. While,
some escape the spur to the bulk liquid and become homo-
geneously distributed with the rest of the radical species.
Over 10�7 to 10�6 s, molecular yields are computed for
photons, energetic electrons and ions, and are termed G-val-
ues, classically referred to as ‘primary yields’. G-values have
been measured by pulse radiolysis or through scavenging
methods (Hiroki et al. 2002; Wasselin-Trupin et al. 2002)
and correspond to the yields of formation at the start of the
homogeneous stage (i.e. not at time ‘0’). They are expressed
in mol J�1 or in molecule/100 eV in the original literature.

In summary, a G-value of a given species is given by the
relationship between the dose D and the concentration C in
units of mol dm�3 with a density correction q: C¼q�D�G.
Noteworthy too is that G-values are usually measured in
deaerated samples to remove any oxygen contribution,
known to have a significant impact on free radicals reactions
due to its ultra-high reactivity for unpaired electrons.

In the case of CONV-RT, the result of the competition
between recombination and diffusion strongly depends on
how the energy deposition is done. It means that the initial
distribution of ionizations in space, which is reflected by the
LET, will dictate whether more or less radicals will escape
the spurs, and alter the yields of molecular products on the
scale of 10�7 s. The question is what will happen in the case
of exposure to UHDR? Under this scenario, a recombination
event can be expected to transpire within a time scale that is
short enough to interfere with early chemical reactions,
when radicals form and disappear. For example, with the
eRT6/Oriatron (PMB, Peynier, France), energetic electrons
with an LET ¼ 0.2 keV lm�1 are deposited within a 1.8 ms
pulse (Jaccard et al. 2018) (when the dose is applied in a
single pulse) or in milliseconds (if multiple pulses are
required). This time frame is relatively long for early chem-
ical reactions and does not support the occurrence of radi-
cal–radical recombination, as pulse delivery extends to the
end of the homogenous phase of chemistry between
100 ns–1 ms. At this stage, radical–radical interactions have
taken place and free radicals begin to diffuse. Thus, recom-
bination reactions are unlikely to explain a potential radio-
chemical basis of the FLASH effect.

In summary, the physicochemical cascade activated after
UHDR and CONV dose rate needs to be carefully studied
in order to determine whether initial radiolytic yield could
be or not involved in the subsequent biological FLASH
effect. It is important to explore furthermore other sources
like protons where radiochemical processes can differ
regarding the particle type, energy and LET. A radiation
chemistry study describing the effect or not of dose rate in
other sources is relevant especially that in literature such
studies have not been done before. This would provide a
guide/link to explain or not downstream biological effects
observed after UHDR. Although, one should note that such
studies require rigorous experimental conditions in order to
have solid results and would be able then to compare with
literature. Among the relevant parameters, the role of oxy-
gen tension in mediating a certain fraction of the FLASH
effect has come under intense scrutiny. The impact of oxy-
gen in mediating the FLASH effect was first proposed based
on the observation that hyperoxygenation was able to
reverse normal tissue protection in the brain (Montay-Gruel
2019). Since then, numerous theoretical models were pub-
lished, all based on calculations focused on FLASH-induced
oxygen depletion (Pratx and Kapp 2019; Hu et al. 2020;
Labarbe et al. 2020; Petersson et al. 2020; Zhou et al. 2020).
Interestingly, recent experimental work done by direct oxy-
gen measurements after CONV vs. UHDR irradiation
refutes this depletion theory (Cao et al. 2021; Jansen et al.
2021) and shows that UHDR is not likely to deplete
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sufficient oxygen in tissues to elicit a transient state of hyp-
oxic radioprotection. Nonetheless, FLASH may alter the
yields of other free radicals and downstream processes to
impact later biological responses (Montay-Gruel et al. 2019).
Clearly, a major limitation in the field, is the lack of direct
control of tissue oxygenation status, a complex biological
process that is difficult to model ex vivo. The physicochemi-
cal cascade summarized in Figure 1 needs to be carefully
studied in order to determine whether initial radiolytic yield
could be or not involved in the subsequent biological
FLASH effect.

DNA damage after irradiation at conventional and
ultra-high dose rate

In living organisms, irradiation triggers the direct ionization
of biomolecule (nucleic acids, lipids, proteins) and the pro-
duction of reactive oxygen species (ROS) and reactive nitro-
gen species (RNS) that can alter molecules essential for life.
Oxidative reactions in the presence of oxygen predominate
in the irradiated cell and are driven by the most reactive
radical, the hydroxyl radical (von Sonntag 1991).
Interactions of HO� with proteins can change signaling,
gene expression, and protein half-lives. The action of
hydroxyl radicals on lipids results in peroxidation chain
reactions. Although these damages have the potential to dis-
rupt cell metabolism and proliferation, irreparable damage
to DNA in the form of DSB is seen as the primary deter-
minant of cell survival.

The action of HO� on DNA is primarily mediated
through the abstraction of a hydrogen atom from a 2-deoxy-
ribose moiety exposed to solvent (more often at C40 pos-
ition), resulting in a frank single strand break (SSB) or the

formation of an abasic site (Pogozelski and Tullius 1998).
The hydroxyl radical can also oxidize a nucleoside, with no
preference for purines or pyrimidines, forming a variety of
products that are generally stable but also able, in some
cases, to induce the loss of the base or an SSB. Hydrogen
radicals and aqueous electrons also react with nucleobases in
reductive reactions, mostly in anaerobic conditions and
especially with pyrimidines, but their actions on the sugar-
phosphate backbone are less important. Direct effects act
most likely by ionization of the phosphate group (von
Sonntag 1991). Double-strand breaks (DSBs) are then the
consequence of either a radical transfer from a cleaved
strand to the complementary strand or the action of mul-
tiple hydroxyl radicals in spatially defined regions (spurs,
blobs) at track ends that result in locally multiply damaged
sites or ‘clustered’ damage (Ward 1985, 1981; Siddiqi and
Bothe 1987; Krisch et al. 1991). Non-DSB clusters, defined
by the presence of multiple damages (SSB, abasic sites, or
nucleoside lesions) concentrated within a turn of the DNA
helix, can be lethal as well (Ward 1985; Shikazono
et al. 2009).

The appearance and type of DNA damage are related to
the concentration and diffusion velocity of selective reactive
species, i.e. the competition between reactions with DNA,
with oxygen and recombination at track ends. DNA damage
varies with the LET of the incident radiation. Increasing the
LET leads to clusters with higher levels of damage multipli-
city or complexity (Georgakilas et al. 2013). The modifica-
tion of reaction equilibrium in the presence of specific
scavengers also influences the rate and type of strand breaks.
In that respect, the recombination of HO� with the aqueous
electron is an important reaction. Interestingly, in the pres-
ence of oxygen, its combination with the products of water
radiolysis causes its depletion. More specifically, oxygen acts

Figure 2. Plasmid DNA as a tool to study DNA damage after CONV vs. UHDR irradiation. The induction of SSB and DSB after irradiation of a supercoiled plasmid
releases mechanical constraints in the molecule and causes its spatial conformation to change. These isomers (circular (relaxed) or linear form after SSB or DSB,
respectively) have different migration speeds in a gel matrix and are therefore easily separated and quantified by a simple agarose gel electrophoresis (AGE). To
investigate the mechanisms underlying the FLASH effect, plasmids can be irradiated dry, or in atmospheric, physiologic or hypoxic aqueous solutions, in presence
of various radiosensitizers or scavengers. In addition, several beam parameters such as instantaneous dose, dose per pulse, frequency, and total irradiation time can
be investigated.
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as a potent scavenger of aqueous electrons to yield super-
oxide radicals. A model defining the distribution of DNA
damage attributable to different reactive species with respect
to the partial pressure of oxygen in water has been proposed
(Barilla and Lokaj�ı�cek 2000). Oxygen is also a potent radio-
sensitizer, able to fix radiolytic lesions that inhibits their effi-
cient repair (so called oxygen fixation hypothesis).

DNA damage study with plasmids

Ongoing experiments aim to assess the direct and indirect
effects of UHDR vs. conventional dose rate on DNA damage
by systematically varying parameters such as beam structure
or the biochemical environment. Between oligonucleotides
and cellular DNA, a widespread model for the study of
DNA damage in the absence of DNA repair involves iso-
lated plasmid DNA. From bacterial preparations, the super-
coiled plasmid conformation changes after the induction of
an SSB or DSB to an open circular or linear form, respect-
ively. Quantification of the conversion of supercoiled DNA
to these topologically distinct conformations after irradiation
can be accomplished by standard agarose gel electrophoresis
(Figure 2). However, at higher doses the fragmentation of
the plasmid by damage multiplicity requires more sensitive
methodologies, such as atomic force microscopy
(Pachnerov�a Brabcov�a et al. 2019). Plasmid irradiations have
been widely used to understand the effects of different
parameters on DNA damage, such as the type of radiation,
the ratio of direct to indirect effects, the effect of supercoil-
ing density, or the physicochemical mechanisms delineated
by the presence of radiosensitizers or radioprotectors.
However, regarding the dose rate dependence of strand
breaks yields, only one recent study aimed to assess the rela-
tive biological effect using very high energy electron and
UHDR (Small et al. 2021). Under atmospheric conditions,
no significant dependence of DSB on dose rate was
observed. The addition of base excision repair enzymes
increases the sensitivity of such approaches (Sutherland
et al. 2001). Mathematical models also provide for the cap-
ability to compute strand break yields of selective plasmid
conformations as a function of dose (Cowan et al. 1987;
McMahon and Currell 2011). However, these models are
insensitive to the time signatures used in UHDR, and results
obtained should be interpreted with these caveats in mind
(Moeckli et al. 2020).

Biological steps after irradiation at conventional
and ultra-high dose rate

The beneficial effect of FLASH-RT irradiation, named the
‘FLASH effect’ involves normal tissue sparing at doses
known to provide tumor control. The benefits of FLASH-RT
have now been described in many organs, in various animal
models and from various groups over the world. Despite dif-
ferences in nature and structure of the radiation beams, the
FLASH effect has been validated in preclinical experiments
with electron, proton and photon beams operating at dose
rate above 40Gy/s (Montay-Gruel et al. 2017, 2018;

Diffenderfer et al. 2020; Cunningham et al. 2021). The field
is advancing rapidly, with clinical trials in domestic animals
(Vozenin et al. 2019; Konradsson et al. 2021). A feasibility
study in a human patient (Bourhis et al. 2019b) and a
FAST01-trial, concurrent with a wealth of mechanistic stud-
ies in multiple model systems.

The FLASH effect in experimental mouse models

Normal lung and tumors
Our group was the first to demonstrate the FLASH effect in
the lung (Favaudon et al. 2014). Delayed pulmonary fibrosis
after exposure to 17Gy electron at UHDR irradiation was
reduced whereas conventionally irradiated C57Bl6 mice
developed massive fibrotic lesions. This sparing effect was
associated with a reduction of apoptosis in blood vessels and
bronchi. At the tumor level, 15Gy UHDR irradiation was as
efficient as CONV-RT in controlling the growth of ortho-
topic TC-1 tumor cells implanted in the lung. Dose escal-
ation up to 28Gy was made feasible and resulted in tumor
control. Cell repopulation following radiation exposure was
then studied in the normal lung (Fouillade et al. 2020). As a
surrogate for DNA damage and senescence, DNA repair foci
(53BP1) were used. Findings revealed that both processes
were minimized after 17Gy electron at UHDR in normal
cells in situ. Interestingly, the number of 53BP1 foci was
also reduced in vitro in human fibroblast cell lines after
5.2Gy at UHDR vs. CONV-RT whereas no difference
between the two modalities was reported in human lung
adenocarcinoma cells, A549. Subsequent RNA sequencing
analysis revealed that fibrogenic and proinflammatory gene
expression (TGF-b1, Cebpb) was attenuated after UHDR vs.
CONV-RT, an effect attributed to the preservation of stem/
progenitor cells in the lung. These studies suggest a differen-
tial impact of UHDR irradiation at the genomic level which
might impact the response in normal and tumor cells.

Normal brain and GBM
The biological FLASH effect has been investigated exten-
sively in the brain, another late responding organ (Figure 3),
using 10Gy whole brain irradiation. Systematic investiga-
tions using behavioral testing as a functional outcome
enabled the determination of a dose rate threshold necessary
to trigger the FLASH effect at 100Gy/s when a small volume
(1.7 cm diameter) was irradiated (Montay-Gruel et al. 2017).
Subsequent analyses were performed at higher dose rates
(107 Gy/s) which is the maximum achievable dose rate of
the eRT6/Oriatron (PMB, Peynier, France) electron beam.
Using these UHDRs, neuroinflammation was minimized,
neurogenesis and neuronal morphology were preserved after
exposure to UHDR while conventional dose rate (0.01Gy/s)
induced persistent structural degradation and apoptosis of
hippocampal cells and memory loss (Montay-Gruel et al.
2019). Interestingly, carbogen-breathing during UHDR
irradiation reversed the neuroprotection. Neuroprotection
was further validated at lower dose rates ranging between
200 and 300Gy/s and with a single fraction of 30Gy
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(Simmons et al. 2019). Reactive astrogliosis, microglial and
C3 complement activation were also found to be reduced
following UHDR irradiation (Montay-Gruel et al. 2020),
along with a preservation of vascular integrity and the
blood–brain barrier (Allen et al. 2020) (Figure 3), data that
provided new physiopathological insights. More recently,
with the goal to overcome radiation-induced toxicities of
pediatric patient stricken with medulloblastoma and to
improve their long-term quality of life, the effect of UHDR
has been evaluated using juvenile mice. Memory loss, anx-
iety-like behaviors and the neurogenic niche were spared
after whole brain irradiation at 8Gy using electron at
UHDR (Alaghband et al. 2020). In parallel, while
UHDR spared normal brain tissue toxicity and reduced
neuro-inflammation, its efficacy on glioblastoma (GBM) was
found to be similar to irradiation at conventional dose rate,
suggesting that the anti-tumor efficacy of radiotherapy was
independent of dose rate (Montay-Gruel et al. 2021). As
fractionated regimens are the standard of care for GBM
treatment in current clinical practice, 4� 3.5Gy, 2� 7Gy,
and 3� 10Gy regimens were investigated. UHDR reduced
neurocognitive decline in GBM tumor bearing mice while
tumor control was comparable to CONV-RT (Montay-Gruel
et al. 2021).

Normal skin and subcutaneous tumors
In a subcutaneous mouse model of Lewis lung carcinoma
(LLC), the normal vasculature was also shown to be pre-
served after exposure to 15Gy electron at UHDR (352Gy/s)
whereas critical vascular collapse was observed after expos-
ure to CONV dose rate (0.06Gy/s) (Kim et al. 2020). The
preservation of the vasculature after UHDR exposure was
associated with reduced phosphorylation of the myosin light
chain (p-MLC) known to be involved in the contraction of
endothelial cells and reduction of immune cell infiltration.
Interestingly, combination of CONV-RT with an MLC kin-
ase inhibitor (ML-7) replicated UHDR results identifying
the MLC pathway as one potential molecular target of
irradiation at UHDR. In another study, a dose escalation
study was performed and showed that 30 and 40Gy irradi-
ation at UHDR (electron, 180Gy/s) resulted in reduced skin
ulceration in contrast to CONV-RT (0.07Gy/s) (Soto et al.
2020). Recent studies performed with proton beams,
reported similar results with 35Gy delivered with a FLASH
scanning proton pencil beam (FLASH-Proton-PBS)
(Cunningham et al. 2021) and a FLASH transmission proton
beam (Velalopoulou et al. 2021). In Cunningham et al.
study, skin toxicity and leg contraction were decreased sig-
nificantly after exposure to UHDR (115Gy/s) (Cunningham
et al. 2021). Furthermore, this study showed similar tumor

Figure 3. The FLASH effect in normal brain and GBM. Taking the brain as organ-model, this figure shows the cascade of biological events that occur after tissue
exposure to conventional dose rate and UHDR. Exposure of the brain to conventional dose rate irradiation (0.1 Gy/s) (left side of the scheme) is associated with early
loss of vascular integrity due to endothelial cell damages as well as neuroinflammatory processes involving at longer terms astrogliosis, microglial activation and
local immune cell infiltration. This pathogenic process perpetuates in time and ultimately results in neurocognitive disorders associated with loss of neurons and
decreased neurogenesis. Interestingly, the delivery of radiation at UHDR (>100 Gy/s) (right side of the scheme) does not activate any of these pathogenic pathways.
It spares the vascular network, does not induce neuroinflammation and preserves the neurogenic niche. One possible mechanism to explain the sparing effect of
UHDR on normal tissue is the decreased formation of free radicals including reactive oxygen species (ROS) that occurs via early chemical reactions following irradi-
ation (see Figures 1 and 2) but other mechanisms can occur and are under investigations. Interestingly, while the normal brain is not damaged by UHDR irradiation,
GBM tumor cells are equally sensitive to UHDR and irradiation at conventional dose rate, suggesting that tumor sensitivity is independent on the dose rate. Many
factors might be involved in tumor sensitivity to UHDR, including gene expression. A putative susceptibility profile in T-acute lymphoblastic leukemia tumors was
related to the expression of GADD45 and FAT1. In contrast, AGAP9 and PDLIM1 expressions seem to be associated to a resistant profile to UHDR (Chabi et al. 2020).
Furthermore, Spitz et al. proposed another hypothesis explaining the differential impact of UHDR vs. conventional dose rate irradiation on cancer and normal tissue
responses (as described in the summary at the end of the biological section).
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control of subcutaneous MOC1 and MOC2 head and neck
cancer cells after UHDR protons and CONV protons
(CONV-PRT) in immunocompetent mice. In Velalopoulou
et al. study, 30Gy using UHDR proton radiotherapy
(UHDR-PRT, 69–124Gy/s) spared the skin leg and mesen-
chymal tissues of muscles and bones from severe toxicities.
In contrast, CONV-PRT (0.39–0.65Gy/s) increased TGF-b1
both in murine and canine skin. UHDR-PRT and CONV-
PRT equally controlled subcutaneous and intramuscular sar-
coma tumors (Velalopoulou et al. 2021).

Gastrointestinal track and abdominal tumors
In addition to the benefits reported in late responding
organs, UHDR irradiation was also beneficial in acute
responding organs such as the gastrointestinal track and the
hematopoietic system (see section ‘The FLASH effect vali-
dated in patient and human samples’, and Chabi et al.
2020). Intestinal function, epithelial integrity and regenerat-
ing crypts were preserved while DNA damage and apoptosis

in the columnar cells of the crypt were reduced after expos-
ure to 14Gy at UHDR (216Gy/s, electron). Again, anti-
tumor efficacy in a preclinical mouse model of ovarian can-
cer (ID8) was comparable to that obtained with CONV-RT
(0.08Gy/s) (Levy et al. 2020). The beneficial effects of
UHDR were again validated with proton and photon beams
using pancreatic tumor models. The radiation-induced
gastrointestinal syndrome did not occur upon UHDR irradi-
ation using 18Gy proton radiotherapy (UHDR-PRT)
(Diffenderfer et al. 2020) and with 15Gy X-rays (Gao et al.
2020) suggesting that the FLASH effect is relatively inde-
pendent of the ionizing radiation modality. Recently, using
GI as model, the FLASH effect was confirmed with spread-
out Bragg peak irradiation. Using a pulsed synchrocyclotron,
Evan et al. showed that mice irradiated at 10–16Gy UHDR
(96Gy/s) exhibited enhanced survival with LD50 reaching
14.1Gy with UHDR vs. 13.5 Gy with conventional dose rate
(Evans et al. 2021). Consistently, Kim et al. study compares
the outcome of the proton transmission at UHDR (UHDR-
PRT transmission) vs. the spread-out Bragg peak (UHDR-

Figure 4. Dose rate de-escalation was performed in mice, zebrafish embryos, plasmid and water using 10 Gy. (a) Recognition ratio (RR) evaluation two months post
irradiation for control mice group and groups that received 10 Gy WBI delivery with a dose rate delivered in a single 1.8 ms electron pulse and ranging from (0.1,
10, or 100, 33, 10, 0.1 Gy/s). No memory alteration was observed in the groups irradiated with 100 Gy/s or higher, RR was comparable to the control group.
Whereas a significant drop in the RR was observed for the group irradiated at 33 Gy/s. The drop became even slightly larger as the dose rate was further lowered
(adapted from Montay-Gruel 2017). (b) Wild-type zebrafish embryos were irradiated four hours post fertilization and body length measurement five days post fertil-
ization was used to assess radiation-induced injury. Similarly, with the murine recognition ratio results, both highest dose rates (5.6� 106 Gy/s and 100 Gy/s)
showed less alteration in body length as compared to non-irradiated embryos. Whereas, less protection was observed at lower dose rates and no protection at
CONV-RT dose rate. Mean ± SD. p Values derived from Mann–Whitney’s test: �p<.05; ��p<.01; ���p<.001 (N¼ 12–16 embryos/group). (c) Dose rate de-escalation
involved irradiation at 10 Gy of pBR322 plasmids in aqueous solutions equilibrated at physiological oxygen conditions (4%). Notably, no difference in DNA damage
was measured after UHDR compared to CONV-RT. Mean ± SD. p Values were derived from one-way ANOVA and Tukey’s multiple comparisons test. (d) H2O2 was
quantified with the fluorogenic assay AmplexRed after 10 Gy irradiation of water samples equilibrated at 4% O2 following dose rate de-escalation similarly like
described in the previous models. The radiolytic yield of H2O2 was significantly lower for the highest dose rates. Whereas, an increase in G(H2O2) was observed
when the dose rate is lowered. This differential production reveals a decrease in ROS production following UHDR. Mean ± SD. p Values were derived from
Mann–Whitney’s U test: ��p<.01.
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PRT SOBP) in mouse intestine and pancreatic tumor con-
trol. Toxicity was significantly decreased in both configura-
tions, i.e. 15Gy UHDR-PRT SOBP (108.2 ± 8.3Gy/s) vs.
UHDR-PRT transmission (107.1 ± 15.2Gy/s). In contrast,
conventional dose rate proton transmission (CONV-PRT
transmission, 0.83 ± 0.19Gy/s) and SOBP (CONV-PRT
SOBP, 0.82 ± 0.14Gy/s) both generated important damages
with reduced regenerating and proliferating crypts.
Importantly, 18Gy at UHDR and conventional dose rate
irradiation were equipotent to control subcutaneous
MH641905 mouse pancreatic tumors in both transmission
and spread-out Bragg peak dose regions. All mice treated
with CONV-PRT and UHDR-PRT transmission survived
the treatment. In SOBP, 70% of the mice treated at conven-
tional dose rate died 20 days after irradiation whereas
UHDR induced only 15% of lethality (Kim et al. 2021).
Ultimately, Ruan et al. also reported a decreased gastrointes-
tinal toxicity and better crypt survival at UHDR (electron,
7.5–12.5Gy, 2–6� 106 Gy/s) with a relatively low dose-mod-
ifying factor of 1.1, in comparison to conventional dose rate
(CONV, 0.25Gy/s). The FLASH effect was lost when deliv-
ery time between two pulses and pulse repetition number
were increased, highlighting the relevance of parameteriza-
tion studies to define the FLASH effect (Ruan et al. 2021).

Negative studies
While studies on the FLASH effect have now been extended
and validated across multiple animal models, other studies
investigating UHDR irradiation have not reported beneficial
effects. Exposure of 24 hour post-fertilization (hpf) zebrafish
embryos with a proton beam at 100Gy/s and 0.08Gy/s
showed no difference in survival and morphology
(Beyreuther et al. 2019). With synchrotron X-ray at
37–41Gy/s and 0.06Gy/s, no difference was reported after
total body, thoracic and abdominal irradiation (Smyth et al.
2018). Similarly, cardiac and splenic irradiation of mice with
electron beams, 35Gy/s and 0.1Gy/s caused lymphopenia
(Venkatesulu et al. 2020). While the basis of these negative
results have to be carefully explored, certain caveats may
well be related to the low dose rates and experimental set-
up used in these studies.

The FLASH effect validated in patient and human samples
With the principal aim to transfer FLASH-RT into early
clinical trials, our group investigated the FLASH effect on
the skin of a mini-pig. A dose escalation study in cat-cancer
patients with squamous cell carcinoma of the nasal planum
identified 34Gy as a tolerated and efficacious dose (Vozenin
et al. 2019) and a phase III validation trial is currently
ongoing. A dose escalation trials in dog patients with vari-
ous superficial solid tumors has been published with only
three/six month follow up (Konradsson et al. 2021). In add-
ition, a feasibility study on dog-patients with osteosarcoma
evaluated acute production of TGF-b and found minimal
production following 12Gy UHDR protons irradiation
(Velalopoulou et al. 2021). Similarly, one feasibility study in
one human patient is available (Bourhis et al. 2019a, 2019b)

and one with UHDR protons is ongoing (FATS01); however,
only few results are available with human cells and samples.
Recently, we evaluated the effect of FLASH-RT on three
patient-derived xenograft (PDX) of human T-acute lympho-
blastic leukemia (T-ALL). We found that two out of three
were sensitive to UHDR irradiation. Their genomic imprint
revealed a putative susceptibility profile in T-ALL tumors
and suggests that T-ALL sensitivity to UHDR could be
related to the expression of certain genes including
GADD45, involved in the control of the cell cycle G2/M
checkpoint and FAT1 that regulates wnt pathway and cell
division. In contrast, AGAP9 and PDLIM1 expressions seem
to be associated to a resistant profile to UHDR (Chabi et al.
2020). Further studies are ongoing to elucidate this question.

Table 1 and Table 2 (Supplementary material) summarize
positive and negative studies investigating the FLASH effect.

Interestingly, UHDR and conventional dose rate irradi-
ation are equipotent to control tumors, suggesting that
tumor but not normal tissue sensitivity is dose rate inde-
pendent. The mechanistic basis of this differential effect trig-
gered by UHDR on tumors vs. normal tissue is under
scrutiny. One interesting hypothesis has been proposed by
Spitz et al. and is based on differential distribution of
organic hydroperoxides after UHDR vs. conventional dose
rate irradiation. Hydroperoxides, derived from Fenton and
peroxidation chain reactions are produced immediately at
equal levels in normal and tumor tissue following UHDR.
In normal tissues, antioxidants pathways remove more
effectively than the organic hydroperoxides as compared to
the tumor (higher levels of redox-active iron). Thus, explain-
ing the beneficial therapeutic index of the FLASH effect in
normal tissue compared to tumor. Whereas, at conventional
dose rates, levels of hydroperoxides seem too low to uncover
the differences in the tumor vs. normal tissue in oxidative
metabolism (Spitz et al. 2019).

Example of experiments integrating biology and
chemistry to investigate dose rate effect: from
murine cognition and zebrafish embryo
development to plasmid damage and H2O2 Yield

In this paper, we reviewed the current knowledge and
approaches available to investigate the impact of dose rate
from chemical systems to complex biological models. In this
paragraph, we will give an example of integrated experi-
ments performed to investigate the FLASH effect. We
started from the first systematic investigation of the FLASH
effect, that we performed several years ago using normal
brain toxicity as the main outcome for the FLASH sparing
effect (Montay-Gruel et al. 2017). The dose rate de-escal-
ation study started with 10Gy delivered in one pulse of 1.8
micros (5.6� 106 Gy/s) until 0.1 Gy/s, the latter of which
corresponds to conventional dose rates used in the clinic.
Full preservation of neurocognitive function was obtained
above 100Gy/s, whereas it dropped at 30Gy/s and was abol-
ished at 0.1Gy/s (Figure 4(a)). Then to derive different dose
rate threshold data for a separate endpoint, dose rate escal-
ation was performed at a fixed 10Gy total dose in zebrafish

INTERNATIONAL JOURNAL OF RADIATION BIOLOGY 513

https://doi.org/10.1080/09553002.2021.2004328


embryos with body length measurement as an outcome
(Figure 4). Interestingly, zebrafish embryos corroborated
data derived from mice (Figure 4(b)) with a remarkable con-
sistency (correlation coefficient >0.94). Next, experiments
were pursued with pBR322 plasmids irradiated in aqueous
solutions equilibrated at physiological oxygen conditions
(4%). Notably, no difference in SSB yields (open circular
DNA) was measured after UHDR compared to CONV-RT,
whereas DSB yields (linear DNA) after 10Gy were close to
the detection limit of AGE (Figure 4(c)). Importantly,
assuming that 4% oxygen mimics normal tissue oxygenation,
these results suggest that UHDR irradiation does not modify
DNA damage under physiological conditions. Finally, H2O2

production in terms of G(H2O2) (lM/10Gy) was measured
in cell-free systems and at physiological oxygen levels.
Interestingly, the radiolytic production of H2O2 was reduced
at the highest dose rates 5.6� 106 Gy/s and 100Gy/s,
whereas an increase in G(H2O2) was observed with lower
dose rates (Figure 4(d)) as previously described (Montay-
Gruel et al. 2019). The beam parameters required to perform
these studies are summarized in Figure 4(e).

The reduced production of H2O2 was consistent with the
lower toxicities observed in normal tissues. In this context,
the role for oxygen, reduced ROS production, altered redox
biology and modifications of the biological cascade down-
stream remain relevant and constitute a key focus of our
ongoing research efforts. However, other important physio-
logical factors such as temperature, proliferation status, and
metabolism (among others) are likely to play a certain role
in mediating the FLASH effect, and will require further
experimental validation.
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