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Abstract 14 

Knowledge about the stochastic nature of heterogeneity in subsurface hydraulic 15 

properties is critical for aquifer characterization and the corresponding prediction of 16 

groundwater flow and contaminant transport. Whereas the vertical correlation structure 17 

of the heterogeneity is often well constrained by borehole information, the lateral 18 

correlation structure is generally unknown because the spacing between boreholes is 19 

too large to allow for its meaningful inference. There is, however, evidence to suggest 20 



that information on the lateral correlation structure may be extracted from the 21 

correlation statistics of the subsurface reflectivity structure imaged by surface-based 22 

ground-penetrating radar (GPR) measurements. To date, case studies involving this 23 

approach have been limited to 2D profiles acquired at a single antenna center frequency 24 

in areas with limited complementary information. As a result, the practical reliability 25 

of this methodology has been difficult to assess. Here, we extend previous work to 3D 26 

and consider reflection GPR data acquired using two antenna center frequencies at the 27 

extensively explored and well constrained Boise Hydrogeophysical Research Site 28 

(BHRS). We find that the results obtained using the two GPR frequencies are consistent 29 

with each other, as well as with information from a number of other studies at the BHRS. 30 

In addition, contrary to previous 2D work, our results indicate that the surface-based 31 

reflection GPR data are not only sensitive to the aspect ratio of the underlying 32 

heterogeneity, but also, albeit to a lesser extent, to the so-called Hurst number, which is 33 

a key parameter characterizing the local variability of the fine-scale structure. 34 
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1. Introduction 39 

An important objective in many hydrogeological studies is the characterization of 40 

subsurface heterogeneity within an aquifer for the subsequent prediction of 41 



groundwater flow and contaminant transport (e.g., Sudicky, 1986; Mas‐Pla et al., 1992; 42 

Phanikumar et al., 2005; Salamon et al., 2007; Hu et al., 2009; Radu et al., 2011). 43 

Typical hydrogeological characterization methods have significant limitations in this 44 

regard, as there exists a wide gap in terms of spatial coverage and resolution between 45 

local borehole-based studies and larger-scale aquifer tests (e.g., Sudicky, 1986; Kobr et 46 

al., 2005; Leven and Dietrich, 2006). This gap can at least be partially bridged through 47 

specifically targeted geophysical measurements (e.g., Rubin and Hubbard, 2006; 48 

Hubbard and Linde, 2010). In this regard, recent evidence suggests that high-resolution 49 

surface-based reflection ground-penetrating radar (GPR) data may offer important 50 

information on subsurface geostatistical properties (e.g., Rea and Knight, 1998; 51 

Gloaguen et al., 2001; Tronicke et al., 2002; Kowalsky et al., 2005; Rubin and Hubbard, 52 

2006). This comes as a result of the close relationship that exists between soil water 53 

content and the high-frequency electromagnetic wave velocity (e.g., Greaves et al., 54 

1996; Van Overmeeren et al., 1997; Al Hagrey and Müller, 2000).  55 

Whereas the vertical correlation structure of subsurface heterogeneity within an 56 

aquifer is often well constrained by borehole information (e.g., Ritzi et al., 1994), the 57 

lateral correlation structure tends to be largely unknown because the boreholes are 58 

generally too sparse for its reliable inference. To date, several attempts have been made 59 

to relate the lateral correlation statistics of surface-based reflection GPR data to those 60 

of the investigated subsurface region (e.g., Rea and Knight, 1998; Oldenborger et al., 61 

2004; Knight et al., 2004, 2007; Dafflon et al., 2005; Irving and Holliger, 2010; Irving 62 



et al., 2009, 2010). Rea and Knight (1998) compared the correlation structure of an 63 

outcrop image with that of the corresponding GPR data and found good overall 64 

agreement. Oldenborger et al. (2004) demonstrated that the geostatistical characteristics 65 

of GPR reflection data are quite robust to the effects of data processing including gain 66 

functions and migration, but noted that they will not be identical to those of the 67 

underlying porosity distribution because they are strongly influenced by the choice of 68 

the antenna frequency. Dafflon et al. (2005) complemented and extended the work of 69 

Rea and Knight (1998) and considered a realistic and highly versatile autocorrelation 70 

model to describe the subsurface heterogeneity. Knight et al. (2007) observed 71 

similarities between the horizontal correlation statistics of GPR reflection data and 72 

those of closely spaced neutron-probe water-content measurements, but pointed to the 73 

results of previous work demonstrating that the lateral correlation structure of a GPR 74 

reflection image will be strongly influenced by the vertical measurement resolution, 75 

which in turn is controlled by the antenna center frequency (Knight et al., 2004).  76 

Irving et al. (2009) were the first to present a physically and mathematically 77 

consistent model relating the 2D spatial autocorrelation of the subsurface water-content 78 

distribution to that of the corresponding GPR data, taking into account the effects of 79 

antenna frequency. Based on this model, they proposed a Bayesian Markov-chain-80 

Monte-Carlo (MCMC) inversion approach to estimate the subsurface horizontal 81 

correlation statistics from the GPR reflection data. They found that unique recovery of 82 

the lateral correlation structure is dependent upon accurate knowledge of the vertical 83 



correlation structure. This finding was subsequently demonstrated mathematically by 84 

Irving and Holliger (2010). This inversion methodology was successfully applied to 85 

both synthetic and field GPR measurements, as well as to synthetic seismic reflection 86 

data (Irving et al., 2010; Scholer et al., 2010). However, all work so far has been limited 87 

to 2D profiles acquired at a single source frequency in areas where limited 88 

complementary information has been available. As a result, the practical reliability of 89 

this approach remains difficult to assess.  90 

In this paper, we seek to address the above limitations by extending the approach 91 

of Irving et al. (2009) from 2D to 3D and by considering a pertinent case study 92 

involving the use of multiple GPR antenna center frequencies at a well characterized 93 

hydrogeophysical test site. We begin by describing the relationship between the 3D 94 

spatial autocorrelation of the high-frequency subsurface electromagnetic wave velocity 95 

distribution and that of the corresponding depth-migrated GPR reflection image. Next, 96 

we outline how we estimate the parameters describing the considered subsurface 97 

autocorrelation model from the GPR data using a Monte-Carlo inversion strategy. 98 

Finally, we demonstrate the successful application of this methodology to 3D GPR field 99 

data acquired using 100-MHz and 200-MHz antennas at the Boise Hydrogeophysical 100 

Research Site (BHRS), Idaho, USA. 101 

2. Methodology 102 

2.1. Von Kármán autocorrelation function 103 

Seismic and radar wave velocity heterogeneities in the subsurface are commonly 104 



characterized as a superposition of a slowly varying or constant deterministic 105 

background velocity model and a stochastic velocity perturbation field (e.g., Gibson, 106 

1991; Holliger et al., 1992). Following this assumption, the 3D subsurface high-107 

frequency electromagnetic velocity field can be written as    108 

v x, y, z = v' x, y, z + ∆v x, y, z , (1) 

where 	v' x, y, z 	 is the background velocity field and 	∆v x, y, z 	 represents the 109 

stochastic perturbation, the latter of which we assume to be zero-mean and, to a first 110 

approximation, multi-Gaussian distributed (e.g., Holliger, 1996) and whose parametric 111 

spatial correlation properties we wish to estimate. To this end, we consider the von 112 

Kármán spatial autocorrelation function, which has been widely used to describe 113 

subsurface spatial variability in both borehole data analysis (e.g., Dolan and Bean, 1997; 114 

Jones and Holliger, 1997) and numerical simulations of wave-propagation phenomena 115 

(e.g., Frankel and Clayton, 1986; Hartzell et al., 2010). The 3D form of the von Kármán 116 

autocorrelation equation for anisotropic velocity heterogeneity aligned along arbitrary 117 

orthogonal coordinate axes x′, y′, and z′ can be written as (e.g., Goff and Jordan, 118 

1988) 119 

R-- δx′, δy′, δz′ =
r0K0 r

2034K0Γ0 0
 (2) 

where δx′ , 	δy′ , δz′  are the spatial autocorrelation lags in the x′-, y′-, and z′-120 

directions, respectively, K0 𝑟  is the modified Bessel function of the second kind of 121 

order 0 ≤ ν ≤ 1, Γ is the gamma function, and 122 



𝑟 =
δx′
a<=

>

+
δy′
a?=

>

+
δz′
a@=

>

 (3) 

is a normalized lag parameter with a<=, a?=, and a@= denoting the spatial correlation 123 

lengths along x′, y′, and z′, respectively. Eq. (2) defines an anisotropic heterogeneous 124 

medium showing self-similar or fractal behavior at scales shorter than the correlation 125 

lengths. The parameter ν , which is generally referred to as the Hurst number, 126 

determines the decay rate of the autocorrelation function at near-zero lag values and, as 127 

such, characterizes the local variability of the considered stochastic medium. Values of 128 

ν close to zero and one are indicative of locally highly variable and locally very smooth 129 

media, respectively. A ν-value of 0.5, on the other hand, corresponds to a so-called 130 

Brownian stochastic process described by the well-known exponential autocorrelation 131 

function. 132 

In general, x′, y′, and z′ in Eqs. (2) and (3), which correspond to the principal 133 

axes of anisotropy of the subsurface velocity heterogeneity, will not be aligned with the 134 

local x , y , and z  coordinate axes that typically reflect the GPR data acquisition 135 

geometry. In other words, it is rarely the case that the ellipsoid describing the velocity 136 

heterogeneity will have principal axes that are consistent with the 3D GPR data set upon 137 

which the local coordinate axes are typically defined. As a result, an orthogonal 138 

transformation is needed to use Eqs. (2) and (3) in the local x, y, and z coordinate system. 139 

This transformation is described by 140 

𝑥′
𝑦′
𝑧′

=
| | |
𝐓4 𝐓> 𝐓F
| | |

𝑥
𝑦
𝑧

, (4) 



where the columns 𝐓G  of orthogonal transformation matrix 𝐓  are obtained by 141 

expressing unit vectors in the x-, y-, and z-directions in terms of the coordinates x′, 142 

y′, and z′ (e.g., Roman et al., 2005). To estimate the directions of predominant velocity 143 

anisotropy in our work, which are required for the inversion procedure described in 144 

Section 2.3, we use the dominant dip angles observed in the reflection GPR data as well 145 

as the corresponding 3D data autocorrelation. More details on how this is done are given 146 

in Section 3.2 when we apply our approach to the BHRS field data sets.  147 

2.2. Forward model  148 

To relate the stochastic properties of a depth-migrated 3D GPR reflection image to 149 

those of the underlying high-frequency electromagnetic wave velocity distribution, we 150 

extend the method of Irving et al. (2009) from 2D to 3D. To this end, we consider a 151 

modified version of the primary reflectivity section (PRS) model (e.g., Gibson, 1991; 152 

Pullammanappallil et al., 1997), where the 3D GPR image, d x, y, z , can be expressed 153 

as the convolution of a source wavelet, w z , the subsurface reflectivity coefficient 154 

field, r x, y, z , and a 2D horizontal-resolution filter, h(x, y). As the distribution of 155 

reflection coefficients in the subsurface can be approximated by the vertical spatial 156 

derivative of the velocity field, v x, y, z , this leads to 157 

d x, y, z ≈ w z ∗ r x, y, z ∗ h(x, y)  

         ≈ w(z) ∗ O
OP
v x, y, z ∗ h(x, y), (5) 

where the asterisk denotes the convolution operator. It is important to note that the 158 

modified PRS model described by Eq. (5) assumes that: (i) single scattering 159 



predominates, which is a basic assumption inherent to most seismic and GPR 160 

processing, imaging, and interpretation strategies (e.g., Aki and Chouet, 1975; Sato, 161 

1977); (ii) dispersion in the GPR data can be ignored such that a constant wavelet shape 162 

can be approximately assumed; and (iii) the data have been properly depth-migrated. 163 

Under these conditions, Eq. (5) will capture the essential features of a 3D GPR 164 

reflection image. 165 

The operator h(x, y)  in Eq. (5) is required to account for the limited lateral 166 

resolution of a migrated reflection image (e.g., Berkhout, 1984). Following Irving et al. 167 

(2009), we use a Gaussian low-pass filter for this purpose 168 

h x, y = exp − <TU?T

>VT
, (6) 

where c determines the filter width and is set such that the diameter of the filter 169 

function where h reaches 1% of its maximum value is equal to the dominant wavelength 170 

of the GPR pulse.  171 

   Noting that the vertical derivative operator in Eq. (5) can be treated as a filter whose 172 

position in the equation can be shifted to act on the wavelet, we can write the equation 173 

as 174 

d x, y, z ≈ v x, y, z ∗ f x, y, z , (7) 

where 175 

  f x, y, z ≈ 	 O
OP
w z ∗ h x, y . (8) 

Transforming Eq. (7) into the frequency domain and taking the squared magnitude of 176 

both sides, we obtain a relationship between the 3D power spectra of all quantities     177 



									 D k[, k\, kP
> ≈ V k[, k\, kP

> ∙ F k[, k\, kP
>
, (9) 

where k[, 	k\, and kP are the spatial wavenumbers in the x-, y-, and z- directions, 178 

respectively. Taking the inverse Fourier transform and making use of the Wiener-179 

Khintchine theorem linking the power spectra with the autocorrelation functions then 180 

yields  181 

R`` δx, δy, δz ≈ R-- δx, δy, δz ∗ Raa δx, δy, δz , (10) 

where δx, δy, and δz denote the spatial autocorrelation lags along x, y, and z.  182 

Eq. (10) states that the 3D spatial autocorrelation of a depth-migrated GPR 183 

reflection image,	R`` δx, δy, δz , will be approximately equal to the 3D convolution  184 

of the autocorrelation of the underlying subsurface velocity field, R-- δx, δy, δz , and 185 

that of the filtered source wavelet, Raa δx, δy, δz . This means that, with knowledge 186 

of Raa δx, δy, δz , we can estimate the parameters of the von Kármán autocorrelation 187 

function describing R-- δx, δy, δz  given R`` δx, δy, δz . Similar to our previous 188 

work involving 2D data (Irving et al., 2009, 2010), we can obtain the autocorrelation 189 

of w z  from R`` 0,0, δz , which is the average vertical autocorrelation of the 190 

migrated GPR image. Thus, Raa δx, δy, δz  can be calculated through 3D convolution 191 

of R`` 0,0, δz  with the autocorrelation of the horizontal-resolution filter, h(x, y), 192 

and that of a finite-difference vertical derivative operator.  193 

2.3. Inversion strategy 194 

Given knowledge of Raa δx, δy, δz  and R`` δx, δy, δz , which are both 195 

computed from the 3D GPR image, we wish to estimate the parameters governing 196 



R-- δx, δy, δz  using the forward model given in Eq. (10). Specifically, our aim is to 197 

recover information on the correlation lengths,	a<c, a?c, a@c as well as on the Hurst 198 

number ν, which together parameterize the velocity heterogeneity described by the von 199 

Kármán autocorrelation model through Eqs. (2) and (3). As this represents a low-200 

dimensional but strongly non-linear inverse problem, we employ a brute-force Monte-201 

Carlo approach, which is consistent with the work of Irving et al. (2010) and Scholer et 202 

al. (2010). Although the original Bayesian MCMC inversion methodology presented 203 

by Irving et al. (2009) allows, in theory, for the quantification of posterior uncertainties 204 

of the estimated model parameters, it relies upon accurate statistical characterization of 205 

the residuals between the observed GPR image autocorrelation and that calculated using 206 

Eq. (10), which in general are not well known. A Monte-Carlo approach avoids these 207 

limitations and allows for great flexibility with regard to the criteria upon which 208 

parameter sets are accepted, albeit with the caveat that the corresponding inversion 209 

results do not represent samples from a Bayesian posterior distribution.  210 

To carry out an inversion using Eq. (10), we require a metric of acceptable fit 211 

between the predicted autocorrelation of a 3D GPR image based on a particular test set 212 

of von Kármán parameters, which we denote as R		dd
pred δx, δy, δz , and the observed 213 

GPR image autocorrelation, which we denote using Rddobs δx, δy, δz . In previous 2D 214 

work, Irving et al. (2009, 2010) and Scholer et al. (2010) found that considering only 215 

the fit in the lateral direction was sufficient for this purpose, as the vertical correlation 216 

structure of a GPR reflection image is largely controlled by the source pulse. Similarly, 217 



for our 3D investigation, we have found that if the fit to the observed autocorrelation 218 

data in the δz = 0 plane (i.e.,	Rddobs δx, δy, 0 ) is adequate, then, in general, we will 219 

have an adequate fit to the entire 3D GPR image autocorrelation. We therefore prescribe 220 

fitting bounds around Rddobs δx, δy, 0  within which acceptable lateral autocorrelation 221 

data predicted using Eq. (10) (i.e., Rdd
pred δx, δy, 0 ) must lie (e.g., Irving et al., 2010; 222 

Scholer et al., 2010). In this regard, we define the maximum absolute fitting error 223 

ξ = max Rdd
pred δx, δy, 0 − Rddobs δx, δy, 0 , (11) 

where Rdd
pred and Rddobs are considered to be normalized to a maximum value of one. 224 

Test sets of von Kármán model parameters that are deemed acceptable in the inversion 225 

procedure must have a ξ-value less than or equal to some user-prescribed threshold. In 226 

this way, our inversion approach is similar to the generalized likelihood uncertainty 227 

estimation (GLUE) technique (Beven and Binley, 1992), whereby “behavioral” sets of 228 

model parameters are identified within a Monte-Carlo framework based on whether the 229 

corresponding predicted data fall within specified bounds. 230 

Our Monte-Carlo inversion strategy for estimating a<c, a?c, a@c and ν from the 231 

observed 3D GPR image autocorrelation is summarized by the following steps: 232 

1. Select the appropriate region of the depth-migrated 3D GPR image for analysis, 233 

and estimate the principal axes of the ellipsoid describing the subsurface velocity 234 

heterogeneity, x′ , y′ , and z′ . More details on how this is accomplished are 235 

provided in Section 3.2.   236 

2. Calculate the observed 3D autocorrelation of the GPR reflection image, 237 



Rddobs δx, δy, δz , and use the vertical component, Rddobs 0,0, δz , to compute 238 

Raa δx, δy, δz  by convolving it with the autocorrelation of h(x, y) in Eq. (6) and 239 

that of a finite-difference vertical derivative operator. 240 

3. Define uniform prior ranges for the von Kármán model parameters describing the 241 

velocity heterogeneity,	a<c, a?c, a@c and ν.  242 

4. Choose a maximum permissible value, ξ∗, for the fitting error given by Eq. (11). 243 

This defines what we deem to be an acceptable fit between the predicted and 244 

observed 3D GPR image autocorrelations.  245 

5. Randomly draw a proposed set of values for a<c, a?c, a@c and ν from the prior 246 

distributions defined in Step 3 and compute R-- δx, δy, δz  using Eqs. (2) and (3). 247 

6. Calculate the corresponding predicted GPR image autocorrelation, 248 

Rdd
pred δx, δy, δz , using Eq. (10) with R-- δx, δy, δz  from Step 5 and 249 

Raa δx, δy, δz  from Step 2. 250 

7. Calculate ξ using Eq. (11). If ξ < ξ∗, then the proposed set of von Kármán model 251 

parameters is accepted. Otherwise, it is rejected. 252 

8. Return to Step 5 and repeat until the desired number of accepted sets of von 253 

Kármán model parameters has been obtained.  254 

It is important to note that since each accepted set of von Kármán model parameters is 255 

generated independently with our methodology (i.e., not depending on the previous 256 

parameter set values), a parallel computational strategy can be adapted in order to 257 

generate stochastic realizations more efficiently. That is, Steps 5 to 8 in our inversion 258 



workflow can be assigned to different processors on a cluster-type computer. Compared 259 

to the MCMC inversion approach of Irving et al. (2009), this is a notable advantage. 260 

3. Application to field data 261 

3.1. Site description 262 

We now show the application of the previously described 3D inversion 263 

methodology to field GPR reflection data acquired at the BHRS using two different 264 

antenna center frequencies. The BHRS is a research site located on a gravel bar adjacent 265 

to the Boise River, ~15 km from downtown Boise, Idaho, USA (Figure 1a). It contains 266 

13 boreholes in a central area, which has a diameter of ~20 m, and five boreholes near 267 

its borders located at distances of ~10 to 35 m from this central area. The underlying 268 

braided-river aquifer consists of late Quaternary fluvial deposits dominated by coarse 269 

cobbles and sand. These are followed by a layer of red clay, which is situated at ~20-m 270 

depth. Over the past two decades, the site has been extensively used for the testing, 271 

validation, and improvement of a wide variety of geophysical and hydrogeological 272 

methods for characterizing heterogeneous aquifers (e.g., Tronicke et al., 2004; Bradford 273 

et al., 2009; Nichols et al., 2010; Dafflon et al., 2011; Dafflon and Barrash, 2012; 274 

Cardiff et al., 2013; Hochstetler et al., 2016).  275 

3.2. Database  276 

The 3D GPR reflection data considered in our study were acquired during the 277 

summer of 1998 using a PulseEkko Pro 100 system (Sensors & Software Inc.) with 278 



nominal antenna center frequencies of 100 and 200 MHz. The 100- and 200-MHz data 279 

were collected in common-offset mode using transmitter-receiver antenna spacings of 280 

1 m and 0.5 m, respectively. The GPR survey grid had dimensions of 30 m in the in-281 

line (x) direction and 18 m in the cross-line (y) direction (Figure 1b). Traces were 282 

recorded every 0.1 m along each survey line, with a line spacing of 0.2 m. A time 283 

sampling interval of 0.8 ns was used and recordings were made over 400 ns. Note that 284 

the corresponding Nyquist frequency of 625 MHz is well beyond the maximum emitted 285 

frequency of the 200-MHz antennas, which is believed to be no greater than 450 MHz. 286 

For each recorded trace, 32 stacks were performed in order to improve the signal-to-287 

noise ratio of the data.  288 

Processing of the GPR data consisted of band-pass filtering between 25 MHz and 289 

450 MHz, automatic gain control (AGC) with a large time window of 50 ns, and 290 

constant-velocity 3D migration (e.g., Stolt, 1978) using a velocity of 0.08 m/ns 291 

determined from the analysis of common-mid-point measurements. In the resulting 292 

GPR images, the depth sampling interval is 0.037 m. Although, in theory, a spatially 293 

variable velocity field is required to obtain the most accurate subsurface image through 294 

migration, extensive testing on synthetic data has indicated that constant-velocity 295 

migration with the average prevailing velocity is perfectly adequate for the kind of 296 

stochastic analysis considered in this paper, most notably in the presence of velocity 297 

heterogeneities comparable to those observed at the BHRS (e.g., Irving et al., 2009; 298 

Bradford et al., 2009; Irving et al., 2010). In addition, Oldenborger et al. (2004) found 299 



that the spatial autocorrelation of a reflection GPR image is relatively insensitive to the 300 

details of the data processing and migration. 301 

Figures 2a and 2b show the processed 100- and 200-MHz GPR images from 0- to 302 

10-m depth, respectively. The horizontal reflector at ~2.5 m depth is the water table. 303 

Note that similarities can be seen in the two images in terms of the response to dominant 304 

reflecting interfaces in the subsurface. However, the 200-MHz data appear to be 305 

laterally more heterogeneous than their 100-MHz counterparts. The main reason for 306 

this phenomenon is that non-specular reflectors, which may effectively “line up’’ 307 

laterally when imaged using lower-frequency antennas, can become discontinuous 308 

when imaged using higher-frequency antennas (Irving et al., 2009; Scholer et al., 2010).  309 

To estimate the principal axes of the ellipsoid describing the subsurface velocity 310 

heterogeneity at the BHRS, we consider the higher-resolution 200-MHz measurements, 311 

but comparable results are obtained for the 100 MHz data. Careful analysis of the data 312 

in Figure 2b indicates that the dominant dip of the sediments is roughly 8 degrees with 313 

respect to the horizontal. Taking the cross product of the vectors representing the 314 

intersection of this dipping plane with the x=0 and y=0 planes yields one of the principal 315 

axes of the heterogeneity, which is perpendicular to the predominant dip of the 316 

sedimentary layering. Next, we calculate the 3D autocorrelation of the GPR image 317 

(Figure 3a). Examination of this autocorrelation through the origin along the previously 318 

calculated dipping plane yields an ellipse whose major axis corresponds to another one 319 

of the principal directions (Figure 3b). Finally, the third principal direction is found by 320 



taking the cross product of the two previously determined ones, making sure that the 321 

resulting vector forms a right-handed coordinate system with the others. This direction 322 

corresponds to the minor axis of the ellipse along the dipping plane (Figure 3c). For the 323 

BHRS data, the above analysis yielded the following unit vectors 𝐱′, 𝐲′, and 𝐳′ along 324 

the x′-, y′-, and z′-directions, respectively: 325 

𝐱= =
0.9612
	0.2452
−0.1264

, 			𝐲= =
−0.2530
	0.9662
−0.0496

, 			𝐳= =
0.1100
0.0797
0.9907

. (11) 

We see that these vectors are close, but not identical, to those defining a standard 326 

Cartesian coordinate system aligned with the GPR survey grid. 327 

3.3. Inversion procedure 328 

For all of the inversion results presented in this paper, we consider a maximum 329 

fitting-error of ξ∗ = 0.12. This means that all sets of von Kármán parameters whose 330 

corresponding predicted GPR image autocorrelations were within a distance of 0.12 331 

from the observed autocorrelation in the δz = 0 plane were accepted in the Monte-332 

Carlo inversion procedure. This choice, which is admittedly subjective and based on 333 

what we view to represent a “behavioral” set of model parameters in terms of bounding 334 

the observations (Beven and Binley, 1992), is more visually intuitive and less 335 

problematic than other fitting metrics based upon assumed knowledge regarding the 336 

statistical distribution of the data residuals (e.g., Irving et al., 2009). In this context, it 337 

is again important to note that our inversion results cannot be regarded as samples from 338 

a formal Bayesian posterior distribution. 339 

For the inversions, we considered the 100- and 200-MHz GPR data over a restricted 340 



depth range from 2.5 m to 8 m. The upper limit of this range corresponds to the position 341 

of the water table at the time the measurements were taken, whereas the lower limit 342 

represents the maximum depth of penetration of the 200-MHz data. In this way, the 343 

estimated geostatistics of the high-frequency electromagnetic wave velocity at the 344 

BHRS correspond to saturated fluvial sediments. Given the quasi-linear relationship 345 

between water content and velocity over a limited range (e.g., Irving et al., 2009), the 346 

corresponding results can therefore be interpreted in terms of porosity. In this regard, 347 

the prior range of acceptable values for the vertical correlation length a@c  was set 348 

between 0.1 and 2 m. This range was constrained by previous analyses of porosity log 349 

data along BHRS boreholes C5 and C6 assuming the same parametric autocorrelation 350 

model as the one used in this study (Dafflon et al., 2009). Similarly, based on a 351 

comprehensive review of the fractal nature of rock physical properties in sedimentary 352 

rocks (Hardy and Beier, 1994), the prior range for the Hurst number ν was set between 353 

0.1 and 0.5. Based on the available evidence, ν-values larger than 0.5 are extremely 354 

unlikely in general (Hardy and Beier, 1994) and particularly within the given context 355 

(e.g., Dafflon et al., 2009). Conversely, ν-values close to zero are realistic, but would 356 

render evaluation of the parametric autocorrelation function given by equation (2) error-357 

prone due to the singularity of the associated Bessel function. The prior ranges for the 358 

horizontal correlation lengths	a<c and a?c, on the other hand, which cannot be reliably 359 

constrained by borehole measurements, were both set rather broadly between 0.1 and 360 

20 m. 361 



For each GPR data set, the previously described Monte-Carlo inversion procedure 362 

was run until 2000 accepted sets of von Kármán autocorrelation model parameters were 363 

obtained. Similar to previous work with 2D data (e.g., Irving et al., 2009, 2010; Irving 364 

and Holliger, 2010), the 3D inversion cannot constrain uniquely the horizontal 365 

correlation lengths, but rather only the horizontal-to-vertical aspect ratios of the 366 

underlying heterogeneity. As a result, we present our results in terms of the aspect ratios 367 

a<c a@c and a?c a@c, along with the lateral aspect ratio a?c a<c. 368 

3.4. Results 369 

Figures 4 and 5 present histograms of a<c a@c, a?c a@c, a?c a<c, and ν, which 370 

were obtained from the 100- and 200-MHz BHRS inversion results, respectively. The 371 

corresponding summary statistics are provided in Table 1. We see that our Monte-Carlo 372 

inversion procedure has resulted in generally well-defined, quasi-normal distributions 373 

for the three considered aspect ratios. The mean values for the horizontal-to-vertical 374 

aspect ratio in x=-direction, a<c a@c, are 6.3 and 5.7 for the 100- and 200-MHz data, 375 

respectively, which are consistent (Figures 4a and 5a). The estimates of 13.1 and 10.2 376 

for the horizontal-to-vertical aspect ratio in y=  direction, 	a?c a@c , differ more 377 

significantly between the 100- and 200-MHz data (Figures 4b and 5b), but are still in 378 

good agreement given the corresponding standard deviations (Table 1). All of these 379 

values correspond well with values inferred by Dafflon et al. (2009) from the analysis 380 

of porosity log data along boreholes C5 and C6, which are aligned at an oblique angle 381 

to our y’-direction, and corresponding crosshole tomographic GPR measurements. In 382 



that paper, a range of horizontal-to-vertical aspect ratios between 6 and 20 was 383 

considered to generate conditional stochastic realizations of porosity. The authors found 384 

that intermediate values in this range exhibited the best qualitative agreement with the 385 

corresponding full-waveform crosshole tomographic GPR image of Ernst et al. (2007), 386 

which is expected to have a resolution in the decimeter range.  387 

Our inferred values for a<c a@c and 	a?c a@c complement the work of Dafflon 388 

and Barrash (2012), who performed 3D stochastic simulations of the porosity structure 389 

of the BHRS constrained by all available porosity logs and crosshole GPR tomograms. 390 

The simulations were based on an exponential autocorrelation model, which was 391 

assumed to be laterally isotropic, i.e., a<c = 	a?c . Both the vertical and the lateral 392 

correlation lengths were estimated based on the analysis of the porosity logs. As pointed 393 

out earlier, and indeed confirmed by Dafflon and Barrash (2012), the comparatively 394 

large spacings between the individual boreholes make this approach inherently prone 395 

to significant uncertainties with regard to the estimation of the lateral correlation 396 

lengths. This, in turn, finds its expression in a relatively wide range of horizontal-to-397 

vertical aspect ratios between 3 and 6 estimated by Dafflon and Barrash (2012), which 398 

is biased towards too low values compared the results of Dafflon et al. (2009) and Ernst 399 

et al. (2007). The upper end of this range, which is preferred by Dafflon and Barrash 400 

(2012) is broadly compatible with our estimates.  401 

Regarding the horizontal aspect ratio a?c a<c , which describes the degree of 402 

anisotropy in the velocity heterogeneity in the x=-y= plane, the mean inferred values 403 



from our analysis are 2.1 and 1.8 for the 100- and 200-MHz data, respectively (Figures 404 

4c and 5c). These values are consistent with the overall structure of the braided-stream 405 

deposits at the BHRS, for which the correlation length in the flow direction of the Boise 406 

River along the y=-axis is known to be larger than that in the perpendicular direction. 407 

Indeed, core studies by Reboulet and Barrash (2003) from boreholes B1, B2, and C2, 408 

which are along the y-direction (Figure 1), revealed the presence of a larger sand 409 

channel at 6 to 7 m depth, whereas Bradford et al. (2009) found several smaller-scale 410 

channels or lenses in the x-direction through porosity log analyses.  411 

In contrast to previous work of Scholer et al. (2010), our results suggest that the 412 

considered 3D GPR reflection data also exhibit some sensitivity to the Hurst number 413 

ν , which, as outlined earlier, characterizes the local variability of the velocity 414 

heterogeneity (Figures 4d and 5d). As the corresponding histograms are distinctly 415 

asymmetric and dispersed, we consider the peak values of the distributions, which are 416 

0.12 and 0.18 for the 100- and 200-MHz data, respectively. Not only are these values 417 

reasonably consistent with one another, they are also in agreement with the value of 0.2 418 

inferred by Dafflon et al. (2009) from porosity log measurements along boreholes C5 419 

and C6, as well as the seemingly universal observation that the Hurst numbers of most 420 

rock physical properties in sedimentary environments are characterized by very small 421 

ν-values regardless of the geological setting (e.g., Hardy and Beier, 1994). 422 

Finally, one item of particular interest, which is somewhat counter-intuitive, is the 423 

increased standard deviation of the estimated aspect ratios for the 200-MHz data as 424 



compared to those for 100-MHz data (Table 1). While this phenomenon is not fully 425 

understood and remains a topic of current work, it is consistent with corresponding 426 

observations made by Scholer et al. (2010) for synthetic reflection seismic data 427 

simulated at different dominant source frequencies. 428 

4. Conclusions  429 

The main objective of this study was to implement and validate a methodology for 430 

estimating the lateral correlation structure of an alluvial aquifer from surface-based 3D 431 

GPR reflection data. To this end, we have developed a relationship between the 432 

autocorrelation of the 3D GPR data and that of the probed subsurface high-frequency 433 

electromagnetic velocity field, the latter of which is strongly related to soil water 434 

content. Based on this relationship, we used a Monte-Carlo inversion strategy to 435 

estimate the correlation structure of the subsurface water content distribution from 3D 436 

GPR data acquired at a particularly well characterized test site. By inverting two 437 

collocated 3D GPR datasets collected at nominal source frequencies of 100 and 200 438 

MHz, we obtain consistent information regarding the aspect ratios of the water content 439 

distribution, which are in agreement with independent and unrelated previous studies. 440 

In contrast to earlier related work, we also find that it is indeed possible to constrain the 441 

Hurst number, which is a key parameter characterizing the complexity of the fine-scale 442 

sedimentary structure.  443 

As we consider data collected in the saturated zone, where water content is 444 

equivalent to porosity, our results can be directly compared to independent estimates of 445 



the correlation structure of porosity at the study site. Indeed, the detailed results of our 446 

work, notably the inferred spatial anisotropy and the spatial orientation of the 447 

corresponding principle axes x’, y’, and z’, should allow for substantial refinements in 448 

the conditional stochastic simulations of the 3D porosity structure at the BHRS. This, 449 

turn, points to points to the immense potential of the proposed method in the context of 450 

detailed hydrogeophysical site characterizations.  451 

The results of this study demonstrate that the proposed technique provides an 452 

effective means of inferring the second-order stochastic properties of the water content 453 

in the shallow subsurface based on surface-based GPR alone and without the need of 454 

borehole information for calibration purposes. This information is essential for the 455 

successful 3D geostatistical interpolation and/or stochastic simulation of sparse 456 

borehole measurements of related key hydraulic properties, such as the hydraulic 457 

conductivity.  458 
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Tables 

Table 1. Summary of the Monte-Carlo inversion results obtained for the two collocated 
3D GPR data sets from the BHRS, based on 2000 output realizations. S.D. denotes the 
standard deviation. 

 

Data 	a<c a@c a?c a@c 	a?c a<c ν 

 Mean S.D. Mean S.D. Mean S.D. Mean S.D. Peak 

100-MHz 6.25 0.90 13.11 1.70 2.13 0.37 0.15 0.04 0.12 

200-MHz 5.67 1.34 10.23 2.56 1.83 0.34 0.25 0.09 0.18 

	 

  



Figures 

    
 
Figure 1: (a) Location of the BHRS with boreholes indicated by red dots and the 
position of the considered 3D GPR survey outlined in red. Modified after Bradford et 
al. (2009). (b) Zoomed-in view of the 3D GPR survey grid along with the well positions. 
 
  



 

 
 

Figure 2: Processed and depth-migrated GPR data from the BHRS considered for 
analysis. The nominal antenna center frequency is (a) 100 MHz and (b) 200 MHz. 

 



 
Figure 3: (a) 3D spatial autocorrelation of the 200-MHz GPR image from Figure 2b, 
calculated over a depth range of 2.5 m to 8 m, which corresponds to saturated sediments.  
(b) Slice through the autocorrelation in (a) along the predominant dipping plane of the 
sediments.  (c) View of the slice in (b) from above. The red and blue dotted lines 
represent the 	x′- and y′-directions, respectively. 

 



 
 

Figure 4: Histograms of Monte-Carlo inversion results obtained for the 100-MHz GPR 
data collected at the BHRS. 

 



 
 

Figure 5: Histograms of Monte-Carlo inversion results obtained for the 200-MHz GPR 
data collected at the BHRS. 

 


