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Toll-like receptor 5 (TLR5) signaling plays a key role in antibacterial defenses. We previously showed that respiratory 
administration of flagellin, a potent TLR5 agonist, in combination with amoxicillin (AMX) improves the treatment of primary 
pneumonia or superinfection caused by AMX-sensitive or AMX-resistant Streptococcus pneumoniae. Here, the impact of 
adjunct flagellin therapy on antibiotic dose/regimen and the selection of antibiotic-resistant S. pneumoniae was investigated 
using superinfection with isogenic antibiotic-sensitive and antibiotic-resistant bacteria and population dynamics analysis. Our 
findings demonstrate that flagellin allows for a 200-fold reduction in the antibiotic dose, achieving the same therapeutic effect 
observed with antibiotic alone. Adjunct treatment also reduced the selection of antibiotic-resistant bacteria in contrast to the 
antibiotic monotherapy. A mathematical model was developed that captured the population dynamics and estimated a 20-fold 
enhancement immune-modulatory factor on bacterial clearance. This work paves the way for the development of host-directed 
therapy and refinement of treatment by modeling.
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Lower respiratory tract infections are a major cause of death 
worldwide, contributing to more than 2 million deaths per 
year [1]. Among them, as a leading cause of disease and death, 
is pneumonia caused by viruses or bacteria [2]. Streptococcus 
pneumoniae, an opportunistic bacterium, is the main causative 
agent of community-acquired pneumonia and also capable of 
causing invasive disease, such as bacteremia or meningitis 
[3, 4]. The first-line treatment is amoxicillin (AMX), a β-lactam 
antibiotic. However, treatment failure is increasing due to the 
emergence of strains resistant to antibiotic [5]. Antibiotic 

resistance is now a major health concern, highlighting the 
need to develop new therapeutic strategies to overcome this 
burden.

Activation of innate immunity to effectively clear the bacte
ria is required during pneumococcal pneumonia [6, 7]. The 
airway innate immune response involves the activation of 
alveolar macrophages, epithelial cells, and neutrophils [8, 9]. 
Harnessing the power of innate immunity to overcome 
antibiotic-resistant infections, known as host-directed therapy 
or immunotherapy, is a promising alternative or adjunct to an
tibiotic therapy [10]. Targeting immunity to induce specific 
host antimicrobial defense mechanisms and modulate inflam
mation is of major interest, as multiple defenses are triggered 
by immunotherapies, and thus the development and selection 
of resistance is less likely compared with antimicrobial drugs. 
Moreover, immunotherapies are assumed to be efficient 
regardless of the drug resistance profile, the strain, the sero
type, or the complexity of the infection (eg, coinfection or 
superinfection).

Toll-like receptors (TLRs) have been studied extensively as 
drug targets in immunotherapies [11, 12], as they are ubiqui
tously expressed and play a crucial role in sensing pathogens 
and generating immune responses [13]. Flagellin, the structural 
component of bacterial flagella, acts as a natural agonist for 
TLR5. Importantly, TLR5 is expressed on various cell types, in
cluding airway epithelial cells and immune cells [14]. The im
munostimulatory activity of flagellin has been demonstrated 
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in murine models of pneumococcal infection, whereby flagellin 
triggers the activation of local innate immune responses in a 
TLR5-dependent manner through signaling in the airway epithe
lium [15]. We have previously developed an adjunct immuno
therapy to fight against pneumococcal pneumonia combining 
inhaled flagellin with the standard of care, AMX [16, 17]. The 
combination therapy has superior therapeutic effects compared 
with antibiotics alone, reducing bacterial load in the lungs, 
limiting systemic dissemination, and improving survival rates 
in murine models, even against antibiotic-resistant strains [17]. 
Whether immunotherapy is also effective at reducing selection 
of antibiotic resistance during infection is unknown.

Antibiotic resistance can occur by de novo mutations or hor
izontal gene transfer [18], such as with S. pneumoniae, which 
can exchange genetic material with other pneumococci and 
other species through natural transformation [19, 20]. 
Selecting for resistance traits within a bacterial population re
quires prolonged antibiotic pressure; otherwise the resistant 
population would be outcompeted due to the potential associ
ated fitness costs. Misuse and overuse of antibiotics has greatly 
contributed to the acceleration of resistance selection. In 2019, 
a total of 1.27 million deaths were attributable to bacterial an
timicrobial resistance [21].

As a means to examine selection dynamics over infection, 
mathematical modelling as a predictive tool for therapeutic 
outcome has gained momentum [22–26]. Theoretical studies 
have explored different treatment regimens—such as antibi
otic dose, dosing frequency, and treatment duration—to es
tablish criteria for effective infection clearance and 
prevention of resistance development, accounting in parallel 
for the contribution of host immune response [26, 27]. We hy
pothesized that the adjunct flagellin treatment to AMX can re
duce the selection of AMX-resistant (AMXR) bacteria during 
pneumococcal pneumonia by enhancing antibacterial im
mune defenses, ultimately leading to increased treatment effi
cacy. In the current study, we established a mouse coinfection 
model with AMXR and AMX-sensitive (AMXS) pneumococ
cal strains to analyze the dynamics of mixed pneumococcal 
population under immunotherapy. The data generated were 
then integrated within a mathematical model to predict treat
ment outcomes.

METHODS

Bacterial Strains and Cultures

S. pneumoniae strains are isogenic and derived from the 
serotype 2 laboratory strain D39V [28]. Genomic changes 
were introduced through transformation of linear polymerase 
chain reaction products followed by homologous recombina
tion. Constructs were amplified from the hlpA locus of 
strains VL2678 [29] and VL2226 [30] with primers OVL43 
(AACAAGTCAGCCACCTGTAG) and OVL46 (CGTGGCT 

GACGATAATGAGG). VL3198 is derived from AMXR strain 
AMR53 (minimal inhibitory concentration [MIC], 2 μg/mL] 
[19], which was transformed with hlpA::hlpA-mKate-eryR 

giving erythromycin resistance. VL3199 was cloned by inserting 
hlpA::hlpA-gfp-chlR into D39V and as such is susceptible to AMX 
(MIC, 0.016 μg/mL) but resistant to chloramphenicol. For infec
tion, working stocks were prepared as described elsewhere, in 
sterile Dulbecco’s phosphate-buffered saline (PBS; Gibco) 
[15]. Bacterial numbers (as colony-forming units [CFUs]) 
were confirmed by plating serial dilutions onto 5% sheep blood 
agar plates and incubating at 37°C for 18 hours with 5% carbon 
dioxide.

Mouse Models of Infection

All experiments complied with institutional regulations and 
ethical guidelines, were approved by an Institutional Animal 
Care and Use Committee (E59-350009; Institut Pasteur de 
Lille; protocol APAFIS#16966 201805311410769_v3), and 
were conducted by qualified personnel. Male C57BL/6JRj 
mice (6–8 weeks old) (Janvier Laboratories) were maintained 
in ventilated cages (Innorack IVC Mouse 3.5) and handled in 
a laminar flow biosafety cabinet (class II biohazard configura
tion; Tecniplast). Before intranasal infection, the mice were 
anesthetized via intraperitoneal injection of 1.25 mg (50 mg/kg) 
of ketamine plus 0.25 mg (10 mg/kg) of xylazine in 250 μL of 
PBS. For the pneumococcal superinfection model, mice were 
sensitized by intranasal infection with 50 plaque-forming units 
of the murine-adapted H3N2 influenza A virus strain Scotland/ 
20/74 in 30 µL of PBS. Seven days later, intranasal S. pneumoniae 
infection was induced with 5 × 104 CFUs in 30 µL of PBS [31, 
32]. For coinfections, VL3199 and VL3198 bacteria were mixed 
at ratios of 1:1, 100:1, and 1000:1. At selected times, mice were 
euthanized via intraperitoneal injection of sodium pentobarbital 
(5.47 mg) in PBS (100 μL). Lungs were collected and homo
genized with an UltraTurrax homogenizer (IKA-Werke), and 
viable bacterial counts were determined on blood agar plates 
containing selective antibiotic (erythromycin or chloramphen
icol at 5 μg/mL; Sigma-Aldrich).

Flagellin and Antibiotic Administration

Flagellin (FLAMOD; recombinant flagellin FliCΔ174–400 [33] 
harboring 1 extra amino acid at the N terminus) derives from 
Salmonella enterica serovar Typhimurium FliC and was 
produced in inclusion bodies in Escherichia coli by the 
Vaccine Development Department at Statens Serum Institut, 
Denmark. Flagellin was purified by filtration and chromatogra
phy and resuspended in 10 mmol/L phosphate, 145 mmol/L 
sodium chloride, polysorbate 80 (0.02% wt/vol; pH 6.5). 
Immunostimulatory activity was validated using the HEK-Dual 
hTLR5 cell assay (Invivogen). The endotoxin content in the pro
tein preparation was assessed with a Limulus assay (Pyrochrome; 
kinetic LAL assay from Associates of Cape Cod). Flagellin 
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(2.5 μg in 30 μL of PBS) was administrated intranasally under 
light anesthesia via isoflurane inhalation (Axience). Mice were 
treated intragastrically with AMX (5 μg to 1 mg of amoxicillin 
sodium [Clamoxyl, GlaxoSmithKline] in 200 μL of water). 
Control animals (mock-treated group) received intranasal PBS 
and/or intragastric water. Treatments always followed 12 hours 
after the pneumococcal infection.

Mathematical Modeling

The model was adapted from a previous theoretical study [27] 
and described the interplay between antibiotic-sensitive 
bacteria Bs, antibiotic-resistant bacteria Br, inducible host 
immune defenses I, and the antibiotic treatment. The full 
structure and assumptions of the model are detailed in the 
Supplementary Materials (Supplement 1). Briefly, the infec
tion dynamics in the lung were captured by the differential 
Equations 1–3:

dBs

dt
= rBs 1 −

B
C

􏼒 􏼓

− dI Bs − δ
Bs

1 + hB
− AmBsη(t), (1) 

dBr

dt
= r(1 − c)Br 1 −

B
C

􏼒 􏼓

= dI Br − δ
Br

1 + hB
− sAmBrη(t), (2) 

and

dI
dt

= σI
B

B + k
, (3) 

where B is the total bacterial load (sum of Bs and Br) and η(t) is 
a step function between 0 and 1, denoting the time window of 
treatment between onset and the end of antibiotic therapy.

When flagellin was administered as adjunct with antibiotics, 
the inducible immunity-mediated clearance rate was modified 
as described by Equation 4:

dflagellin = d(1 + f η(t)). (4) 

Table 1 depicts the parameters definition and the associated 
values. The model parameters were established through a 
combination of theoretical considerations (as outlined in [27]), 

insights gained from the current experiments, and estimations 
detailed in the Supplementary Materials (Supplement 1), where 
the equations are fitted to the experiments. The experimental 
data used for model fitting comprise the dynamics of bacterial 
populations in response to infection and either no treatment 
(mock), AMX treatment (150 μg per animal), or AMX + flagellin 
adjunct treatment. The fitted data consist of 22 data points rep
resenting geometric means across several individuals (76 ani
mals for a total of 152 values).

The parameters related to infection dynamics were shared 
across the treatments (Table 1). The parameter (Am) associat
ed with antibiotic effect was considered equal for the treat
ment scenarios AMX and AMX + flagellin, whereas the 
factor f that describes the immunomodulatory effect of flagel
lin was included only in the AMX + flagellin treatment. The 
model assumed that stimulation of immunity and immune- 
mediated clearance are symmetric for antibiotic-sensitive or 
antibiotic-resistant bacteria, whereas antibiotic-mediated 
clearance was defined higher for antibiotic-sensitive than for 
antibiotic-resistant bacteria. The initial conditions were fine- 
tuned based on the inoculum, considering the total CFU 
count and the relative densities of Bs and Br. Nonlinear 
least-squares optimization was performed using MATLAB 
(MathWorks; version 9.13.0 [R2022b]; 2022) to find the best- 
fitting parameter values for the present data set, which mini
mize the sum of squared errors. Iterative fitting processes 
were conducted to derive confidence intervals and establish 
an uncertainty range for our predictions.

Statistical Analysis

The results were represented as geometric means. Intergroup 
differences were analyzed, using the Mann-Whitney test, 
1-way analysis of variance Kruskal-Wallis test, and 2-way anal
ysis of variance with uncorrected Fisher least significant differ
ence post-test. All analyses were performed using Prism 
software (version 10.1.0; GraphPad Prism). Statistical signifi
cance was set to P < .05.

Table 1. Infection and Treatment Model Parameters

Parameter Interpretation Unit Value

C Within-host carrying capacity of bacteria CFUs/lung 108

k Half-saturation constant for immune stimulation CFUs/lung 107.5

d Inducible immunity-mediated clearance rate h−1(CFUs/lung)−1 10−6.5

δ Static immune-mediated clearance rate h−1 0.72

h Scaling parameter for the static immune response (CFUs/lung)−1 0.0005

σ Inducible immunity activation rate h−1 0.1

r Growth rate of sensitive bacteria h−1 Fitted: 0.33

c Fitness cost of resistant bacteria Constant ∈ (0, 1) Fitted: 0.06

s Antibiotic susceptibility factor of resistant bacteria Constant ∈ (0, 1) Fitted: 0.09

Am Maximal kill rate of antibiotic h−1 Fitted: 1.18

f Immune-modulation factor of flagellin Constant Fitted: 20.1

Abbreviation: CFUs, colony-forming units.
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RESULTS

Respiratory Administration of Flagellin with Amoxicillin Increases 
Treatment Effectiveness of Pneumonia Caused by Amoxicillin-Sensitive 
and -Resistant S. pneumoniae

To determine the impact of flagellin adjunct therapy on the se
lection of antibiotic resistance during pneumonia, coinfection 
models were developed using a mixed bacterial population 
combining AMXS (MIC, 0.016 μg/mL) and AMXR S. pneumoniae 
(MIC, 2 μg/mL) (Figure 1A). The coinfection model was estab
lished in mice that were sensitized with influenza virus by in
tranasal infection 7 days before pneumococcal inoculation 
(ie, superinfection). After coinfection with AMXS and AMXR 

pneumococcal strains at a ratio of 1:1, mice were treated 
12 hours later with a single intragastric administration of 
AMX or a combination of AMX with a single intranasal admin
istration of flagellin. Two treatment doses of AMX were used: 
5 μg (0.2 mg/kg) and 1 mg (40 mg/kg), a dose 200-fold higher. 
Based on previous pharmacokinetic data [34], serum AMX 
concentrations were expected to peak at 0.05 μg/mL for the 
5 μg dose, corresponding to 3 × MIC for the AMXS strain, and 
to 10 μg/mL for the 1 mg dose, corresponding to 5 × MIC for 
the AMXR strain. Lung bacterial counts were determined 12 hours 
after treatment (Figure 1B and 1C).

Importantly, both strains had a similar fitness in mock treat
ment. Using the 5 μg AMX stand-alone regimen, the bacterial 
numbers of the AMXS strain were 6-fold lower than in the 
mock group, whereas AMXR bacterial numbers were not al
tered. When flagellin was administered with AMX, the bacterial 
counts were lower for both AMXS and AMXR strains compared 
with the mock condition (4000-fold and 10-fold lower, respec
tively). When a 1 mg dose of AMX was administered, the AMXS 

population was fully cleared, while the AMXR bacterial num
bers were decreased 5-fold compared with the mock group 
and nearly eliminated by adjunct flagellin. Interestingly, the 
amounts of AMXR bacteria in the animals treated with 5 μg 
AMX and flagellin or with 1 mg AMX alone were very similar, 
demonstrating that the combination of flagellin and AMX is 
equally effective as AMX used at a 200-fold higher dose. In con
clusion, the adjunct immunotherapy with antibiotics adds val
ue regardless of the antibiotic resistance profile and can reduce 
the antibiotic regimen and consequently decrease the selection 
of antibiotic-resistant bacteria.

Antibiotic Treatment Induces Selection of Amoxicillin-Resistant 
S. pneumoniae

We next investigated the effect of adjunct therapy on the se
lection of antibiotic resistance. To this end, a coinfection 
model was set up that mimics how antibiotic-resistant strains 
may be selected in vivo (Supplement 2—Supplementary 
Figure 1). Mice were superinfected with a 1000:1 ratio of 
AMXS versus AMXR S. pneumoniae (Figure 2A). A growth 
lag of 3 log was observed for the AMXR strain in the absence 

of AMX (Figure 2B), which was overcome with AMX treat
ment (Figure 2C). While the amount of AMXS bacteria was 
significantly higher than that of AMXR in the mock-treated 
group, a single AMX administration was sufficient to promote 
the selection of antibiotic-resistant bacteria, which gained a 
competitive advantage over the sensitive population on treat
ment. Five treatments were required to completely eliminate 
AMXS bacteria and significantly expand the AMXR popula
tion. This pattern persisted for 24 hours after the last treat
ment, meaning that only a few days of antibiotic treatment 
were enough to durably select for antibiotic-resistant bacteria. 
In conclusion, this work established a model that resembles 
the clinically relevant selection of resistance during antibiotic 
therapy.

Adjunct Immunotherapy Treatment Delays and Reduces Antibiotic- 
Resistant Bacteria Selection

We next evaluated the effectiveness of flagellin immunotherapy 
in preventing the selection of antibiotic-resistant bacteria. Two 
consecutive administrations of AMX alone were sufficient to 
significantly select for growth and achieve the maximum lung 
carrying capacity of the resistant strain while reducing the 
number of AMXS bacteria (Figure 3A). At 24 hours after infec
tion, adjunct flagellin to AMX mostly abrogated the selection of 
AMXR bacteria and highly reduced (by 3 log) the total bacteria 
in lungs compared with AMX treatment alone (Figure 3B). The 
resistant bacteria not cleared at 12 hours after treatment with 
AMX plus flagellin expanded to 104–105 CFUs per lung, but 
at lower levels than for AMX treatment alone (approximately 
108 CFUs per lung), whereas the antibiotic-sensitive bacteria 
were totally cleared. These data show that flagellin immuno
therapy not only delays but also significantly reduces resistance 
selection, in a time-dependent manner (Figure 3C). However, 
some mice responded poorly to the adjunct therapy, with resis
tant bacteria reaching 108 CFUs per lung, leading to death (33% 
non-responders). Despite these non-responders, the combina
tion of AMX and flagellin showed improved therapeutic effica
cy over antibiotic therapy alone and inhibited the selection of 
antibiotic resistant bacteria in vivo.

Modeling the Impact of Adjunct Therapy on Resistance Selection

To further quantify the outcome of treatments, we developed a 
mathematical model that characterizes the bacterial infection as 
follows: the pathogen grows, stimulates host immunity, and is 
ultimately controlled by immune responses, as described else
where [27] (Supplement 1—Supplementary Figure 1). The 
model considers that the infection is initiated by a mixture of 
the antibiotic-sensitive bacteria (Bs), which grow exponentially 
at a rate r, and antibiotic-resistant bacteria (Br), which bear 
a fitness cost of resistance c, with both populations experienc
ing density-dependent limitation via a carrying capacity C 
(Equations 1–3 and Table 1). Varying 5 parameters, different 
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values were tested through nonlinear optimization in MATLAB 
to determine the best-fitting combination for the experiments 
with adjunct therapy and antibiotic resistance selection 
(Figure 4 and Supplement 1—Supplementary Figures 2 and 3). 
The best-fitting model effectively captured the immediate post- 
treatment population dynamics and therapeutic outcomes, 
matching the observations in response to AMX or AMX +  
flagellin.

Notably, the model estimated a 20-fold (95% confidence in
terval, 19–29-fold) enhancement in the immunomodulatory 
effect of flagellin on the clearance rate of bacteria (Table 1
and Supplement 1—Supplementary Table 1), in line with the 
3-log decrease in CFUs per lung observed in Figure 3. In addi
tion, the model estimated a low fitness cost and a low antibiotic 
susceptibility factor for antibiotic-resistant bacteria (c = 0.06 
and s = 0.09) and predicted that AMX treatment alone induces 
selection of high numbers of AMXR bacteria, in line with the 
data (Figure 4). It was used to generate simulations of infec
tion trajectories and to obtain and refine an uncertainty range 
for the model predictions (Supplement 1—Supplementary 
Figure 3). Some predictions indicated the possibility of a re
bound of antibiotic-sensitive and antibiotic-resistant strains 

at later time points (ie, 84 hours after infection) but showed 
that when flagellin is administered in conjunction with 
AMX, this rebound is expected to occur later and at reduced 
levels compared with AMX alone. Moreover, we sought to 
refine the model to improve the fitting error sum of squared 
errors by extending the effect of AMX as well as the effect 
of flagellin beyond the 24 hour window. This model reduced 
the original error by 20%, suggesting the duration of thera
peutic effect as an important avenue for further investigation 
(Supplement 1—Supplementary Figure 4). Thus, our mathe
matical model captures the lung infection population dynam
ics and therapeutic outcomes, highlighting the potential of 
adjunct flagellin treatment.

DISCUSSION

This study investigated the effect of respiratory administration 
of the activator of innate immunity flagellin in combination 
with AMX on the treatment efficacy against pneumococcal 
superinfection caused by mixed AMXS and AMXR S. pneumoniae 
infections. We have already shown that flagellin works in the 
context of primary and secondary pneumococcal infection (ie, 

Figure 1. Efficacy of adjunct flagellin to amoxicillin (AMX) in a mouse coinfection with AMX-sensitive (AMXS) and AMX-resistant (AMXR) pneumococci. A, C57BL/6 mice 
(n = 6 per group) were infected intranasally with H3N2 virus, followed 7 days later by intranasal inoculation with 2.5 × 104 AMXS and 2.5 × 104 AMXR Streptococcus pneumoniae 
(1:1 ratio). Animals were treated 12 hours later by intragastric administration of AMX (5 μg or 1 mg) or water for the mock-treated group and intranasal administration of 
flagellin (2.5 μg) or phosphate-buffered saline (PBS). B, C, Lungs were collected 12 hours after treatment, and bacterial counts for AMXS (B) and AMXR strain (C ) were 
determined. Symbols represent individual animals; solid lines, geometric mean values; and dashed lines, lower limits of detection. Data from PBS-treated and flagellin- 
treated mice were compared using the Mann-Whitney test; **P < .01. Abbreviation: CFU, colony-forming unit.
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Figure 2. Selection of antibiotic-resistant bacteria in mice during antibiotic treatment. A, C57BL/6 mice (n = 6 per group) were infected intranasally with H3N2 virus, 
followed 7 days later by intranasal inoculation with 5 × 104 amoxicillin-sensitive (AMXS) and 50 AMX-resistant (AMXR) Streptococcus pneumoniae (1000:1 ratio). 
Animals were treated every 12 hours by intragastric administration of AMX (50 μg) or mock-treated with water. B, C, Lungs were collected 24, 48, 72, and 84 hours after 
infection, and bacterial counts of mock-treated (B) or AMX-treated mice (C ) were performed. Symbols represent individual animals; solid lines, geometric mean values; and 
dashed lines, lower limits of detection. Two-way analysis of variance tests were applied to compare strains, time points and treatments: *P < .05; ***P < .001. Abbreviation: 
CFU, colony-forming unit.

Figure 3. Reduced selection of antibiotic resistance with flagellin immunotherapy. C57BL/6 mice (n = 6 per group) were infected intranasally with H3N2 virus followed 
7 days later by intranasal inoculation of 5 × 104 amoxicillin-sensitive (AMXS) and 50 AMX-resistant (AMXR) Streptococcus pneumoniae (1000:1 ratio). Animals were treated 
12 hours later by a combination treatment: intragastric administration of AMX (150 μg) and intranasal administration of flagellin (2.5 μg) or phosphate-buffered saline (PBS), 
followed by a second administration of AMX at 24 hours. A, B, Lungs were collected 24, 48, and 72 hours after infection and bacterial counts of AMX-treated (A) or AMX +  
flagellin-treated (B) mice were performed. Symbols represent individual animals; solid lines, geometric mean values; dashed lines, lower limits of detection; cross, mice that 
died during the experiment due to the severity of the infection. Results are shown for a single experiment, representative of 2 experiments. Two-way analysis of variance 
tests were applied to compare strains, time points and treatments: **P < .01; ***P < .001. C, Heat map representing significance of difference between AMX and AMX +  
flagellin treatments for each bacterial strain at each time point. Abbreviation: CFUs, colony-forming units.
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superinfection) models [16, 17], both of which are clinically rele
vant [35]. However, the effect of flagellin on antibiotic resistance 
selection remained to be evaluated. Addressing this, our results in
dicated that the addition of flagellin significantly reduced bacterial 
counts of both AMXS and AMXR strains compared to treatment 
with AMX alone, highlighting the potential of flagellin immuno
therapy in combating antibiotic-resistant bacteria. Notably, the 
adjunct flagellin treatment displays effectiveness similar to that 
of the antibiotic used at a 200-fold higher dose. A coinfection 
model was established to mimic clinically relevant resistance selec
tion during antibiotic therapy, revealing that antibiotic treatment 
promoted the selection and expansion of the resistant bacterial 
populations. However, adjunct flagellin treatment not only de
layed but also reduced the selection of antibiotic-resistant bacteria. 
This suggests promising clinical applications for flagellin due to 
its capacity to reduce antibiotic dosage and to mitigate the selec
tive pressure driving the emergence of antibiotic-resistant strains.

Boosters targeting innate immunity have shown efficacy 
against antibiotic-resistant strains [17, 36–39], yet their capac
ity to prevent the emergence of antibiotic resistance remains 
unclear. Studying de novo emergence of resistance through 
mutations in vivo poses significant challenges, primarily due 
to the associated fitness cost [40]. Here, an in vivo examination 
of antibiotic resistance selection was conducted, focusing on 2 
strains characterized by antibiotic sensitivity and resistance. 
These strains demonstrated comparable fitness levels following 
successive rounds of mutations or acquisition of resistance via 
transformation [19, 40]. This innovative coinfection setup lays 
the foundation for future research on the effectiveness of treat
ments against antibiotic-resistant strains and the dynamics of 
these bacteria during pneumococcal pneumonia. A recent 
study reported the analysis of pneumococcal transformation 
in mice [41], highlighting the potential for exploring the effects 

of flagellin adjunct therapy of antibiotics on this mechanism, an 
essential driver of emergence.

As mathematical modelling offers an opportunity to quantify, 
predict and refine treatments, we integrated the data into a 
within-host model [27], incorporating bacterial coinfection 
with antibiotic-sensitive and antibiotic-resistant bacteria, natu
ral immunity to infection, induction of innate immune re
sponse by flagellin, and antibiotic-mediated clearance. The 
model predicted better-controlled densities of AMXS and 
AMXR bacteria after treatment with the adjunct flagellin, 
through a mechanism of enhanced immune-mediated clear
ance ( f factor), estimated in the range of 20-fold, and possible 
rebound later in the infection course. While theoretical frame
works offer a valuable tool for describing and assessing various 
regimens, they have their limitations [42]. For example, our 
mathematical model does not provide a mechanistic basis for 
the effect of flagellin but rather represents its net impact on en
hanced bacterial clearance. Integrating features of more de
tailed models (eg, [43]) together with data on immune cell 
recruitment and immune mediator production would capture 
the mechanistic effect of flagellin.

Here we show that a single administration of flagellin proves 
insufficient for complete infection clearance. Porte et al [16] 
documented that 2–3 consecutive adjunct treatments of flagel
lin, coupled with AMX or trimethoprim-sulfamethoxazole, 
demonstrate efficacy against primary pneumococcal infections. 
However, whether similar outcomes can be expected in the 
context of selecting resistant bacterial clones during superinfec
tion remains an area necessitating further investigations. 
Nevertheless, we know that mechanisms underlying antibacte
rial protection with adjunct treatment involve a combination of 
host effectors and antibiotics. Respiratory administration of fla
gellin is known to activate the TLR5-dependent lung innate im
mune defenses [44–47]. Studies in recent years demonstrated 

Figure 4. Modeling delayed antibiotic resistance selection after flagellin adjunct therapy. A mathematical model capturing infection dynamics has been tailored to ex
perimental colony-forming unit (CFU) data on adjunct therapy and resistance selection, resulting in best-fitting parameter estimates. Lines and symbols depict, respectively, 
the best-fitting model predictions for each subpopulation (sum of squared errors, 0.37) and the experimental CFU geometric means; shaded regions, the window of treatment 
effect (ie, 12–24 hours). Abbreviations: AMX, amoxicillin; Br, antibiotic-resistant bacteria; Bs, antibiotic-sensitive bacteria.
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superiority of the therapeutic effects of combined administra
tion of AMX and a TLR4 immunomodulatory agonist during 
mouse S. pneumoniae infection, compared to AMX treatment 
[48, 49]. The enhanced protection was not only associated with 
TLR4-mediated boosting of immune defenses but also with 
modification of AMX pharmacokinetics, with a slower decline 
in the serum of AMX concentration. This suggests potential in
teractions between flagellin and antibiotic dynamics. Conversely, 
antibiotics may change the TLR5-dependent immune response 
dynamics. In our model, we have quantified parameters under 
assumption of a very short treatment window, but we see that 
the immune-modulation factor of flagellin ( f ) is sensitive to as
sumptions about the duration of therapeutic effect. A compre
hensive integration of the pharmacokinetic attributes of 
flagellin and antibiotic will be essential to further map dosing ad
ministration details to infection resolution parameters and de
velop adjunct treatments.

In conclusion, the therapeutic potential of adjunct treatment 
extends beyond the standard of care antibiotics, as it surpasses 
the cumulative value of the individual components adminis
tered separately. This evidence strengthens the argument for 
the importance of investigating and modelling the mechanisms 
responsible for the remarkable efficacy of the flagellin- 
antibiotic combination.
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