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ABSTRACT
The use of low-dose irradiation (LDI) for mobilizing innate 
and adaptive immunity is gaining interest among the 
scientific community. Recent evidence suggests that 
LDI can reprogramme the tumor microenvironment, 
induce inflammation and turn cold tumors susceptible 
to immunecheckpoint blockade therapy. Translating 
immuno-radiation preclinical findings in the clinic is 
more challenging than expected. We propose therapeutic 
strategies for combining LDI with immunotherapy, and 
emphasize the importance of pursuing clinical research 
to determine optimal radiation dosage, fractionation, 
volumes, and sequencing to stimulate immune-mediated 
tumor responses.
 
Low-dose irradiation (LDI) has gained 
interest in the scientific community over the 
last few months in light of recent preclinical 
and clinical publications, which suggest that 
LDI can effectively mobilize innate and adap-
tive immunity.1–3 Indeed, these new data point 
to LDI’s ability to reprogramme the tumor 
microenvironment (TME), inducing inflam-
mation and making cold tumors susceptible 
to immunecheckpoint blockade (ICB).

Despite these promising preliminary 
findings, the contribution of LDI was not 
confirmed in a recently published phase 2 
randomized clinical trial.4 Indeed, Schoen-
feld et al presented the results of a random-
ized phase 2 clinical trial, in which two 
different radiotherapy (RT) regimens known 
to enhance immune responses in preclinical 
models5 6 were tested in non-small-cell lung 
carcinoma (NSCLC) patients with innate 
or acquired resistance to previous PD-1 or 
PD-L1 inhibitors in combination with dual 
ICB including durvalumab, an anti-PD-L1 
antibody, and tremelimumab, an anti-CTLA-4 
antibody. We congratulate the authors for 
incorporating these preclinical concepts 
into a well-designed, randomized phase 2 
trial. Unfortunately, neither LDI nor high-
dose irradiation (HDI) enhanced the overall 
response rate, which was the study’s primary 

endpoint, and progression-free survival along 
with overall survival remained unchanged.

These outcomes are clearly disappointing 
and require some reflection, lest enthu-
siasm on immuno-radiation combinations is 
tempered. Indeed, these are now added to 
a previous study in colorectal cancer where 
repeat fractionated LDI or oligofractionated 
RT were combined with ICB,7 and recent 
results with stereotactic oligofractionated 
radiation and ICB in head and neck cancer,8 
which were also disappointing. Certainly, 
translating immuno-radiation preclinical 
findings in the clinic is more complicated 
than expected. We offer some points of reflec-
tion about the NSCLC study that we would 
like to share with the authors and the readers.

One of the study’s arm treated patients with 
a hyperfractionated LDI schema of 0.5 Gy 
delivered twice a day during two consecutive 
days (total 2 Gy/cycle), repeated for each 
of the first four cycles of therapy for a total 
dose of 8 Gy. The other treatment arm deliv-
ered hypofractionated RT consisting of three 
8 Gy fractions for a total dose of 24 Gy every 
other day during the first cycle of therapy 
only. One week after durvalumab–tremeli-
mumab administration, RT was delivered 
in both arms. The former scheme of LDI is 
inspired by previous work by Klug et al,5 who 
were the first to demonstrate that radiation 
doses ranging from 0.5 to 2 Gy (administered 
as single fractions, oligo-RT) promoted M1 
macrophage polarization, normalization of 
tumor vasculature and increased infiltration 
of adoptively transferred T cells in a mouse 
model of neuroendocrine pancreatic cancer. 
The latter scheme is based on preclinical 
data, where the delivery of three fractions of 
8 Gy combined with anti-CTLA-4 effectively 
induced type I interferon (IFN-I) secretion 
by cancer cells, resulting in tumor recruit-
ment of professional dendritic cells (DCs) 
and subsequent T cell-mediated rejection 
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of irradiated and synchronous non-irradiated murine 
breast tumors.6 A recent phase II randomized study in 
early stage surgically operable NSCLC patients using 
stereotactic body radiation therapy (SBRT) in combi-
nation with durvalumab or durvalumab alone showed a 
statistically significant major pathological response rate of 
53.3% (95% CI 34.3% to 71.7%) vs 6.7% (95% CI 0.8% to 
22.1%), respectively. Importantly, in patients with major 
pathological response in the dual therapy group, signifi-
cantly higher MHC-I gene expression was found in tumor 
specimens after therapy.9 Furthermore, when the same 
approach was used to treat metastatic NSCLC patients, 
CD8+ T cells recognized tumor neoantigens upregulated 
by RT.10

With the rather encouraging prior results of this irradi-
ation scheme, what could explain the combination’s lack 
of efficacy in this trial?

Importantly, in both irradiation arms of Schoenfeld and 
et al’s clinical trial, one to two metastases per patient were 
treated with RT. The rationale to irradiate a small number 
of metastases during ICB treatment is based on the 
assumption that isolated RT triggers a local in situ vacci-
nation effect, exposing immunogenic tumor antigens 
and can therefore synergize with systemic immune activa-
tion. This is supported by exciting preclinical findings in 
mice where delivery of RT to one tumor deposit triggers 
distant immune-mediated tumor regression. This effect 
is conspicuously displayed in animal models known to be 
highly immunogenic (ie, the CT26 colon tumor model), 
with limited abscopal effects found in tumors known to be 
less immunogenic, such as the B16 melanoma model.11 12 
Furthermore, isolated case reports demonstrating remark-
able abscopal effects in patients undergoing single-site 
RT in combination with ICB further heightened interest 
in this therapeutic strategy. However, the incidence of 
abscopal effects may have been overestimated. Indeed, 
the demonstration of abscopal effects when RT is admin-
istered alone has long remained elusive in clinical prac-
tice, but hopes for finally attaining it were reinvigorated 
with the possibility of combining ICB. However, random-
ized clinical trials have now convincingly demonstrated 
that abscopal effects are inherently incidental even with 
ICB combinations.8 Therefore, the expectation that in 
situ vaccination through localized delivery of RT to one 
tumor lesion can overcome resistance to ICB in distant 
lesions may be overoptimistic. Indeed, if the desired effect 
of RT is antigen release, multisite partial tumor volume 
irradiation may be sufficient with fewer side effects. Luke 
et al implemented this strategy in a phase I/II clinical trial 
and reported that partial volume SBRT maintained local 
disease control while increasing the expression of innate 
and adaptive immune genes in responder patients.13

An innovative study from MD Anderson Cancer Center 
implemented hypofractionated RT (20–70 Gy) to 1–2 
metastatic lesions to trigger in situ vaccination, delivered 
with or without LDI (1–10 Gy delivered in fractions of 
0.5–2 Gy), to stimulate immunological reprogramming in 
the remaining tumor deposits.14 The majority of patients 

in the trial had progressed on anti-PD1 or anti-PD-L1 
therapy, which they continued during radiation. Despite 
the fact that the combination group had a higher overall 
response rate than the hypofractionated RT group 
(26% vs 13%, respectively), this did not translate into 
improved progression free survival nor overall survival. 
This could imply that the combined therapy induces 
local TME reprogramming but is insufficient to stimu-
late a systemic anti-tumor immune response. Combina-
torial immunotherapy strategies, such as a CD40 or TLR 
agonists, may be required to maximize the HDI in situ 
vaccination effect, while ICB is required for increasing T 
cell cytotoxicity, and blocking radiation-induced TGF-β 
may decrease epithelial cell proliferation and immune 
evasion.15

Similarly, a phase I clinical study (RACIN, NCT03728179) 
from our group which tested 0.5 or 1 Gy to all visible 
tumor lesions administered every 2 weeks demonstrated 
tumor size reduction in 37.5% of the irradiated lesions 
in an immunotherapy-naïve population of patients with 
metastatic ovarian, prostate, gallbladder or colon carci-
noma.16 Importantly, this LDI schema was able to induce 
de novo T cell infiltration into immune “cold” tumors 
and triggered immune gene signatures associated with 
IFN-I response, immune-cell activation, antigen presen-
tation, T cell receptor activation, and effector memory 
phenotype in responder patients. Underscoring the key 
contribution of locally delivered LDI, responder patients 
showed regression of all irradiated metastases, whereas 
subsequent progression was only observed in lesions 
outside the irradiated field. These findings suggest that 
the observed synergy between LDI and immunotherapy 
was not due to a systemic abscopal effect, but rather to 
the local effects mediated by the direct modulation of 
the TME.16 Presumably, delivering LDI to a low number 
of metastases by Schoenfeld et al failed to reprogram the 
TME in non-irradiated lesions sufficiently to facilitate 
an effective anti-tumor immune response. Furthermore, 
only 12% of irradiated patients in the study received RT 
on liver metastasis, while the most common site of irra-
diation was the lung (62%). Recent work indicates that 
patients with liver metastases are less responsive to ICB,17 
therefore, liver metastases are in greatest need for TME 
reprogramming. Within the liver, activated antigen-
specific Fas+CD8+ T cells undergo apoptosis following 
interactions with FasL+CD11b+F4/80+ monocyte-derived 
macrophages. Indeed, delivering 8 Gy in a single frac-
tion to liver metastasis in mice has shown to overcome 
the immune suppressive effect of hepatic macrophages, 
increasing hepatic T cell survival and decreasing apop-
tosis of T cells.17 Nevertheless, several RT regimens used 
so far for targeting liver metastases of patients in combi-
nation with ICB (24 Gy in 3 fractions, 8 Gy in 0.5 Gy per 
fraction,7 50 Gy in 4 fractions, 60 Gy in 10 fractions18)have 
thus far failed to demonstrate increased response rates. 
Consequently, improved RT regimens and combina-
tions directed to liver metastasis of patients merit further 
investigation.
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How to effectively target microscopic disseminated 
disease emerges as a key question in the field. Innovative 
approaches like targeted radionuclide therapy (TRT) 
can deliver RT to all metastatic deposits irrespective of 
whether they are visible by imaging, a clear shortcoming 
of external beam radiation therapy (EBRT). Patel et al2 
implemented 90Y-NM600 in order to render immunolog-
ically cold syngeneic B78 melanoma tumors sensitive to 
ICBs. After low-dose TRT (2.5 Gy), a significant increase 
in tumor-infiltrating myeloid (CD11b+) and natural killer 
(NK) cells, as well as an increase in the ratio of effector 
CD8+ to suppressor CD4+CD25+FOXP3+ T regulatory 
(Treg) cells were observed compared with controls, along 
with improved responses to ICB. Furthermore, coadmin-
istration of oligo-RT (12 Gy) to one lesion and 90Y-NM600 
together with CTLA-4 blockade further enhanced the 
therapeutic efficacy and induced more abscopal effects 
when compared with either treatment alone. Hence, TRT 
could be a means of irradiating all metastatic deposits, 
including micro-metastatic disease, consequently over-
coming aforementioned EBRT limitations.

Importantly, irradiation was given 1 week following ICB 
infusion in Schoenfeld et al’s clinical trial. Indeed, the 
timing and sequencing of RT and ICB is complex, and the 
abscopal effect of hypofractionated RT has been shown to 
be schedule-dependent in preclinical models. Dovedi et al 
demonstrated that concurrent but not sequential admin-
istration of anti-PD-L1 with RT is essential for enhanced 
tumor control and survival.19 Furthermore, when anti-
PD1 was administered prior to RT, the abscopal effect was 
abolished.20 Similarly, radiation significantly increased 
Tregs with elevated CTLA4 expression,21 and pretreat-
ment with an anti-CTLA4 antibody provided efficient 
tumor control in CT26 tumor bearing mice.22

The mechanisms underlying such schedule sensitivity 
of the positive interaction between ICB and RT may 
be multiple. For instance, ionizing radiation increases 
response to tumor neoantigens,10 which are crucial deter-
minants of ICB response. Yet, radiation-induced MHC 
class I expression begins 18 hours after RT but declines 72 
hours later.23 As a result, T cell reinvigoration by anti-PD-1 
should be carefully timed to occur at the same time as 
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the peak of tumor antigen presentation induced by RT.10 
Furthermore, loss of the antitumor effect of the combi-
nation may be due to increased vulnerability to radiation 
in tumor-specific CD8+ cells activated by PD-1 blockade.20 
These interactions may become time-sensitive especially 
when RT is given at low doses, where its immune effects 
may be transient. We reported that following a single frac-
tion of 1 Gy RT in the ID8 ovarian cancer mouse model, 
RT-induced T cell inflammation in tumors vanished 
within a week and repeated weekly administrations of 
1 Gy were required to maintain immune infiltration in 
tumors.16 These time-sensitive effects included NKG2D-
dependent interactions, with influx into tumors of T cells 
that expressed the NKG2D-costimulatory receptor along 
with a subpopulation of DCs expressing RAE1, a stress 
signaling ligand to the NKG2D receptor. The costimu-
latory signal delivered by NKG2D to T cells was critical, 
as inhibiting NKG2D prevented radiation-induced anti-
tumor immunological responses. Although the half-life of 
ICB antibodies is relatively long, therapy sequencing and 
schedule appear to be particularly important. This stresses 
the need of additional research optimizing sequencing 
schemas. In the trial of Schoenfeld et al., RT doses were 
spaced widely apart, this schedule being likely insufficient 
to maintain the pro-inflammatory effects of RT.

If multisite radiation is to be implemented, some 
technical constraints must be considered. For instance, 
treating discrete tumor volumes, each with a different 
isocenter, raises radiation scatter doses between volumes 
(eg, 3–5 Gy). The immediate consequences include 
moderate to severe acute toxicities, including hemato-
logical toxicity. Patients in a phase I clinical study who 
had palliative radiation to the spine, lung, mediastinum, 
or chest wall had clinically severe lymphopenia, which 
worsened after ICB was initiated and contributed to 
the patients’ poor clinical outcomes,24 an observation 
confirmed now by Shoenfeld et al with either low or HDI. As 
a result, radiation should be administered in accordance 
with SBRT principles such as precise target localization 
and motion-based management. In two ongoing clinical 
trials (NCT04643574 and NCT03728179), we administer 
LDI to all metastatic deposits using Tomotherapy Hi-Art 
allowing for 360° focused irradiation without the need 
of an isocenter and protecting as much of active bone 
marrow as possible.25 The majority of patients in our trial 
(RACIN, NCT03728179) had peritoneal carcinomatosis, 
pleural effusion, or significant liver and lung metastases; 
these patients could not have received high-dose SBRT, 
but LDI was feasible and increased T cell infiltration in 
some of them without major toxicities. Moreover, further 
irradiation strategies to limit prohibitive scattered doses 
includes GRID therapy, which permits the delivery of 
multisite RT to bulky tumors while reducing detrimental 
doses to surrounding tissues.26

A second hurdle to multisite RT adoption is treatment 
time. To treat all lesions, Tomotherapy takes 30–45 min; if 
the same treatment were performed with different isocen-
ters for each location, the treatment would take much 

longer and would most likely be unfeasible. Furthermore, 
patients may be unable to maintain a steady position for 
long periods of time, rendering breath-hold modeling 
unattainable with higher-than-expected doses to organs 
that move with respiration. Another downside of multisite 
RT is undeniably associated with workflow limits. Because 
therapy requires repeated simulation, contouring, dosim-
etry planning, and imaging evaluation, establishing and 
implementing treatment plans for several sites is time 
consuming. In future clinical trials, artificial intelligence-
based automation could constitute a paradigm shift in the 
execution of multisite RT favoring a smooth workflow.

In light of these considerations, what lessons may be 
drawn for future development? First, both arms in the 
Schoenfeld study attempted to overcome resistance to 
PD-1/PD-L1 by exploiting the systemic abscopal effect of 
local RT, an expectation that may be overhyped. Hypof-
ractionated RT could be used with the above intent, 
but should be best combined with orthogonal systemic 
approaches to reprogram the TME. In this setting, in 
addition to timing, the dose of hypofractionated RT 
matters.6 If RT is used to reprogram the TME, all lesions 
should be included in the planning,1 16 in which case 
LDI may be a rational option. Because of the short-lived 
effects,16 frequent radiations could be applied, although 
the optimal schedule, dose and fractionation remain to 
be determined (figure 1).

We are persuaded that Schoenfeld et al’s study makes 
an important contribution to evaluating the role of RT in 
patients with innate or acquired ICB resistance. However, 
determining the optimal radiation dosage, fractionation, 
volumes, and sequencing to stimulate immune-mediated 
tumor responses remains a challenge.
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