
An Empirical Study of the Usage of Checksums for Web
Downloads

Gaël Bernard
EPFL

Switzerland
gael.bernard@epfl.ch

Rémi Coudert
University of Lausanne

Switzerland
remi.coudert@unil.ch

Bertil Chapuis
University of Applied Sciences Western Switzerland

Switzerland
bertil.chapuis@heig-vd.ch

Kévin Huguenin
University of Lausanne

Switzerland
kevin.huguenin@unil.ch

ABSTRACT
Checksums, typically provided on webpages and generated from
cryptographic hash functions (e.g., MD5, SHA256) or signature
schemes (e.g., PGP), are commonly used on websites to enable
users to verify that the files they download have not been tampered
with when stored on possibly untrusted servers. In this paper, we
elucidate the current practices regarding the usage of checksums
for web downloads (hash functions used, visibility and validity
of checksums, type of websites and files, etc.), as this has been
mostly overlooked so far. Using a snowball-sampling strategy for
the 200,000 most popular domains of the Web, we first crawled a
dataset of 8.5M webpages, from which we built, through an active-
learning approach, a unique dataset of 277 diverse webpages that
contain checksums. Our analysis of these webpages reveals interest-
ing findings about the usage of checksums. For instance, it shows
that checksums are used mostly to verify program files, that weak
hash functions are frequently used, and that a non-negligible pro-
portion of the checksums provided on webpages do not match that
of their associated files. Finally, we complement our analysis with
a survey of the webmasters of the considered webpages (𝑁 = 26),
thus shedding light on the reasons behind the checksum-related
choices they make.

CCS CONCEPTS
• Security and privacy → Web protocol security; Hash functions
and message authentication codes.
KEYWORDS
web downloads; integrity; checksums; crawl; survey
ACM Reference Format:
Gaël Bernard, Rémi Coudert, Bertil Chapuis, and Kévin Huguenin. 2023.
An Empirical Study of the Usage of Checksums for Web Downloads. In
Proceedings of the ACM Web Conference 2023 (WWW ’23), May 1–5, 2023,
Austin, TX, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3543507.3583326

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583326

1 INTRODUCTION
Data integrity, which means that data is not altered, is a paramount
property in information security [9]. And checksums—fixed-size
strings generated from cryptographic hash function (e.g., SHA256)
or signature schemes (e.g., PGP) and typically represented in hexa-
decimal or base64—are commonly used to verify integrity. While
integrity is often verified automatically by programs when they
fetch data from the Internet, for web downloads, checksums are
provided on webpages and users are expected to verify integrity
manually, with the help of programs such as md5sum or shasum.
This enables users to verify that the files they download have not
been tampered with when stored on possibly untrusted servers
such as those of content delivery networks (CDN).

This threat is real: Recently, hackers distributed a modified ver-
sion of the video player VLC infected with a malware that gave
them access to the victims’ computers [7, 19]. Similarly, in 2016,
the BitTorrent client Transmission was also infected [1, 24].

Although checksums are relatively common on the Web, they
received only little attention from the research community and
very little is known about the current usage of checksums for web
downloads: To the best of our knowledge, the only study in the liter-
ature covers only twenty download webpages with checksums and
provides only basic information about their usage [3]. A possible
reason for that is the lack of appropriate datasets.

In this paper, we study the usage of checksums for web down-
loads based on a unique dataset of 277 diverse download webpages
that contain checksums for verifying the integrity of the files of-
fered for download. We built this dataset through an original active
learning-based process involving multiple labelers over an opti-
mized snowball crawl of 8.5M webpages from the 200,000 most
popular domains on the Web (according to QuantCast). The quality
of this process was high, with an inter-labeler agreement, measured
through Fleiss’ kappa, consistently greater than 80%. Through a
combination of manual and automated annotations, we further
extracted information about the webpages in our dataset and about
their usage of checksums.

Our analysis of these webpages reveals interesting findings about
the usage of checksums. For instance, it shows (1) that checksums
are used mostly to verify program files for various platforms (Win-
dows, macOS, Android), archives (typically source code), and disk
images (typically of operating systems), (2) that hash functions
considered as weak/broken today are still frequently used (43.0%

https://doi.org/10.1145/3543507.3583326
https://doi.org/10.1145/3543507.3583326
https://doi.org/10.1145/3543507.3583326

WWW ’23, May 1–5, 2023, Austin, TX, USA Bernard et al.

of the webpages use only weak hash functions), and (3) that a non-
negligible proportion of the checksums provided on webpages do
not match that of their associated files (6.1%). We complement our
analysis with a survey that targets the webmasters of the pages in
our dataset. Our results (𝑁 = 26) show that webmasters (1) provide
checksums because they believe integrity verification is important,
because their users asked them to, or to follow community stan-
dards, (2) provide multiple checksums to maximize the chances
that users can verify one of them, and (3) would be likely to adopt
sub-resource integrity [21] instead if it was extended to downloads.

We make the following contributions: (1) We gather and
annotate—to the best of our knowledge—the most extensive col-
lection of checksums for web downloads. (2) We shed light on
the current usage of checksums (and the underlying reasons for
this usage) and on their validity. And (3) we make available to the
community our dataset and the code for collecting and analyzing it.

The rest of the paper is organized as follows. In Section 2, we
provide the necessary background on checksums and describe the
considered adversarial model. In Section 3, we survey existing re-
lated work and position our work with respect to it. In Section 4,
we describe our data collection process. We present the results of
our analysis of the collected data in Section 5 and report on the
results of our user survey (targeted at webmasters) in Section 6.
Finally, we discuss the dissemination of our research data and code
in Section 7 and conclude the paper in Section 8.

2 BACKGROUND
A checksum is a fixed-size piece of data usually obtained by ap-
plying a cryptographic hash function (e.g., SHA256) to some data
(e.g., a file). The security properties of such hash functions guar-
antee that it is intractable for an adversary to forge a file with a
pre-determined checksum or to forge another file with the same
checksum as a given file (i.e., pre-image attacks). This is convenient
when one wants to ensure that two files have the same content and,
by extension, that a file has not been modified (i.e., its integrity
is preserved). Some hash functions, such as MD5 and SHA1, were
proved vulnerable to such attacks [22, 23].

Digital signatures (e.g., PGP+RSA/DSA) are similar to checksums,
but they involve a private key in the generation process and the
associated public key in the verification process. Public keys can
usually be retrieved from so-called key servers (or public-key in-
frastructure, PKI). Digital certificates also offer similar features but
we do not consider them in this paper. Signatures not only enable
the integrity verification of files but also the authentication of the
signer. Signatures can be embedded in the signed file (attached) or
provided as a separate file (detached). Checksums and signatures
can be used in combination, by providing a signed file containing a
checksum. Although this authenticates the checksum and prevents
an adversary to tamper with the checksum, it does not offer any
additional protection if the adversary manages to mount a pre-
image attack (i.e., tamper with the file without changing its digest).
Checksums and signatures are often represented as hexadecimal
or base64 strings, especially when provided “inline” on webpages.
They are used to enable users to verify the integrity of the files
they download or upload (see Figure 1). Of course, checksums make
sense mostly in the case where the file and its checksum are stored

Downloading VLC 3.0.17 for Windows
Thanks! Your download will start in few seconds...

If	not,	click	here.	SHA-256	checksum:	514b0bf5ac82e7132ecac31da64c38fc85cd0ff76e2dcbcf904b6e2028c6749f

Submitted
 Submission ﴾900kB﴿ 3 Apr 2020 8:31:33am EDT

Authors ﴾blind﴿
XXX﴾XXX﴿ <XXX.XXX@XXX.XX>
XXX﴾XXX﴿ <XXX.XXX@XXX.XX>

 Prior Reviews ﴾87kB﴿

Topic
Usable security and privacy

 b3de1aee9659...

Abstract
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.

You are an author of this submission.
 Edit submission

IEEE S&P 2023 #90

Email notification
Select to receive email on updates to
reviews and comments.

PC conflicts
None

HotCRP

IEEE S&P 2023 Home XX.XX@XX. XX Profile Help Sign out

 Main Edit Your submissions ﴾All﴿ Search

#90 XX

SHA‐256 checksum

�

Figure 1: Illustrations of the use of checksums for integrity
verification on the Web.

in different locations (e.g., servers), otherwise an adversary who
tampers with the file would also tamper with the checksum to make
it match (a respondent of our survey provided an interesting case
about this point; see Section 6).

The typical adversarial model underlying the use of checksums
is that of an adversary who seeks to corrupt a file–typically a
program–available for download, for instance to infect the devices
of the users who download (and open) it. And the main goal of
checksums is to enable users to detect such corrupted files. Ideally,
checksum verifications should be done automatically without the
need for user intervention; it is not (yet) the case for checksums
for web downloads (which we study in this paper) but it is for web
subresources with the subresource integrity (SRI [21]) mechanism.1

3 RELATEDWORK
Our work relates to integrity verification techniques (see [9] for
the different definitions of integrity, here we mean data integrity)
, especially hash functions and signatures, and to the security of
web (sub-)resources, including downloads.

From a usability perspective, Dechand et al. [5] show, through
a user study (𝑁 = 1047), that the comparison of textual represen-
tations of fingerprints/checksums by humans is error-prone and
vulnerable to partial pre-image attacks. Tan et al. [20] show that
the comparison of graphical fingerprint representations is more
intuitive and faster than with textual representations. Through an
experiment (𝑁 = 40) that involved eye-tracking, Cherubini et al. [3]
confirms the error-proneness of checksum verification, in the con-
text of web downloads. They also study the usage of checksums on
the download pages of twenty popular programs. Finally, through a
user survey (𝑁 = 2000), they show that most internet users do not
understand the purpose of checksums found on download pages. In
a follow-up study, Meylan et al. [13] studied, through an in-the-wild
experiment (𝑁 = 134), the exposure of internet users to checksums
and their reactions.

Another body of works [2, 10, 16–18] studied the use of
a standardized integrity verification mechanisms available in
web browsers, namely the sub-resource integrity (SRI) secu-
rity feature, [21] which consists in verifying automatically
the integrity of a sub-resource by using a checksum speci-
fied in its attribute, within the HTML code of the webpage
that includes it (e.g., <script src="http://cdn.com/script.js"

1We briefly describe SRI in Section 3. We believe that SRI should be extended to web
downloads. We polled webmasters about SRI and report on the results in Section 6.

An Empirical Study of the Usage of Checksums for Web Downloads WWW ’23, May 1–5, 2023, Austin, TX, USA

integrity="sha256-26a4D..."/>). The authors show that the adop-
tion of SRI is low but increasing (between 3-4% of the websites in
Common Crawl ’19 [4] use it) and that some aspects of SRI are not
well understood by web developers.

4 DATA COLLECTION
To study the current practices regarding checksums for web down-
loads, we built a unique dataset of (download) webpages with check-
sums. In a first attempt, we tried to identify such webpages from
the Common Crawl dataset2 by analyzing—with regular expres-
sions for detecting specific keywords and checksums represented as
hexadecimal strings—the content of the pages (around 3 billion) in
the WARC (raw HTML, no subresources) and WET (plain text con-
version) formats. However, we faced two main issues: (i) Common
Crawl [4] is an incomplete (random) sample of the Web:3 Typically,
many of the pages with checksums identified by Cherubini et al. [3]
were not present in it. (ii) A tremendous proportion of webpages
contain checksum-like strings that are not related to the verifica-
tion of downloads (i.e., false positives). Examples of such strings
include technical discussions (e.g., documentation, tutorials, blogs),
URLs, filenames, and commit versions (e.g., GitHub, GitLab) that
contain hash values. For these reasons, we decided to take another
approach, which we describe in this section.

4.1 Collection of Webpages
We collected webpages in late 2020 by using a snowball-sampling
strategy from the top-200,000 most popular domains of the Web,
according to Quantcast’s ranking.4 For each domain, and beginning
with its homepage, we processed its webpages as follows.We parsed
the raw static HTML code (without loading external resources and
running embedded scripts)5 of the page with the BeautifulSoup
Python library and extracted all its internal URLs (i.e., pointing to
the same domain) from the href attribute of HTML <a> elements.
We inserted them in a priority queue (if not already present), where
the priority was based on presence of keywords ‘download’, ‘app’,
‘macos’, ‘windows’, ‘product’, or ‘software’, because such URLs
are more likely to point to download pages. The goal of using this
heuristic is to maximize the chance of discovering (download) pages
with checksums. Among pages with the same priority, the next page
to process was drawn from the queue uniformly at random. We
limited the sampling to 60 pages per domain and obtained a total of
almost 8.5M pages, hereafter referred to as the CrawlQC8M dataset.

4.2 Identification of Pages with Checksums
On the one hand, and as discussed above, assessing automatically—
in an unsupervised manner—if a webpage contains a checksum
is a non-trivial task. On the other hand, assessing it manually is
time consuming (it took 39.7 seconds per webpage on average
for a human “labeler” in our experiments; this means 10+ person-
years of work to evaluate CrawlQC8M fully) due to the cognitive

2https://commoncrawl.org/, last visited: Feb. 2023.
3https://groups.google.com/g/common-crawl/c/xmSZX85cRjg/m/RYrdBn2EBAAJ, last
visited: Feb. 2023.
4https://www.quantcast.com/top-sites/, last visited: Oct. 2022.
5Note that, for the automatic analysis of the webpages, we also included JS code and,
for the manual analysis, we fully rendered the webpages by loading their sub-resources
and running their scripts (see Section 4.2 and 4.3).

effort involved. Typically, some checksums are challenging to spot
due to information overload or because they appear only upon
specific user actions (e.g., click, mouseover). In such a setting, active
learning—where a learning algorithm (i.e., a classifier in our case)
can interactively query a human agent to label new data instances—
is a first class option, as “active learning is well-motivated in many
modern machine-learning problems, where unlabeled data may be
abundant but labels are difficult, time consuming, or expensive to
obtain” [15].

We took several rounds of active learning to label (a part of) our
CrawlQC8M dataset. Table 1 depicts the process in more detail.6
First, we built a small training set: We started with the set of 20
webpages with checksums from previous work [3] (all were present
in CrawlQC8M). Then, we expanded this by running an informal
small-scale crowd-sourcing campaign in the lab, i.e., during a few
months, the lab members reported to the authors the webpages
with checksums they encountered; they also reported downloaded
webpages without checksums to obtain related yet negative samples.
This left us with an initial (training) dataset of 100 webpages with
checksums and 139 without.

We built a binary classifier—based on a random forest—to assess
if a page contains a checksum. We crafted a total of 14 features,
including the presence of specific (stemmed)7 keywords (e.g., in-
tegrity, verify, download), file extensions (e.g., exe, dmg, deb, zip),
hash function / signature scheme names (e.g., md5, sha1, sha256,
pgp), and strings that match regular expressions for checksums in
a hexadecimal format. We built these features not only from the
HTML code but also from sub-resources, including JS scripts. The
complete list of features is provided in Appendix A. To select the
model and associated parameters, we relied on a grid search with
10-fold cross-validation, applied to the initial dataset. We found
that decision trees with 100 trees with a maximum depth of 8 were
the best settings. We fixed these parameters for the remainder of
the data collection.

In the three rounds of active learning, we iteratively expanded
our dataset by: (1) applying the current version of the classifier to
all the unlabeled pages from CrawlQC8M, (2) selecting the pages
that are the most likely to include checksums, according to the
classifier (classifiers often output a probability distribution over the
possible labels, ‘w/ checksum’ and ‘w/o checksum’ in our case), and
(3) manually labeling—with multiple human labelers (i.e., lab mem-
bers) per page—the selected pages. The labeling of the webpages
was done in a web-based tool.For this step, the webpages were fully
rendered (not only the raw HTML code). At the end of each round,
we resolved conflicts between labelers through discussion, and we
updated (i.e., re-trained) the classifier with the newly expanded
dataset.

In the first round, 400 pages were selected, based on the output
of the classifier, and labeled by a single human labeler. Of these 400
webpages, 75 were labeled as “w/ checksums”, and the other as “w/o
checksums” (false positives). The classifier’s precision (i.e.,∼20%)
is satisfactory for our use case.8 At the end of the first round, the

6Le et al. [12] took a similar approach, mixing automatic/manual analyses.
7See https://en.wikipedia.org/wiki/Stemming, last visited:: Feb. 2023.
8Note that we cannot analyze its recall, as we do not have access to the ground truth
for the webpages that we do not manually annotate.

https://commoncrawl.org/
https://groups.google.com/g/common-crawl/c/xmSZX85cRjg/m/RYrdBn2EBAAJ
https://www.quantcast.com/top-sites/
https://en.wikipedia.org/wiki/Stemming

WWW ’23, May 1–5, 2023, Austin, TX, USA Bernard et al.

Table 1: Data collection process with active learning.

20
w/ checksum

Cherubini et al. (CCS ’18)

+ 80
w/ checksum

139
w/o checksum

Crowdsourced (in lab)

$ 100
w/ checksum

139
w/o checksum

Initial Dataset

1.a Initial Dataset õ

100
w/ checksum

139
w/o checksum

1.b Train Classifier �
- Random Forest
- 14 features

1.c Apply Classifier �
- Apply to unlabeled pages in CrawlQC8M
- Selected 400 top web pages
(w.r.t. their probability to include checksums)

1.d Manually Labelv
- 1 labeler

2.a Second Datasetõ
+75

175
w/ checksum

+325

464
w/o checksum

2.b Train Classifier �
- Random Forest
- 14 features

2.c Apply Classifier �
- Apply to unlabeled pages in CrawlQC8M
- Selected 500 top web pages
(w.r.t. their probability to include checksums)

2.d Manually Labelv
- 2 labelers for new pages;
𝜅: 86.1%(almost perfect agreement)
- 1 extra labeler for the 175 initial pages w/ checksum;
𝜅: 100% (perfect agreement)

3.a Third Datasetõ

+93

264
w/ checksum

+407

869
w/o checksum

3.b Train Classifier �
- Random Forest
- 14 features

3.c Apply Classifier �
- Apply to unlabeled pages in CrawlQC8M
- Selected 500 top web pages
(w.r.t. their probability to include checksums)

3.d Manually Labelv
- 2 labelers for new pages;
𝜅: 82.2% (almost perfect agreement)

$

+116

380
w/ checksum

Fourth Dataset

$

-103
277

w/ checksum

Final Dataset

dataset contained 175 pages labeled as ‘w/ checksums’ and 464
pages labeled as ‘w/o checksums’.

In the second round, 500 new pages were selected, again based on
the classifier’s output, and labeled by two different human labelers
each. The labeling tasks were evenly distributed across six human
labelers. The 175 pages labeled as ‘w/ checksum’ in the first round
were labeled by an additional labeler in order to provide some
quality control. To measure inter-labeler agreement (labelers are
human: they make mistake, e.g., missing a checksum on a page) and
the reliability of the labeling, we relied on Fleiss’ kappa [6, 8, 25].
We obtained 𝜅 = 86.1% (i.e., “Almost perfect agreement”, according
to the interpretation table of Landis and Koch [11]) for the new
pages and 𝜅 = 100% (“perfect agreement”) for the initial 175 pages
with checksums, i.e., the labels of all these pages were confirmed
by the second labeler.

In the third round, we selected and labeled another 500 pages,
with two labelers (among a pool of six) per page. We obtained
𝜅 = 82.2% (“Almost perfect agreement”). The proportion of pages
labeled as ‘w/ checksums’ increased from round two to round three,
showing an increase in the accuracy of the classifier. In Appendix C,
we show the ranking of the features with respect to their importance
in the classification process for the final round. The top three were:
the fraction of words listed in keywords, the presence of names of
techniques, and the presence of hash values.

Overall, our active learning-based data-collection process en-
abled us to reach a total of 380 webpages with checksums. In
Appendix B, we provide details on the performance of the final
classifier trained on this dataset.

4.3 Annotation of Pages with Checksums
Through a combination of manual and automatic annotation, we
enriched our dataset with additional information for each of the
webpages that contain checksums.

Manual Annotation. By using a dedicated web tool, we manually
collected the following information:

(1) the URLs of the pages containing (resp.) the download
link for the file, the checksum of the file, and the instruc-
tions for verifying checksums (if any, e.g., https://gnupg.org/
download/integrity_check.html), as well as whether user ac-
tion (e.g., click, mouseover) was needed to show the check-
sum (e.g., https://get.videolan.org/vlc/3.0.17.4/win32/vlc-3.0.17.
4-win32.exe, “display checksum”)

(2) the integrity verification technique(s) used (MD5, SHA1,
SHA256, PGP, etc.)

(3) general information about the website: apache-like index page
(e.g., https://unit.nginx.org/download/), file-hosting service
(e.g., https://www.fosshub.com/Brave-Browser.html), forum or
blog (e.g., https://newsgroup.xnview.com/viewtopic.php?f=82&
t=40945)

(4) one checksum instance with the strongest technique (e.g., if an
MD5 checksum and a SHA256 checksum were available, we
selected the SHA256 checksum) containing the URL of the file
to be downloaded and the value of the checksum or the URL of
the checksum file. The file and the checksum file (if any) were
subsequently downloaded

(5) the target platform for the file (e.g., Windows, macOS, Linux,
Android) and information on whether the source code was
available (for program files)

(6) the contact e-mail/form for the website. We collected e-mails
and/or URLs of contact forms from the website and, when PGP
was used, from the metadata of the public key used for the
signature. The purpose of collecting this information was to
survey the webmasters to understand the rationale and pro-
cesses behind their use of checksums (see Section 6). For most
webpages (196 or 70.8%), we identified at least one e-mail /

https://gnupg.org/download/integrity_check.html
https://gnupg.org/download/integrity_check.html
https://get.videolan.org/vlc/3.0.17.4/win32/vlc-3.0.17.4-win32.exe
https://get.videolan.org/vlc/3.0.17.4/win32/vlc-3.0.17.4-win32.exe
https://unit.nginx.org/download/
https://www.fosshub.com/Brave-Browser.html
https://newsgroup.xnview.com/viewtopic.php?f=82&t=40945
https://newsgroup.xnview.com/viewtopic.php?f=82&t=40945

An Empirical Study of the Usage of Checksums for Web Downloads WWW ’23, May 1–5, 2023, Austin, TX, USA

contact form. We identified more than one contact for a small
fraction of pages (5.4%).

As for the identification of webpages with checksums, the anno-
tation of the webpages was done by multiple lab members, but with
only one annotator per page. Through annotation, we also removed
duplicates (identical pages and pages from the same domains), 88 in
total, and pages with paywall-protected downloads or broken links,
15 pages in total. We ended up with 277 webpages with checksums.
Determination of File Sizes and Types. We further extracted infor-
mation about the downloaded files, essentially their sizes and their
types. To determine the types of the downloaded files, we used the
UNIX file command,9 that relies on, among other information, the
magic bytes of the file.10 We further refined the file types by using
the extensions of the files. We did so because some file types such
as Java programs (.jar), Android mobile applications (.apk), and ma-
cOS applications (.dmg, .app)—which are all particularly relevant
for our study—are, technically speaking, (compressed) archive files
hence labeled as such by the file command. We labeled such files
as ‘executable’. Moreover, if an archive contained a single file, we
extracted it and labeled it instead of using the ‘archive’ label. We
regarded this approach as more reliable than those based solely on
file extensions or on MIME types returned by web servers.
Validation of Checksums and Signatures. Finally, we determined
whether the provided checksums and/or signatures matched the
downloaded files. This automated process, depicted in Appendix D,
differs for checksums, PGP signatures, and PGP-signed checksums.
For checksums, we simply computed the digest of the file with the
associated hash function and compared it to the provided checksum,
regardless of whether the checksum was provided on the webpage
(i.e., “inline”) or in a separate file. For signatures, we simply verified
their validity by using the associated public key obtained either
from the website or from the Ubuntu key server (https://keyserver.
ubuntu.com/), regardless of whether the signature was attached
or detached. We further verified the expiration date of the public
key. For signed checksum files, we first verified the signature then
the checksum, as described above. The verification was considered
successful if and only if both verifications succeeded.

If the verification was successful, the page was labeled as “suc-
ceed at first try”. If the verification failed and the file was an archive,
we made a second attempt: we extracted the files and applied the
verification process described above to them. If this second valida-
tion was successful for at least one of the extracted files, the page
was labeled as “succeed at second try”. Otherwise, the page was
labeled as “fail”.

4.4 Limitations
Our data collection presents some limitations. First, it is biased by
the features we crafted and the (initial) training dataset we used.
In particular, we used (English) keywords related to specific file
extensions and hash function and signature scheme names. Also,
our initial (training) dataset was biased towards open-source soft-
ware (CCS ’18 [3]) and towards websites visited by researchers in

9https://en.wikipedia.org/wiki/File_(command).
10https://en.wikipedia.org/wiki/List_of_file_signatures.

0% 20% 40% 60% 80%
Proportion of web pages [%]

 signed file

 sha512

 signed sha256

 sha256

 signed sha1†

 sha1†

 signed md5†

 md5†

 crc‡

7.3% (32)

3.4% (15)

4.1% (18)

25.6% (112)

1.8% (8)

16.9% (74)

0.9% (4)

35.4% (155)

1.8% (8)

Stronger

Weaker

(a) Occurrences of techniques
 across all webpages.

0% 20% 40% 60% 80%
Proportion of web pages [%]

11.6% (32)

3.6% (10)

5.8% (16)

34.3% (95)

0.7% (2)

15.2% (42)

0.0% (0)

27.1% (75)

0.0% (0)

(b) Strongest technique
 used per webpage.

Figure 2: Most frequently used techniques, ord. by strength
(†: broken, ‡: not made to protect against adversaries).

computer science (i.e., the lab members), as the researchers are obvi-
ously not representative of the general internet population. Second,
our crawl was limited to the most popular domains, according to
QuantCast’s ranking (note also that rankings are known to differ
substantially), and it was not exhaustive. This also introduces a bias.
Third, the first part of the analysis (i.e., automatic identification
of pages with checksums) was done based only on the static code
(HTML + JavaScript) of the analyzed webpage, thus we ignored the
content that is dynamically loaded. Yet, this content was considered
in the rest of the analysis (manual identification and annotation).

5 RESULTS
We analyzed the data collected for the 277 webpages. Interestingly,
10.98% of the analyzed download webpages used SRI for at least
one of their subresources (e.g., script, stylesheet)
Types of Websites. Among the websites in our dataset, 14.8% were
file hosting websites (i.e., dedicated websites that host many differ-
ent files produced by third parties, e.g., https://download.cnet.com,
https://filehippo.com, https://www.fosshub.com). Moreover, 4.3%
of the pages were default index pages (e.g., of the Apache HTTP
server), where users should browse the list of files to find the ap-
propriate checksum/signature, or forum/blog pages (3.6%).
Usage of Checksums. We first looked at the integrity-verification
techniques used on the different webpages from our dataset, based
on the manual annotations (see Section 4.3). The majority of web-
pages (52.7%) propose a single technique per file, 17.1% propose two
(e.g., MD5 and SHA256 or SHA256 and PGP), and the rest (30.2%)
propose three or more. A possible reason for using multiple tech-
niques is to offer more options to the users. In particular, one could
propose signatures for those users who have technical skills and
care about authentication, and “simple” hash digests for the others.

The distribution of techniques used across all the webpage is
depicted in Fig.2 (left). Only the nine most frequent techniques are
shown; they are ordered by strength. We mark techniques consid-
ered as weak (i.e., MD5 and SHA1 [22, 23]) and those that do not
offer—by design—protection against adversarial modifications (i.e.,
CRC). Present on 35.4% of the webpages, MD5 is the most frequently
used technique, followed by SHA256 (25.6%) and SHA1 (16.9%).
Some techniques, such as BLAKE2sp, MD4†, and SHA224, were

https://keyserver.ubuntu.com/
https://keyserver.ubuntu.com/
https://en.wikipedia.org/wiki/File_(command)
https://en.wikipedia.org/wiki/List_of_file_signatures
https://download.cnet.com
https://filehippo.com
https://www.fosshub.com

WWW ’23, May 1–5, 2023, Austin, TX, USA Bernard et al.

100 101 102 103 104 105 106 107

File size [KB]

0%

25%

50%

75%

100%

Pr
op

. o
f p

ag
es

 [%
] 1 KB 1 MB 1 GB

Figure 3: Distribution of file sizes (in KB); log-scale x-axis.

Other (16)
(e.g., pdf, mp4)5.8%

Disk Image (30)
(e.g., img, iso)10.8%

Archive (70)
(e.g., zip, tar, rar)

25.3%

Executable / Installer (161)
(e.g., exe, pkg, deb)

58.1%

Figure 4: Distribution of files types.

also found but are not shown in the figure as they were observed
less than 3 times. The fact that MD5 and SHA1 are weak limits
the security provided by the checksums computed from these hash
functions. Yet, as a substantial proportion of the webpages propose
multiple techniques, such weak techniques might be accompanied
by stronger ones, thus offering a secure alternative to the users. For
this reason, we plotted the distribution of the strongest techniques
used on the webpages and show it in Figure 2 (right). From this
perspective, SHA256 is the most frequently used technique (34.3%,
40.1% if we include signed SHA256 checksums), followed by MD5
(27.1%), SHA1 (15.2%) and PGP signature (11.6%). CRC is never the
strongest technique; i.e., it is always accompanied by other hashing
functions. In total, a staggering 43.0% of the webpages use only
weak techniques. Overall, the majority of the techniques are simple
checksums (85.2%), followed by signed checksums (7.5%) and PGP
(7.3%).

In terms of presentation, on 26 webpages, the inline checksums
were made visible (in JavaScript) only upon a specific user action
(e.g., click). In most cases (94.9%), checksums were available on the
samewebpage as the download. In 66.1% of the cases, the checksums
were provided inline; in the other cases, they were provided as a
separate file.

In terms of usability, only 16.2% of thewebpages provided instruc-
tions on how to use checksums, either on the download page (51.1%)
or on a dedicated webpage (48.9%). Given the limited knowledge
of internet users regarding checksums [3], the lack of instructions
impedes their wide use.
Sizes and Types of Files.We then looked at the sizes and types of the
file for which a checksum was provided. We plotted the empirical
CDF (in log-scale) of the file sizes and show it in Figure 3. It can
be observed that the vast majority of the files weigh more than
1MB. Files smaller than 1MB were mostly (archived and possibly
compressed) source codes.

We further looked at the types of the files, following the method-
ology described in Section 4.3, and show the distribution in Figure 4.

It can be observed that more than half of the files (58.1%) are ex-
ecutable or program files. The next most frequent type of files
protected with checksums are archives (25.3%), typically source
code of programs. Note that 35.7% of the files were annotated as
open-source by the annotators, based on the presence of the source
code on the website, possibly in addition to the precompiled binary
(i.e., the executable). The third most frequent file types is disk im-
age, typically ISO images of operating systems (e.g., Ubuntu). Using
integrity-verification techniques for these top-3 file types makes a
lot of sense as it is rather straightforward to include virus/malware
in them, compared to PDF documents for instance. In terms of
target platforms, among the 161 pages where the download was an
executable, 40.5% had a Windows version, 28.9% a macOS version,
23.2% a Linux version, and 7.4% an Android version.
Locality of Checksums and Files.Using the same heuristic as Chapuis
et al. [2] on the URLs of the file and of the checksum file/page, we
determined that 48% of the files were hosted on the “same server”
as their checksum. While using checksum make less sense in such a
set-up (one could assume that an adversary who could tamper with
the file could tamper also with the checksum to make it match), it
still makes sense (see Section 6–Purpose of Using Checksums).
Validity of Checksums and Signatures. In Figure 5, we show the
results of the verification of the checksums and signatures, based
on the methodology described in Section 4.3 and in Appendix D.
We observed that most checksums were valid on the first try (92.4%)
or after extracting the files (1.4%). For the rest, 17 pages in total,
we could not match the checksum (𝑛 = 13) or signature (𝑛 = 4) to
any file at all. After (manually) investigating the errors, we found
out that some of these failure were due to a version mismatch
between the file and the checksum. For instance, the checksum
displayed for Spybot (https://www.safer-networking.org/files/) on
the website was for version 2.8.67, while the downloaded (program)
file was version 2.8.68. The risks of having such inconsistencies,
and the complexity of the associated updating process, was men-
tioned as a major obstacle for the adoption of integrity-verification
mechanisms (SRI in particular).

Fail (17)6.1%
Succeed at second try (4)1.4%

Succeed at first try (256)

92.4%

Figure 5: Distribution of outcome for checksum verification.

6 SURVEY OF WEBMASTERS
We created a questionnaire targeted at webmasters of websites
that provide checksums for downloads. The questionnaire was
personalized with the title of the website and a screenshot of the
page containing the checksum(s). The questionnaire is available
in the supplemental material. We first collected the consent of the
respondents and asked them to confirm that they are involved
in the management of the considered website and that they are
aware that the website includes checksums for downloads. Then,

https://www.safer-networking.org/files/

An Empirical Study of the Usage of Checksums for Web Downloads WWW ’23, May 1–5, 2023, Austin, TX, USA

we polled them—as webmasters (on this particular website) and as
individuals—about their usage of checksums and about their interest
in an alternative automatic technique for checksum verification for
downloads (i.e., SRI). The questionnaire took about 10 minutes to
complete and respondents were paid USD 30 for it, in the form of
an Amazon voucher. The study was approved by our IRB.

We deployed the questionnaire (in the Fall of 2022) to the web-
masters of the 277 pages with checksums we identified. For the
196 for which we found a contact e-mail or web form, we used it.
For the rest, we used the generic “webmaster@domain” address. We
obtained a total of 𝑁 = 26 complete answers, including those from
webmasters of very popular websites. Overall, the respondents took
the survey very seriously, providing well-written, detailed, and in-
sightful responses to the open-ended questions (a median of 25
words per response, for a total of 9 open-ended questions).

We analyzed the responses to the open-ended questions by using
open and axial coding [14]. We iteratively read over the responses
and coded them inductively. We subsequently classified the gener-
ated codes into main categories.

Use of Checksums. We asked the respondents how the decisions re-
garding checksums were made.We obtained a balance between indi-
vidual (e.g., a single webmaster) and collective (e.g., “general agree-
ment among the handful of people maintaining the website” [R15])
decisions. Often (𝑛 = 7), the respondents reported that the process
was triggered by users’ requests (“added in response to customer re-
quests for it” [R13]). Interestingly, a respondent mentioned that the
requests came “right after one of the SourceForge download servers
was compromised” [R20]. Also, one respondent mentioned that
“[they] don’t think [they] would have done it on [their] own initia-
tive” [R6]. Another factor that influenced the decision process was
the community standards, especially for security-related software
(“I’ve found that displaying a known-good checksum alongside
a file download is a well-practiced convention.” [R10]). Approxi-
mately one third of the respondents mentioned that they updated
their choices (e.g., changing hash function) over time based on: the
state of the art, community standards, and users’ requests.

Purpose of Using Checksums. When asked about the purpose of
using checksums, in general and for their websites, all respon-
dents mentioned integrity or described the concept with their own
words. A few respondents mentioned authenticity (for PGP). When
describing the threats that checksums address, most respondents
mentioned the risks of file corruption in transit. Although this is
a valid threat, it is solved by the use of HTTPS. Corruption at rest
(e.g., server hosting the website, mirror, CDN), which is addressed
by checksums but not by HTTPS, was mentioned by several re-
spondents (𝑛 = 4). A few respondents (𝑛 = 3) also stressed that
checksums make sense only/mostly if the file and the checksum are
hosted on different servers. Although this is a valid point, a com-
ment from a respondent provides an interesting counterexample:
“it happened that a virus (which I also already had on my servers)
could change downloads so that they will act as distributor of virus
(virus will usually only automatically infect binaries, they will not
check webpages)” [R4]. Finally, a few respondents mentioned only
accidental risks of corruption (e.g., disk failure, network error) but
not adversarial ones (e.g., hackers).

Figure 6 depicts the importance of checksum verification, as
reported by the respondents. It can be observed that 21 found it at
least moderately important, hence showing that most webmasters
of pages with checksums are convinced of their importance. In fact,
a large majority of the respondents (𝑛 = 17) declared personally
verifying checksums at least “sometimes” (when available) for the
files they download from the Web. Interestingly, about half of the
respondents (𝑛 = 12) declared that they came across a mismatch
between the file and its checksum at least once.

Very important (9)
34.6%

Important (6)

23.1%
Moderately important (6)

23.1%

Slightly important (4)
15.4%

Not at all important (1) 3.8%

Figure 6: Reported importance of checksums for (verifying
the integrity of) downloads.

Use of Weak Checksums. We asked the respondents whose web-
sites include at least one checksum generated with a weak hash
function (16 in total) whether they were aware of this weakness
and why they decided to use them. All of them but one reported
being aware of it. As for the reasons they decided to use weak
hash functions despite this, the main reasons they mentioned were
(1) historical reasons (e.g., started using SHA1 at a time it was not
considered weak and stuck to it), (2) simplicity of use, compatibility,
and familiarity to the users (“in Terminal we have ‘md5 file’, but
there is no ‘sha256 file’ equivalent; you have to use ‘openssl
sha256 file’. . . ” [R18]),11, and (3) the need to protect against only
accidental corruption (and not adversarial ones). Interestingly, one
respondent mentioned that they included MD5 and SHA1 because
they were included in the output of the gpg --print-mds com-
mand, together with stronger ones (incl. SHA256); therefore, user
had the choice to use stronger techniques. Finally, in some cases,
weak hash functions were included on users’ requests (for their
convenience).
Use of Multiple Checksums.When asked about the use of multiple
checksums, the respondents mentioned two main reasons: (1) to
maximize the chances for the users to have the technical means
(availability of software) and skills to verify at least one of the pro-
vided checksums, and for their convenience in doing so (familiarity
with the software), (2) to provide a simpler means (digests) for reg-
ular users to check integrity and to provide a more complex one
(PGP signatures) for advanced users to verify both integrity and
authenticity. Only one respondent mentioned enhanced security
(i.e., as it is harder to forge a file that matches multiple checksums)
as motivation for including multiple checksums. As for the reasons
for using a single checksum, respondents mentioned the facts that
(1) it is enough, (2) it reduces confusion for users, and (3) it prevents
overloading the page. They also reported that even when they de-
cided to include a more recent checksum, they simply decided to
replace the former checksum with the new one rather than keeping
both.
11In some cases it was, again, on users’ requests.

WWW ’23, May 1–5, 2023, Austin, TX, USA Bernard et al.

Very likely (6)
23.1%

Likely (0)

Somewhat likely (12)

46.2%Neither likely nor unlikely (4)
15.4%

Somewhat unlikely (3) 11.5%
Unlikely (0)

Very unlikely (1) 3.8%

Figure 7: Reported likelihood of using SRI for verifying the
integrity of web downloads.

Checksum Update Process. When asked about the checksum-update
process, 12 respondents reported that it was manual and 13 auto-
matic (typically a script that computes the checksum and pushes
both the file and the page with the checksum to the server(s)); the
others reported it was the mix of the two (e.g., manually running
scripts). In the cases where the process was manual, it was often
the responsibility of a single individual (i.e., the webmaster). In the
cases where it was automatic, it was mostly done through home-
made ad-hoc scripts; it was not part of an existing build-tool chain.
This lack of integration could impede the use of checksums or cause
mismatches. Other responses indicated that the process for updat-
ing the file and its checksum were often separated (with delays in
some cases, e.g., checksums updated nightly) hence possibly creat-
ing (temporary) inconsistencies. Interestingly, a few respondents
mentioned that they verify that the files and the checksums avail-
able on the pages match. One respondent preferred not to provide
too much detail on the process, probably for security reasons. The
majority of the respondents reported that the process took less than
5 minutes; it never took more than 30.

When asked to envision situations in which a checksum would
not match the corresponding file (i.e., a mismatch), the main causes
mentioned by the respondents were (1) corruption of the file on the
server or during the transfer (accidental or adversarial), (2) different
update delays for the server hosting the file (e.g., CDN) and for
the server hosting the checksum–when different–hence creating
inconsistencies, and (3) human errors (mostly when the process
was manual, e.g., hashing the wrong file, copy-pasting only part of
the checksum, updating only the file or the checksum).12 Note that
the first two causes are not related to the update process.

Extension of Sub-resource Integrity to Web Downloads. When asked
about the likelihood of using SRI as an alternative to inline check-
sums for the downloads on their websites—if SRI were to be ex-
tended to downloads—, a large majority of respondents (𝑛 = 18)
declared in the affirmative (see Figure 7). This is aligned with (and
complementary to) the results of Chapuis et al. [2] for web develop-
ers. We personally believe this would be beneficial to users.

12One respondent mentioned that “there have been rare cases where [they] have
modified the program (usually fixed a bug) after the signatures were generated [...]
and then [they] forgot to regenerate the signature files” [R8].

Finally, 2 respondent(s) reported they would be interested in a
(paid) interview and 12 that they might be (they needed more
information).

7 DISSEMINATION OF THE DATA & CODE
To enable researchers and practitioners to reproduce our work and
to benefit from its result, we make our dataset and the code for
collecting and analyzing it available on OSF.13 More specifically,
we provide (1) the pre-trained model—in the PMML format—of our
classifier (for identifying webpages w/ checksums), together with
a minimal example of how to use it in Python + sklearn, (2) our
enriched dataset of webpages with checksums, together with the
annotations (csv and sqlite), (3) the code of our crawler, and
(4) the full transcript of our questionnaire.

8 CONCLUSION AND FUTUREWORK
In this paper, we have provided the first medium-scale study of
the usage of checksums for web downloads, based on a unique
dataset we built. Our results have shed light on the typical use of
checksums (e.g., executable files and disk-image files) and have
shown important issues with the current practices (e.g., use of
weak hash functions, lack of instructions) that—together with the
limitations of checksums highlighted in previous work [3] (e.g.,
limited understanding from users, error-proneness of the verifica-
tion process)—call for improvements or alternative solutions. Our
survey of webmasters has provided insights into the reasons be-
hind the checksum-related choices they make. In particular, it has
shown that checksums are often included on users’ requests. It has
also revealed the webmasters’ strong interest in the extension of
sub-resource integrity to web downloads.

For future work, by conducting individual interviews, we in-
tend to gain more insight from webmasters about their usage of
checksums for web downloads. We also intend to poll webmasters
of websites that contain download pages w/o checksums. To in-
crease the size and diversity of our dataset in the future, we set
up a webpage (https://checksum.unil.ch/static/crowdsourcing/) for
enabling people to submit URLs of download webpages with check-
sums. Finally, we intend to increase the accuracy of the classifier
by including more features, including some extracted after hav-
ing fully rendered the pages. (i.e., loading and running also their
sub-resources), e.g., with Selenium.

ACKNOWLEDGMENTS
The authors are grateful to Holly Cogliati for her editing job, to
Tanguy Berguerand for his help in the implementation of the pre-
liminary analysis scripts, to Kavous Niksirat Salehzadeh for his
feedback on the questionnaire, and to Dario Besson, Lev Velykoiva-
nenko, and Noé Zufferey for their help in the annotation of the
webpages. The work was partially funded with grant #19024 from
the Hasler Foundation.

13https://dx.doi.org/10.17605/OSF.IO/A9YKR

https://checksum.unil.ch/static/crowdsourcing/
https://dx.doi.org/10.17605/OSF.IO/A9YKR

An Empirical Study of the Usage of Checksums for Web Downloads WWW ’23, May 1–5, 2023, Austin, TX, USA

REFERENCES
[1] 2016. Transmission hijacked again to spread malware. https:

//blog.malwarebytes.com/threat-analysis/2016/09/transmission-hijacked-
again-to-spread-malware/

[2] Bertil Chapuis, Olamide Omolola, Mauro Cherubini, Mathias Humbert, and
Kévin Huguenin. 2020. An Empirical Study of the Use of Integrity Verification
Mechanisms for Web Subresources. In Proc. of the Web Conference. IW3C2, 34–45.
https://doi.org/10.1145/3366423.3380092

[3] Mauro Cherubini, Alexandre Meylan, Bertil Chapuis, Mathias Humbert, Igor
Bilogrevic, and Kévin Huguenin. 2018. Towards Usable Checksums: Automating
the Integrity Verification of Web Downloads for the Masses. In Proc. of the ACM
Conf. on Computer and Communications Security (CCS). ACM, Toronto, ON,
Canada, 1256–1271. https://doi.org/10.1145/3243734.3243746

[4] Common Crawl. 2019. Common Crawl. https://commoncrawl.org/
[5] Sergej Dechand, Dominik Schürmann, Karoline Busse, Yasemin Acar, Sascha Fahl,

and Matthew Smith. 2016. An Empirical Study of Textual Key-Fingerprint Repre-
sentations. In Proc. of the USENIX Security Symp. (USENIX Security). USENIX.

[6] Joseph L. Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological Bulletin 76, 5 (1971), 378–382. https://doi.org/10.1037/h0031619

[7] Ghacks. 2022. Symantec says that hackers distributed a modi-
fied version of VLC and exploited it for malware attacks. https:
//www.ghacks.net/2022/04/11/symantec-says-that-hackers-distributed-a-
modified-version-of-vlc-and-exploited-it-for-malware-attacks/

[8] Kevin A. Hallgren. 2012. Computing Inter-Rater Reliability for Observational
Data: An Overview and Tutorial. Tutorials in Quantitative Methods for Psychology
8, 1 (Feb. 2012), 23–34. https://doi.org/10.20982/tqmp.08.1.p023

[9] Kelsey Harley and Rodney Cooper. 2021. Information Integrity: Are We There
Yet? ACM Comput. Surv. 54, 2 (Feb. 2021), 1–35. https://doi.org/10.1145/3436817

[10] Deepak Kumar, Zane Ma, Zakir Durumeric, Ariana Mirian, Joshua Mason, J. Alex
Halderman, and Michael Bailey. 2017. Security Challenges in an Increasingly
Tangled Web. In Proc. of the Int’l Conf. on World Wide Web (WWW). ACM, Perth,
Australia, 677–684. https://doi.org/10.1145/3038912.3052686 event-place: Perth,
Australia.

[11] J. R. Landis and G. G. Koch. 1977. The measurement of observer agreement for
categorical data. Biometrics 33, 1 (March 1977), 159–174.

[12] Hieu Le, Athina Markopoulou, and Zubair Shafiq. 2021. CV-Inspector: Towards
Automating Detection of Adblock Circumvention. In Proc. of the Network and
Distributed System Security Symp. (NDSS). Internet Society, Virtual. https://doi.
org/10.14722/ndss.2021.24055

[13] Alexandre Meylan, Mauro Cherubini, Bertil Chapuis, Mathias Humbert, Igor
Bilogrevic, and Kévin Huguenin. 2020. A Study on the Use of Checksums for
Integrity Verification of Web Downloads. ACM Trans. on Privacy and Security 24,
1 (Sept. 2020), 1–36. https://doi.org/10.1145/3410154

[14] Johnny Saldana. 2021. The Coding Manual for Qualitative Researchers (4th ed ed.).
SAGE Publishing, Thousand Oaks, California.

[15] Burr Settles. 2009. Active learning literature survey. (2009). Publisher: University
of Wisconsin-Madison Department of Computer Sciences.

[16] Ronak Shah and Kailas Patil. 2018. A Measurement Study of the Subresource
IntegrityMechanism on Real-world Applications. International Journal of Security
and Networks 13, 2 (2018), 129. https://doi.org/10.1504/IJSN.2018.092474

[17] Ronak N Shah and Kailas R Patil. 2017. Securing Third-partyWeb Resources Using
Subresource Integrity Automation. International Journal on Emerging Trends in
Technology 4, 2 (2017), 5. http://ijett.in/index.php/IJETT/article/view/345

[18] Marius Steffens, Marius Musch, Martin Johns, and Ben Stock. 2021. Who’s
Hosting the Block Party? Studying Third-Party Blockage of CSP and SRI. In Proc.
of the Network and Distributed System Security Symp. (NDSS). Internet Society,
Virtual. https://doi.org/10.14722/ndss.2021.24028

[19] Symantec. 2022. Cicada: Chinese APT group widens targeting in recent espi-
onage activity. https://symantec-enterprise-blogs.security.com/blogs/threat-
intelligence/cicada-apt10-china-ngo-government-attacks

[20] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith Cranor, Jeremy Thomas,
and Blase Ur. 2017. Can Unicorns Help Users Compare Crypto Key Fingerprints?.
In Proc. of the ACM Conf. on Human Factors in Computing Systems (CHI). ACM,
3787–3798. https://doi.org/10.1145/3025453.3025733

[21] W3C. 2016. Subresource Integrity. https://www.w3.org/TR/SRI/
[22] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. 2005. Finding collisions in the

full SHA-1. In Annual international cryptology conference. 17–36. tex.organization:
Springer.

[23] XiaoyunWang andHongbo Yu. 2005. How to breakMD5 and other hash functions.
In Annual international conference on the theory and applications of cryptographic
techniques. 19–35. tex.organization: Springer.

[24] Christina Warren. [n.d.]. Popular BitTorrent Client Transmission Gets Infected
With Malware Again. https://gizmodo.com/mac-bittorrent-client-transmission-
gets-infected-with-m-1785957214

[25] Antonia Zapf, Stefanie Castell, Lars Morawietz, and André Karch. 2016. Measur-
ing inter-rater reliability for nominal data – which coefficients and confidence
intervals are appropriate? BMC Medical Research Methodology 16, 1 (Dec. 2016).
https://doi.org/10.1186/s12874-016-0200-9

https://blog.malwarebytes.com/threat-analysis/2016/09/transmission-hijacked-again-to-spread-malware/
https://blog.malwarebytes.com/threat-analysis/2016/09/transmission-hijacked-again-to-spread-malware/
https://blog.malwarebytes.com/threat-analysis/2016/09/transmission-hijacked-again-to-spread-malware/
https://doi.org/10.1145/3366423.3380092
https://doi.org/10.1145/3243734.3243746
https://commoncrawl.org/
https://doi.org/10.1037/h0031619
https://www.ghacks.net/2022/04/11/symantec-says-that-hackers-distributed-a-modified-version-of-vlc-and-exploited-it-for-malware-attacks/
https://www.ghacks.net/2022/04/11/symantec-says-that-hackers-distributed-a-modified-version-of-vlc-and-exploited-it-for-malware-attacks/
https://www.ghacks.net/2022/04/11/symantec-says-that-hackers-distributed-a-modified-version-of-vlc-and-exploited-it-for-malware-attacks/
https://doi.org/10.20982/tqmp.08.1.p023
https://doi.org/10.1145/3436817
https://doi.org/10.1145/3038912.3052686
https://doi.org/10.14722/ndss.2021.24055
https://doi.org/10.14722/ndss.2021.24055
https://doi.org/10.1145/3410154
https://doi.org/10.1504/IJSN.2018.092474
http://ijett.in/index.php/IJETT/article/view/345
https://doi.org/10.14722/ndss.2021.24028
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/cicada-apt10-china-ngo-government-attacks
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/cicada-apt10-china-ngo-government-attacks
https://doi.org/10.1145/3025453.3025733
https://www.w3.org/TR/SRI/
https://gizmodo.com/mac-bittorrent-client-transmission-gets-infected-with-m-1785957214
https://gizmodo.com/mac-bittorrent-client-transmission-gets-infected-with-m-1785957214
https://doi.org/10.1186/s12874-016-0200-9

WWW ’23, May 1–5, 2023, Austin, TX, USA Bernard et al.

A LIST OF FEATURES

Search Area

Category Name Li
nk

s1
4

Sc
rip

t15

Te
xt

16

Ti
tle

17

UR
L1

8

UR
Ls

19

Type Keywords20

Stemmed Keywords
Lookup. True if at least one
keyword is found.

1. Words related to software ✓ boolean changelog, mirror, releas, tar, version
2. Words related to checksum ✓ boolean integr, verifi
3. Word ‘checksum’ ✓ boolean checksum
4. Hash functions and signature
schemes

✓ boolean gpg, md5, pgp, sha, sha1, sha256, sha512

5. Word ‘download’ ✓ ✓ boolean download
6. Link to signatures ✓ boolean gpg, pgp, signatur
7. URLs to software ✓ boolean donat, exe, ftp, mirror,win32, screenshot, source-

forg, sourceforg, tar, x86

Stemmed Keywords
Summary. Summarize the
presence of the keywords
listed in the last column over
the total set of words found in
the web page.

8. Fraction of keywords found ✓ ✓ ✓ ✓ ✓ ✓ float changelog, checksum, donat, download, exe, ftp,
gpg, integr, md5, mirror, mirror,win32, org, pgp,
releas, screenshot, sha, sha1, sha256, sha512, sig-
natur, sourceforg, tar, url, verifi, version, x86

9. Fraction of words from the web
page listed in keywords

✓ ✓ ✓ ✓ ✓ ✓ float changelog, checksum, donat, download, exe, ftp,
gpg, integr, md5, mirror, mirror,win32, org, pgp,
releas, screenshot, sha, sha1, sha256, sha512, sig-
natur, sourceforg, tar, url, verifi, version, x86

Hash Value. Search for poten-
tial hash value.

10. Hash Value ✓ boolean Regular expression for hexadecimal strings with
valid checksum lengths

Javascript. True if both a hash
value and a hash technique is
found in the script.

11. Javascript Checksum ✓ boolean md5, sha

Files’ Extension. Search for
specific extensions.

12. Exe extensions ✓ boolean apk, app, deb, dmg, exe, msi, pkg, rpm
13. Zip extensions ✓ boolean 7z, bz2, lzma, tar.gz, tgz, zip
14. Checksum extensions ✓ boolean checksum, gpg, hash, md, md5, pgp, sha, sig,

signature, sum

B CLASSIFIER PERFORMANCE
At each stage of the active learning process, we selected an equal number of pages w/ checksums and w/o checksums and evaluated the
performance of the resulting classifier. With leave-one-out cross-validation, we obtained the following performance for a random forest
classifier (using the default parameters):

• Initial dataset: TP=0.48 , TN=0.47 , FP=0.03, FN=0.02, which yields accuracy=0.95, sensitivity=0.96, specificity=0.95, and f1=0.95
• Second dataset: TP=0.46 , TN=0.45 , FP=0.05, FN=0.04, which yields accuracy=0.91, sensitivity=0.91, specificity=0.9, and f1=0.91
• Third dataset: TP=0.45 , TN=0.43 , FP=0.07, FN=0.05, which yields accuracy=0.89, sensitivity=0.91, specificity=0.87, and f1=0.89
• Final dataset: TP=0.44, TN=0.46, FP=0.04, and FN=0.06, which yields accuracy=0.90, sensitivity=0.87, specificity=0.92, and f1=0.89.

An Empirical Study of the Usage of Checksums for Web Downloads WWW ’23, May 1–5, 2023, Austin, TX, USA

C FEATURE IMPORTANCE

0.00 0.05 0.10 0.15 0.20 0.25
feature importance

1_words_related_to_software

13_zip_extension

12_exe_extensions

7_urls_to_software

2_words_related_to_checksum

6_link_to_signature

11_javascript_checksum

14_checksum_extension

3_word_checksum

5_word_download

8_fraction_of_keywords_found

10_hash_value

4_hashing_techniques

9_fraction_of_words_listed_in_keywords

fe
at

ur
e

na
m

e

D CASE DIAGRAM FOR CHECKSUM VALIDATION

Checksum

Generate
digest from file

Value
checksum File checksum

Verify equality
of checksums

Valid Fail

Archive

File to verify

Signed
Checksum

Receive key from
server pool

Standalone Detached Checksum
file

Verify signature

Valid Fail

PGP signature

Check signature and
verify checksum

Both valid At least one
invalid

Valid Fail

“Succeed at first try” “Succeed at first try” “Succeed at first try”

Yes No

Uncompress

Verify

FailValid

“Succeed at second try” “Fail”

Figure 8: Case diagram of the automated validation process.

	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 Data Collection
	4.1 Collection of Webpages
	4.2 Identification of Pages with Checksums
	4.3 Annotation of Pages with Checksums
	4.4 Limitations

	5 Results
	6 Survey of Webmasters
	7 Dissemination of the Data & Code
	8 Conclusion and Future Work
	Acknowledgments
	References
	A List of Features
	B Classifier performance
	C Feature importance
	D Case Diagram for Checksum Validation

