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ABSTRACT
User Generated Content (UGC), such as YouTube videos,
accounts for a substantial fraction of the Internet traffic.
To optimize their performance, UGC services usually rely
on both proactive and reactive approaches that exploit spa-
tial and temporal locality in access patterns. Alternative
types of locality are also relevant and hardly ever consid-
ered together. In this paper, we show on a large (more than
650,000 videos) YouTube dataset that content locality (in-
duced by the related videos feature) and geographic locality,
are in fact correlated. More specifically, we show how the
geographic view distribution of a video can be inferred to
a large extent from that of its related videos. We leverage
these findings to propose a UGC storage system that proac-
tively places videos close to the expected requests. Com-
pared to a caching-based solution, our system decreases by
16% the number of requests served from a different country
than that of the requesting user, and even in this case, the
distance between the user and the server is 29% shorter on
average.

Categories and Subject Descriptors
H.3.2 [Information Systems]: Information Storage and
Retrieval—Information Storage

General Terms
Measurement, Algorithm, Design
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1. INTRODUCTION
Over the last few years, users have become the most pro-

lific content generators on the Web, prompting the phenom-
enal success of user-generated content (UGC) sharing sites
such as YouTube [3, 6]. This rapid growth combined with
the never fulfilled user demand for better quality, makes
serving UGC to an increasing number of users all around the
world a daily engineering feat [13]. To this end, UGC shar-
ing sites rely on Content Delivery Networks (CDNs) to place
content close to consumers. To achieve this goal, CDNs em-
ploy both proactive approaches that rely on a priori knowl-
edge (e.g., it is likely that a French-speaking video will be
accessed mostly from French-speaking countries) and reac-
tive ones where the history of a given video is analyzed to
predict its future requests [8, 4, 17].
Interestingly, beyond traditional forms of locality that ac-

count for each content item independently, recent studies
have shown that UGC viewing patterns are significantly
influenced by the fact that content in these sites is no
longer independent but is organized in a content graph. In
YouTube, this content graph is embodied by the lists of
“related videos” present on each video’s page, and its in-
fluence on the viewing behavior of users has been clearly
documented [10, 18].
In this paper we study the geographic viewing patterns

of UGC and how they are affected by the content graph.
Our analysis on a novel YouTube dataset shows that (i)
related videos tend to have correlated geographic viewing
patterns, with most of their views coming from the same
countries, and (ii) popular videos tend to have their views
more uniformly spread across more countries than less pop-
ular ones. The latter category accounts for the vast majority
of YouTube’s content and have their views coming from a
small number of countries.
Building on these insights, we propose DTube, a system

that accurately predicts the origins of a video’s future views
by looking at its position in the content graph and proactively
places its replicas close to its expected consumers. Although
the impact of content locality, i.e. proximity in the content
graph, on a video’s views and geographically concentrated
viewing patterns have been studied independently [14, 18,
2], to the best of our knowledge, this is the first work that
considers both aspects to optimize the placement of UGC.
We show that our system manages to deliver videos over
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Figure 1: Geographic distribution of the origin of
views for a sample YouTube video.

shorter distances than a standard caching-based solution,
thus reducing network latencies and improving user experi-
ence. In particular, DTube can decrease the proportion of
remote requests, i.e., that cannot be served by a node in the
same country as the requesting users, by as much as 16%.
We also show that DTube can decrease the average distance
between users and stored videos by up to 29% for remote
requests.
The rest of this paper is organized as follows. In Section 2

we show that content and geographic locality are correlated
in YouTube. In Section 3 we present DTube’s replica place-
ment algorithm and we report on its evaluation in Section 4.
We survey related work in Section 5 and conclude in Sec-
tion 6.

2. LOCALITY IN UGC
Using a YouTube dataset we crawled in March 2011, we

show that there is a strong correlation between the geo-
graphic distribution of a video’s views and that of its related
videos. We then explore how this correlation can be used to
predict the geographic distribution of a video’s future views.

2.1 Dataset Description
We crawled our own dataset from YouTube, during the

first three weeks of March 2011, using snowball sampling
with an initial set consisting of the 10 most popular videos
for 25 different countries. For each video, we collected
three attributes: (i) its list of related videos as provided by
YouTube, (ii) its total number of views, and (iii) its View
Source Vector (VSV). The VSV of a video represents how
many views this video received from each country in the
world. For most of the videos, the VSV is available, on the
statistics page, as a color map (Fig. 1) generated by a spe-
cific URL (charts.apis.google.com) containing (country,
#views) couples encoded in Google’s Simple Encoding For-
mat. In our experiments, we extracted the actual VSVs from
these URLs. Tab. 1 shows the distribution of the views (top
8 countries) at the granularity of a country, over the whole
dataset. The original dataset contained 1, 063, 844 videos.
We removed the videos with no VSV, and filtered out non-
crawled videos from the related video lists. This left us with
689, 265 videos, each having 8 related videos on average, for
a maximum of 25 related videos allowed in YouTube.1
In the following, we use the view-per-country information

1Because the geographic information in our dataset is given

Country US CA GB BR JP DE PL AU
Prop. of views (%) 6.6 3.1 3.0 3.0 2.6 2.5 2.2 2.2

Table 1: Geographic distribution of views at the
granularity of a country (top 8 countries).

contained in the VSVs to analyze the geographic distribution
of views in our dataset. Our goal is to explore the feasibility
of a geographically-driven proactive placement mechanism
that places videos in countries where they are likely to be
viewed.

Category # views % of videos % of total views
C1 [0, 104] 42.0 0.49
C2 (104, 105] 33.5 5.10
C3 (105, 106] 19.7 25.18
C4 (106, 107] 4.4 45.02
C5 (107, 108] 0.3 21.10
C6 (108, ∞) 0.04 3.10

Table 2: Popularity categories and statistics

2.2 Popularity vs. Geographic Distribution
We first investigate the link between a video’s overall pop-

ularity and the geographical distribution of its views. To this
end, we partition our dataset into six categories based on a
video’s number of views. The distribution of videos shown
on Tab. 2 confirms earlier analysis [2, 3], highlighting a long-
tail distribution of views. Very popular videos (categories
C5 and C6) represent less than 1% of videos while account-
ing for almost 25% of all views. Because of the long tail, the
bandwidth cost of “unpopular” videos is however far from
being negligible: The 3 least popular categories (C1, C2, C3,
or 95.2% of all videos) still represent more than 30% of the
views.
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Figure 2: Geographic cumulative distribution of
views for various popularity categories

To analyze the geographic distribution of views for each
category, we compute the average geographic spread of video
views as follows. For a given video, we sort the countries
of its VSV in decreasing order according to the proportion
of views originating from each country. We then compute
the cumulative distribution of views of each video and plot

at the granularity of a country, we conduct our analysis at
the same granularity throughout the paper.
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the average over each popularity category (Fig. 2). A point
(n, m) on the graph means that the n top countries for videos
in this category account form% of the total number of views.
Fig. 2 clearly shows that the views of niche videos (C1, less

than 10,000 views) are geographically highly concentrated:
80% of all views for videos in C1 come from less than 15
countries. This phenomenon fades out as the popularity of
videos increases, to reach an almost uniform global distri-
bution for extremely popular videos (C6).
Yet, this concentration effect remains relatively strong for

all videos up to 100M views (categories C1–C5, 96.9% of all
views). This shows that a proactive placement mechanism
could gain from accurately predicting the top n countries
from which a video’s views originate. For instance, for videos
in C3 (between 100,000 and 1M views, 25.18% of all views),
proactively placing video replicas in (or close to) the top 25
countries would cover 80% of all views.
We further study the geographic spread of the origins of

the views by taking into account the distances between the
main sources of views. The motivation behind this experi-
ment is that it is easier to serve a video with low latency,
with a single replica, for users in France and in Switzer-
land than for users in the UK and in India. For each video,
we compute the average of the pairwise distance between
the main sources of views (i.e., the top country covering
80% of the views), weighted by the proportion of views each
country is responsible for. For instance, for a video viewed
1, 000 times, whose three main sources are US (500 views),
UK (200 views), and Japan (100 views), our metric is:

(0.5 + 0.2)d(us, uk) + (0.2 + 0.1)d(uk, jp) + (0.1 + 0.5)d(jp, us)
(0.5 + 0.2) + (0.2 + 0.1) + (0.1 + 0.5)

,

In our dataset, we observed this average distance to be 26%
less for unpopular videos (∼5, 200 km) than for popular ones
(∼7, 000 km).
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Figure 3: Spearman correlation coefficient between
a video’s geographic distribution of views and that
of its related videos, as a function of their rank in
the list of related videos

2.3 Geographic vs. Content Locality
To explore how the top n countries of a video might be

predicted, we now turn to the relation between content lo-
cality and geographic locality. For each video, we compute
the Spearman correlation coefficient between its sorted VSV
(i.e., the list of all countries sorted by decreasing number of
views) and that of each of its related videos, and plot it as

function of the rank in the list of related videos (see Fig. 3).
The Spearman coefficient captures the correlation between
the rank of countries in two sorted VSVs, taking into ac-
count the permutations of ranks. The closer the absolute
value of the coefficient to 1, the more correlated the lists. In
our dataset, this correlation is relatively high for all related
videos (in 0.64-0.68, Fig. 3) and decreases with the rank.
This means that a video’s VSV can be inferred from that of
its related videos, and that the first related videos are the
best candidates.
In order to see if the above finding can be translated into

an efficient mechanism for proactively placing video replicas,
we conduct the following experiment. For a given video V
and its first related Rel(V )[1], we compute for a given num-
berm of replicas, the percentage of views covered by placing
them on the first m countries of the VSV of Rel(V )[1], nor-
malized by the percentage of views covered by placing the
replicas on the firstm countries of the actual VSV of V . The
later corresponds to an ideal case where the placement mech-
anism knows in advance where the views will come from.
The results are presented in Fig. 4: even for a small number
of replicas, this simple prediction mechanism can accurately
follow the actual geographic distribution of the views of a
given video. For instance, 85% of the views covered by the
first 5 countries of V ’s VSV are covered by the first 5 coun-
tries of Rel(V )[1]’s VSV.
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Figure 4: Views covered by placing replicas of a
video V in top-countries of the VSV of V ’s first re-
lated video, normalized by the number of views cov-
ered when using V ’s actual VSV.

In summary, unpopular videos, which represent a large
proportion of the YouTube dataset, have (i) most of their
views originating from a few countries which (ii) spread in
a limited region, thus foreseeing a great potential for ge-
ographic locality-aware data placement. Furthermore, the
geographic distribution of views of a video is strongly corre-
lated with that of its related videos. This implies that the
geographic distribution of views of a video can be predicted,
but most importantly, it makes the case for a placement
mechanism in which videos close in the content graph are
stored geographically close to one another.

3. DTUBE
Building on the insight from the previous section, we pro-

pose DTube, a proactive placement mechanism that places
videos close to their future requests, extracting geographical
patterns from the content graph.
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Figure 5: Overview of DTube’s placement strategy.

3.1 System model
We consider a UGC sharing system that uses

geographically-distributed nodes as its storage infras-
tructure. Our findings hold for both residential gateways [7,
11], and peer-assisted CDN systems [8].

DTube assumes the existence of a catalog service that
holds, for each video, the location of its replicas, its current
View Source Vector and its meta-data including the list of
its related videos. This service is used to retrieve up-to-date
meta-data about videos. We further assume the existence
of a recommendation algorithm that dynamically computes
videos’ lists of related videos and updates the catalog ac-
cordingly.

3.2 Video placement
The key steps of DTube’s placement mechanism are de-

picted in Fig. 5. When a new video V is uploaded to the sys-
tem (a), YouTube’s recommendation mechanism computes
the related videos list, thus making it part of the content
graph (c). DTube then estimates V ’s main future view
sources, ̂VSV(V ) (d) which is later used to place replicas
of V on � storage nodes. � is a system parameter called
replication factor and corresponds to the minimum number
of replicas a video must have to ensure durability in case of
storage node failure. In Section 2 we showed that the higher
the position of a video in V ’s related videos list, the higher
the correlation between its V SV and the one of V . Applying
this finding, we compute ̂VSV(V ) = VSV(Rel(V )[1]) (d) by
obtaining the VSV of its first related video (b) from the cat-
alog (d). One may envision a more sophisticated prediction
strategy that combines the VSV of several related videos.
Yet simple, our strategy performs well (see Section 4).
Each of the � replicas of V attracts a replica of each

of V ’s related videos Rel(V ) (e). We call this bundle of
|Rel(V )|+1 videos a package, with V being a primary replica
and the others, secondary replicas. This package mechanism
creates a coupling between content and geographic locality,
as related videos are placed on the same node. In addition, a
coupling is established between a video’s number of replicas
(primary and secondary) and its in-degree in the content
graph. This is a desirable property as it is shown in [18]

that there is a strong correlation between the view count of
a video and those of its top referrer videos, i.e., its in-degree.
Each package of a video V is placed on a node in each

of the � first countries of ̂VSV(V ) (d) as most views are
expected to come from these countries. To minimize transfer
and storage costs, only replicas of the videos that do not
exist in the country are transferred. In addition, to evenly
balance the load among the nodes in the system, for a node
to be eligible to store a new package, the number of videos it
already stores must be lower than the average storage load
over all nodes (this value can be computed with a standard
averaging gossip protocol). Finally, copies of the package
are transferred (i) to the selected nodes (g).

4. EVALUATION
In this section, we evaluate through simulations the per-

formance of DTube with respect to the geographic distance
between users and the storage nodes serving the videos and
compare it against a system that employs reactive caching
on top of persistent storage.

4.1 Evaluation Setup
We distribute the storage nodes in countries according

to the proportion of views originating from this country as
observed in our dataset (see Tab. 1). We set the number of
storage nodes to 10,000 and we consider the videos from our
dataset, with the corresponding popularity and the content-
graph induced by the related video feature.
We generate synthetic view traffic based on individual

users’ behavior, using the model proposed in [18], with the
popularity values from our dataset: We consider a number
of users (50, 000 in our experiments), distributed across all
countries as storage nodes according to the geographic dis-
tribution of views observed in our dataset (see Tab. 1). The
number of videos a user watches during a session is picked
at random, with an average value of 10. The first video
V a user watches is selected from the whole set of videos
according to the probability of this video being watched in
her country, i.e., the number of views for V originating from
her country divided by the total number of views originating
from her country (for all videos). Each subsequent video she
watches is selected among the related videos of the previous
video, excluding already viewed ones. The probability of a
video being picked is set to be inversely proportional to the
video’s rank in V ’s list of related videos, following a Zipf
distribution.

4.2 DTube and Alternatives
We compare DTube against standard caching. For

DTube, we use the placement algorithm as described in
Section 3. In addition, we implement and evaluate several
variations of DTube to identify the performance gains con-
veyed by the different mechanisms involved, namely without
the use of packages (Partial DTube) and using the actual
VSV of the video (Ideal DTube) instead of that of its first
related video. Ideal DTube can be thought of as an up-
per bound on DTube’s performance and reflects how the
efficiency of the VSV prediction mechanism (evaluated in
Section 2) translates in practice with respect to the viewer
experience. In our experiments, videos are served from the
node closest to the user.
As for caching, we consider a storage infrastructure com-

posed of persistent storage nodes (e.g., YouTube servers)
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Figure 6: Proportion of out-country requests with
DTube and caching.

and CDN caching nodes (e.g., Akamai servers). The per-
sistent storage nodes hold a complete copy of the YouTube
dataset, thus ensuring durability. Videos are only served by
CDN nodes, the caches of which are populated in a reactive
fashion, based on the users’ view traffic: Consider a user lo-
cated in a given country who requests a given video. If the
video is stored on a CDN node in this country, it is served
from this node to the user. If not, the video is first fetched
from a persistent node to a random CDN node (with free
storage space) in the country and then served. If none of the
CDN nodes in the country has sufficient free storage space
to store the video, we apply LRU cache replacement: the
least recently used video is replaced by the new entry.

4.3 Evaluation Results
We evaluate and compare the performance of all place-

ment strategies with respect to the geographic distance be-
tween the user and the node serving the video. More specif-
ically, we look at (i) the out-country hit-rate, that is the
proportion of requests that are served from a storage node
(i.e., a gateway or a CDN node) located in a different coun-
try than the user, and (ii) the distance between the user
and the storage node when the video is served from a dif-
ferent country. We assume that networking infrastructure
is usually well integrated in each country, thus in-country
hits are likely to encounter better network quality and that
geographic distance is a good indicator of transfer latency.
In order for DTube and caching to be comparable, we use

the same storage space in both. More specifically, for a given
replication factor �, we first run simulations with DTube.
Because it makes use of packages, the average number of
replicas R per video is larger than �. We therefore run
simulations with caching, for a system composed of � per-
sistent storage nodes and CDN nodes with a storage space of
(R−�)×(total number of videos)/(number of CDN nodes),
which corresponds to the same total storage space as for
DTube. We evaluate our metrics at steady state, i.e., when
all the caches of all CDN nodes are full.
Fig. 6 depicts the out-country hit-rate for the different

versions of DTube and caching. It can be observed that for
larger values of the average number of replicas per videos,
DTube outperforms the caching-based solution. For in-
stance, for an average number of 30 replicas per video,
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DTube decreases the proportion of out-country request
from 0.25 to 0.21, that is a 16% improvement. By compar-
ing DTube to Ideal DTube and Partial DTube, we observe
that (i) the use of packages accounts for a significant part of
DTube’s performance, (ii) the estimation of a video’s VSV
from that of its related videos (i.e., based on the content
graph) incurs only a little decrease in performance compared
to an omniscient solution in which the actual VSV is known
in advance. This illustrates the synergy between our geo-
graphic prediction and the use of packages. Similar results
can be observed in Fig. 7, which depicts the average distance
between the user and the storage node serving the video for
out-country requests. For instance, with an average of 30
replicas per videos, DTube reduces the average distance by
29%. Note that the distance remains relatively high as the
distance to the closest country can be large, e.g., ∼2000km
between the US and Canada which are the two main sources
of views.

5. RELATED WORK
YouTube has generated numerous studies on user behav-

ior and video characteristics: Cha et al. propose to use a
video’s history to predict its future demand [3], while Zhou
et al. in [18] study the impact of a video’s position in the
content graph on its popularity. In [2], Brodersen et al.
analyze the correlation between popularity and geographi-
cal locality. Finally, Torres et al. [16] evaluated YouTube’s
CDN performance.
In [11], the authors show the feasibility of building a sys-

tem like YouTube, using residential gateways. The concept
of CDNs composed of gateways has been investigated for de-
centralized video storage and delivery in [7]. Peer-assisted
CDNs also received a great deal of attention lately [8, 4,
17]. However, none of the proposed systems leverages the
content graph.
In [14], monitoring social cascades in online social net-

works is proposed to predict a video’s future view pattern.
Kangasharju et al. [9] investigate optimal placement strate-
gies in P2P content networks to maximize availability in
content communities. Tan et al. [15] investigate the same
problem for VoD but focus on upload bandwidth.
Volley [1] leverages the content graph to place the data

so that the perceived latency is decreased. But contrary to
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DTube, there is only one copy of each content item as data
durability is not considered. NetTube [5] is a peer-assisted
VoD system that leverages the content graph of UGC videos
through social-aware pre-fetching and overlays to optimize
swarming and decrease start-up delays. Finally, SPAR [12]
is a social partitioning and replication system that achieves
one-hop replication of user profiles in social networks.

6. CONCLUSION
In this paper we have highlighted the correlation between

content locality and geographic locality in User Generated
Content (UGC). More precisely, we have shown using a
large YouTube dataset that related videos present similar
geographic viewing patterns and that, except for extremely
popular videos, video views are concentrated in a limited
number of countries.
This coupling between content and geographic locality in

UGC system has led us to propose DTube, a decentralized
storage infrastructure which proactively places content close
to their future requests leveraging on the videos’ positions
in the content graph.
In the future, we plan to investigate the serving part of our

UGC system: more specifically, how to adapt the number
of replicas and bandwidth allocation to the popularity of
the videos and how to efficiently prefetch and serve videos
from multiple storage nodes. We also plan to consider how
caching and geographic view prediction can be combined,
e.g., by exploring how predicted views might be used in the
cache’s replacement strategy.
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