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Abstract

While analyses of cell populations provide averaged information about viral
infections, single-cell analyses offer individual consideration, thereby reveal-
ing a broad spectrum of diversity as well as identifying extreme phenotypes
that can be exploited to further understand the complex virus-host inter-
play. Single-cell technologies applied in the context of human immunode-
ficiency virus (HIV) infection proved to be valuable tools to help uncover
specific biomarkers as well as novel candidate players in virus-host interac-
tions. This review aims at providing an updated overview of single-cell anal-
yses in the field of HIV and acquired knowledge on HIV infection, latency,
and host response. Although HIV is a pioneering example, similar single-
cell approaches have proven to be valuable for elucidating the behavior and
virus-host interplay in a range of other viruses.
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1. INTRODUCTION

Analyses of populations are very useful as they provide a general picture of the infectiousness
of a virus or the features of a viral disease, including clinical signs and progression. However,
population analyses average multiple individual infection outcomes that vary according to host
genetic, environmental, and viral factors. Indeed, individuals are genetically unique, displaying
specific responses to viral infections, from resistance to susceptibility toward acquisition, from
low to high viremia, from long-term nonprogression to rapid progression of the disease, or from
absence of control to elite immune control (Figure 1a). Extreme phenotypes are thus usually
masked in the average bulk population. In order to understand the genetic bases of these variable
individual responses toward human immunodeficiency virus (HIV) infection, the past two decades
have included a focus on genome-wide association studies highlighting a major role of human
leukocyte antigens (HLAs) and C-C chemokine receptor type 5 (CCR5) loci (1–4). These studies
allowed researchers to identify specific gene variants involved in HIV pathogenesis at large and
explain a maximum of ∼30% of individual variation (5).

Similarly, individual cells also present variability toward HIV infection, despite mostly identi-
cal genetic content, except for HIV genome insertion, point mutations, or T cell receptor rear-
rangement (Figure 1b). Therefore, infection success depends mostly on cell composition (with
the spectrum of expressed gene products providing a favorable or restrictive environment for virus
replication) and on the environment (extracellular milieu and interactions with neighboring cells).
Improvement of technologies in the past decade has allowed for isolation and analysis at single-
cell resolution, thereby providing tools to explore cell heterogeneity and identify gene products
and cell biomarkers involved in specific HIV-related phenotypes (6). In this review we summarize
the application of a wide range of such single-cell approaches and discuss examples of the integra-
tion of complementary results from different approaches. These results both illustrate powerful
advances in understanding HIV replication and host interactions, and provide a useful example of
the dramatic potential of emerging similar single-cell studies for other viruses.

2. SINGLE-CELL TECHNOLOGIES

Analyses at the single-cell level have traditionally used technologies with poor resolution, such as
cell imaging or flow cytometry, providing limited information about the cell. The identification
of the human genome sequence in the third millennium opened new perspectives to understand
human and cell biology in a more comprehensive and genome-wide manner (7). Tang et al. (8)
marked the second milestone and opened the way of single-cell technologies by publishing the
first transcriptome-wide analysis of an individual cell by sequencing messenger RNAs (mRNAs)
from a single mouse blastomer [single-cell RNA sequencing (scRNA-Seq)]. This analysis was the
first step toward gathering a broader and more complete picture of the cell.

The study of individual cells is mainly a two-step process, requiring single-cell isolation on
one hand and analysis of that cell at the molecular level on the other hand; these steps are briefly
described here.

2.1. Single-Cell Isolation

The single-cell analysis workflow starts with sorting and isolating individual cells, which can
be achieved using multiple approaches that diverge mainly in throughput and automation level
(9–12). Limiting dilution of a cell suspension can be performed with conventional lab equipment;
it is cost effective but labor intensive, resulting in a low cell throughput. Micromanipulation
for manual cell picking or laser microdissection requires some specific equipment and results
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Figure 1

Exploring living heterogeneity as a tool to identify virus-host interactions. (a) Individuals are not equal toward HIV acquisition and
HIV disease progression. Some people are resistant (gray), while other people are infected but are able to control viremia to
undetectable or low levels, and hence they do not progress or progress slowly to disease (light red). In contrast, some people progress
very rapidly to disease onset (red). Analysis of individual genotypes and correlation with a specific phenotype such as the spVL allow for
GWASs and identification of gene variants that affect the phenotype outcome, either positively or negatively. (b) Individual cells are not
equal toward HIV infection. Although almost genetically identical, cells from the same donor are not equally permissive to HIV
infection, ranging from resistant cells (gray) to various levels of productive infection (green shades). Analysis of individual cellular content
(RNA, protein, etc.) and correlation with a specific phenotype such as viral production allow for the identification of cellular proteins
that affect the phenotypic outcome. Abbreviations: DE, differential expression; GWAS, genome-wide association study; HIV, human
immunodeficiency virus; SNP rs, single-nucleotide polymorphism reference; spVL, set-point viral load.
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usually in a low cell throughput. Fluorescence-activated cell sorting (FACS) allows single-cell
sorting by flow cytometry using fluorescent reporters or antibody-based recognition of specific
proteins. This approach can be coupled with automated single-cell dispensing, thereby increasing
the cell throughput recovery. Although FACS can sort cells according to up to 18 colorimetric
parameters, it requires pressurization to handle cells, which can induce damage. Novel devices
have been recently developed, allowing automated single-cell sorting and dispensing based
on a few parameters only but with lower pressure to minimize cell perturbation. Progress in
microfluidics further allowed the development of well-based integrated circuits or droplet-based
technologies to physically separate or encapsulate single cells, allowing for full automation and
higher throughput. Further progress in nano- and picofluidics, combined with cell indexing
and barcoding, further pushed forward the number of individual cells that can be isolated and
analyzed. Thus, single-cell isolation techniques improved in the past decade, starting from one
single cell isolated manually in 2009 to up to 100,000 cells isolated mechanically today (8, 11).

2.2. Single-Cell Analysis

Recent advances in molecular biology, such as sequencing technologies, allowed the development
of methods supporting the study and characterization of individual cells. These methods include
profiling of the genome (13–15), epigenome (16–18), transcriptome (6, 19–25), or proteome (26–
28), and they can be used either alone or in combination (e.g., coupled analysis of RNA sequences
with epigenetic modifications or protein abundance) (29–33) (Figure 2).

Although ideally single-cell analysis points toward integrated multi-omic analysis to gather the
most complete picture of the single cell, the technology that is currently mostly used focuses on
whole transcriptome analysis, as it can benefit from powerful high-throughput sequencing tech-
nologies and thus provide an extensive view of the RNA cell content (6, 11, 20, 29, 34, 35). In order
to perform scRNA-Seq, the first barrier to overcome is the initial RNA material input. Indeed, a
single cell contains between 1 and 50 pg RNA according to the cell type, which is not enough to
perform RNA-Seq. To overcome this limitation, the RNA is first converted into complementary
DNA (cDNA) and amplified before preparing sequencing libraries. Multiple methods exist for
reverse transcription and cDNA library preparation, which differ mostly by three criteria: (a) full-
length or 3′-end enrichment of RNA molecules such as switching mechanism at 5′ end of RNA
template sequencing (Smart-Seq) and droplet-sequencing (Drop-Seq), respectively; (b) insertion
or not of a unique molecular identifier (UMI) and a cell barcode; and (c) linear or exponential
cDNA amplification followed by RNA-based library preparation or by tagmentation (reviewed in
11, 20, 21).

In a comparative study,Ziegenhain et al. (20) showed that full-lengthmethods, i.e., covering the
whole transcript but without UMIs or barcode, were more sensitive than multiplexed 3′-counting
methods with UMIs. Indeed, using a cutoff of 1 million reads per cell, full-length based RNA-Seq
allowed a median detection ranging from 7,572 to 9,138 genes, while the median detection of
genes was generally lower for 3′-end based RNA-Seq samples, from 4,763 to 7,906 genes. Fur-
thermore, pool analysis of 65 individual cells allowed detecting a total of ∼17,000 to ∼21,000
genes, similar to bulk RNA-Seq detection. Besides sensitivity, full-length methods are likely to be
more appropriate for isoform analyses, alternative splicing, and single nucleotide polymorphism
identification on a small size sample, while tag-based methods may be more adapted for gene ex-
pression quantification in a complex cell sample by allowing multiplexing and analysis of a larger
number of cells at the same time.

Variability of gene expression across cells is very high, as 87% of genes are detected in only
1–2 single cells with a low level of expression (20). This single-cell transcriptome diversity has

336 Brandt • Cristinelli • Ciuffi

A
nn

u.
 R

ev
. V

ir
ol

. 2
02

0.
7:

33
3-

35
0.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

L
au

sa
nn

e 
on

 0
5/

17
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Nuclear
export

Transcription

RNA
modifications

Protein
modifications

Translation

Genome

Epigenome

Transcriptome

Epitranscriptome

Proteome

Modified proteome

scDNA-Seq, SGS, SNS, SCI-Seq

scATAC-Seq, scBS-Seq, snmC-Seq,
sci-MET, scRRBS, scChIP-Seq, 
scHI-C-Seq, scNOMe-Seq

scRNA-Seq, FISH-Flow, scRT-qPCR

NA

CyTOF, CITE-Seq, SCoPE-MS

Translatome

Nucleus

SCoPE-MS

Cytoplasm

NA

Figure 2

Single-cell technologies. Multiple single-cell methods have been developed in order to interrogate the various layers of the cell. The
single-cell genome can be analyzed by single-cell DNA sequencing (scDNA-Seq), single-genome sequencing (SGS), short nascent
DNA strand sequencing (SNS), and single-cell combinatorial indexed sequencing (SCI-Seq). The single-cell epigenome can be
analyzed by single-cell assay for transposase-accessible chromatin followed by sequencing (scATAC-Seq), single-cell bisulfite
conversion sequencing (scBS-Seq), single nucleus methylcytosine sequencing (snmC-Seq), single-cell combinatorial indexing for
methylation analysis (sci-MET), single-cell reduced-representation bisulfite sequencing (scRRBS), single-cell chromatin immune-
precipitation sequencing (scChIP-Seq), single-cell Hi-C sequencing (scHI-C-Seq), and single-cell nucleosome occupancy and
methylome sequencing (scNOMe-Seq). The single-cell transcriptome can be explored by single-cell RNA sequencing (scRNA-Seq),
fluorescence in situ hybridization coupled with flow cytometry (FISH-Flow), and single-cell reverse transcription followed by
quantitative PCR (scRT-qPCR). Single-cell technologies to explore the epitranscriptome and translatome have not been developed yet.
The study of the proteome at single-cell resolution can be performed by cytometry time-of-flight (CyTOF) and cellular indexing of
transcriptomes and epitopes by sequencing (CITE-Seq). Single-cell proteomes and modified proteomes can be analyzed by single-cell
proteomics by mass spectrometry (SCoPE-MS). Abbreviation: NA, not applicable.

two main origins: biological and technical. Cellular variability is due to variations in cell-specific
expression programs (cell lineage, cell state) and stochastic gene expression. Technical variability
is instead due to the incomplete capture of all cellular mRNAs and sequencing depth. Thus, the
major challenge of scRNA-Seq is data analysis aimed at minimizing the technical variability, start-
ing from barcode processing, read mapping to a genome or transcriptome reference, raw count
matrix generation (gene/UMI counting), preprocessing, normalization, and differential expres-
sion analysis (36–38). In a recent study, Vieth et al. (37) evaluated multiple scRNA-Seq pipelines
and identified library preparation protocols and normalization as having the greatest effect on the
analysis quality. They further recommended analyzing UMI-containing scRNA-Seq data using
genome mapping with GENCODE annotation and the splice-aware aligner STAR, preprocess-
ing for gene dropout using SAVER imputation, normalization benefiting from spike-in inclusion
and using scran with prior clustering, and differential expression testing using limma-trend (37).
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Finally, scRNA-Seq data can be visualized in a two-dimensional plot upon dimensionality re-
duction, ranging from principal component analysis (PCA) plots for low complexity samples, to
t-distributed stochastic neighbor embedding (t-SNE) plots for more complex samples, and more
recently to the preferred and more comprehensive uniform manifold approximation and projec-
tion (UMAP) plots (38).

2.3. Single-Cell Limitations

Single-cell analyses offer ways to explore cellular heterogeneity per se, as well as cellular hetero-
geneity in response to a viral infection, providing unprecedented opportunities to identify novel
players in the virus-host interplay (6). However, it is important to keep in mind the limitations
associated with these technologies: technological restrictions, phenotype association, and possible
time-lapse between the single-cell analysis and the phenotype.

Indeed, single-cell technologies are powerful but suffer from multiple technical constraints,
such as the manipulation leading to single-cell isolation, the one-shot analysis of a number of
limited molecules or parameters, and the technical sensitivity. Exploring the cell-omic content
reveals cell heterogeneity but is poorly informative if it is not related to a specific phenotype
for the analysis, which needs to be identified and measured as accurately as possible. Finally, it is
important to consider the possible temporal gap between the time at which the single-cell analysis
is performed and the time at which the associated phenotype is observed, as cell-omic content
may change. Indeed, it is difficult to characterize the transcriptomic features of a permissive cell
at the time of infection before knowing if the cell is indeed truly permissive and thus infected, for
instance.

3. HETEROGENEOUS CELLS PROVIDE HETEROGENEOUS
RESPONSES TO HIV

To date, in the field of HIV, single-cell technologies have been mostly used to identify specific
gene signatures in the following topics: the cell permissiveness to HIV infection, the latent HIV-
infected cell and its reactivation, and the control of HIV infection by immune cells (Figure 3). An
overview of the main findings is summarized here.

3.1. HIV Permissiveness

Infection outcome is determined by the cell content and results from a balance between cellular
players promoting or restricting HIV progression throughout the cell. To successfully replicate,
HIV encodes 15 proteins, each of which is able to interact with a plethora of cellular proteins (39,
40). On one hand, HIV hijacks cellular factors, termed HIV dependency factors (HDFs), to favor
its own replication (41). On the other hand, the cell possesses innate immune defenses, with HIV
restriction factors and HIV inhibitory factors (HIFs), which are however often counteracted by
HIV proteins (42–45). The identification of HDFs and HIFs informs on HIV life cycle but also
provides novel opportunities for targeted antiviral development. Exploiting the cell heterogeneity
toward HIV infection should help researchers gain more insights into HIV replication and the
role of novel cellular factors.

CD4+ T cell permissiveness to HIV infection can be observed using diverse approaches.
Methodologies based on time-lapsemicroscopy,FACS, three-dimensional immuno-DNAfluores-
cence, and other visualization techniques provide many examples of cellular heterogeneity toward
HIV infection, informing on many viral and kinetic features, such as time for early and late gene
expression, nuclear location of proviruses, and viral RNA transcription, but without characterizing
the permissive cell per se (46–56).
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Figure 3

Timeline of human immunodeficiency virus (HIV) single-cell studies. In recent years, the number of studies using single-cell
technologies has exponentially increased in the field of HIV, improving the knowledge of HIV life cycle and permissiveness (green),
HIV latency and reservoir (red), and host immune response to HIV (blue).

Attempts at characterizing permissiveness were recently achieved by two studies using two dif-
ferent approaches (Figure 4). In a first study, Cavrois et al. (57) used mass cytometry or cytometry
by time-of-flight (CyTOF) to investigate tonsillar CD4+ T cell permissiveness using 38 parame-
ters, aimed at identifying CD4+ T cell subsets, activation status, and some receptors. They used a
beta-lactamase (BlaM)-Vpr HIV virus encoding the murine heat stable antigen (HSA) as late re-
porter. The incorporation of BlaM-Vpr protein in the virion allows the rapid detection, within a
2-h time window, of viral entry upon virus fusion at the cell membrane, via intracellular cleavage of
a fluorescent BlaM substrate, and subsequent sorting by FACS beforeCyTOF analysis.This analy-
sis showed thatHIV virions did not enter naïve CD4+ Tcells (CD4+CD45RA+CD45RO−), likely
due to lowCCR5 expression, but entered all memory CD4+ T cells (CD4+CD45RA−CD45RO+)
efficiently. In particular, virion fusion occurred more efficiently in Th2-like, Th17-like, and
T regulatory cells. Cell permissiveness was then assessed by looking at virus-encoding HSA after
4 days of infection as a surrogate of successful viral expression. Although viruses entered all mem-
ory CD4+ T cells, Th17-like (CCR6+CCR4+) and Tfh (PD1+CXCR5+) cells were more per-
missive to HIV replication and were further characterized by expression of CD69, CD38, PD1,
CD57, and low CD127. In the second study, Rato et al. (58) used full-length scRNA-Seq to profile
166 CD4+ T cells from two donors displaying opposite permissiveness phenotypes, correlating
the transcriptome to cell surface protein expression and permissiveness. Their analysis identified
highly permissive cells as expressing high levels of CD25, CD298, CD63, and CD317 and that
were characterized at the transcriptome level by downregulation of innate immunity components
such as genes involved in the type I interferon (IFN) pathway and certain other restriction factors.
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Figure 4

Determinants of human immunodeficiency virus (HIV) permissiveness. (a) Naïve CD4+ T cells are mostly nonpermissive, mainly due
to low C-C chemokine receptor (CCR) 5 expression. (b) In contrast, memory CD4+ T cells are more permissive to HIV infection.
However, Th17-like (CCR6+CCR4+) and Tfh (PD1+CXCR5+) cells expressing some activation markers (CD69, CD38), CD57, and
low levels of CD127 (the interleukin-7 receptor) were shown to be the most permissive. Using another approach, CD4+ T cells
expressing high levels of CD25, CD298, CD63, and CD317 cell surface molecules corresponded to cells with impaired type I interferon
(IFN) response and reduced expression of some HIV restriction factors, consistent with a permissive phenotype to HIV infection.

These studies are complementary and point toward an active cellular state and impaired immune
response factors as determinants of HIV permissiveness.

3.2. HIV Pathogenicity: Latency Versus Reactivated or Productive
Viral Expression

Although combined antiretroviral therapy (ART) allows efficiently stoppingHIV disease progres-
sion, bringing plasma viremia to undetectable levels, it cannot completely get rid of the virus (59,
60). Indeed, upon ART cessation, the virus rebounds typically within 2–3 weeks, indicating the
presence of a persistent viral reservoir (59–63). This reservoir is established very quickly upon
virus transmission, within the first 2 to 3 days, and decays very slowly, thereby requiring life-long
treatment for HIV+ individuals and representing the major obstacle to an HIV cure (64–66). To
date, the viral reservoir is characterized by the persistence of long-lived infected cells that contain
an integrated copy of the viral genome and that are not eliminated, either because they reside
in anatomical sanctuaries or because they are latent, i.e., with reduced viral protein expression
and replication in these cells (67–70). Understanding all the features of this latent reservoir is
thus considered to be essential in the development of targeted strategies aiming at its eradication
(67–70).

The latent reservoir is very complex and heterogeneous as (a) the infected cell subset varies
and thus differs in its transcriptomic and proteomic cell content, including naïve CD4+ T cells,
memory CD4+ T cells (such as central or memory), or non-T cells (such as macrophages); (b) the
cell state can vary, from resting to active or cycling status; and (c) the integration site of the HIV
genome differs from one cell to another. This variability, in turn, affects the reactivation potential
of latently infected cells, i.e., the potential for efficient induction of HIV gene product expression.
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Relevant features of latently infected CD4+ T cells. Human immunodeficiency virus (HIV)-infected CD4+ T cells can be in either a
productive or latent state. The cell fate can be influenced by three major contributors: (a) the expression level of the early viral Tat
protein (purple arrows) that either can be insufficient to boost viral transcription (latent cell) or can successfully trigger the late phase of
gene expression (green arrows) and allow viral particle production, (b) the cellular state of the cell can provide different cellular
environments that can support and promote viral particle production or not, and (c) the provirus genomic context that can affect viral
gene expression. Proviral insertions located close to super enhancers and certain other regulatory elements are more likely to be
transcriptionally active. Abbreviation: CCR, C-C chemokine receptor.

Single-cell studies are thus instrumental to explore the heterogeneity of HIV latency establish-
ment and reactivation. In particular, three aspects of virus-host interaction can be investigated
with single-cell technologies: (a) host cell environment and genetic makeup, (b) the integration
site location and nuclear location, and (c) viral gene expression (Figure 5).

Single-cell transcriptomic analyses were used to profile latent cells, characterizing cell het-
erogeneity and the associated transcriptional environment (71–76). Bradley et al. (72) used a pri-
mary cell latency model and analyzed a total of 4,206 latent CD4+ T cells from three donors.
They compared cellular transcriptomes of GFPhigh vRNAhigh cells versus GFPneg vRNAlow bona
fide latent cells and found 89 upregulated transcripts and 42 downregulated transcripts. Genes
upregulated in the GFPhigh vRNAhigh productive population were consistent with an activated
T cell state (CD25,OX40L,GITR) while the GFPneg vRNAlow population was enriched in mark-
ers consistent with a naïve (Tn) or central memory (Tcm) phenotype (CCR7, CXCR4, CD62L,
CD127).

One strategy to overcome latency consists of reactivating virus expression to purge the viral
reservoir. Latency reversal agents (LRAs) can reactivate only a limited fraction of latently infected
cells, confirming some degree of heterogeneity in the latent cell population. Golumbeanu et al.
(74) explored transcriptional heterogeneity of 224 latently infected cells upon different reactiva-
tion conditions using scRNA-Seq in a primary cell latency model. They identified a 134-gene
signature characterizing the inducible latent cell, showing enrichment for metabolism. Consis-
tent with this, Bohn-Wippert et al. (71) and Cohn et al. (73) showed that cell size and cellular
metabolic activity positively correlated with reactivation potential of latently infected cells, e.g.,
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large and metabolically active cells were more prone to reactivation (71, 72, 74). Furthermore,
scRNA-Seq analysis of latent or phytohaemagglutinin-reactivated CD4+ T cells isolated from
HIV-1+ blood donors revealed enrichment for gene ontology immune system functions (73).

Single-cell flow-based and single-cell RT-qPCR techniques were extensively used to explore
correlation betweenT cell subsets and latency reactivation potential (77–86).Overall, these studies
suggested that cells displaying an effector memory (Tem) or transition memory (Ttm) phenotype
were a niche for transcriptional and translational competent reservoirs (81, 87–89). Furthermore,
LRA-mediatedHIV reactivation was shown to be heterogeneous, acting by either increasing tran-
scription from active cells or increasing the number of transcriptionally active cells (89). An in-
depth investigation of multiple LRAs and their ability to reactivate latently infected cells isolated
fromART-treatedHIV+ individuals showed that only 2.6% ofHIV-1 latent proviruses were com-
pletely reactivated upon LRA stimulation (81). Moreover, they showed that different drugs had
different effects according to the T cell subset, i.e., Panobinostat successfully reactivated HIV in
Tcm cells only while Romidepsin affected all memory subsets.

Nevertheless, all these studies pointed out a similar observation: Only a fraction of cells were
efficiently reactivated, regardless of the T cell subset or cellular environment, indicating that other
factors, such as proviral DNA integrity, integration site, or stochasticity, likely also contribute to
latency establishment.

Several studies took advantage of full-length single-genome sequences to explore the implica-
tion of provirus DNA and its integration site location in latency (90–92). These studies described
that the majority of latently infected cells contain only one provirus and that HIV proviruses iden-
tified in different cell subsets and in different anatomical sites were genetically similar, potentially
suggesting clonality from a common progenitor ancestor. Furthermore,Wiegand et al. (92) inves-
tigated the proportion of transcriptionally active cells in 3 ART-treated HIV+ individuals. They
performed cell-associated HIV RNA and DNA single-genome sequencing (CARD-SGS) and
found out that 7% of proviruses expressed HIV RNA, ranging from 1 to 62 HIV molecules/cell
(median of 1).

Integration site location, considered at the level of both chromosomal context and nuclear
topology, can contribute to HIV latency (93–95). Chen et al. (93) used a single virus tracking tech-
nique (Barcoded HIV ensembles, or B-HIVE) to show that integration sites close to enhancers
resulted in higher provirus expression levels. Although comparison of HIV integration site loca-
tion between latently and productively infected cells did not reveal any difference, distance from
enhancers was on average two times further for latent proviruses, indicating an effect of integra-
tion site location on provirus expression (93). These findings were confirmed by Einkauf et al.
(95), who used Matched Integration Site and Proviral Sequencing (MIP-Seq) to investigate inte-
gration site location and proviral sequence at sc level in 3 ART-treated patients. They observed
that intact proviruses were enriched in non-genic regions and found in the opposite orientation
with respect to host genes.

HIV genome position within the nucleus can also affect gene expression. Indeed, HIV
proviruses colocalized within nuclear bodies in latently infected cells, and such colocalization was
lost upon LRA reactivation (94).

Viral transcription, hence viral reactivation, is highly dependent on the HIV transactivator
of transcription, Tat. Indeed, accumulation of Tat boosts viral transcription and favors viral
production.

Studies of the efficiency of viral expression benefited from fluorescence reporter-based single-
cell techniques, identifying two major determinants of latent or productive cell fate: (a) initial
determination of basal level of Tat expression due to stochasticity and Tat accumulation and
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(b) direct Tat-mediated effect on viral transcription (92, 96–98). In case of low Tat amounts, vi-
ral gene expression depends mainly on the cellular gene expression context. In contrast, high Tat
levels triggered a positive feedback loop where virus expression is maintained even in case of cel-
lular reversion to a resting stage, suggesting that the Tat feedback loop dictated HIV expression,
overcoming the cellular state influence (96, 98).

Altogether, Tat expression, host cell environment, and integration site location can all affect
viral gene expression to various degrees.

Latency has often been perceived as an evolutionary mistake; however, Rouzine et al. (99) used
advanced modeling strategies to show that latency gives an evolutionary advantage to lentiviruses
by facilitating the spread in target-cell-poor environment (i.e., mucosa) and increasing survival of
the virus.

3.3. Host Response to HIV: Immune Control from Immune Cells

As mentioned in Figure 1a, individuals do not respond equally toward HIV infection. This can
be due to differential CD4+ T cell susceptibility to HIV infection but also to differential immune
control capacity potentially involving a variety of immune cells, including CD8+ T cells, dendritic
cells (DCs), CD4+ T helper cells, and B cells (100, 101). Efficient immune response against viral
infection can be characterized by antiviral signaling molecules (IFNs, cytokines, or chemokines),
antibody production, and cytotoxic response. A minority of HIV+ individuals, named elite con-
trollers (ECs), are able to control HIV infection and preserve their immune functions. However,
HIV overtakes the immune response in most HIV+ individuals (normal/rapid progressors), lead-
ing to exhaustion and depletion of the immune system (102–111) (Figure 6).

Single-cell analysis of 96 subset-specific genes was performed on 1,440 individual CD8+ Tcm
cells isolated from controllers or ART-treated progressors and revealed opposite patterns of gene
expression (106).CD8+ Tcm cells isolated fromHIV controllers displayed overexpression of effec-
tor function genes (GZMB, GZK, CCL3, CCL3L1, XCL1), survival genes (CD69, KLRD1), CTL-
induced apoptosis genes (FASLG, TNF, TRAIL), and IFNB. Furthermore, these cells were able to
use energy sources (i.e., fatty acids) other than glucose. In contrast, CD8+ Tcm cells isolated from
ART-treated progressors displayed increased activation, increased exhaustion (LAG3) increased
glycolysis and dependence on glucose as the sole energy source, and increased expression of IFN-
stimulated genes (MX1, OAS1). Of note, glucose dependency can be inhibited upon IL-15 expo-
sure and downregulation of the REPIN-1 transcription factor, responsible for downregulation of
glucose transport.

Upon analysis of HIV-infected peripheral blood mononuclear cells from three ECs, a subset
of myeloid dendritic cells (mDCs) displaying an antiviral state was identified and further charac-
terized by scRNA-Seq (111). These antiviral mDCs were characterized by high expression of
PD-L1 and CD64, by the ability to stimulate IFNγ response, and by degranulation markers
(LAMP1/CD107a, TNFα) from autologous CD8+ T cells. This antiviral mDC profile can be
stimulated by TLR3 and poly:IC. Moreover, Coindre et al. (110) used CyTOF to characterize
monocytes and DCs from blood myeloid cells. They identified that specific classical dendritic cell
(cDC) clusters, expressing high levels of CD1c+, CD32b, and HLA-DR, can be associated with
elite control.

Chronic infection leads to immune cell exhaustion, resulting in functional defects and ex-
pression of inhibitory receptors, that can be investigated by CyTOF analysis (104). HIV-induced
CD8+ T cell exhaustion is characterized by the expression of inhibitory receptors, such as PD-1
and TIGIT. These cell surface receptors are increased in CD27+/CD45RA− effector memory
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Figure 6 (Figure appears on preceding page)

Host immune control of human immunodeficiency virus (HIV). Comparative single-cell analyses on immune cells derived from
noninfected individuals (gray), controller/nonprogressor HIV+ individuals (light red), and rapid/normal progressors (red). Single-cell
analyses were performed on only two sample subsets at a time, either noninfected individuals versus normal/rapid progressors or
controllers/nonprogressors versus normal/rapid progressors. Thus, the absence of a specific marker in a sample subset panel without
indication reflects a lack of available data or information in the literature. Immune cells isolated from noninfected individuals or HIV
controllers/nonprogressors displayed effective immune response, while cells isolated from rapid or normal progressors showed an
exhausted phenotype. Abbreviations: HLA, human leukocyte antigen; IFN, interferon; IgM/IgG, immunoglobulin M to
immunoglobulin G.

CD8+ T cells. In contrast, CD8+ T cell function is preserved in ECs and is associated with
inhibitory receptor downregulation, cytolytic molecule downregulation, and cytokine upregu-
lation, which are typical of a functional memory phenotype with a poor but potent cytotoxic
activity (105).

Most HIV pathogenesis studies focus on T cells, as they are the main targets of HIV.However,
despite not being infected by HIV, B cells’ function can be altered in the presence of HIV-infected
cells. Indeed, upon H1N1 vaccination, single-cell reverse transcription PCR highlighted an im-
munoglobulin G to immunoglobulin M production switch in HIV-infected individuals but not in
healthy donors (107). This impairment in antibody response is likely the result of the enhanced
IFN-I response, leading to B cell exhaustion. Thus, it is tempting to think that restoring B cell
function could partially contribute to antibody-mediated control of HIV infection.

4. CONCLUDING REMARKS AND PERSPECTIVES

Single-cell analyses provide the unprecedented opportunity to study one cell at a time, one layer
at a time, and one phenotype at a time. Further integrating additional layers using single-cell
multi-omics technologies should allow advancing one step forward to a more comprehensive
picture of the HIV-infected cell and of host immune control. The analysis of cell heterogeneity
towardHIV infection has the potential to identify novel cellular players affectingHIV replication,
either promoting or inhibiting it. In addition, analysis of host immune control should help un-
cover the molecular determinants leading to successful control. Thus, single-cell analyses should
provide further cues on HIV replication as well as pave the way for novel targeted therapeutic
interventions.

Moreover, these HIV studies provide useful and valuable models to be extended to other
viruses. Such single-cell studies are being pursued with a growing number of viruses for varied
purposes, especially in the realm of single-cell RNA sequencing (e.g., 112–115). The many ex-
amples outlined here for HIV show the rich potential for developing and fruitfully integrating
a broad array of diverse single-cell studies in order to fully characterize the replication and host
interactions of essentially all viruses and exploit these results to improve virus control.
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Vojtěch Pražák, Daven Vasishtan, Rene Rosch, Michael Grange,
Linda E. Franken, Lindsay A. Baker, and Kay Grünewald � � � � � � � � � � � � � � � � � � � � � � � � � � � � 239

The Hepatitis B Virus Envelope Proteins: Molecular Gymnastics
Throughout the Viral Life Cycle
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