$\frac{1}{2}$	Extracellular vesicles: major actors of heterogeneity in tau spreading among human tauopathies
1 2 3 4 5 6 7 8 9	Elodie Leroux ^{1†} , Romain Perbet ^{1†} , Raphaëlle Caillerez ¹ , Kevin Richetin ^{2,3,4} , Sarah Lieger ¹ , Jeanne Espourteille ² , Thomas Bouillet ¹ , Séverine Bégard ¹ , Clément Danis ¹ , Anne Loyens ¹ , Nicolas Toni ² , Nicole Déglon ^{3,4} , Vincent Deramecourt ¹ , Susanna Schraen-Maschke ¹ , Luc Buée ^{1*} and Morvane Colin ^{1*}
8	Short title: EVs in pathological tau propagation
10	1. Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, F-59000 Lille, France.
11	2. Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and
12	University of Lausanne, 1011- Lausanne, Switzerland
13	3. Lausanne University Hospital (CHUV) and University of Lausanne, Neuroscience Research Center (CRN),
14	Laboratory of Cellular and Molecular Neurotherapies, 1011 – Lausanne, Switzerland
15	4. Lausanne University Hospital (CHUV) and University of Lausanne, Department of Clinical Neuroscience
16	(DNC), Laboratory of Cellular and Molecular Neurotherapies, 1011 – Lausanne, Switzerland
17	
18	
19	
20	
21 22	†. Equal contributors
23	
24	
25	
26	
27	
28	
29 30	
31	
32	* Corresponding authors:
33	Drs M. Colin & L. Buée
34	Lille Neuroscience & Cognition, Inserm UMR-S 1172, 'Alzheimer & tauopathies'
35	Univ. Lille, Fac. de Médecine – pole recherche
36	Bâtiment Biserte, rue Polonovski
37	59045 Lille Cedex, France
38	Tel: 33-3-20 62 20 73, Fax: 33-2-20 53 85 62
39	M.C. (morvane.colin@inserm.fr, ORCID 0000-0003-0611-4167) and L.B. (luc.buee@inserm.fr, ORCID 0000-
40	0002-6261-4230)

4	1
4	I

42 Abstract-

Tauopathies are neurodegenerative diseases characterized by tau inclusions in brain cells. Seed-competent tau species have been suggested to spread from cell to cell in a stereotypical manner, indicating that this may involve a prion-like mechanism. Although the intercellular mechanisms of transfer are unclear, extracellular vesicles (EVs) could be potential shuttles. We assessed this in humans by preparing vesicles from fluids (Brain-derived enriched extracellular vesicles; BD-EVs). These latter were isolated from different brain regions in various tauopathies and their seeding potential was assessed in vitro and in vivo. We observed considerable heterogeneity among tauopathies and brain regions. The most striking evidence was coming mainly from Alzheimer's disease where the BD-EVs clearly contain pathological species that can induce tau lesions in vivo. The results support the hypothesis that BD-EVs, participate in the prion-like propagation of tau pathology among tauopathies, and there may be implications for diagnostic and therapeutic strategies. 59 68

72 Key words: biological fluids, exosomes, microvesicles, prion-like propagation, tauopathies, Alzheimer's disease

73 Introduction

74 Tau, a microtubule-associated protein,¹ aggregates into filaments in Alzheimer's disease (AD) and in other related 75 and heterogeneous diseases called tauopathies, which are characterized by the intracellular accumulation of 76 hyperphosphorylated tau.² An alternative splicing mechanism gives rise to six major isoforms of tau that coexist 77 in the human brain, which either have three or four repeated sequences of the microtubule-binding region (3R-tau and 4R-tau).³ In AD, tau protein principally aggregates into paired helical filaments (3R-tau and 4R-tau) within 78 79 the neurons, while in progressive supranuclear palsy (PSP), tau aggregates consist of straight filaments (4R-tau) 80 and are found in both the neurons and the glia. In Pick's disease (PiD), specific neuronal tau inclusions are seen, 81 known as Pick bodies, in which 3R-tau aggregates form a spherical shape within the neuronal cell body. These different tauopathy filaments are beginning to be better described and are different among tauopathies.⁴⁻⁷ 82

83 In AD, the most common tauopathy, the progression of neurodegeneration in the brain correlates very well with 84 the clinical signs of the disease at each stage. It follows a sequential, hierarchical progression of brain involvement 85 in a pattern that is similar for all patients; the hippocampal formation, the polymodal association areas, the unimodal association regions, and in the final stages of the disease, the entire cerebral cortex.^{8,9} This stereotypical 86 hierarchy of neurodegeneration is known in the literature as the Braak stages.⁸ Specific hierarchical pathways have 87 also been described for PSP,^{10, 11} argyrophilic grain disease,¹² and PiD.¹³ These patterns of progression have been 88 89 considered as steps in the propagation of neurodegeneration and have led to the hypothesis of a prion-like tau 90 propagation.³ In this hypothesis, an abnormal tau protein conformation would lead to the prion-like

91 transconformation of normal tau proteins into abnormal ones. This would be followed by the secretion of 92 pathological seeds, which would then be internalized by healthy neurons thus transmitting the pathology.

93 While tau was first identified as a protein implicated in the assembly and stabilization of microtubules,¹ it is now 94 described as a pleiotropic protein with various cellular locations.¹⁴ It is known that the protein can be secreted by 95 unconventional pathways, mostly in a free form,¹⁵⁻²⁵ and it has also been found in extracellular vesicles (EVs).²⁶ 96 EVs have two main cellular origins: (1) EVs known as exosomes are generated from multivesicular bodies, 97 containing intraluminal vesicles, that are secreted into the extracellular fluid, and (2) EVs known as ectosomes 98 originate from direct plasma membrane budding.²⁷ These vesicles have the capacity to transfer many biologically 99 active molecules between cells, and they are known to be dysregulated in many disorders.²⁸ While the secretion 100 of tau in EVs has been validated using many cell and animal models,²⁹ there is little data concerning the transfer 101 of pathological tau species or seeds between cells,³⁰ to induce a seeding process in humans.³¹ According to the 102 hypothesis of prion-like propagation, once inside the recipient cell, the seeds present in EVs seem to be released 103 from the endolvsosome and lead to the recruitment and misfolding of normal endogenous proteins.³²

While tau aggregation is a common feature of tauopathies, a huge heterogeneity exists between and within these pathologies. Recent data suggest, for instance, that pathological tau seeds in human brains differ between tauopathies, ³³ and also within a particular tauopathy, as has been shown for AD.³⁴ Additionally, the affected brain pathways differ between AD and other tauopathies, and some cell populations are more vulnerable than others.⁸, ¹¹⁻¹³ It is thus essential to understand the underlying reasons for this heterogeneity before designing a specific therapeutic approach.

110 In this work, we focused our attention on EVs because they have a certain selectivity in terms of the target cell due to the presence of numerous ligands and receptors on their surface.²⁷ They therefore represent a unique 111 112 intercellular delivery vehicle for transferring pathological species from one specific neuronal population to 113 another, and they could explain the differing cell vulnerability seen in tauopathies. The work presented here aims 114 to compare the transmission of tau pathology via EVs that are present within brain-derived-fluids (BD-fluids) of patients with various tauopathies. Although EVs isolated from the cerebrospinal fluid,³⁵⁻³⁷ and plasma,³⁸⁻⁴³ contain 115 116 tau, the interstitial fluid (ISF) more accurately represents the environment around brain cells. This work therefore 117 focuses on brain-derived-vesicles (BD-EVs) in different tauopathies (AD, PSP, and certain forms of non-118 hereditary frontotemporal lobar degeneration with Pick bodies [formerly known as PiD]) as well as non-demented 119 controls. The seeding ability from BD-EVs purified from both tau transgenic mice and patients with various 120 tauopathies is shown in vitro. In addition, AD BD-EVs are able to transmit tau pathology in vivo in a prion-like 121 process. These results highlight the importance of defining how the pathology propagates through the brain in 122 different tauopathies in order to design specific and tailored therapies as well as assessment tools for the evaluation 123 of clinical trials.

126 Results

127

128 In the present work, we isolated vesicles from the post-mortem BD-fluid of patients with various tauopathies,

- 129 and we evaluated whether they contain species that are able to seed and spread the tau pathology in the brain.
- 130

131 EVs are present in the BD-fluid of a transgenic mouse model of tauopathy- To address this issue, we first 132 isolated and characterized murine BD-EVs from a transgenic mouse model of tauopathy, the THY-tau30, that 133 expresses human 1N4R tau protein with two pathogenic mutations (P301S and G272V) under the control of the neuron-specific Thy-1.2 promoter.^{44, 45} We prepared murine BD-fluids according to the protocol described by 134 135 Polanco and collaborators.⁴⁶ We then purified and characterized vesicles from the murine BD-fluid using size-136 exclusion chromatography (SEC). As it is critical to remove any aggregated or macro-protein contaminants 137 associated with the BD-EVs, we purified them using SEC rather than classical ultracentrifugation procedures.⁴⁷ 138 The concentration and distribution of the vesicles were analyzed by a nanoparticle tracking analysis (NTA) system, 139 the global protein content and its distribution were determined using UV detection or silver gel staining. SEC 140 allowed us to efficiently enrich vesicles (fractions one to four [F1-4]) in our preparations from the protein 141 contaminants, as previously described, while guaranteeing their morphological integrity (Figure 1C). A size 142 distribution of the BD-EVs fractions revealed the presence of vesicles ranging from 50 nm to 400 nm (Figure 1D). 143 Then, we used MALDI-TOF LC-MS/MS and quantitative analysis (IBAQ) to evaluate F1-4 proteomic content. 144 We identified a total of 2064 proteins, of which 1635 (79%) are referenced in the VesiclePedia's database. 145 Intensity-based absolute quantification (IBAQ scores) combined with Gene Ontology Cellular Components 146 (GOCC) annotation revealed that GOCC terms associated with EVs represent 76% of total IBAQ scores for the 20 selected terms (Figure 1E). Among proteins recommended by the MISEV2018,⁴⁸ we identified a majority of 147 148 categories 1a (non-tissue specific transmembrane or GPI-anchored proteins), 2a (cytosolic proteins recovered in 149 EVs) and 4a (transmembrane, lipid-bound and soluble proteins associated to other intracellular compartments than 150 plasma membrane/endosomes) (Figure 1F). Among them are found the cytosolic vesicular markers, HSP90 and 151 tau protein (MAPT), which have been validated using either western-blot (Figure S1A) or ELISA assays (Figure 152 1G). In addition, using a proteinase K (PK) digestion assay, we showed that tau is found inside BD-EVs and not 153 associated to their outer leaflet. Indeed, the extravesicular proteolysis (PK+, RIPA-) does not affect intravesicular 154 tau concentration and thus confirming tau as an intravesicular component (Figure 1G). This full characterization including NTA, silver gel staining, electron microscopy, proteomics and western-blot indicates that F1-4 contained
 vesicles and are enriched in EVs. This pool was considered as the BD-EVs fraction in the following experiments.

157

158 **BD-EVs from a transgenic mouse model of tauopathy contain tau seeds-** In order to determine the role of EVs 159 in tau pathology spreading, the tau seeding content of BD-EVs prepared from 1-, 3- and 6-month-old THY-tau30 mice (a transgenic mouse model with progressive tau lesions) was evaluated.^{44, 45} As controls, we also isolated 160 161 BD-EVs from wild-type littermates and transgenic APP/PS1 mice (that develop amyloid deposition) that do not 162 exhibit tau aggregation.⁴⁹ Tau lesions were examined in the brains of these animals using two well characterized 163 anti-tau antibodies: MC1⁵⁰ (tau conformational dependent antibody) and AT100,⁵¹ (human phospho-dependent 164 antibody that allowed the detection of insoluble/aggregated tau. MC1 (Figure S2a-g) and AT100 (Figure S2h-n) 165 immunoreactivities were progressively detected in the hippocampal neurons of the CA1 layer of THY-tau30 mice 166 from 1 to 6 months. Whereas few to no MC1 (Figure S2e) and AT-100 (Figure S2l) immunoreactivities were seen 167 at 1-month-old respectively, MC1 immuno-positive neurites were easily detectable at 3 months with a few 168 positive cell bodies (Figure S2f). A very slight AT100-immunostaining was also seen in 3-month-old mice in the 169 subiculum (Figure S2m) when a strong immunoreactivity (in soma and neurites) was shown in 6-month-old 170 animals by both MC1 and AT100 antibodies (Figure S2g and n respectively). No AT100- and MC1-171 immunoreactivities were observed in the wild-type littermates (Figure S2b-d, i-k) or in the transgenic APP/PS1 172 controls (Figure S2a, h). We then isolated vesicles of these murine BD-fluid and evaluated their ability to induce a nucleation process using a biosensor assay.⁵² This involved a highly sensitive and quantitative assay using a 173 174 novel Fluorescence Resonance Energy Transfer (FRET)-based biosensor cell line that specifically reports tau 175 seeding activity. These cells express soluble forms of RD-P301Stau-CFP and RD-P301Stau-YFP. In presence of 176 seeds such as recombinant tau fibers, an oligomerization process allows energy transfer between CFP and YFP 177 that is detectable by flow cytometry. BD-EVs were introduced inside the biosensor cells using lipofectamine and 178 the seeding activity was quantified. BD-EVs of THY-tau30, unlike those obtained from the control lines (littermate 179 of THY-tau30 and APP/PS1), contained seed-competent species (Figure 2A). In fact, the FRET signal was 180 observed in an age-dependent manner only with THY-tau30 samples. The seeding effect was indeed related to 181 BD-EVs since their removal by ultracentrifugation in F1-4 abolished the FRET signal (compare ultracentrifugation 182 supernatant (no vesicle) to pellet (BD-EVs fraction)) (Figure 2B). In addition, tau was mainly found within vesicles 183 as demonstrated by tau immunodepletion after BD-EVs sonication (Figure 2C). The sonication procedure was

184 applied to ensure release of intravesicular tau and then facilitates its immunodepletion. Indeed, when intravesicular

185 tau was immunodepleted, a 70% decrease in the FRET signal was observed (Figure 2D).

186 Together, these data strongly support the hypothesis that the progressive appearance of tau pathology in mice leads

- 187 to the release of vesicles in the BD-fluid that contain seed-competent tau species.
- 188

189 The seeding capacity of BD-EVs is heterogeneous among human tauopathies- We showed that the presence 190 of tau seeds inside BD-EVs is related to the progression of tau pathology in the case of mice. Given the 191 heterogeneity among tauopathies, we questioned whether the seeding potential of BD-EVs would differ between 192 these neurodegenerative diseases. Post-mortem brain samples of human non-demented controls (n = 5), AD (n =193 10), PSP (n = 10), and PiD (n = 5) patients were obtained (Table 1) in order to isolate BD-EVs, as described above 194 (Figure 1). Three brain regions (the prefrontal cortex, the occipital cortex, and the cerebellum) differentially 195 affected by the pathology were dissected, and tau lesions were quantified by immunohistochemistry (IHC) using 196 AT8, a phospho-dependent anti-tau antibody (Figures 3A and 3B). As expected, tau pathology is higher in AD 197 cases. After SEC purification, the BD-EVs shared the same characteristics (size, morphology, content) as those 198 isolated from the murine brain (Figure S3). Additionally, the presence of a specific transmembrane tetraspanins 199 associated with the vesicles was validated using immunogold electron microscopy (CD63; Figure S1B).

In contrast to the mice, where the whole brain was analyzed, only specific areas of the human brain were dissected for BD-fluid isolation. To avoid any bias, the results were systematically normalized according to the weight of the brain extracts used to prepare the BD-fluid. Our data showed that the vesicles concentration (Figure 4A) and the global tau content (Figure 4B) did not differ among the tauopathies. Interestingly, BD-EVs from the brains of the controls contained global tau at a similar level than from patients with tauopathies. This confirms that tau is physiologically secreted in EVs and gives new insight into the mode of tau secretion in human brain.

206 To determine whether the tau protein present in BD-EVs can induce a nucleation process and whether this is 207 similar among tauopathies, BD-EVs were applied to biosensor cells, as before. The vesicular contents from the 208 prefrontal and occipital regions of the AD BD-fluid induced a significant FRET signal compared to the non-209 demented controls. For BD-EVs from the PSP and PiD patients, a weak FRET signal was observed (Figure 4C), 210 which was consistent with neuropathology (Figure 3). It is relevant to note that among the PiD samples, one had 211 BD-EVs displaying a high FRET signal. This patient exhibited, in addition to Pick bodies, neurofibrillary tangles 212 (NFT) as seen in AD patients (Table 1), which could potentially account for this finding. Whereas the FRET signal 213 is related to the tau lesions in most cases (compare Figures 3B and 4C), as shown for the mice, the FRET signal for the AD cerebellum was significantly higher than in the controls, even though both were devoid of tau lesions.

215 This FRET signal did not reflect a passive release of intracellular vesicles due to cell death, as there was no

correlation between the post-mortem delay and the FRET signal (Figure 4D). Together, our results demonstrate that although the global level of tau is similar in BD-EVs, the seeding/nucleation competency is clearly different according to the tauopathy considered, with a particularly high activity found in AD, in accordance with previous studies.³¹

220

BD-EVs are able to transmit tau pathology *in vivo*- To validate the seeding capacity of BD-EVs and to determine whether these vesicles are able to transmit tau pathology *in vivo*, we adapted our *in vivo* model of seeding. ⁵³ This model is based on the intracerebral injection of material derived from AD brains into the hippocampi of 1-month-old THY-tau30 mice. At this age, the endogenous tau pathology is very weak, ⁴⁴ thus allowing us to evaluate the seeding activity associated with the injected, human-derived material.

226 Four prefrontal cortex BD-fluid samples were pooled for each group: AD, PSP, PiD, and control. The BD-EVs 227 were tested using the FRET assay (Figure 5A) before being injected into the animals $(6x10^9 \text{ vesicles per})$ 228 hippocampus). A lower signal was generated for the PSP and PiD groups compared to the AD group, thus 229 confirming what was previously shown in vitro (Figure 4C). These intact BD-EVs were then bilaterally injected 230 in THY-tau30 mice and control littermates. Their respective ability to seed endogenous tau was monitored by IHC 231 using MC1 (tau conformational dependent antibody) or AT100 (human phospho-dependent antibody that allowed 232 the detection of insoluble/aggregated tau) (Figure 5B). When the BD-EVs were injected into the wild-type mice, 233 no MC1 or AT100 immunoreactivity was observed. No seeding occurred and the tau species contained within the 234 vesicles were not detected. In contrast, tau seeding was seen when BD-EVs from AD patients were injected in the 235 THY-tau30 mice. MC1- and AT100- immunoreactivies were quantified. In contrast, injected BD-EVs from PSP 236 and PiD did not induce any higher MC1- or AT100-immunoreactivity than BD-EVs purified from human control 237 brains (Figure 5C and D respectively). This lower seeding capacity of BD-EVs from PSP and PiD than those from 238 AD confirmed our in vitro data (Figure 4).

Altogether, our data show that BD-EVs containing tau seeds are then capable to mediate the misfolding and phosphorylation of tau. It then strongly suggests the ability of the vesicular content to recruit and convert endogenous tau into an abnormal conformational form differs among tauopathies, consistently with neuropathology, thus suggesting the existence of specific species inside the BD-EVs according to the particular tauopathy.

245Discussion-246

247 In this study, we investigated the role of BD-EVs in the heterogeneity and cell vulnerability of tauopathies. EVs 248 possess ligands and/or receptors that are compatible with a specific cell type, this could explain the neuronal 249 selectivity and the hierarchy of neurodegeneration within tauopathies. To date, most studies have investigated the 250 role of EVs in cell or animal models,^{26, 32, 46, 55, 56} but little data is available for humans, especially when considering 251 the ISF that is in direct contact with the brain cells and which is likely to be part of the prion-like process. The 252 presence of EVs capable of transferring material between cells (Figures 5 and Figure S4)^{31, 54} can help to explain 253 the progression of the pathology in tauopathies. A very recent and elegant study carried out by Ruan and 254 collaborators showed for the first time that AD brain-derived EVs spread tau pathology with defined interneurons 255 as their target.³¹ Here, we go further into this mechanism by determining the contribution of vesicles to the 256 heterogeneity of tauopathies by isolating and comparing BD-EVs from AD, PSP, and PiD, and from various brain 257 regions differentially affected by the tau pathology.

258 Using our mouse models, we were able to (1) control the quality of BD-EVs preparations, (2) demonstrate the role 259 of BD-EVs-tau in the seeding process, and most importantly, (3) highlight a link between BD-EVs seeding 260 capacity and the severity of the tau pathology. We confirmed these results in humans using brain regions that are 261 differentially affected by the pathology (the prefrontal cortex, the occipital cortex, and the cerebellum), and the 262 BD-EVs seeding capacity was particularly striking in the case of AD. Specifically, BD-EVs from AD patients 263 clearly contained seed-competent tau species (shown in the FRET assay), whereas such tau species were lower in 264 the PSP and PiD materials. In general, tau pathology is much weaker in PSP and PiD than in AD, and this may 265 participate to the low seeding capacity of vesicles in these pathologies. However, other explanations are also 266 possible: (1) although not unanimous, the prion-like propagation hypothesis may not be appropriate for PSP and 267 PiD,³ (2) a prion-like propagation may also exist for PSP and PiD, but EVs may not be the preferred shuttle, 268 contrary to AD, and (3) the FRET assay to measure seeding in PSP and PiD was less effective than in AD. In line with this latter possibility, previous studies found that PSP materials gave heterogeneous FRET signals. ^{33, 57} 269 270 Although a FRET signal was previously reported in PiD,³³ we did not observe a strong signal for most of the PiD 271 cases in the present work. In fact, the only PiD patient showing a FRET signal also displayed NFT, and this was 272 the oldest PiD patient. We previously published that PiD patients displaying Pick bodies with additional NFT have aging/AD-like materials, namely a pathological tau triplet revealed by immunoblotting.^{58, 59} The presence of such 273 274 AD-like materials in this PiD patient could explain the high FRET signal as observed in the AD group.

275 Overall, our results suggest that the species shuttled by BD-EVs are very heterogeneous among tauopathies. What 276 do we know about tauopathies? In PiD, there is an accumulation of tau3R in Pick's bodies, and it is currently classified as frontotemporal lobar degeneration (FTLD)-tau.⁶⁰ Nevertheless, it is difficult to differentiate PiD and 277 278 FTLD-tau with MAPT mutations (former FTDP-17). Both disorders have Pick bodies, but it has been shown that the Pick bodies are pS262-negative in PiD,^{61, 62} and immunoreactive in FTLD-tau with MAPT mutations.^{63, 64} In 279 280 any case, this lesion would appear to be particularly harmful because PiD often affects people who are relatively 281 young (around 50 years of age), and it is characterized by very severe frontotemporal atrophy that is associated 282 with neuronal death. Pick bodies are mostly found in layers II and VI of the fronto-temporal isocortex and in the 283 granular cell layer of the dentate gyrus.^{59, 65} These cells mainly express 3R-tau isoforms. It can therefore be 284 postulated that these 3R-positive cells are fragile,⁶⁶ or else that the 3R-tau isoforms are more harmful than propagative.⁶⁷⁻⁶⁹ In PSP, tau4R isoforms mostly aggregate to cause neurofibrillary degeneration. It is possible that 285 the 4R-tau variants are secreted and captured by the glia. In line with this, both PSP and corticobasal degeneration 286 287 are also characterized by gliofibrillary lesions.^{60, 70, 71}. Finally, in AD, all six tau isoforms aggregate, and 288 neurofibrillary degeneration progresses in a hierarchical pathway from limbic, polymodal association, unimodal 289 association regions to the entire cerebral cortex. These observations suggest that tau seeds circulate in the ISF of 290 AD brains. Our data support this hypothesis since tau seeds were identified in circulating EVs in all brain areas 291 studied, even those devoid of tau lesions, such as the cerebellum. Depending on the brain area, EVs receptor/ligand 292 bearing cells may or may not be present, which explains why some regions are affected by pathology while others 293 are not. The combination of tau seeds in EVs and their ligand/receptor composition may therefore explain the 294 neuronal selectivity/vulnerability and hierarchical pathway of neurodegeneration among tauopathies.

The molecular species involved in the pathological cycle of cell-to-cell transmission remain unknown, even though a great deal of work has been done to examine the roles of phosphorylation, truncation, oligomers, high molecular weight species, etc.²⁹ Nevertheless, our work highlights the diversity of tau species inside BD-EVs among tauopathies, and reinforces the hypothesis of prion-like propagation. It supports a trans-cellular transmission mechanism with a specificity that could explain the hierarchical and stereotypical propagation compatible with the Braak stages in AD.

Together, our data strongly support the existence of various tau species or co-factors inside BD-EVs among tauopathies, and their identification is now necessary in order to be able to determine the mechanism of tau pathology progression in these different diseases. The study raises a number of questions about therapeutic strategies, such as immunotherapy, that target free extracellular tau. Deciphering the nature of the pathological

- 305 seeds found in the vesicles isolated from human brains, as well as the characteristics of the cargos/shuttles, will
- 306 help in the design of specific tools aiming to block tau spreading.

309 Materials and methods

310

311 Antibodies- The following antibodies were used for IHC, biochemical assays, and electron microscopy at the 312 dilutions indicated below. Monoclonal antibody (mAb) AT8 recognizes the phosphoserine 202, phosphoserine 313 208, and phosphothreonine 205 residues of tau (MN1020; Thermo Scientific, Illkirch, France; 1/500 for IHC).⁷² 314 The mAb MC1 (a generous gift from Dr. Peter Davis; 1/1000 for IHC) recognizes conformational changes, and 315 its reactivity depends on both the N terminus (amino acids 7-9) and an amino acid sequence of tau (amino acids 316 313–322) in the third microtubule binding domain.^{50, 73} The mAb AT100 (MN1060; Thermo Scientific, Illkirch, 317 France: 1/500 for IHC) recognizes phosphothreonine 212 and phosphoserine 214 and allowed the detection of insoluble/aggregated tau.^{51, 74-76} The mAb HT7 (MN100; Thermo Scientific, Illkirch, France; used in the 318 319 INNOTEST® hTAU, as recommended by the manufacturer, Fujirebio) recognizes human tau (amino acids 159-320 163). Anti-HSP 90 α/β (F-8; sc-13119; 1/100 for western blotting). Anti-CD63 is a mouse mAb (Novusbio H5C6; 321 nbp2-42225; 1/50 for electron microscopy), Anti-NeuN is a rabbit mAb (Chemicon MAB377; 1:1000), and anti-322 V5 is a mouse mAb (Millipore AB3792; 1:500).

323

324 Animals and human samples- The study was performed in accordance with the ethical standards laid down in 325 the 1964 Declaration of Helsinki and its later amendments. The experimental research was performed with the 326 approval of an ethics committee (agreement APAFIS#2264-2015101320441671 from CEEA75, Lille, France) and 327 follows European guidelines for the use of animals. The animals (males and females) were housed in a 328 temperature-controlled room (20-22°C) and maintained on a 12 h day/night cycle with food and water provided 329 ad libitum in a specific, pathogen-free animal facility (with 5 mice per cage or 4 rats per cage). Animals were 330 randomly allocated to the different experimental groups. THY-tau30 mice were used that express human 1N4R 331 tau protein with two pathogenic mutations (P301S and G272V) under the control of the neuron-specific Thy-1.2 promoter.44,45 332

Non-demented human control (n=5), AD (n=10), PSP (n=10), and PiD (n=5) brain extracts were obtained from the Lille Neurobank (fulfilling French legal requirements concerning biological resources and declared to the competent authority under the number DC-2008-642) with donor consent, data protection, and ethics committee approval. Samples were managed by the CRB/CIC1403 Biobank, BB-0033-00030. The demographic data are listed in table 1.

Cell culture- The TauRDP301SFRET Biosensor cells (ATCC CRL-3275), HEK293T cells, and HeLa cells were
cultivated in Dulbecco's modified Eagle's medium with 10% fetal bovine serum, 1% GlutaMAX, and without
HEPES. The cells were maintained in a humidified incubator with 5% CO₂. All cell lines were passaged twice a
week. Rat primary cortical neurons were prepared from 17-day-old Wistar rat embryos, as previously described.⁷⁷
Ten days later, cells were infected with lentiviral vectors (LV) encoding human 1N4R wild-type Tau, as previously
described.^{**}

345

Brain-derived fluid isolation- BD-fluids were isolated, as previously described.⁴⁶ For the frozen human brains,
specific regions were removed (prefrontal cortex, occipital cortex, and cerebellum). 85 samples were used with a
mean of 1.5 g+/-0.07 of tissue. Some brain areas were no more available: cerebellum (1AD, 1 PiD and 2 PSP),
cortex prefrontal (1 PSP). To avoid any bias in our results, normalization according to the weight of the brain
extracts have been systematically done.

351 For the mice, immediately after death, the whole brain (without the olfactory bulb and cerebellum) was recovered 352 and frozen. The tissues were incubated on ice in 5 ml of Hibernate-A (50 mM NaF, 200 nM Na₃VO₄, 10 nM 353 protease inhibitor [E64 from Sigma and Protease Inhibitor Cocktail from Roche]). The tissues were gently mixed 354 in a Potter homogenizer and 2 ml of 20 units/ml papain (LS003119, Worthington) in Hibernate-A were added to 355 the homogenate for 20 min at 37°C with agitation. 15 ml of cold Hibernate-A buffer was then added and mixed 356 by pipetting to stop the enzymatic activity. Successive centrifugations were applied at 4°C (300, 2000, and 10 000 357 g) to remove cells, membranes, and debris, respectively. The final supernatant was kept at -80°C before the BD-358 EVs isolation procedures were applied.

359

360 BD-EVs isolation- The procedures to isolate the BD-EVs from the murine or human BD-fluid were carried out in 361 accordance with the MISEV guidelines that were established and updated in 2018 by the International Society for Extracellular Vesicles.⁴⁸ We applied various controls to validate the enrichment and the content of the BD-EVs, 362 363 as recommended in these guidelines. However, the procedure described above to recover BD-fluids may lead to 364 cell lysis. The presence of intraluminal vesicles in our preparations can't be exclude. We thus consider that our 365 fractions and not pure but rather enriched in EVs and so refer as BD-EVs. 500 µl of BD-fluid were loaded on the top of a SEC column (10 ml column, CL2B sepharose, pore size 75 nm, Millipore)⁷⁹. It allowed us to recover a 366 mean of 7.94×10^{10} vesicles/g of tissue +/- 3.36×10^{9} in F1-F4 fractions (n=85 samples). Isolation was carried out 367 368 in phosphate buffered saline (PBS) with a flow of 36-48 sec/ml. The first 3 ml were eliminated and the following 369 20 fractions were recovered (with 500 µl per fraction). NTAs were performed on individual fractions diluted in 370 PBS with a Nanosight NS300 (Malvern Panatycal). To generate statistical data, five videos of 90 seconds were 371 recorded and analyzed using NTA software (camera level: 15; detection threshold: 4). When indicated a further 372 ultracentrifugation (100000g, 50 min at 4°C, TLA110 rotor) was done.

373

374 Electron microscopy- Fractions one to four from the SEC were pooled and concentrated to a final volume of 50 375 µl using Amicon® Ultra 3K (Merck Millipore). Samples (5 µl) were deposited on a carbon film supported grid 376 (400 mesh) and incubated at room temperature (RT) for 20 min. For immunogold labelling, fixation in 2% 377 paraformaldehyde (PFA; PO4 buffer 0.1 M, pH 7.4) was performed for 20 min. Grids were rinsed for 2-3 min in 378 PBS-Glycine (50 mM) at RT. They were then soaked in a mixture containing 1% PBS-Bovine serum albumin 379 (BSA) and 1% normal goat serum for 1h at RT before incubation with the primary Ab (1/50) in a mixture of 1% 380 PBS-BSA and 1% normal goat serum, followed by rinsing in 0.1% PBS-BSA. Grids were then incubated for 1h 381 at RT with the appropriate goat anti-mouse secondary Ab (1/20, 12 nm colloidal gold) and finally washed in PBS. 382 For immunogold labelling and morphological analyses, the grids were fixed in PBS-Glutaraldehyde (1%) for 5 383 min at RT and then rinsed in distilled water. They were incubated for 5 min in 1% uranyl acetate and for 10 min 384 on ice in a mixture containing 1% uranyl acetate/2% methylcellulose. Dry grids were observed under a 385 transmission electron microscope (Zeiss EM900).

386

387 MALDI-TOF LC-MS/MS analysis- Protein Digestion- F1-4 fractions were digested according to a modified 388 version of the iST method⁸⁰ (named miST method). Briefly, 50 µl solution in PBS were supplemented with in 50 389 µl miST lysis buffer (1% Sodium deoxycholate, 100 mM Tris pH 8.6, 10 mM DTT) and heated at 95°C for 5 min. 390 Samples were then diluted 1:1 (v:v) with water and reduced disulfides were alkylated by adding ¹/₄ vol of 160 mM 391 chloroacetamide (final 32 mM) and incubating at 25°C for 45 min in the dark. Samples were adjusted to 3 mM 392 EDTA and digested with 0.5 µg Trypsin/LysC mix (Promega #V5073) for 1h at 37°C, followed by a second 1h 393 digestion with a second and identical aliquot of proteases. To remove sodium deoxycholate and desalt peptides, 394 two sample volumes of isopropanol containing 1% TFA were added to the digests, and the samples were desalted 395 on a strong cation exchange (SCX) plate (Oasis MCX; Waters Corp., Milford, MA) by centrifugation. After 396 washing with isopropanol/1%TFA, peptides were eluted in 250 µl of 80% MeCN, 19% water, 1% (v/v) ammonia; 397 Liquid Chromatography-tandem Mass spectrometry- Eluates after SCX desalting were frozen, dried, and 398 resuspended in variable volumes of 0.05% trifluoruacetic acid, 2% acetonitrile to equilibrate concentrations. 399 Approximately 1 µg of each sample was injected on column for nanoLC-MS analysis; MS analysis- Data-400 dependent LC-MS/MS analysis of TMT sample was carried out on a Fusion Tribrid Orbitrap mass spectrometer 401 (Thermo Fisher Scientific) interfaced through a nano-electrospray ion source to an Ultimate 3000 RSLCnano 402 HPLC system (Dionex). Peptides were separated on a reversed-phase custom packed 40 cm C18 column (75 µm 403 ID, 100Å, Reprosil Pur 1.9 µm particles, Dr. Maisch, Germany) with a 4-76% acetonitrile gradient in 0.1% formic 404 acid (total time 140 min). Full MS survey scans were performed at 120'000 resolution. A data-dependent 405 acquisition method controlled by Xcalibur 4.2 software (Thermo Fisher Scientific) was used that optimized the 406 number of precursors selected ("top speed") of charge 2+ to 5+ while maintaining a fixed scan cycle of 1.5s. The 407 precursor isolation window used was 0.7 Th. Full survey scans were performed at a 120'000 resolution, and a top 408 speed precursor selection strategy was applied to maximize acquisition of peptide tandem MS spectra with a 409 maximum cycle time of 0.6s. HCD fragmentation mode was used at a normalized collision energy of 32%, with a 410 precursor isolation window of 1.6 m/z, and MS/MS spectra were acquired in the ion trap. Peptides selected for 411 MS/MS were excluded from further fragmentation during 60s; MS Data analysis- Tandem MS data were 412 processed by the MaxQuant software (version 1.6.3.4)⁸¹ incorporating the Andromeda search engine⁸². The 413 UniProt reference proteome (RefProt) databases for Homo sapiens and mouse were used, supplemented with 414 sequences of common contaminants. Trypsin (cleavage at K, R) was used as the enzyme definition, allowing 2 415 missed cleavages. Carbamidomethylation of cysteine was specified as a fixed modification. N-terminal acetylation 416 of protein and oxidation of methionine were specified as variable modifications. All identifications were filtered 417 at 1% FDR at both the peptide and protein levels with default MaxQuant parameters ⁸³. MaxQuant data were 418 further processed with Perseus software⁸⁴, R statistical software and Microsoft Excel. We considered proteins as 419 present in sample when unique + Razor Peptide Score >2 and an MS/MS Count >2. IBAQ values were calculated 420 based on the summed intensities of all unique peptides for a protein divided by the number of theoretical tryptic 421 peptides between 6 and 30 amino acids in length⁸⁵.

422

Western blotting & silver gel staining- Western blotting was performed, as previously described.⁸⁶ Briefly, boiled samples (10 min, 100°C) were loaded onto a 4-12% Bis-Tris NuPAGE® Novex® gel (Invitrogen), followed by transfer onto a 0.45 µm membrane, using the Novex system from Life Technologies (XCell II[™] blot module). The membrane was then incubated with blocking solution for 1h at RT before incubation with the appropriate primary Ab overnight at 4°C. The membrane was then incubated for 1h with the appropriate secondary Ab (HRP conjugated Ab, 1/50 000). The signal was visualized using enhanced chemiluminescence western blotting

429 detection reagents (GE Healthcare). For silver gel staining, the same procedure was followed without the transfer 430 onto a membrane. The gel was fixed overnight after migration in a mixture containing 40% ethanol and 10% acetic 431 acid. Proteins were revealed by silver staining using the PlusOne silver staining kit and following the 432 manufacturer's procedures (GE Healthcare).

433

Tau immunodepletion- BD-EVs fractions were isolated from the BD-fluid of 3-months-old THY-tau30. Immunodepletion of tau from fractions 1-4 was performed using Magna ChIP Protein A+G magnetic beads (#16-663, Sigma-Aldrich). After 30 min in water bath sonicator, fractions 1-4 were incubated overnight with 2 μ g of anti-tau Ab (HT7, #MN1000, Thermo Scientific) or control mouse monoclonal IgG1 antibody (GST [B-14]), Santa Cruz) with rotation at 4°C. 20 μ L of magnetic beads was incubated with the complex antibody-antigen for 2 hours with rotation at 4°C. Magnetic beads-antibody-antigen complex was isolated using a magnetic holder and the supernatant was collected.

441

442 **PK treatment-** PK assay was done as previously described.^{31, 54} BD-EVs (lysis or not with RIPA buffer) were 443 incubated with 10 μ g/mL of PK 30 min at 37°C to remove extravesicular proteins. The PK activity was then 444 inhibited by adding 5 mM phenylmethylsulphonyl fluoride (PMSF) for 10 min at room temperature.

445

Recombinant K18 fibrils- The tau K18 recombinant protein and heparin were mixed to a ratio of 4:1 in aggregation buffer (Hepes 10 mM, pH 6.9; NaCl 1000 mM) with a final protein concentration of 8 μ M and incubated for 36 to 48 hours at 37°C without shaking. The aggregation was confirmed at the end of the experiment by adding 50 μ M of Thioflavin T to a 100 μ l aliquot and comparing this to a negative control without the addition of heparin. The thioflavin T emission was detected at 490 nm after excitation at 440 nm using a PHERAstar (BMG LABTECH GmbH, Ortenberg, Germany).

452

FRET assay- Cells were plated into a 12-wells plate (150 000 cells per well) 24 hours before treatment. Sonicated K18 fibrils (2 μ M) were used as a positive control and PBS was the negative control. BD-EVs fractions were pooled (F1-F4) and concentrated in Amicon-3K columns to generate a final volume of 50 μ l. The transfection mixture (50 μ l EVs + 50 μ l optiMEM plus 10 μ l of lipofectamine-2000 + 90 μ l optiMEM) was incubated for 20 min at RT and added to the cells. After 72 hours, the cells were removed by scraping, and cell death was evaluated by adding Zombie NIR¹¹⁴ for 30 min at RT (as recommended by the manufacturer of the Zombie NIR¹¹⁴ fixable 459 viability kit; BioLegend, 1/200). After one rinse in PBS, cells were fixed in 2% PFA for 10 min at RT and finally 460 suspended in PBS for cytometry analyses using the flow cytometer Aria SORP BD Biosciences (acquisition 461 software FACS DIVA V7.0 BD Biosciences) with the following excitation/emission wavelengths: excitation 405 462 nm-CFP emission 466+/-40 nm and FRET YFP 529+/-30 nm; excitation 488nm-YFP emission 529+/-30 nm. The 463 FRET data were quantified using the KALUZA Analysis Software v2. Results were expressed as the percentage 464 of FRET positive cells x MFI (median fluorescence intensity). For the human brain samples, this value was 465 normalized according to the weight of the tissue used to prepare the BD-fluid (percentage of FRET positive cells 466 x MFI/g of tissue).

467

468 Stereotaxic injections- Four BD-fluids (500 µl) were pooled for each of the AD, PSP, PiD, and control groups 469 (Table 1, bold), and the vesicles were isolated and concentrated to a final volume of 150 μ l, as described above. 470 For each of these, 2 µl (6x10⁹ vesicles) were bilaterally injected into the hippocampi of 1-month-old, anesthetized 471 (100 mg/kg ketamine, 20 mg/kg xylazine) THY-tau30 mice and littermates (n = 5 per group; weight = 15-20g), as 472 done previously (anterior-posterior: -2.5 mm; medial-lateral: +/- 1 mm; dorsal-ventral: -1.8 mm to bregma)⁵³. The 473 standard injection procedure involved the delivery of BD-EVs into THY-tau30 using a 10 µl Hamilton glass 474 syringe with a fixed needle. After injection at a rate of 0.25 µl per minute, the needle was left in place for 5 minutes 475 before removal to prevent any leakage of the injected material. For the experiments performed in rats (Figure S2), 476 3-months-old animals were anesthetized by intraperitoneal injection of a mixture of 100 mg/kg ketamine (Ketasol, 477 Graeub, Bern, Switzerland) and 10 mg/kg xylazine (Rompun, Bayer Health Care, Uznach, Switzerland). The 478 animals were bilaterally injected with 3 μ l of BD-EVs into the dorsal dentate gyrus (anterior-posterior: -3 mm, 479 medial-lateral: +/-2.5 mm, dorsal-ventral: -3.4 mm to bregma). The vesicles were injected at a rate of 0.2 μ l per 480 minute and the needle was left in place for 5 minutes. In contrast to FRET assay, in all in vivo experiments, intact 481 BD-EVs were stereotactically injected without any lipofectamine.

482

Tissue processing, IHC, and immunofluorescence- For the human brains, the different cerebral regions (the prefrontal cortex, the occipital cortex, and the cerebellum) were dissected, and the tau lesion quantification was performed using the mirror zones. For the mice, the whole brains were dissected and the tau lesions were quantified using dedicated mice. For the human brain sections, automated IHC was performed using 4-µm-thick formalin-fixed, paraffin-embedded (FFPE) tissue on a BenchMark Ultra (Roche tissue diagnostics[®]) with the UltraView DAB IHC Detection Kit (Ventana[®]) and the primary Ab AT8 (1:500). For the THY-tau30 and littermate mice, at

489 4 weeks post-injection they were deeply anesthetized and transcardially perfused with ice-cold 0.9% saline 490 solution and subsequently with 4% PFA for 10 minutes. The brains were immediately removed, fixed overnight 491 in 4% PFA, washed in PBS, placed in 20% sucrose for 24h, and frozen until further use. Free-floating coronal 492 sections (40 µm thickness) were obtained using a cryostat microtome. For IHC, the brain sections were washed in 493 PBS-0.2% Triton X-100, treated for 30 minutes at RT with 0.3% H₂O₂, and then washed three times. Non-specific 494 binding was blocked using a 'Mouse on Mouse' reagent (1:100 in PBS, Vector Laboratories) for 60 minutes at 495 RT. After three rinses in PBS-0.2% Triton X-100, the sections were incubated with the primary Ab MC1 (1:1000) 496 or AT100 (1:500) in PBS-0.2% Triton X-100 (1:1000) overnight at 4°C. After three rinses in PBS-0.2% Triton X-497 100, labelling was amplified by incubation with an anti-mouse biotinylated IgG (1:400 in PBS-0.2% Triton X-498 100, Vector Laboratories) for 60 minutes at RT. This was followed by a 120-minute application of the avidin-499 biotin-HRP complex (ABC kit, 1:400 in PBS, Vector Laboratories) prior to the addition of diaminobenzidine 500 tetrahydrochloride (Vector Laboratories) in Tris-HCl 0.2 mol/l, pH 7.6, containing 0.0015% of H₂O₂ for 501 visualization. Brain sections were then mounted, air-dried, dehydrated by passage through a graded series of 502 alcohol (30%, 70%, 95%, 100%) and toluene baths, and finally mounted with Vectamount (Vector Laboratories). 503 For the rats, three weeks after the BD-EVs injections, they were deeply anesthetized and transcardially perfused 504 with 4% PFA. A series of one-in-six 30-um-thick coronal sections were prepared and incubated at 4°C for 24 505 hours in PBS containing 0.3% Triton-X100 with the following primary Ab: rabbit anti-NeuN and mouse anti-V5. 506 After several rinses with PBS, the sections were incubated for 90 minutes at RT in a PBS solution containing a 507 mixture of the appropriate secondary Ab: Alexa-488 and Alexa-555 mouse secondary antibodies (1:500, Life 508 Technologies). All of the sections were counterstained for 10 minutes with DAPI (4',6-Diamidino-2-Phenylindole; 509 Merck; 1:5,000 dilution) to label the nuclei. IHC against V5/NeuN was followed by a final autofluorescence 510 elimination step. To this end, Autofluorescence Eliminator reagent (EMD Millipore, 2160) was used, according 511 to the manufacturer's instructions. Samples were mounted in VECTASHIELD. Images were acquired (series of 512 50-75 multiple optical sections, $z = 0.2 \mu m$) with a Zeiss LSM 880 Quasar confocal system (63x + 4x numerical 513 zoom) equipped with Airyscan.

514

515 Tau lesion quantification- For blinded quantification of MC1 and AT100 immunoreactivity, the CA1 region of 516 the hippocampus was chosen as the quantification zone. We selected and quantified five brain sections covering 517 the entire hippocampus (bregmas -2.30 to -2.8) and manually counted the number of MC1 or AT100 positive 518 somas per brain section. Results were presented as the number of neurofibrillary tangle per brain section. Human brain sections were blindly quantified using QuPath-0.2.1 software for the full mirror image of the paraffinembedded sections. Thresholds were established using a dedicated artificial intelligence algorithm (Artificial Neuronal Network; ANN_MLP) with identified objects on a set of slides, and these segmentation thresholds remained constant throughout the analyses. Results were expressed as a percentage of tau lesions ([AT8 positive pixels/total pixels] x100).

524

Statistical analyses- Statistics and plots were generated using GraphPad Prism 8 software (version 8.0.0). The normality of the distributions was assessed graphically and using the Shapiro-Wilk test. In the case of a non-Gaussian distribution, the Mann-Whitney U-test was used for one-to-one comparison, and one-way nonparametric ANOVAs (Kruskal-Wallis) with post-hoc test was used for multiple comparisons. In the case of Gaussian distribution, one-way ANOVAs with post-hoc test was used for multiple comparisons. Data were reported as the mean \pm standard deviation (SD). Correlation analyses were performed using a non-parametric Spearman correlation test. The statistical tests adopted a two-tailed α level of 0.05.

534	Ackno	wledgements- This work was supported by grants from the program Investissement d'Avenir LabEx		
535	(invest	ting in the future laboratory excellence) DISTALZ (Development of Innovative Strategies for a		
536	Transc	lisciplinary Approach to ALZheimer's disease), Fondation Alzheimer (project Ectausome), Fondation pour		
537	la Rec	herche Médicale, ANR grants (GRAND, TONIC), and the PSP France Association. Our laboratories are		
538	also s	upported by LiCEND (Lille Centre of Excellence in Neurodegenerative Disorders), CNRS, Inserm,		
539	Métroj	pole Européenne de Lille, the University of Lille, I-SITE ULNE, Région Hauts de France and FEDER. We		
540	are gra	tteful to the Lille Neurobank and Pr Claude-Alain Maurage for the access to the human brain samples. This		
541	study	was also supported by a Synapsis Foundation fellowship awarded to K.R. and the Lausanne University		
542	Hospit	al (CHUV). The authors thank the Protein Analysis Facility of the University of Lausanne for their technical		
543	suppor	rt, in particular Dr. M. Quadroni. We also thank L. Culebras for help for circular graphical representation.		
544	We are	e grateful to the UMS-2014 US41 PLBS for access to the confocal microscopy and flow cytometry core		
545	facility	Platform at the HU site of the BioImaging Center Lille for their help and for access to the cytometer. We		
546	thank	Peter Davies for providing the MC1 antibody. The authors report no competing interests.		
547				
548	Author contributions- M.C. and L.B. designed and conceptualized the study, wrote the original draft and then			
549	reviewed the manuscript. E.L, K.R., N.D and N.T helped for the manuscript editing. E.L., R.P., R.C., S.L., T.B.,			
550	S.B., V	V.D., A.L., S.S., C.D., J.E. and K.R. performed the experiments.		
551				
552 553	Refere	ences-		
554	1.	Weingarten, MD, Lockwood, AH, Hwo, SY, and Kirschner, MW (1975). A protein factor essential for		
555		microtubule assembly. Proc Natl Acad Sci US A 72: 1858-1862.		
556	2.	Spillantini, MG, and Goedert, M (2013). Tau pathology and neurodegeneration. Lancet Neurol 12: 609-		
557		622.		
558	3.	Colin, M, Dujardin, S, Schraen-Maschke, S, Meno-Tetang, G, Duyckaerts, C, Courade, JP, et al. (2020).		
559		From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta		
560		<i>Neuropathol</i> 139 : 3-25.		
561	4.	Falcon, B, Zhang, W, Schweighauser, M, Murzin, AG, Vidal, R, Garringer, HJ, et al. (2018). Tau		
562		filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold. Acta		
563		Neuropathol 136: 699-708.		

- 5. Falcon, B, Zivanov, J, Zhang, W, Murzin, AG, Garringer, HJ, Vidal, R, *et al.* (2019). Novel tau filament 565 fold in chronic traumatic encephalopathy encloses hydrophobic molecules. *Nature* **568**: 420-423.
- 566 6. Fitzpatrick, AWP, Falcon, B, He, S, Murzin, AG, Murshudov, G, Garringer, HJ, *et al.* (2017). Cryo-EM
 567 structures of tau filaments from Alzheimer's disease. *Nature* 547: 185-190.
- 568 7. Duyckaerts, C, Bennecib, M, Grignon, Y, Uchihara, T, He, Y, Piette, F, *et al.* (1997). Modeling the 569 relation between neurofibrillary tangles and intellectual status. *Neurobiol Aging* **18**: 267-273.
- 570 8. Braak, H, and Braak, E (1991). Neuropathological stageing of Alzheimer-related changes. *Acta*571 *Neuropathol* 82: 239-259.
- 572 9. Delacourte, A, David, JP, Sergeant, N, Buee, L, Wattez, A, Vermersch, P, *et al.* (1999). The biochemical
 573 pathway of neurofibrillary degeneration in aging and Alzheimer's disease. *Neurology* 52: 1158-1165.
- 574 10. Verny, M, Duyckaerts, C, Agid, Y, and Hauw, JJ (1996). The significance of cortical pathology in
 575 progressive supranuclear palsy. Clinico-pathological data in 10 cases. *Brain* 119 (Pt 4): 1123-1136.
- 576 11. Williams, DR, Holton, JL, Strand, C, Pittman, A, de Silva, R, Lees, AJ, *et al.* (2007). Pathological tau
 577 burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's
 578 syndrome. *Brain* 130: 1566-1576.
- 579 12. Saito, Y, Ruberu, NN, Sawabe, M, Arai, T, Tanaka, N, Kakuta, Y, *et al.* (2004). Staging of argyrophilic
 580 grains: an age-associated tauopathy. *J Neuropathol Exp Neurol* 63: 911-918.
- 13. Irwin, DJ, Brettschneider, J, McMillan, CT, Cooper, F, Olm, C, Arnold, SE, *et al.* (2016). Deep clinical
 and neuropathological phenotyping of Pick disease. *Ann Neurol* **79**: 272-287.
- 583 14. Sotiropoulos, I, Galas, MC, Silva, JM, Skoulakis, E, Wegmann, S, Maina, MB, *et al.* (2017). Atypical,
 584 non-standard functions of the microtubule associated Tau protein. *Acta Neuropathol Commun* 5: 91.
- 585 15. Fontaine, SN, Zheng, D, Sabbagh, JJ, Martin, MD, Chaput, D, Darling, A, *et al.* (2016). DnaJ/Hsc70
 586 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. *EMBO*587 J 35: 1537-1549.
- 588 16. Kang, S, Son, SM, Baik, SH, Yang, J, and Mook-Jung, I (2019). Autophagy-Mediated Secretory Pathway
 589 is Responsible for Both Normal and Pathological Tau in Neurons. *J Alzheimers Dis* **70**: 667-680.
- 590 17. Katsinelos, T, Zeitler, M, Dimou, E, Karakatsani, A, Muller, HM, Nachman, E, *et al.* (2018).
 591 Unconventional Secretion Mediates the Trans-cellular Spreading of Tau. *Cell Rep* 23: 2039-2055.
- 18. Lee, J, and Ye, Y (2018). The Roles of Endo-Lysosomes in Unconventional Protein Secretion. *Cells* 7.

- Merezhko, M, Brunello, CA, Yan, X, Vihinen, H, Jokitalo, E, Uronen, RL, *et al.* (2018). Secretion of Tau
 via an Unconventional Non-vesicular Mechanism. *Cell Rep* 25: 2027-2035 e2024.
- 595 20. Mohamed, NV, Desjardins, A, and Leclerc, N (2017). Tau secretion is correlated to an increase of Golgi
 596 dynamics. *PLoS One* 12: e0178288.
- 597 21. Pooler, AM, Phillips, EC, Lau, DH, Noble, W, and Hanger, DP (2013). Physiological release of
 598 endogenous tau is stimulated by neuronal activity. *EMBO Rep* 14: 389-394.
- Solution Section 22. Rodriguez, L, Mohamed, NV, Desjardins, A, Lippe, R, Fon, EA, and Leclerc, N (2017). Rab7A regulates
 tau secretion. *J Neurochem* 141: 592-605.
- Sato, C, Barthelemy, NR, Mawuenyega, KG, Patterson, BW, Gordon, BA, Jockel-Balsarotti, J, *et al.*(2018). Tau Kinetics in Neurons and the Human Central Nervous System. *Neuron* 97: 1284-1298 e1287.
- Sayas, CL, Medina, M, Cuadros, R, Olla, I, Garcia, E, Perez, M, *et al.* (2019). Role of tau N-terminal
 motif in the secretion of human tau by End Binding proteins. *PLoS One* 14: e0210864.
- Tang, Z, Ioja, E, Bereczki, E, Hultenby, K, Li, C, Guan, Z, *et al.* (2015). mTor mediates tau localization
 and secretion: Implication for Alzheimer's disease. *Biochim Biophys Acta* 1853: 1646-1657.
- 607 26. Perez, M, Avila, J, and Hernandez, F (2019). Propagation of Tau via Extracellular Vesicles. *Front*608 *Neurosci* 13: 698.
- 611 28. Maas, SLN, Breakefield, XO, and Weaver, AM (2017). Extracellular Vesicles: Unique Intercellular
 612 Delivery Vehicles. *Trends Cell Biol* 27: 172-188.
- 613 29. Pernegre, C, Duquette, A, and Leclerc, N (2019). Tau Secretion: Good and Bad for Neurons. *Front*614 *Neurosci* 13: 649.
- 615 30. Wang, YP, Biernat, J, Pickhardt, M, Mandelkow, E, and Mandelkow, EM (2007). Stepwise proteolysis
 616 liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell
 617 model. *Proc Natl Acad Sci U S A* 104: 10252-10257.
- 618 31. Ruan, Z, Pathak, D, Venkatesan Kalavai, S, Yoshii-Kitahara, A, Muraoka, S, Bhatt, N, *et al.* (2020).
 619 Alzheimer's disease brain-derived extracellular vesicles spread tau pathology in interneurons. *Brain*.
- 620 32. Polanco, JC, Hand, GR, Briner, A, Li, C, and Gotz, J (2021). Exosomes induce endolysosomal
 621 permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. *Acta Neuropathol*.

- Sanders, DW, Kaufman, SK, DeVos, SL, Sharma, AM, Mirbaha, H, Li, A, *et al.* (2014). Distinct tau
 prion strains propagate in cells and mice and define different tauopathies. *Neuron* 82: 1271-1288.
- 624 34. Dujardin, S, Commins, C, Lathuiliere, A, Beerepoot, P, Fernandes, AR, Kamath, TV, *et al.* (2020). Tau
 625 molecular diversity contributes to clinical heterogeneity in Alzheimer's disease. *Nat Med* 26: 1256-1263.
- Saman, S, Kim, W, Raya, M, Visnick, Y, Miro, S, Jackson, B, *et al.* (2012). Exosome-associated tau is
 secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer
 disease. *J Biol Chem* 287: 3842-3849.
- 629 36. Spitzer, P, Mulzer, LM, Oberstein, TJ, Munoz, LE, Lewczuk, P, Kornhuber, J, et al. (2019).
 630 Microvesicles from cerebrospinal fluid of patients with Alzheimer's disease display reduced
 631 concentrations of tau and APP protein. *Sci Rep* 9: 7089.
- 632 37. Muraoka, S, DeLeo, AM, Sethi, MK, Yukawa-Takamatsu, K, Yang, Z, Ko, J, *et al.* (2020). Proteomic
 633 and biological profiling of extracellular vesicles from Alzheimer's disease human brain tissues.
 634 *Alzheimers Dement* 16: 896-907.
- 635 38. Fiandaca, MS, Kapogiannis, D, Mapstone, M, Boxer, A, Eitan, E, Schwartz, JB, *et al.* (2015).
 636 Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived
 637 blood exosomes: A case-control study. *Alzheimers Dement* 11: 600-607 e601.
- 638 39. Guix, FX, Corbett, GT, Cha, DJ, Mustapic, M, Liu, W, Mengel, D, et al. (2018). Detection of
 639 Aggregation-Competent Tau in Neuron-Derived Extracellular Vesicles. Int J Mol Sci 19.
- 640 40. Jia, L, Qiu, Q, Zhang, H, Chu, L, Du, Y, Zhang, J, et al. (2019). Concordance between the assessment of
- 641 Abeta42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid.
 642 *Alzheimers Dement* 15: 1071-1080.
- Mustapic, M, Eitan, E, Werner, JK, Jr., Berkowitz, ST, Lazaropoulos, MP, Tran, J, *et al.* (2017). Plasma
 Extracellular Vesicles Enriched for Neuronal Origin: A Potential Window into Brain Pathologic
 Processes. *Front Neurosci* 11: 278.
- 646 42. Perrotte, M, Haddad, M, Le Page, A, Frost, EH, Fulop, T, and Ramassamy, C (2020). Profile of
 647 pathogenic proteins in total circulating extracellular vesicles in mild cognitive impairment and during the
 648 progression of Alzheimer's disease. *Neurobiol Aging* 86: 102-111.
- 649 43. Winston, CN, Goetzl, EJ, Akers, JC, Carter, BS, Rockenstein, EM, Galasko, D, *et al.* (2016). Prediction
 650 of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome
 651 protein profile. *Alzheimers Dement (Amst)* 3: 63-72.

- 44. Leroy, K, Bretteville, A, Schindowski, K, Gilissen, E, Authelet, M, De Decker, R, *et al.* (2007). Early
 axonopathy preceding neurofibrillary tangles in mutant tau transgenic mice. *Am J Pathol* 171: 976-992.
- 654 45. Schindowski, K, Bretteville, A, Leroy, K, Begard, S, Brion, JP, Hamdane, M, *et al.* (2006). Alzheimer's
 655 disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel
 656 mutated tau transgenic mouse without any motor deficits. *Am J Pathol* 169: 599-616.
- 657 46. Polanco, JC, Scicluna, BJ, Hill, AF, and Gotz, J (2016). Extracellular Vesicles Isolated from the Brains
 658 of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner. *J Biol Chem* 291:
 659 12445-12466.
- 660 47. Boing, AN, van der Pol, E, Grootemaat, AE, Coumans, FA, Sturk, A, and Nieuwland, R (2014). Single661 step isolation of extracellular vesicles by size-exclusion chromatography. *J Extracell Vesicles* 3.
- 48. Thery, C, Witwer, KW, Aikawa, E, Alcaraz, MJ, Anderson, JD, Andriantsitohaina, R, et al. (2018).
 Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the
 International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. *J Extracell Vesicles* 7: 1535750.
- 49. Jankowsky, JL, Slunt, HH, Ratovitski, T, Jenkins, NA, Copeland, NG, and Borchelt, DR (2001). Co667 expression of multiple transgenes in mouse CNS: a comparison of strategies. *Biomol Eng* 17: 157-165.
- 50. Jeganathan, S, Hascher, A, Chinnathambi, S, Biernat, J, Mandelkow, EM, and Mandelkow, E (2008).
 Proline-directed pseudo-phosphorylation at AT8 and PHF1 epitopes induces a compaction of the
 paperclip folding of Tau and generates a pathological (MC-1) conformation. *J Biol Chem* 283: 3206632076.
- Allen, B, Ingram, E, Takao, M, Smith, MJ, Jakes, R, Virdee, K, *et al.* (2002). Abundant tau filaments and
 nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. *J Neurosci* 22:
 9340-9351.
- 675 52. Holmes, BB, Furman, JL, Mahan, TE, Yamasaki, TR, Mirbaha, H, Eades, WC, *et al.* (2014). Proteopathic
 676 tau seeding predicts tauopathy in vivo. *Proc Natl Acad Sci U S A* 111: E4376-4385.
- Albert, M, Mairet-Coello, G, Danis, C, Lieger, S, Caillierez, R, Carrier, S, *et al.* (2019). Prevention of
 tau seeding and propagation by immunotherapy with a central tau epitope antibody. *Brain* 142: 17361750.
- 680 54. Wang, Y, Balaji, V, Kaniyappan, S, Kruger, L, Irsen, S, Tepper, K, *et al.* (2017). The release and trans681 synaptic transmission of Tau via exosomes. *Mol Neurodegener* 12: 5.

- 682 55. Polanco, JC, Li, C, Durisic, N, Sullivan, R, and Gotz, J (2018). Exosomes taken up by neurons hijack the
 683 endosomal pathway to spread to interconnected neurons. *Acta Neuropathol Commun* 6: 10.
- 684 56. Winston, CN, Aulston, B, Rockenstein, EM, Adame, A, Prikhodko, O, Dave, KN, *et al.* (2019). Neuronal
 685 Exosome-Derived Human Tau is Toxic to Recipient Mouse Neurons in vivo. *J Alzheimers Dis* 67: 541686 553.
- 57. Kaufman, SK, Sanders, DW, Thomas, TL, Ruchinskas, AJ, Vaquer-Alicea, J, Sharma, AM, *et al.* (2016).
 Tau Prion Strains Dictate Patterns of Cell Pathology, Progression Rate, and Regional Vulnerability In
 Vivo. *Neuron* 92: 796-812.
- 690 58. Buee Scherrer, V, Hof, PR, Buee, L, Leveugle, B, Vermersch, P, Perl, DP, et al. (1996).
 691 Hyperphosphorylated tau proteins differentiate corticobasal degeneration and Pick's disease. Acta
 692 Neuropathol 91: 351-359.
- 693 59. Hof, PR, Bouras, C, Perl, DP, and Morrison, JH (1994). Quantitative neuropathologic analysis of Pick's
 694 disease cases: cortical distribution of Pick bodies and coexistence with Alzheimer's disease. *Acta*695 *Neuropathol* 87: 115-124.
- 696 60. Forrest, SL, Kril, JJ, Stevens, CH, Kwok, JB, Hallupp, M, Kim, WS, *et al.* (2018). Retiring the term
 697 FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. *Brain* 141: 521698 534.
- 699 61. Delacourte, A, Sergeant, N, Wattez, A, Gauvreau, D, and Robitaille, Y (1998). Vulnerable neuronal
 700 subsets in Alzheimer's and Pick's disease are distinguished by their tau isoform distribution and
 701 phosphorylation. *Ann Neurol* 43: 193-204.
- Mailliot, C, Sergeant, N, Bussiere, T, Caillet-Boudin, ML, Delacourte, A, and Buee, L (1998).
 Phosphorylation of specific sets of tau isoforms reflects different neurofibrillary degeneration processes. *FEBS Lett* 433: 201-204.
- Chaunu, MP, Deramecourt, V, Buee-Scherrer, V, Le Ber, I, Brice, A, Ehrle, N, *et al.* (2013). Juvenile
 frontotemporal dementia with parkinsonism associated with tau mutation G389R. *J Alzheimers Dis* 37:
 707 769-776.
- 708 64. Deramecourt, V, Lebert, F, Maurage, CA, Fernandez-Gomez, FJ, Dujardin, S, Colin, M, *et al.* (2012).
 709 Clinical, neuropathological, and biochemical characterization of the novel tau mutation P332S. *J*710 *Alzheimers Dis* **31**: 741-749.

711 65. Buee, L, Bussiere, T, Buee-Scherrer, V, Delacourte, A, and Hof, PR (2000). Tau protein isoforms, 712 phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33: 95-130. 713 Richetin, K, Steullet, P, Pachoud, M, Perbet, R, Parietti, E, Maheswaran, M, et al. (2020). Tau 66. 714 accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in 715 Alzheimer's disease. Nat Neurosci. 716 67. Dujardin, S, Begard, S, Caillierez, R, Lachaud, C, Carrier, S, Lieger, S, et al. (2018). Different tau species 717 lead to heterogeneous tau pathology propagation and misfolding. Acta Neuropathol Commun 6: 132. 718 68. Sealey, MA, Vourkou, E, Cowan, CM, Bossing, T, Quraishe, S, Grammenoudi, S, et al. (2017). Distinct 719 phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy. Neurobiol Dis 720 105: 74-83. 721 Xu, C, Guo, J, Li, L, Wang, X, Zhou, Q, Sun, D, et al. (2020). Co-Expression of Three Wild-Type 3R-69. 722 Tau Isoforms Induces Memory Deficit via Oxidation-Related DNA Damage and Cell Death: A Promising 723 Model for Tauopathies. J Alzheimers Dis 73: 1105-1123. 724 70. Rosler, M, Retz, W, Retz-Junginger, P, and Dennler, HJ (1998). Effects of two-year treatment with the 725 cholinesterase inhibitor rivastigmine on behavioural symptoms in Alzheimer's disease. Behav Neurol 11: 726 211-216. 727 71. Jadhav, S, Avila, J, Scholl, M, Kovacs, GG, Kovari, E, Skrabana, R, et al. (2019). A walk through tau 728 therapeutic strategies. Acta Neuropathol Commun 7: 22. 729 72. Malia, TJ, Teplyakov, A, Ernst, R, Wu, SJ, Lacy, ER, Liu, X, et al. (2016). Epitope mapping and 730 structural basis for the recognition of phosphorylated tau by the anti-tau antibody AT8. Proteins 84: 427-731 434. 732 Jicha, GA, Bowser, R, Kazam, IG, and Davies, P (1997). Alz-50 and MC-1, a new monoclonal antibody 73. 733 raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res 734 **48**: 128-132. 735 74. Hoffmann, R, Lee, VM, Leight, S, Varga, I, and Otvos, L, Jr. (1997). Unique Alzheimer's disease paired 736 helical filament specific epitopes involve double phosphorylation at specific sites. Biochemistry 36: 8114-737 8124. 738 75. Zheng-Fischhofer, Q, Biernat, J, Mandelkow, EM, Illenberger, S, Godemann, R, and Mandelkow, E 739 (1998). Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at

- 740 Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired741 helical-filament-like conformation. *Eur J Biochem* 252: 542-552.
- 742 76. Yoshida, H, and Goedert, M (2006). Sequential phosphorylation of tau protein by cAMP-dependent
 743 protein kinase and SAPK4/p38delta or JNK2 in the presence of heparin generates the AT100 epitope. *J*744 *Neurochem* 99: 154-164.
- 745 77. Galas, MC, Dourlen, P, Begard, S, Ando, K, Blum, D, Hamdane, M, *et al.* (2006). The peptidylprolyl
 746 cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a
 747 pathological mechanism related to Alzheimer disease. *J Biol Chem* 281: 19296-19304.
- 748 78. Dujardin, S, Begard, S, Caillierez, R, Lachaud, C, Delattre, L, Carrier, S, *et al.* (2014). Ectosomes: a new
 749 mechanism for non-exosomal secretion of tau protein. *PLoS One* 9: e100760.
- 750 79. Hagel, L, Östberg, M, and Andersson, T (1996). Apparent pore size distributions of chromatography
 751 media. *Journal of Chromatography A* 743: 33-42.
- Kulak, NA, Pichler, G, Paron, I, Nagaraj, N, and Mann, M (2014). Minimal, encapsulated proteomicsample processing applied to copy-number estimation in eukaryotic cells. *Nat Methods* 11: 319-324.
- 754 81. Cox, J, and Mann, M (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.755 range mass accuracies and proteome-wide protein quantification. *Nat Biotechnol* 26: 1367-1372.
- 756 82. Cox, J, Neuhauser, N, Michalski, A, Scheltema, RA, Olsen, JV, and Mann, M (2011). Andromeda: a
 757 peptide search engine integrated into the MaxQuant environment. *J Proteome Res* 10: 1794-1805.
- 83. Baietti, MF, Zhang, Z, Mortier, E, Melchior, A, Degeest, G, Geeraerts, A, *et al.* (2012). Syndecansyntenin-ALIX regulates the biogenesis of exosomes. *Nat Cell Biol* 14: 677-685.
- 760 84. Tyanova, S, Temu, T, Sinitcyn, P, Carlson, A, Hein, MY, Geiger, T, *et al.* (2016). The Perseus
 761 computational platform for comprehensive analysis of (prote)omics data. *Nat Methods* 13: 731-740.
- Schwanhausser, B, Busse, D, Li, N, Dittmar, G, Schuchhardt, J, Wolf, J, *et al.* (2011). Global
 quantification of mammalian gene expression control. *Nature* 473: 337-342.
- 764 86. d'Orange, M, Auregan, G, Cheramy, D, Gaudin-Guerif, M, Lieger, S, Guillermier, M, et al. (2018).
- Potentiating tangle formation reduces acute toxicity of soluble tau species in the rat. *Brain* **141**: 535-549.
- 766

Abbreviations- Alzheimer disease (AD), brain-derived enriched extracellular vesicles (BD-EVs), brain-derived fluid (BD-fluid), extracellular vesicles (EVs), Fluorescence Resonance Energy Transfer (FRET), Gene Ontology Cellular Components (GOCC), immunohistochemistry (IHC), Intensity-based absolute quantification (IBAQ), interstitial fluid (ISF), Monoclonal antibody (mAb), nanoparticle tracking analysis (NTA), neurofibrillary tangles (NFT), Pick's disease (PiD), paraformaldehyde (PFA), phosphate buffered saline (PBS), phenylmethylsulphonyl fluoride (PMSF), progressive supranuclear palsy (PSP), proteinase K (PK), repeat domain (RD), room temperature (RT), size-exclusion chromatography (SEC).

776

777 Figure legends-778

779 Figure 1- Murine BD-EVs characterization- Vesicles from murine BD-fluid were isolated using SEC to separate 780 vesicles from free-floating proteins. They were separated by sepharose resin columns in PBS and 500 µl per 781 fraction were collected. (A) BD-EVs concentration was quantified per fraction using NTA and expressed as 782 vesicles/ml (A, black columns); the amount of total protein was determined using either UV spectrophotometry 783 (A, white columns) or a silver gel coloration (B). (C) The vesicles' morphology was studied using electron 784 microscopy in pooled fractions 1-4 (F1-4). The scale bar is indicated on the figure. (D) The vesicles' size 785 distribution was determined using NTA in pooled fractions 1-4 (F1-4). (E) Circular barplot showing IBAQ 786 intensity scores obtained for 20 selected GOCC terms after quantitative proteomic analysis of F1-4 fractions. (F) 787 Table listing human gene names corresponding to proteins recommended by MISEV 2018 detected in the F1-4 788 fractions after MS-based proteomic analysis. * used for families of multiple proteins, for example for 789 integrins: ITGA* indicates any integrin alpha chain. (G) The intravesicular tau (+PK-RIPA, with RIPA for ELISA 790 tau detection) or the intra- plus the extravesicular tau (-PK+RIPA) was quantified using ELISA from murine BD-791 EVs (3 months-old THY-tau30). A positive control showing the global lysis of tau was also shown (+PK+RIPA). 792 ns= not significant. For A and D, mean of 3 independent experiences are shown, for B and C, illustrative data are 793 representative of at least 3 independent experiences.

794

Figure 2- BD-EVs of a transgenic mouse model of tauopathy contain tau seeds- (A) BD-EVs of TgAPP/PS1 (6 months old, n = 6), wild-type littermate mice (1 [n = 8], 3 [n = 6], and 6 [n = 8] months old), and THY-tau30 (1 [n = 7], 3 [n = 8], and 6 [n = 8] months old) were applied to the HEK-tau biosensor cells, and the FRET signal was quantified using flow cytometry. 2 μ M of sonicated K18 fibrils were used as a positive control (+) and PBS 799was used as a negative control (-). (B) BD-EVs isolated from 3-month-old THY-tau30 (F1-4) were further800ultracentrifuged to deplete vesicles. Pellet containing vesicles (P) and supernatant (S) were applied to the biosensor801assay. (C) Tau ELISA after tau immunodepletion (with or without sonication) from BD-EVs isolated from 3-802month-old THY-tau30. HT7 was used to immunodeplete tau whereas IgG1 was used as a negative control of803immunodepletion. (D) After tau immunodepletion of sonicated BD-EVs, fractions were applied to the biosensor804assay. For A, B and D, results are expressed as the percentage of the FRET signal x MFI (% FRET x MFI). * p <</td>8050.05; ** p < 0.01; # p < 0.05, #### p < 0.0001, or **** p < 0.0001.

806

Figure 3- Tau lesions in human brain tauopathies- Prefrontal (PF), occipital (OC) and cerebellum (Cb) brain regions were dissected post-mortem from non-demented controls (n = 5), patients with PSP (n = 5), PiD (n = 5), and AD (n = 10). (A) IHC of tau lesions using the AT8 antibody in mirror zones. Scale bars are indicated on the figure. (B) Human brain sections were blindly quantified using QuPath-0.2.1 software. Results are expressed as a percentage of tau lesions ([AT8 positive pixels/total pixels] x100). * p < 0.05; ** p < 0.01; *** p < 0.001, or **** p < 0.0001.

813

814 Figure 4- Seed-competent species are found in BD-EVs in human tauopathies- BD-fluid was purified from 815 the different brain regions and vesicles were isolated from the 500 µl of BD-fluid. (A) BD-EVs concentration was 816 analyzed using NTA and expressed as vesicles per gram/ml of tissue used to prepare the BD-fluid, and (B) global 817 tau content was determined by ELISA (INNOTEST® hTAU Ag, Fujirebio). Results are expressed as Tau (pg/ml) 818 / g of tissue. (C) BD-EVs were applied to the HEK-tau biosensor cells and the FRET signal was quantified using 819 flow cytometry. Results are expressed as % FRET x MFI / g of tissue. (D) Non-parametric Spearman correlation 820 between the post-mortem delay (PMD) and the FRET signal generated by BD-EVs from the AD prefrontal cortex (PF), AD occipital cortex (OC), and AD cerebellum (Cb) regions. *p < 0.05; ***p < 0.001. 821

822

Figure 5- AD BD-EVs efficiently seed host human mutated tau in young THY-tau30 mice- (A) Four AD, four PiD, four PSP, and four non-demented control BD-fluid were purified (Table 1 in bold), and isolated vesicles were pooled. $2 \mu l$ (6x10⁹ vesicles) were applied to the HEK-tau biosensor cells, and the FRET signal was quantified using flow cytometry. Results are expressed as % FRET x MFI. (B) BD-EVs (6x10⁹) were bilaterally injected into the hippocampi of 1-month-old THY-tau30 or wild-type mice littermates (n = 5). Mice were sacrificed four weeks post-injection and the tau pathology was analysed by DAB-immunostaining with the MC1 (upper) or AT100

- 829 (lower) antibodies. Sections from the hippocampus (injection site) are shown. Scale bars are indicated on the
- 830 figure. (C) The number of MC1 (left) or AT100 (right) immunoreactive neurons per brain section was quantified
- 831 (Bregma -2.3 to -2.8 mm), and the data are presented as mean \pm SD. ** p < 0.01, *** p<0.001.
- 832

833 Supplementary Figure Legends

834

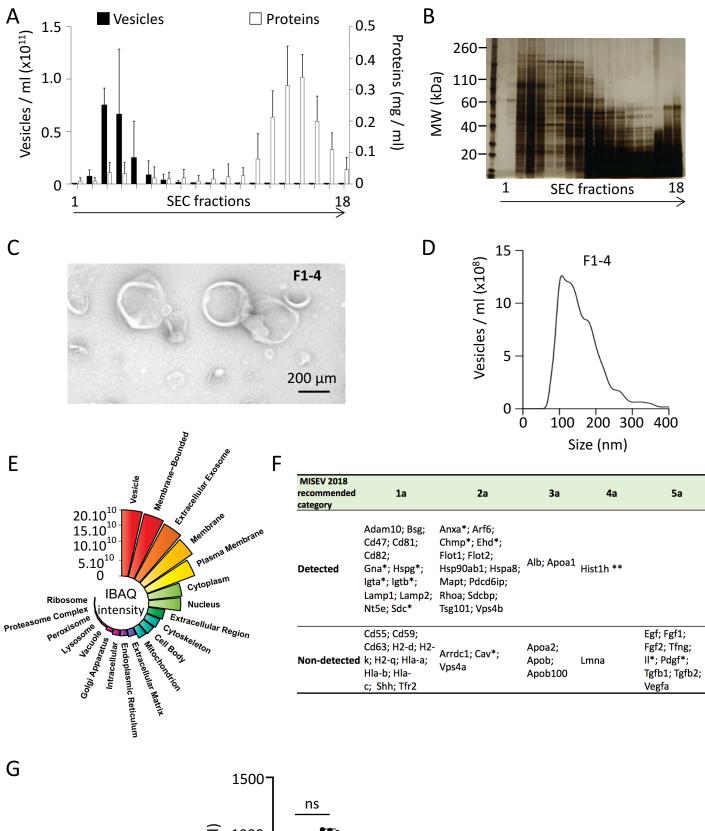
Figure S1- HSP90 and CD63 are found associated to F1-4- (A) The presence of the HSP90 in murine BD-EVs
(F1-4) is validated by western-blot. (B) The presence of the CD63 in human BD-EVs (F1-4) is validated by
immunogold electron microscopy.

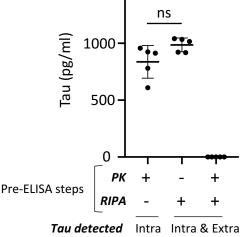
838

Figure S2- Tau lesions in THY-tau30 mice- Illustration of tau lesions in hippocampal sections of TgAPP/PS1
(6 months old), wild-type littermate mice, and THY-tau30 (1, 3, and 6 months old) using antibodies that recognize
pathological forms of tau, MC1 (a-g) or AT100 (h-n). In f-n, a few neurofibrillary tangles are shown (arrows).
Scale bars are indicated on the figure. Enlargements of CA1 layers (squares) are shown at 6 months for THYtau30 mice. Pyr= Pyramidal, DS= Dorsal Subiculum, LMol = Lacunosum Molecular layer.

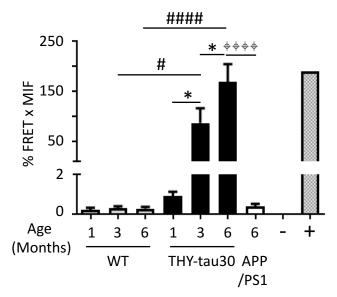
844

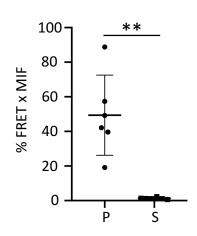
845 Figure S3- Human BD-EVs characterization- BD-EVs were isolated from BD-fluid using SEC to separate 846 vesicles from free-floating proteins and 500 µl per fraction were collected. (A) BD-EVs concentration was 847 quantified in a NTA and expressed as vesicles/ml (A, black columns); the amount of total protein was determined 848 using either UV spectrophotometry (A, white columns) or a silver gel coloration (B). (C) The BD-EVs morphology 849 was studied using electron microscopy for pooled fractions 1-4 (F1-4). The scale bars are indicated on the figure. 850 (D) The vesicles' size distribution was studied using NTA in pooled fractions 1-4 (F1-4). (E) Circular barplot 851 showing IBAQ intensity scores obtained for different 20 selected GOCC terms after quantitative proteomic 852 analysis of F1-4 fractions. (F) Table listing human gene names of proteins recommended by MISEV 2018 detected 853 in the F1-4 fractions after MS-based proteomic analysis. * used for families of multiple proteins, for example for 854 integrins: ITGA* indicates any integrin alpha chain. For A and D, mean of 3 independent experiences are shown; 855 for B and C, illustrative data are representative of at least 3 independent experiences.

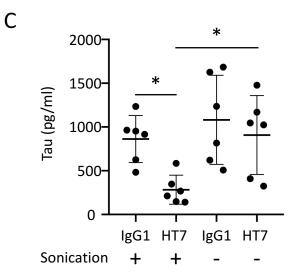

856

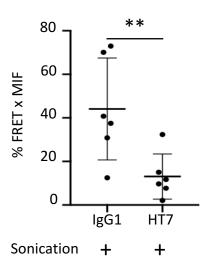

Figure S4- Tau transfer by EVs. (A) The htau1N4R-V5 isoform was expressed in HeLa cells using lentiviral
technology. (B) EVs isolated from the media and applied to receiving cells that don't express htau1N4R-V5 were

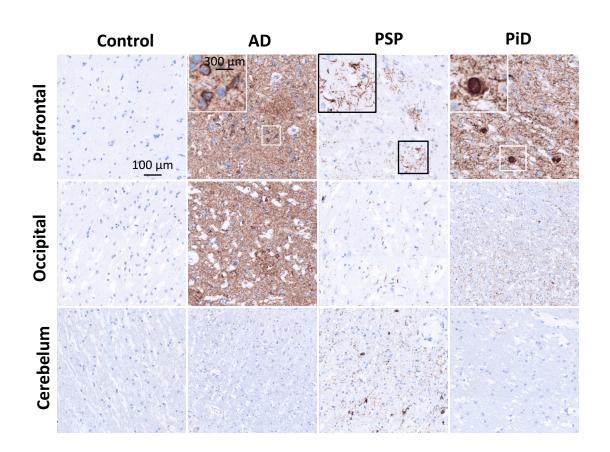
found to transfer tau between cells. In (A) and (B) tau is visualized in red with a V5 antibody; the nuclei are labelled with DAPI and visualized in blue. (C and D) Primary neurons were either infected or not infected with lentiviral vectors to overexpress htau-1N4R-V5, and the EVs isolated from the supernatant were injected into the hippocampi of naïve rats. Confocal micrographs show hippocampal neurons (NeuN+: green) positive for htau1N4R-V5, 50 days after the intrahippocampal injections of both the control EVs (C) and the EVs derived from the htau1N4R primary culture (D). Scale bars are indicated on the figure.

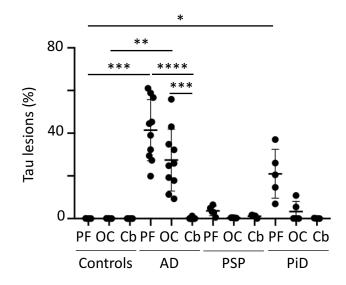

- 865
- Table 1- Demographic, biological, and clinical characteristics of the human brain sample donors- Brain
 samples used for BD-fluid isolation are listed (n = 5 non-demented controls, n = 10 AD, n = 10 PSP, and n = 5
 PiD). The items in bold indicate the AD patients, PSP patients, PiD patients, and non-demented controls selected
 for the intracranial delivery of the BD-EVs in mice.
- 870

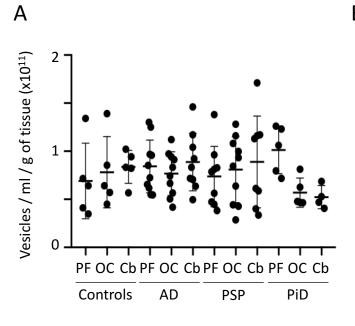

Sex	Death (y)	PMI (h)	Diagnosis	Tau lesions	Braak	Thal	Cause of death
м	78	19	Control	nono	0 0		invasive
IVI	/8	19	Control	none			aspergillosis
F	82	NA	Control	none l		1	pericarditis
М	23	24	Control	none	0	0	myocarditis
М	59	13	Control	none	0	0	Septic shock
М	41	11	CTRL	none	0	0	suffocation
М	70	30	AD	NFT	VI	4	
F	63	15	AD	NFT	VI	4	
F	60	24	AD	NFT	VI	5	
F	82	84	AD	NFT	VI	5	
F	87	24	AD	NFT	VI	5	
F	71	4	AD	NFT	VI	4	
М	64	20	AD	NFT VI 4		4	
М	66	27	AD	NFT VI		5	
F	66	16	AD NFT		VI	4	
М	69	6	AD	NFT	VI	4	
М	74	9	PSP	NFT and GFT	NA	1	
М	90	36	PSP	NFT and GFT	d GFT NA		
М	88	3	PSP	NFT and GFT	NA	4	
М	69	17	PSP	NFT and GFT	NA	0	
F	79	4	PSP	NFT and GFT	NA	0	
М	65	18	PSP	NFT and GFT	NA	0	
М	82	4	PSP	NFT and GFT	NA	0	
М	64	18	PSP	NFT and GFT	GFT NA 0		
F	77	9	PSP	NFT and GFT NA		3	
М	57	20	PSP	NFT and GFT NA 1		1	
М	57	22	PiD	Pick bodies NA 0		0	
М	71	21	PiD	Pick bodies NA 3		3	
F	78	11	PiD	Pick bodies&NFT	NA	0	
М	68	15	PiD	Pick bodies	NA	0	
М	68	8	PiD	Pick bodies	NA	0	

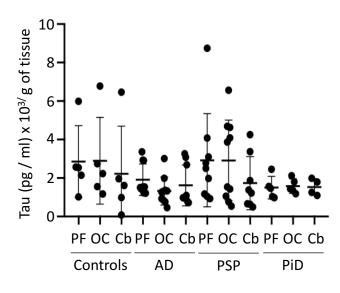


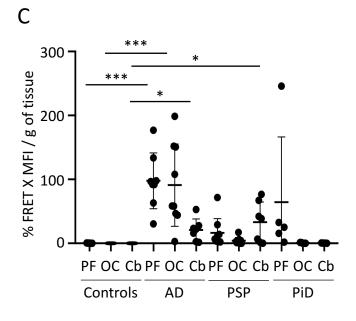

В

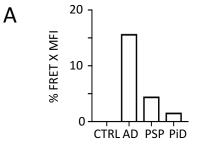





D




В



D

PMD versus.	PF-AD	OC-AD	Cb AD
Spearman (r)	- 0.6587	-0.6307	0.1
P value (two- tailed)	0.0839	0.1413	0.9500
P value summary	NS	NS	NS

В

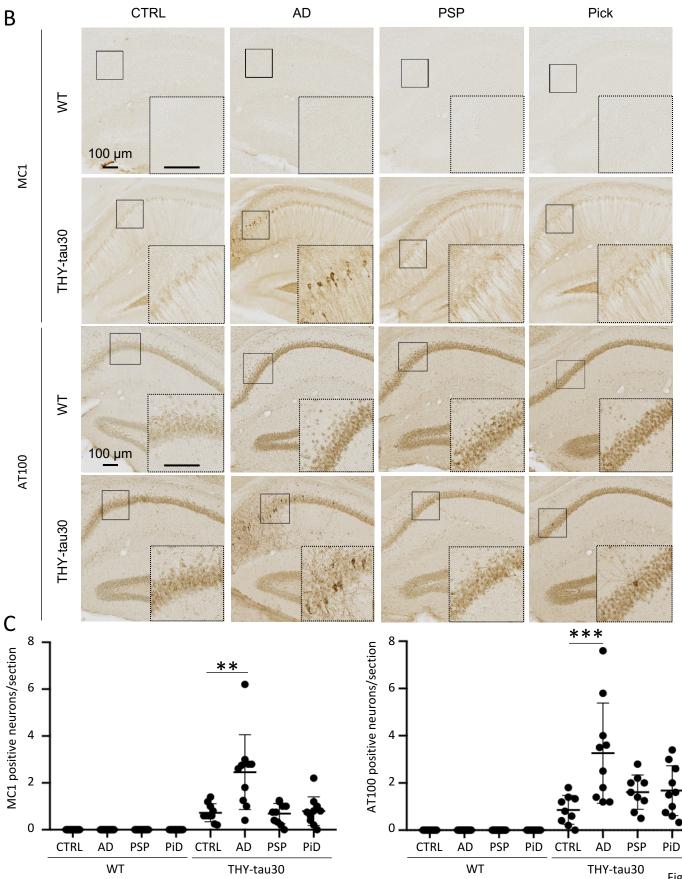


Figure 5

Supplementary information's

Extracellular vesicles: major actors of heterogeneity in tau spreading among human tauopathies

Elodie Leroux^{1†}, Romain Perbet^{1†}, Raphaëlle Caillerez¹, Kevin Richetin^{2,3,4}, Sarah Lieger¹, Jeanne Espourteille², Thomas Bouillet¹, Séverine Bégard¹, Clément Danis¹, Anne Loyens¹, Nicolas Toni², Nicole Déglon^{3,4}, Vincent Deramecourt¹, Susanna Schraen-Maschke¹, Luc Buée^{1*} and Morvane Colin^{1*}

Short title: EVs in pathological tau propagation

Supplementary Figure Legends

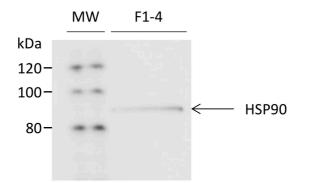
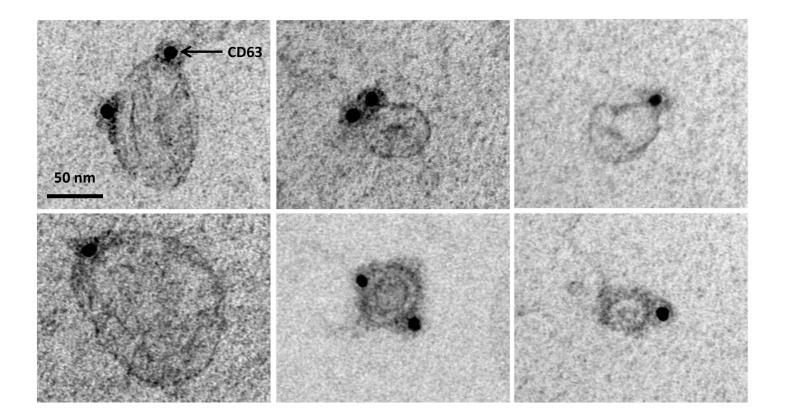

Figure S1- HSP90 and CD63 are found associated to F1-4- (A) The presence of the HSP90 in murine BD-EVs (F1-4) is validated by western-blot. (B) The presence of the CD63 in human BD-EVs (F1-4) is validated by immunogold electron microscopy.

Figure S2- Tau lesions in THY-tau30 mice- Illustration of tau lesions in hippocampal sections of TgAPP/PS1 (6 months old), wild-type littermate mice, and THY-tau30 (1, 3, and 6 months old) using antibodies that recognize pathological forms of tau, MC1 (a-g) or AT100 (h-n). In f-n, a few neurofibrillary tangles are shown (arrows). Scale bars are indicated on the figure. Enlargements of CA1 layers (squares) are shown at 6 months for THY-tau30 mice. Pyr= Pyramidal, DS= Dorsal Subiculum, LMol = Lacunosum Molecular layer.


Figure S3- Human BD-EVs characterization- BD-EVs were isolated from BD-fluid using SEC to separate vesicles from free-floating proteins and 500 µl per fraction were collected. (A) BD-EVs concentration was quantified in a NTA and expressed as vesicles/ml (A, black columns); the amount of total protein was determined using either UV spectrophotometry (A, white columns) or a silver gel coloration (B). (C) The BD-EVs morphology was studied using electron microscopy for pooled fractions 1-4 (F1-4). The scale bars are indicated on the figure. (D) The vesicles' size distribution was studied using NTA in pooled fractions 1-4 (F1-4). (E) Circular barplot showing IBAQ intensity scores obtained for different 20 selected GOCC terms after quantitative proteomic analysis of F1-4 fractions. (F) Table listing human gene names of proteins recommended by MISEV 2018 detected in the F1-4 fractions after MS-based proteomic analysis. * used for families of multiple proteins, for example for

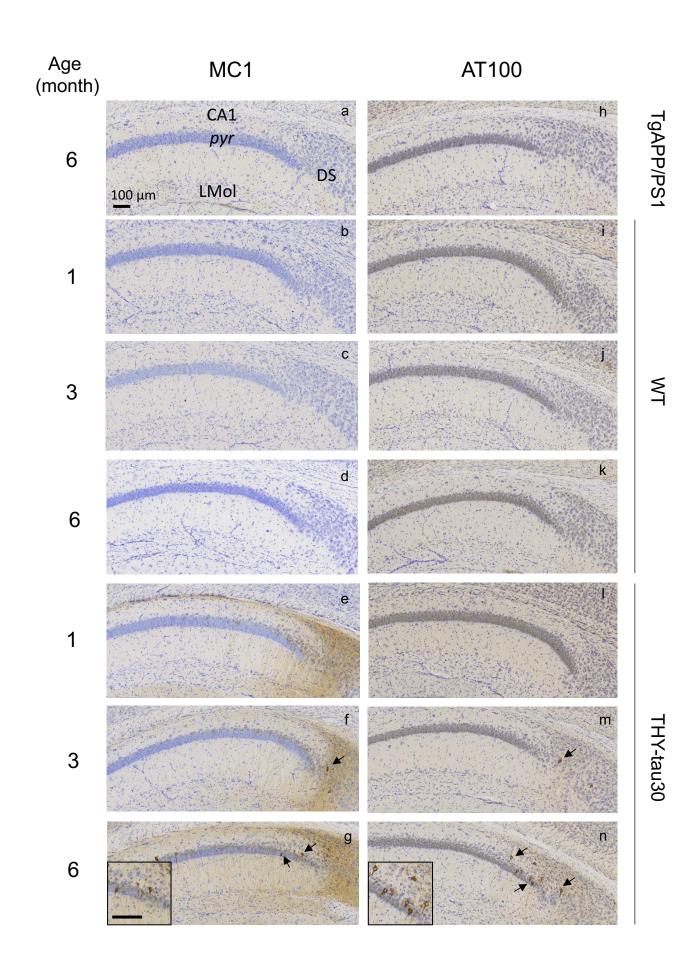
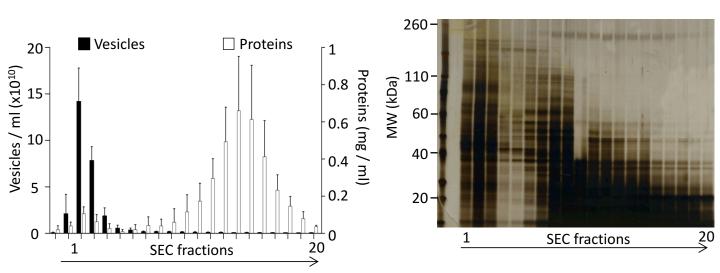
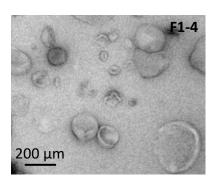
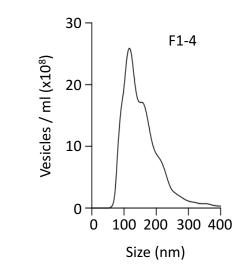

integrins: ITGA* indicates any integrin alpha chain. For A and D, mean of 3 independent experiences are shown; for B and C, illustrative data are representative of at least 3 independent experiences.

Figure S4- Tau transfer by EVs. (A) The htau1N4R-V5 isoform was expressed in HeLa cells using lentiviral technology. (B) EVs isolated from the media and applied to receiving cells that don't express htau1N4R-V5 were found to transfer tau between cells. In (A) and (B) tau is visualized in red with a V5 antibody; the nuclei are labelled with DAPI and visualized in blue. (C and D) Primary neurons were either infected or not infected with lentiviral vectors to overexpress htau-1N4R-V5, and the EVs isolated from the supernatant were injected into the hippocampi of naïve rats. Confocal micrographs show hippocampal neurons (NeuN+: green) positive for htau1N4R-V5, 50 days after the intrahippocampal injections of both the control EVs (C) and the EVs derived from the htau1N4R primary culture (D). Scale bars are indicated on the figure

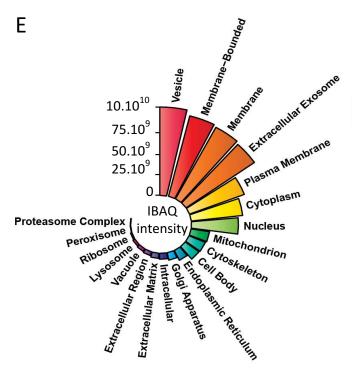
В

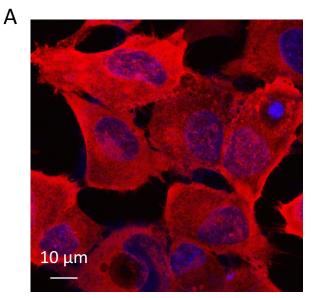





Α

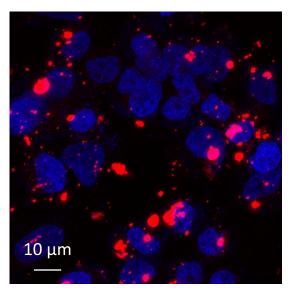
С





F

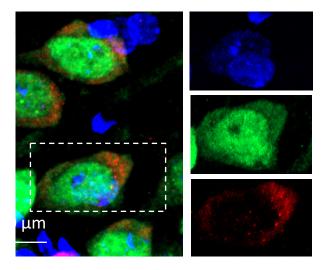
D


MISEV 2018 recommended category	1a	2a	3a	4a	5a
Detected	ADAM10; BSG; CD47; CD55; CD59; CD63; CD81; CD82; GNA*; HLA-A; HSPG*; IGTA*; IGTB*; LAMP1; LAMP2; NT5E; SDC*	ANXA*; ARF6; CAV*; CHMP*; EHD*; FLOT1; FLOT2; HSP90AB1; HSPA8; MAPT; PDCD6IP; RHOA; SDCBP; TSG101; VPS4A; VPS4B	APOA1; APOB;	HIST1H*; LMNA	FGF1
Non-detected	H2-D; H2-K; H2- Q; HLA-B; HLA-C; SHH; TFR2	ARRDC1	APOA2; APOB100; ALB		EGF; FGF2; TFNG; IL*; PDGF*; TGFB1; TGFB2; VEGFA


В

D

TauV5, donor cells



TauV5, receiving cells

DAPI / NeuN / V5

EVs 1N4R

DAPI / NeuN / V5