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Abstract. Fast urban pluvial flood models are necessary for
a range of applications, such as near real-time flood now-
casting or processing large rainfall ensembles for uncertainty
analysis. Data-driven models can help overcome the long
computational time of traditional flood simulation models,
and the state-of-the-art models have shown promising accu-
racy. Yet the lack of generalizability of data-driven urban plu-
vial flood models to both unseen rainfall and distinctively dif-
ferent terrain, at the fine resolution required for urban flood
mapping, still limits their application. These models usually
adopt a patch-based framework to overcome multiple bottle-
necks, such as data availability and computational and mem-
ory constraints. However, this approach does not incorporate
contextual information of the terrain surrounding the small
image patch (typically 256m x 256 m). We propose a new
deep-learning model that maintains the high-resolution in-
formation of the local patch and incorporates a larger sur-
rounding area to increase the visual field of the model with
the aim of enhancing the generalizability of data-driven ur-
ban pluvial flood models. We trained and tested the model
in the city of Zurich (Switzerland), at a spatial resolution
of 1 m, for 1h rainfall events at 5 min temporal resolution.
We demonstrate that our model can faithfully represent flood
depths for a wide range of rainfall events, with peak rainfall
intensities ranging from 42.5 to 161.4 mmh~!. Then, we as-
sessed the model’s terrain generalizability in distinct urban
settings, namely, Lucerne (Switzerland) and Singapore. The
model accurately identifies locations of water accumulation,
which constitutes an improvement compared to other deep-

learning models. Using transfer learning, the model was suc-
cessfully retrained in the new cities, requiring only a single
rainfall event to adapt the model to new terrains while pre-
serving adaptability across diverse rainfall conditions. Our
results indicate that by incorporating contextual terrain in-
formation into the local patches, our proposed model effec-
tively simulates high-resolution urban pluvial flood maps,
demonstrating applicability across varied terrains and rain-
fall events.

1 Introduction

Urban pluvial flooding represents a global threat to people
and infrastructure that is expected to increase as floods be-
come more frequent and the world’s population grows, with
68 % of the world’s population projected to live in cities by
2030 (UN, 2018). From an economic point of view, the con-
centration of wealth in urban areas combined with acceler-
ated infrastructure development has led to a great increase in
economic losses from floods (Kundzewicz et al., 2014), and
these losses are projected to further increase globally (Win-
semius et al., 2016).

Along with the growing exposure of people and assets, the
occurrence of pluvial floods is projected to increase due to
both climate change and the effects of urbanization (IPCC,
2022). Pluvial flooding occurs in response to intense precip-
itation that causes the failure of the drainage system. Due
to global warming, short-duration extreme rainfall, which is
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the key trigger for pluvial flooding, is intensifying globally
(Fowler et al., 2021; Tabari et al., 2020), and this intensi-
fication can be exacerbated by the urban environment (Han
and Baik, 2008; Huang et al., 2022; Li et al., 2020; Liang
and Ding, 2017). It is also well established that urbaniza-
tion increases the occurrence of pluvial flooding by modi-
fying the hydrological response: sealed impervious surfaces
and reduced vegetation decrease infiltration capacity, surface
storage, and evapotranspiration, resulting in higher peak dis-
charges and runoff volumes (Leopold, 1968; Miller et al.,
2014; Semadeni-Davies et al., 2008; Skougaard Kaspersen
et al., 2017).

The foreseen urbanization and climate change, as well
as their projected impacts on urban pluvial floods, encour-
age the development of resilient cities (Ahmed et al., 2018;
Berndtsson et al., 2019; Rosenzweig et al., 2018). While
there exists a consensus regarding the increase in urban
pluvial flood risk (Houston et al., 2011; Kundzewicz and
Pinskwar, 2022), the extent of increased risk and its at-
tributed causes still constitute major knowledge gaps (IPCC,
2022; Kundzewicz et al., 2014). Loss databases are not suit-
able for risk trend analysis due to biases from improvements
in reporting, changes in vulnerability, and the inability to dis-
tinguish among the factors (climatic or non-climatic) trigger-
ing the hazard (Peduzzi et al., 2012; Willems et al., 2012).
Thus, there is a need to model the changes in extreme rain-
fall due to changes in climate and urban areas, as well as the
impact they will have on the flood regime in each city indi-
vidually.

Extreme short-duration rainfall events can be modeled
using physically based climate models with high spatial
resolution (such as convection-permitting models, Dallan
et al., 2023), stochastic—mechanistic climate models (Peleg
et al., 2017), or stochastic—statistical methods (Marra et al.,
2019, 2024). The outputs of these models can be used as in-
puts to numerical hydrodynamic models, which are the most
robust and reliable models for estimating urban hydrological
responses to rainfall (Kourtis and Tsihrintzis, 2021). How-
ever, these models are also characterized by a long com-
putation time. While recent improvements in computational
power and more efficient algorithms have reduced the bur-
den of hydrodynamic models, their runtimes are still insuffi-
cient for applications requiring a high number of simulations.
This is problematic, as multiple runs of these models are re-
quired per city to account for the large degree of uncertainty
in future climate projections and urban development scenar-
ios (Hirsch, 2011; Miller and Hutchins, 2017), necessitating
the development of alternative models.

The use of machine learning for fast flood mapping has
been given growing attention in recent years (Nearing et al.,
2021). Models based on convolutional layers have demon-
strated the potential to emulate urban pluvial flood maps
as they can best extract spatial information characterizing
the flood events (Bentivoglio et al., 2022). To increase the
amount of training data and to address the memory limita-
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tions of handling large images, these models operate on lo-
cal patches rather than the entire catchment area (Berkhahn
and Neuweiler, 2024; do Lago et al., 2023; Guo et al.,
2021, 2022; Lowe et al., 2021; Seleem et al., 2023). The
patch-based model presented by Guo et al. (2021), for ex-
ample, can predict water depths 1400 times faster than tradi-
tional hydrodynamic models, as demonstrated for a range of
rainfall events in the cities of Zurich, Lucerne (or Luzern, as
in the figures), and Coimbra. Lowe et al. (2021) developed
a model for urban pluvial flood mapping and evaluated its
prediction performance in a city in Denmark at a 5 m reso-
lution, reserving approximately 25 % of the area for valida-
tion and testing. Although these areas were included in the
validation, they were excluded from training, and the model
still performed well in these areas. In another study, Guo
et al. (2022) assessed the terrain generalizability of a data-
driven flood model across 656 catchments in Switzerland.
The model was able to adapt to new catchments, yet it did
not incorporate rainfall as an input, limiting its predictions
to the single rainfall event used for generating the training
flood maps. More recent advances include the work by Se-
leem et al. (2023), in which a convolutional neural network
(CNN)-based approach was compared with a random forest
approach for urban pluvial flood mapping in three study ar-
eas in Berlin at 1 m spatial resolution. The authors found that
the CNN model could benefit from transfer learning to en-
hance performance in the terrain on which the model was not
trained. Generalizability to terrain was also investigated by
do Lago et al. (2023), who developed a conditional genera-
tive adversarial network that distributes a previously known
runoff volume over a given catchment. The generator was
able to identify cells where the water level exceeded 0.3 m
and to predict the water levels for cells below that threshold.
Berkhahn and Neuweiler (2024) have used autoencoders to
compress data contained in flood maps and a recursive time
series prediction model to simulate water depth time series in
urban areas, at 6 m resolutions. However, they did not con-
sider the generalizability to terrain. Lastly, another promis-
ing application of machine learning for rapid flood mapping
is the use of hybrid approaches, which combine the advan-
tages of different model types. The advantages of hybrid ap-
proaches have been demonstrated in recent studies, including
Fraehr et al. (2023), where a fast model was developed by
combining a simplified, physics-based hydrodynamic model
(optimized for speed through a coarse computational grid and
long computational time steps), with a mathematical model
that transforms the flood patterns from the low-fidelity model
into those of the high-fidelity, non-simplified models. The
model’s generalizability was tested in two study areas with
distinct topographies for a temporal resolution of 1h and a
spatial resolution of 20 m.

Despite the advancements made in recent years in devel-
oping data-driven models for flood predictions, there are still
some major challenges to overcome. One of them is the gen-
eralizability of the models to unseen case studies, including
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Figure 1. Schematic showing the importance of contextual infor-
mation of local patches to predict urban pluvial flood maps; local
terrain does not contain the information necessary to distinguish the
flood responses in patches (a) and (b).

both unseen rainfall and distinctively different terrain, at the
fine resolution required for urban flood mapping. This limits
their application to real case studies.

Although the patch-based approach that the high-
resolution data-driven urban pluvial flood models adopt over-
comes multiple bottlenecks (e.g., amount of training data
and memory limitations of handling large images), it ignores
contextual information from the surrounding terrain that can
be crucial for flood mapping (Fig. 1). In order to preserve
global elevation information, Guo et al. (2022) have inves-
tigated the resizing-based option that downsamples the in-
put and then upsamples the outputs to the original size. This
option can process larger areas, yet it causes significant in-
formation loss which makes it a less optimal method for ur-
ban flood mapping that requires high spatial resolution. In-
cluding more contextual information while preserving the
high-resolution local representation of the patch is a com-
mon issue in the field of image segmentation (e.g., biomed-
ical and land-use/land-cover image segmentation; Alsubaie
et al., 2018; BenTaieb et al., 2017; Li et al., 2024; Mou et al.,
2020; Shaban et al., 2020). Combining multi-scale informa-
tion in context-aware models has been shown to improve im-
age segmentation performance together with keeping models
computationally efficient (Sirinukunwattana et al., 2018).

Here, we present the development of a new context-aware
data-driven model for high-resolution urban pluvial flood
mapping and investigate its performance, generalizability,
and transfer-learning abilities, using the cities of Zurich,
Lucerne, and Singapore as case studies.

2 Context-aware flood model description

We developed a context-aware data-driven model for urban
pluvial flooding. The objective of the model is to extract
and combine the information from the high-resolution lo-
cal patch, its surrounding terrain (or context), and the rain-
fall time series to emulate the corresponding flood map. To
achieve this, we developed a joint model that couples dif-
ferent types of neural networks and learns dependencies be-
tween the local patch and its surrounding area. The model
consists of the following components (Figs. 2 and S1 in the
Supplement): (i) three convolutional encoders that extract la-
tent information from the multi-scale spatial features (i.e.,
high-resolution local patch and lower-resolution contextual
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information), (ii) an attention mechanism that measures the
correlation between the local patch and its context, (iii) a re-
current neural network (RNN) that analyzes the hyetograph,
and (iv) a decoder that converts the extracted information
from both the terrain and rainfall data into the flood depth
prediction. The various components of the model are explic-
itly defined hereinafter.

2.1 Multi-scale terrain features

To help inform the model of spatial features that govern water
accumulation, terrain information images are derived from
the digital elevation model (DEM) for the local patch and
its context at different scales. To reduce computational costs,
context images are rescaled to the same size as the local
patch (256 x 256) using the Lanczos downsampling filters.
Assuming a native resolution of the DEM of 1m, the vi-
sual field of the model thus covers surfaces of 512m x 512m
and 1024 m x 1024 m at spatial resolutions of 2 and 4 m, re-
spectively (see the “Inputs” and “Spatial features” panels in
Fig. 2).

2.2 Multi-scale convolutional encoders

The multi-scale image patches, consisting of the terrain fea-
tures derived from the DEM, are fed to convolutional en-
coders that are composed of stacked convolutional layers
and pooling layers (Figs. 2 and S1). These operations re-
duce the spatial dimensionality of the input images while ex-
tracting latent information contained in an increasing number
of feature maps. Our model includes three distinct encoder
networks with the same architecture, each processing multi-
channel images at different resolutions.

2.3 Contextual attention mechanism

An attention mechanism then associates the features of the
local patch with the features of the context to capture the re-
lationships between the high- and lower-resolution images
(see “Scaled dot-product attention mechanism” in Fig. 2).
This attention mechanism is similar to the locality-aware
contextual correlation module applied by Li et al. (2024)
for high-resolution geospatial image segmentation (Fig. S1).
By applying the scaled dot-product attention to the encoder-
extracted features, the significance of each multi-channel im-
age feature is weighted to help the model correctly combine
contextual information.

2.4 Hyetograph processing

Additionally, information from the dynamic input is ex-
tracted using a base RNN layer. This is a type of neural net-
work that is known to be well-suited for handling time se-
ries data, especially for the task of rainfall-runoff modeling
(Géron, 2019; Kratzert et al., 2019). RNNs can process time
series of arbitrary length, which allows users to use the model

Hydrol. Earth Syst. Sci., 28, 5443-5458, 2024



5446

Inputs

DEM

Spatial features

B

P R
Resolution: 2m

Rainfall time series

e
W
=
]
Scaled dot-product attention mechanism
-

P [mm]
N .i
\\ _ Sl
Resolution: 4m
Time [min]
Section 3 Section 2

RNN ——> Scaling

T. Cache et al.: Enhancing data-driven flood model generalizability

Modeling framework

Decoder
Skip connections

___________________________ >

Multi-context fusion
u
L

Output

Flood map

pein o
Resolution: 1m

Figure 2. Schematic diagram showing the inputs, modeling framework, and output of the data-driven flood model. A detailed diagram of the

model architecture is presented in Fig. S1.

for rainfall events of different durations. This enables to ad-
dress the limit of use of the model to rainfall events of one
specific duration, as is the case in similar studies (e.g., Guo
et al., 2021). The output of the RNN is then scaled by the
normalized accumulated rainfall. This multiplicative scaling
ensures that the rainfall forcing from the RNN is proportional
to the accumulated rainfall, resulting in zero forcing when
there is zero rainfall. The scaling is defined for rainfall event
ias S; = 1[:;;;;, with P gec = Z;Pz’,t and Phorm = Zt Priin ¢
where ¢ is the time step and where Pp;;, refers to the rainfall
event with minimum accumulated rainfall in the training set.
We normalized the scaling in order to avoid issues with van-
ishing or exploding gradients. Ultimately, this procedure led
to a model with better performance (Table S2 in the Supple-
ment).

2.5 Fused terrain and hyetograph features upsampling

Lastly, the scaled RNN output is concatenated with the
locality-aware features extracted from the scaled dot-product
attention. The resulting combination serves as the input to the
decoder (Fig. 2). Similarly to the encoder, the decoder con-
sists of stacked upsampling layers, each comprising one de-
convolution (convolutional transpose) layer followed by two
convolution layers (Fig. S1). Each upsampling layer of the
decoder is joined with the corresponding features of the lo-
cal patch from the encoder through a skip connection, in a
similar way to the U-Net model (Ronneberger et al., 2015).
The latter model has recently gained attention in hydrologi-
cal studies (Guo et al., 2022; Lowe et al., 2021; Seleem et al.,
2023) as it is particularly efficient at localizing and, thus, at
processing images in which spatial information is important.
The operations of the decoder progressively upsample the
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fused feature maps to the flood map in a way that exploits
complementary information from the local patch, the differ-
ent contexts, and the rainfall time series.

2.6 Hyperparameters

Following initial tests, we adopted the mean squared er-
ror (MSE) as the loss function to train the model: MSE =
%ZL] (yi — $i)%, where y; represents the true values, 9; rep-
resents the predicted values, and » is the number of observa-
tions. We implemented an early-stopping callback to regular-
ize the model, i.e., to avoid overfitting. This callback termi-
nates the model’s training when the performance of the val-
idation set is not improving for a certain number of epochs,
defined by the patience. We applied the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 0.0001 and
implemented the Glorot normal initialization strategy (Glo-
rot and Bengio, 2010), which is a way to avoid unstable gra-
dients when training the model. The kernel sizes of the con-
volutional layers were 3 x 3 and 2 x 2 for the pooling and
deconvolution layers, respectively. The activation function of
all layers was Leaky-ReLU, following Guo et al. (2021), and
the batch size was 32.

2.7 Urban flood map predictions

After completing the training process, the model can be used
for making predictions. The flood maps of an entire city are
constructed by assembling the local patch predictions. The
terrain patches are extracted at regular grid intervals, ensur-
ing that the whole city is covered. To produce more robust
predictions, the patches are extracted at a grid size distance
of half the patch size so that the flood map patches overlap.
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In these overlapping areas, the final prediction is the average
of the patch predictions in that area. This method was found
to be the best option by Guo et al. (2021) as it gives a good
balance between accuracy and prediction time.

3 Model input specifications
3.1 Data specifications for model training

The model requires two types of inputs: static inputs
(multi-channel terrain images) and dynamic inputs (rainfall
hyetographs). Furthermore, the desired output, i.e., the tar-
get flood map, must also be included in the training data.
Hereafter, we describe the pre-processing framework for the
training data, assuming a native resolution of the DEM of
Im.

First, the DEM is upscaled to 2 and 4 m, and spatial fea-
tures are derived from the DEM at the different spatial reso-
lutions (1, 2, and 4 m) before being stacked as multi-channel
images. The spatial features used to train the neural network
were chosen based on previous studies (Guo et al., 2021;
Lowe et al., 2021) and the model’s performance in initial
tests. We found (not shown) that feeding the model with the
DEM, mean curvature, aspect (sine and cosine), depth of the
sinks, and the slope (in radians) helped the model learn best,
suggesting that these features can encapsulate the hydrolog-
ical characteristics of the catchment related to the dynamics
of water during floods. Additionally, these features can all
be derived directly from the DEM, thus eliminating the need
for further data, such as imperviousness maps, for example.
We extract the spatial features from the DEM using the Rich-
DEM library (Barnes, 2016).

Patches are then extracted from the multi-channel images
at random locations, with the constraints of a maximum over-
lap threshold of 20 % between two patches and a minimum
study area coverage of 10 % for each individual patch. The
corresponding output patches are extracted from the target
flood map. The pairs of input and output patches are sub-
sequently augmented. The model should be equivariant to
rotation and flip transformations; that is, these transforma-
tions of the input and output patches are arbitrary, as long
as they are consistently applied to input and output pairs.
Hence, since the augmentation techniques need to be applied
to both inputs and outputs and since rainfall-runoff follows
non-linear relationships, we can apply seven augmentation
techniques consisting of a combination of flips and 90° ro-
tations of the images (Fig. S2 in the Supplement). This en-
ables us to increase the amount of training data while lim-
iting the patch overlap and thus limiting the risk of overfit-
ting the model. In fact, similar studies with comparable study
area sizes have used disproportionate amounts of patch loca-
tions without data augmentation, thus extracting redundant
patches and facing the risk of large overlaps between train-
ing and validation patches (Fig. S3 in the Supplement; Guo
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et al., 2021; Seleem et al., 2023). Hence, these models could
be overfitting the terrain, even though this would not be ap-
parent when comparing the training and validation losses us-
ing standard evaluation metrics (Sect. S1 and Table S1 in the
Supplement).

Lastly, all multi-channel image patches are transformed
through min-max scaling. This transformation consists of
forcing the input to have the same scale, here [—1, 1], by
shifting and rescaling the data. It is commonly applied to ma-
chine learning data as machine learning algorithms do not
perform well on inputs with very different scales (Géron,
2019). We found that the model performed best when the
normalization was applied on each patch individually. We
also tested its application across the entire study area, i.e.,
extracting patches after normalizing the feature images of the
full study area, similar to previous studies (Guo et al., 2021;
Lowe et al., 2021). While this could help preserve some in-
formation about the position of the patch in its larger con-
text, it also forces patches to have values falling in a very
narrow range (e.g., full study area DEM with values between
0 and 1, and DEM patches with values between 0.455 and
0.495), therefore considerably decreasing the performance of
the model (Table S2).

Before being fed to the model, some data must be reserved
for validation and testing purposes. To facilitate this, both
patch locations and rainfall time series are partitioned into
training, validation, and testing datasets. First, the rainfall
events must be partitioned in a way that ensures indepen-
dence among training, validation, and testing rainfall events,
with respective proportions of 67 %, 11 %, and 22 %. Then,
the patch characteristics (i.e., patch location and patch aug-
mentation combinations) are randomly divided into training
(90 %) and validation (10 %) sets. Lastly, some of the training
data, consisting of the combination of both patch characteris-
tics and rainfall events, are allocated to the validation dataset.
Following this workflow, the data in the training and valida-
tion sets are allocated in an 80 % to 20 % ratio. This parti-
tioning strategy ensures that the testing rainfall events remain
unseen by the model until evaluation, thereby maintaining
the validity of the rainfall generalizability assessment. Con-
sequently, the validation set includes the following combina-
tions of data: (1) new rain and new terrain patch, (2) training
rain and new terrain patch, and (3) new rain and training ter-
rain patch.

To summarize, the model’s inputs are three multi-channel
image patches (one 256 x 256 x 6 image for the local patch at
1 m resolution and two 256 x 256 x 6 images for the context
at 2 and 4 m resolutions), along with the unprocessed rain-
fall time series and the corresponding target flood map patch
(256 x 256 image covering the same area as the local patch
at 1 m resolution).
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3.2 Data specifications for flood map generation

The data requirement and pre-processing framework for us-
ing the presented model to simulate flood maps closely re-
semble those employed during training, with some minor
deviations. The main differences lie in the fact that the tar-
get output is not informed to the model, the locations of
the patches are neither sampled randomly nor split into
train/test/validation sets, and no augmentation technique is
applied to the patches. The model’s inputs are three multi-
channel image patches of the terrain (each with dimensions
256 x 256 x 6 and resolutions 1, 2, and 4 m, assuming a na-
tive DEM resolution of 1 m) and the rainfall hyetograph for
which the user wants to produce the flood map. The patches
are sampled at a regular grid interval of half the patch size
(here 128), ensuring a comprehensive coverage of the study
area. The model will subsequently simulate flood maps for
all patches and reconstruct the flood map for the entire study
area by combining the output patches.

4 Model training and transfer learning

First, we trained and tested the model in the city of Zurich
and evaluated its performance to represent flood depths for
a wide range of rainfall events. Second, the model’s ter-
rain generalizability was assessed in distinct urban settings,
namely, Lucerne and Singapore.

In an effort to enhance the model’s performance in new
cities, we assessed the suitability of employing transfer learn-
ing. Transfer learning is a popular approach to improve the
training of deep-learning computer vision models by using
the knowledge of existing models that perform similar, or
identical, tasks to the new model. By initializing or freezing
some of the weights and biases of the layers of the new model
with the ones from the existing pre-trained model, this tech-
nique speeds up the training of the new model and requires
significantly less training data to retrain the new model (Er-
han et al., 2010; Géron, 2019) as there is no need to train the
model from scratch.

5 Rainfall and terrain generalizability
5.1 Dataset and training details

The training, testing, and validation datasets for Zurich were
extracted from 18 flood maps at 1 m resolution for a catch-
ment of 12.7 km? (Fig. 3; Guo, 2019). These flood maps
were generated using the cellular automata model WCA2D
(Guidolin et al., 2016, implemented in CADDIES-caflood)
and correspond to 18 spatially uniform 1h rainfall events
at 5min resolution with mean intensities ranging from 19
to 46mmh~!. These correspond to rainfall events with re-
turn periods ranging from 2 to 100 years in Zurich. Each re-
turn period is associated with three events that have different
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hyetograph shapes and maximum intensities (Fig. 3). To en-
sure the model’s equivariance to zero-padding and its ability
to handle rainfall events of differing durations, we randomly
selected three rainfall events with varying mean intensities
and introduced random zero-padding at the beginning and
end of these events. Lastly, we introduced an event with zero
rainfall and a corresponding flood map showing no flooding.
The neural network can thus learn to distinguish the effects of
rainfall events with different characteristics. The DEM used
as input for these simulations did not include a representa-
tion of buildings. We extracted a total of 1250 patches for
training and validation of the model (Fig. S3), and the rain-
fall events were split into train/test sets so that each return
period was represented only once in the test dataset, similar
to Guo et al. (2021). Furthermore, the rainfall events in the
test set are independent of the ones in the training set as they
have different shapes and peak intensities.

5.2 Generalizability to rainfall events

Our model’s performance was evaluated by comparing the
emulated flood maps for the entire city with those simulated
in CADDIES-caflood. Hereafter, we will refer to these as
simulated and target flood maps, respectively, and we denote
the rainfall events by their mean intensity m and shape s as
follows: P,,_s. The shape notation ranges from 1 to 3, where
1 denotes the events with the highest peak rainfall intensity
and 3 denotes the most distributed event types.

First, we evaluated the model’s ability to accurately pre-
dict water depths in Zurich for rainfall events in the test set
(Fig. 4). We chose to show the flood maps for the least- and
most-intense rainfall events as these can reflect the perfor-
mance of the model to distinguish situations where limited
flooding occurs, as well as the prediction performance in ex-
treme conditions.

The visual comparison of the target and predicted flood
maps suggests that the model successfully reproduces the
spatial pattern of water accumulation for both low- and high-
intensity rainfall events. This is confirmed by the root mean
squared error (RMSE, defined as RMSE = +MSE) of the
predicted flood maps for P9 and Pse—1, which are, re-
spectively, 15.3 x 1073 and 19.6 x 107> m.

Furthermore, the model accurately identifies cells below
0.1 m (Fig. 5). The critical success index (CSI), which mea-
sures the accuracy of the predictions, is defined as the ratio of
correctly identified cells (i.e., true positive, TP) to the sum of
correctly identified cells, missed target cells (i.e., false nega-
tive, FN), and incorrectly identified cells (i.e., false positive,
FP):

TP

CSl= ——.
TP 4 FN +FP

6]

The CSI values for water depths below 0.1 m, i.e., where
positive values in Eq. (1) correspond to water depths below
0.1m, are 0.98 for Pj9_; and 0.97 for P4¢—;. Additionally,
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Figure 4. Target (a, ¢) and simulated (b, d) flood maps in Zurich for the least-intense (Pj9_1) and most-intense (P4¢—1) rainfall events in

the test set.

the majority of the cells in the target flood maps fall below
the 0.1 m threshold, representing, respectively, 84.6 % and
80.8 % of all cells (Fig. 5). To address this imbalance and
evaluate the prediction performance of the model above the
critical 0.1 m wet threshold (Seleem et al., 2023; Skougaard
Kaspersen et al., 2017), we also evaluated the RMSE values
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for cells exceeding 0.1 m in the target flood maps (RMSE 1;
Table S4 in the Supplement). The wet-cell RMSE( val-
ues for Pjg_1 and Pse_; are, respectively, 52.9 x 1073 and
44.7 x 1073 m.

Figure 4, which shows a zoomed-in area of size 650 x 650
that is greater than the aggregation size of 128 x 128, enables
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Figure 5. Violin plot of the simulation error in Zurich, expressed
as the difference between the target flood map and simulated flood
map for different target water depth ranges and different rainfall
events (Pjg_j, P31_2, and P4¢_; that have the lowest, intermedi-
ate, and highest mean intensities, respectively, of the test set). The
vertical black lines range from the 25th to 75th percentiles, and the
horizontal black line indicates the median value. Negative values
correspond to the underprediction of the simulations. The pie charts
illustrate the proportion of cells in each water depth range in the
target flood maps. The water depth ranges are indicated by different
shading levels: lower water depths are represented by more trans-
parent colors, while higher water depths are depicted with darker
colors.

us to visually evaluate the smoothness of the predictions at
the boundaries of the patches. The absence of artifacts such
as horizontal and vertical lines confirms that the multi-scale
patch-based predictions along with the patch aggregation
method produce continuous flood maps. This suggests that
merging contextual information with the local patch allevi-
ates the issue of single-scale patch models cutting off and dis-
connecting hydrological objects such as flow paths or sinks.

The model’s prediction performance was further analyzed
by investigating the relative error in a set of water depth
ranges (Fig. 5) for the least- and most-intense rainfall events,
as well as for an intermediate event, P3;_,, with mean in-
tensity approximately equal to the average mean intensity
from the least- and most-intense events. The median rela-
tive error is fairly even across water depth ranges and across
rainfall events. For all rainfall events, we observe a trend to-
wards underprediction of the water levels when moving to
the largest target water depth ranges. The error is the lowest
for the most-intense rainfall event P46_1, which exhibits the
smallest median residual error and the lowest interquartile
range for water depths above 0.3 m.
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We also compared the performance of the model relative
to some terrain characteristics, similar to Guo et al. (2021).
We likewise focused the analysis on the most extreme con-
ditions from the test set, i.e., the P41 rainfall event. While
the previous study found that their model performed worse in
downstream areas (lowest 33 % terrain elevations) than in up-
stream areas (highest 33 % terrain elevations), we found that
our multi-scale model improves performance in downstream
areas, bringing the error in these areas to a similar range as
the error in upstream areas (Table S3 in the Supplement). Our
model also exhibits a major prediction improvement in de-
pressions, with the errors first and third quartiles reduced by a
factor of 3 compared to the state-of-the-art model (Table S3).
This suggests that adding contextual information helps the
model to more accurately predict water routing and accumu-
lation in lower-laying areas or terrain depressions.

Overall, the results show that our model can faithfully
reproduce flood depths for a wide range of unseen rainfall
events for the terrain on which the model was trained, here
Zurich.

5.3 Generalizability to terrain

Next, we verified that the model can predict flood maps
in new, unseen terrain. We tested the model in two cities:
Lucerne (Switzerland) and Singapore (Fig. 3, Table 1). The
former has a similar landscape type to Zurich. Singapore, on
the other hand, is not located in a mountainous environment
and therefore presents a much flatter topography than Zurich.
In both cases, the DEM of the urban areas included the repre-
sentation of the built environment, while this was not the case
for Zurich. The spatial resolutions of the DEMs are 1 m for
Lucerne and 2 m for Singapore, meaning the multi-channel
image patches for Singapore have resolutions of 2, 4, and
8 m. This allows users to also test the abilities of the model
to adapt to terrain data at different resolutions.

We present the target and simulated flood maps in Lucerne
and Singapore (Sgp) for the most-intense rainfall event in
the dataset, i.e., P4¢—1, in Fig. 6a and b. We used the model
presented heretofore to simulate the flood maps in Fig. 6b.,
i.e., the model trained for Zurich. Despite the differences in
terrain and especially the representation of the built envi-
ronment in the DEMs and the spatial resolution, the model
broadly captures the areas of water accumulation and the
flood hazard levels in both new cities. This suggests that the
contextual information, along with the consistent data pre-
processing, helps the model extract information relevant to
flood mapping in unseen terrain (Fig. S4 in the Supplement).
In fact, we identify continuous flooded areas that are larger
than the local patch size. However, while the spatial patterns
are broadly reproduced, the model fails at correctly predict-
ing the water depth magnitudes.

To evaluate how well the model detects the locations
of water accumulation, we evaluated the CSI for wet and
flooded cells (Table S4). Considering a wet-cell depth thresh-
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Table 1. Training and testing overview.

Training Testing on new rainfall events
Terrain Rainfall Model initialization Terrain Presentation of results
Zurich Figs. 4 and 5
Zurich 12 events  None Lucerne Fig. 6b
Singapore  Fig. 6b
Lucerne 1 event Model trained for Zurich Lucerne Figs. 6¢, 7, and 8
Singapore 1 event Model trained for Zurich Singapore  Figs. 6¢, 7, and 8

old of 0.1 m and a flood depth threshold of 0.3 m (i.e., pos-
itives values in Eq. 1 correspond to flood depths above 0.1
and 0.3 m, respectively), we obtained the following CSI val-
ues for Pys—1: CSlp.1,Lucerne = 0.50, CSIo 3 Lucerne = 0.32,
CSIO.l,Sgp = 0.48, and CSIO_3’Sgp =0.35. The CSI()_3 values
are lower than the CSlp; values, mainly because of a de-
crease in true positives, meaning the model detects fewer
flooded cells than it detects wet cells. This is due to the
model’s water depth underprediction, resulting in fewer cells
reaching the flooded cells’ depth threshold. Despite the more
pronounced terrain differences between Zurich and Singa-
pore and the different spatial resolutions of the terrain data,
with Singapore having a 2m DEM and both Zurich and
Lucerne having 1 m DEMs, the CSI values indicate that the
model’s performance is similar in Lucerne and Singapore.

6 Improving generalizability to terrain through
transfer learning and parsimonious retraining

While the results obtained when applying the model to ter-
rain in which the model has not been trained are promising,
the errors in water depth magnitudes are too high to consider
that the model generalizes well (see Fig. 6b). Therefore, we
investigated the effectiveness of transfer learning to improve
our multi-scale urban pluvial flood model performance.

Here, we considered the model trained for Zurich as the
pre-trained model and transferred its knowledge to models
that we separately trained for our case studies: Lucerne and
Singapore (Table 1). Note that Lucerne and Singapore are
case studies and that the presented framework could poten-
tially be applied to any other city. As the objective of this
study is to develop a model that is fast and limits as much as
possible computations for the end-user, the additional train-
ing data necessary should be either readily available or fast
to produce. Consequently, the models were retrained using
only one rainfall event and its corresponding flood map for
each respective city. The model is thus solely informed of the
response of the new terrain to one rainfall event.
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6.1 Case study 1: a resembling terrain
6.1.1 Terrain details

We first evaluated how well the model can adapt to a ter-
rain resembling the one for which the model was initially
trained. To that end, we retrained the model in Lucerne. Like
Zurich, Lucerne is located in Switzerland and has a moun-
tainous landscape. The size of the study area is 6.3 km? and
the spatial resolution of the DEM and target flood maps is
1 m. The target flood maps for Lucerne were also generated
in CADDIES-caflood. Considering the size of the study area
in Lucerne, we reduced the number of training patches to 620
(Fig. S3).

The model was trained on only one rainfall event and
its corresponding flood map. The model’s training hyper-
parameters were exactly the same as for the model trained
in Zurich, except that all model layers were initialized with
the layers of Zurich’s model and that the patience was set to
1. This enabled the prevention of overfitting for the specific
rainfall event on which the model was retrained, considering
that the aim is to adapt the model to the new terrain while
preserving adaptability across diverse rainfall conditions.

6.1.2 Model performance

First, we evaluated the performance of the model retrained
in Lucerne for event P3;_,. We selected this event to retrain
the model as its mean intensity lies midway between the low-
est and highest mean intensities of all the events. Addition-
ally, the shape of the event is neither the sharpest one nor the
most uniform one. This enabled the evaluation of the model’s
extrapolation ability towards less and more extreme events,
both in terms of mean and maximum intensity of the events.

Comparing the simulated flood maps visually and through
various performance metrics shows that the new model can
accurately reproduce the flood maps in Lucerne and that
the model consistently outperforms the predictions from the
model trained on Zurich (Figs. 6¢, 7a, and S5 in the Supple-
ment, Table S4). Figure 6¢ shows the flood map simulated
for rainfall event Psg_1. The model accurately reproduces
the spatial distribution of water accumulation and the corre-
sponding water depths. The simulated flood map achieves an
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Figure 6. Flood maps and error in Lucerne (left) and Singapore (right). Note that the models used to simulate the flood maps (c¢) were

retrained for P31_».

RMSEg ; of 0.17 m, and the CSI values for wet and flooded
cells reach CSlo.1,Lucerne = 0.72 and CSlp 3 Lucerne = 0.68.
Furthermore, Fig. 6d shows that the areas where the per-
formance error of the model are highest are located at the
boundary with a water body (Fig. 3) or in areas where the
model had successfully predicted high water levels (Fig. 6¢).

We further analyzed the model’s prediction performance
for the events with lowest, intermediate, and highest mean in-
tensities, respectively Pi9_1, P31—2, and Pse_1, according to
different target water depth ranges (Fig. 7a). The violin plot
shows that our model accurately reproduces the water depths
for all water levels. The relative prediction error is the high-
est in the cells with the largest water depths for all rainfall
events, and the model tends to underpredict the water levels.
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In fact, the median error in the cells with target flood depths
higher than 1 m lies between —8 and —22 cm. However, con-
sidering the high water depths in which these errors occur,
the absolute median relative error does not exceed 15 %. Fur-
thermore, we can notice that the prediction error is lower for
P31_7 than for Pj9_1 and Pss_1. This result is in line with
the fact that the model was trained for event P3;_;. Overall,
the model can faithfully reproduce the flood maps in Lucerne
for unseen rainfall events.

Second, we evaluated the model’s extrapolation ability by
comparing the RMSE ; of the predicted flood maps accord-
ing to the rainfall event used to retrain the model (Fig. 8a).
We retrained the model for the following rainfall events:
P19_1, Ps1_3, and Pe—1. Subsequently, we simulated the
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Figure 7. Violin plot of the simulation error in (a) Lucerne and (b) Singapore, using the models retrained for event P3| _; in each city. The
error is expressed as the difference between the target flood map and simulated flood map for different target water depth ranges and different
rainfall events. The vertical black lines range from the 25th to 75th percentiles, and the horizontal black line indicates the median value.
Negative values correspond to the underprediction of the simulations. The pie charts illustrate the proportion of cells in each water depth
range in the target flood maps. The water depth ranges are indicated by different shading levels: lower water depths are represented by more
transparent colors, while higher water depths are depicted with darker colors.
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Figure 8. Heatmaps of the simulated flood maps RMSE ; for
(a) Lucerne and (b) Singapore for various rainfall events depend-
ing on the rainfall event for which the model was retrained. The
asterisks indicate the lowest RMSE | for each prediction rainfall.

flood map for each of these rainfall events and P31_> using
all four retrained models. The prediction performances are
summarized in the heatmap in Fig. 8a. The asterisk that in-
dicates the lowest RMSEj ; for each prediction rainfall is lo-
cated along the diagonal. This means that each model had the
lowest RMSE ; for the prediction rainfall event for which it
was trained and that the lowest RMSE ; of each prediction
rainfall was achieved by the model which was trained for this
same rainfall event. In line with expectations, the RMSE ;
increases as the mean rainfall intensity moves away from the
training rainfall mean intensity. Furthermore, the results sug-
gest that the model extrapolates better when the prediction
rainfall event mean intensity is smaller than the training event
mean intensity.
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6.2 Case study 2: a distinct terrain
6.2.1 Training details

Next, we evaluated how well the model can adapt to a terrain
that is distinct from the one for which the model was initially
trained. We chose to retrain the model in Singapore, which
is an island city with one of the most highly dense urban de-
velopments in the world. The terrain is much flatter than in
Zurich or Lucerne, with a maximum elevation in the study
area reaching 56 m (against a 464 m maximum change in el-
evation in Zurich). The size of the study area is 15.4 kmz,
and the spatial resolution of the DEM and target flood maps
is 2 m. The target flood maps for Singapore were also gener-
ated in CADDIES-caflood. We extracted 450 patches to keep
a similar patch density as in Zurich and Lucerne. The model
was trained on only one rainfall event with its corresponding
flood map after initializing the model’s layers with the lay-
ers from the model trained for Zurich. The hyperparameters
were kept unchanged, except for the patience, which was set
to 1 to prevent overfitting to the rainfall event for which the
model was retrained.

6.2.2 Model performance

We evaluated the performance of the model for Singapore
in the same way as we evaluated the one for Lucerne; we
first evaluated the performance of the model retrained in
Singapore for event P3;_,. The model trained for P3;_;
accurately reproduced the flood map corresponding to the
event Py (Figs. 6¢c and S5, Table S4). Both the spa-
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tial distribution of water and the magnitude of the flood
depths were correctly simulated, and the performance met-
rics outperformed the ones for the simulation from the model
trained in Zurich: RMSEg 1 = 0.10m, CSlg 1,sgp = 0.66, and
CSlp3,5gp = 0.67. Similar to Lucerne, the areas with the
largest differences between the target and simulated flood
map are located either in areas close to water bodies (Fig. 3)
or in areas where the model had successfully predicted high
water levels (Fig. 6¢).

Next, we analyzed the prediction error for three rainfall
events in different target water level ranges (Fig. 7b). The er-
ror follows a similar pattern as the one from the model for
Lucerne (Fig. 7a). We found that the model can faithfully re-
produce the flood maps in Singapore for new rainfall events
as the model produces low errors. It exhibits a slight under-
prediction of the water levels for the highest range, i.e., for
cells with target water depths above 1 m. The error for un-
seen events, i.e., for Pjg_; and P46_1, is close to the error for
P31_2 for which the model was trained, which suggests that
this model performs well at extrapolating for both less- and
more-intense rainfall events.

Eventually, we compared the RMSE( ; of the simulated
flood maps depending on the rainfall event for which the
model was trained (Fig. 8b). Similarly as for Lucerne, we
retrained the model for the rainfall events Pig_1, P41_3, and
Pse—1, and we simulated the flood maps for each of these
rainfall events and P31_ using all four retrained models. The
heatmap of RMSEj ; in Fig. 8b suggests that all retrained
models produce accurate results for new rainfall events. Un-
like for Lucerne, the asterisk is not everywhere along the
diagonal of the heatmap. The lowest RMSE( ; for predic-
tion rainfall P4;_3 was not achieved by the model trained
for P41_3 but by the model trained for P4¢—1. However, even
though this is not consistent with expectations, the RMSEj |
for P4j_3 simulated by the model trained for P43 is almost
equal to the one achieved by the model trained for Pse—1.
Furthermore, the results suggest that the model can extrapo-
late equally well to both less- and more-intense events, but
the performance of the models decreases as the difference
in mean intensity from the training and prediction rainfall
events increases.

7 Discussion

The proposed context-aware data-driven flood model accu-
rately reproduces high-resolution (1 m) flood maps in the
training terrain for unseen extreme rainfall events, with peak
rainfall intensities ranging from 42.5 to 161.4mmh~!. Our
model outperforms other patch-based urban flood emulators
(e.g., Guo et al., 2021) mostly in downstream areas and de-
pressions (Table S3), which are critical as these areas will
typically be the ones where flooding occurs most.

When simulating flood maps for unseen terrain, the model
accurately identifies the locations of water accumulation,
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which constitutes an improvement compared to the state-
of-the-art patch-based model (Fig. S4). This suggests that
the model is not overfitting the training terrain but extracts
the information that captures the hydrologic behavior of the
area. The model adapted well to different spatial resolutions
and different representations of the built environment. How-
ever, predicting the water levels in unseen terrain remains a
challenge. Our results have demonstrated that the model can
conveniently adapt to new terrain through the use of transfer
learning. After retraining the model for new terrains and for
only one rainfall event with its corresponding flood map, the
model was effectively adapted to the new terrain while pre-
serving its adaptability to rainfall events. The advantage of
this method is that the model can be applied to new terrain
without extensive computational resources or training data.

We excluded the water bodies from the simulation results
as we want to focus on urban pluvial flooding and not fluvial
flooding, for example. However, the model exhibits an ac-
ceptable performance level in these areas (Fig. S6 in the Sup-
plement), as the model could accurately identify that these
areas were flooded.

The data pre-processing framework along with the pro-
posed model architecture has been developed to alleviate the
hydrologically counter-intuitive patch-based prediction ap-
proach. Yet, this approach remains the most appropriate one
for the aim of generalizability to terrain, as sampling (and
augmenting) patches increase the number of terrain training
images (Romano and Elad, 2016). Consequently, the model
can make accurate predictions even in a city with a distinct
terrain from the training city, as long as the terrain features
in the new city are also present in some areas of the training
city. In other words, a model trained on a city that presents
a broader variety of topographical features and urban devel-
opment will probably generalize best. However, we want to
emphasize the importance of careful data pre-processing in
data-scarce machine learning applications; it is crucial to not
oversample data to avoid overfitting (Fig. S3, Sect. S1).

We evaluated the model using various combinations of ter-
rain features used in previous studies (Guo et al., 2021; Lowe
etal., 2021) such as DEM, mask (a binary image of the catch-
ment area), curvature (plan, profile, and mean), aspect (in
radians and in degrees), depth of the sinks, slope (in radi-
ans and in degrees), flow accumulation (standard, cube-root
transform, and weighted by the slope in each cell), and the
topographic wetness index (standard and square-root trans-
form; Lowe et al., 2021). We evaluated only DEM-derived
features as other features such as imperviousness or the de-
sign of the drainage network might not be freely and easily
available. However, if these features influence the hydraulics
and hydrology in the training flood maps, their impact will
be indirectly captured in the model’s predictions. From initial
tests (not shown), we found that feeding the model with the
DEM, mean curvature, aspect (sine and cosine), depth of the
sinks, and the slope (in radians) helped the model learn best.
Unlike Lowe et al. (2021), we found that using the cube-root
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transform of flow accumulation weighted by slope (FLSLO)
did not lead to the best-performing model. One possible
reason is that FLSLO is highly correlated with other ter-
rain variables (e.g., Spearman’s rank correlation coefficient
of FLSLO with mean curvature and slope are, respectively,
—0.32 and —0.72 in Zurich), while these other terrain vari-
ables provide complementary information (Spearman’s rank
correlation coefficient of mean curvature and slope is 0.02
in Zurich). Additionally, machine learning algorithms often
perform poorly on inputs with very different scales (Géron,
2019). This could explain why using non-normalized FLSLO
could not improve our model’s performance, while normal-
izing FLSLO results in the loss of contextual information.
Lastly, the terrain features that result in the best-performing
model may vary depending on the city, and different feature
scaling methods could be considered.

Regarding the limitations, machine learning models learn
to replicate the errors present in the training data. The model
should therefore be trained on the most accurate flood maps
available, as the error will propagate from the target flood
map onto the simulated flood map. Similar to other studies,
the hydrodynamic simulations corresponding to the target
flood maps considered 1h single-peak rainfall events with
a uniform distribution in space (Guo et al., 2021, 2022), a
simplified representation of the drainage network (do Lago
etal., 2023; Lowe et al., 2021), and a uniform infiltration rate
in space (Guo et al., 2021; Lowe et al., 2021). Additionally,
the model was neither trained nor tested for rainfall events
with multiple peaks, intermittency, or events with rainfall of
more than 1 h. The model should be further tested to account
for different types and durations of design storms, reflect-
ing the hyetograph patterns and variability specific to each
city. Namely, the model should be evaluated using design
storms that are characteristic of Singapore, such as intense
events of up to 2 h in duration, which align with the island’s
characteristic heavy rainfall. The lack of representation of
the drainage network could represent a limit to the trans-
ferability of the model to cities where the drainage network
plays a significant role or in urbanization scenarios where the
drainage capacity is changed. On the other hand, the lack of
realistic infiltration rates should not be a limitation as urban
pluvial floods occur in response to heavy rainfall where the
ground becomes saturated and behaves as an impervious sur-
face (Hollis, 1975; Leopold, 1968).

Due to the speed of simulations for standard computing
resources (~ 0.5 s per patch on a four-core CPU and 16 GB
of RAM), our model can just as easily be used for flood now-
casting as in the scope of urbanization or climate change im-
pact studies. The model can also be used as a pre-trained
model for similar hydrological applications, such as flow ve-
locity mapping (Guo et al., 2022). Some technical improve-
ments to consider are the development of a model that can
process different spatial structures of rainfall, as spatial storm
profiles can have a significant impact on the flood water
depths and areas (Peleg et al., 2022).
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Machine learning algorithms have been shown to out-
perform traditional hydrological models in ungauged catch-
ments, not only in terms of computational time but also in
terms of accuracy (Kratzert et al., 2019; Nearing et al., 2021;
Zhang et al., 2022). However, this requires a lot of training
data to ensure the transfer of information from similar catch-
ments. The lack of an extensive dataset remains a limitation
for the development of generalizable models in urban pluvial
flooding. Similarly, a benchmark dataset to compare different
approaches is still lacking (Bentivoglio et al., 2022). Given
the potential of machine learning to address urban flood haz-
ard analysis and early warning, it would be worthwhile for
the community to invest efforts into producing and collecting
large urban flood databases. These databases could include
not only simulated flood data but also observed data from real
flood events, made more accessible by recent advancements,
such as versatile flood level detection from images (Moy de
Vitry et al., 2019), which offer new opportunities for in situ
flood data collection.

8 Conclusions

We present a novel context-aware deep-learning model for
high-resolution urban pluvial flood mapping, which has a
16 times greater visual field than the standard patch-based
flood mapping models. The proposed framework is particu-
larly well-suited for flood mapping applications where the
continuity of hydrological features, such as flow paths or
sinks, is essential. The model exploits both static (terrain)
and dynamic (hyetograph) information to simulate fast urban
pluvial flood maps. Our results demonstrate that the model
performs well, both in the training terrain (i.e., the same city
used for the training) and in new terrains (i.e., application to
another unseen city). The context-aware model could sim-
ulate accurate results for a variety of rainfall events, with
different hyetograph shapes and intensities. When applied to
new terrain, the model adapts well to different representa-
tions of buildings and spatial resolutions. While the general-
izability to terrain is not yet fully achieved, we showed that
the model accurately identifies the areas of water accumula-
tion and that transfer learning is an efficient way to adapt the
model to the new terrain.

Code and data availability. The source codes, trained models, and
simulation data are freely available in the following reposi-
tory: https://doi.org/10.5281/zenodo.10688079 (Cache and Gomez,
2024), as well as in the GitHub repository https://github.com/
tcachel/context_aware_flood_model (tcachel, 2024). We imple-
mented the model and data pre-processing framework in Tensor-
Flow version 2.6.2 (Abadi et al., 2015) using Python version 3.6.13
(https://www.tensorflow.org).

Hydrol. Earth Syst. Sci., 28, 5443-5458, 2024


https://doi.org/10.5281/zenodo.10688079
https://github.com/tcache1/context_aware_flood_model
https://github.com/tcache1/context_aware_flood_model
https://www.tensorflow.org

5456 T. Cache et al.: Enhancing data-driven flood model generalizability

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-28-5443-2024-supplement.

Author contributions. Conceptualization: TC, NP; software devel-
opment: TC, MSG; data preparation: TC, JB; formal analyses: TC;
funding acquisition: NP; paper writing (original draft): TC; paper
writing (review and editing): TC, MSG, TB, JB, JPL, NP.

Competing interests. At least one of the (co-)authors is a member
of the editorial board of Hydrology and Earth System Sciences.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Tabea Cache and Nadav Peleg were supported
by the Swiss National Science Foundation (SNSF), grant 194649
(“Rainfall and floods in future cities”). Jovan Blagojevic was funded
in part by the Future Cities Lab Global program. Future Cities Lab
Global is supported and funded by the National Research Foun-
dation, Prime Minister’s Office, Singapore, under its Campus for
Research Excellence and Technological Enterprise (CREATE) pro-
gram and ETH Zurich (ETHZ), with additional contributions from
the National University of Singapore (NUS), Nanyang Technologi-
cal University (NTU), and the Singapore University of Technology
and Design (SUTD).

Financial support. This research has been supported by
the Schweizerischer Nationalfonds zur Forderung der Wis-
senschaftlichen Forschung (grant no. 194649).

Review statement. This paper was edited by Yue-Ping Xu and re-
viewed by Roberto Bentivoglio, Hasan Hosseini, and one anony-
mous referee.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, 1., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefow-
icz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., and Zheng, X.: Large-Scale Machine
Learning on Heterogeneous Systems, https://www.tensorflow.
org (last access: 10 October 2023), 2015.

Hydrol. Earth Syst. Sci., 28, 5443-5458, 2024

Ahmed, F., Moors, E., Khan, M. S. A., Warner, J.,, and
van Scheltinga, C. T.: Tipping points in adaptation to ur-
ban flooding under climate change and urban growth: The
case of the Dhaka megacity, Land Use Policy, 79, 496-506,
https://doi.org/10.1016/j.1andusepol.2018.05.051, 2018.

Alsubaie, N., Shaban, M., Snead, D., Khurram, A., and Rajpoot, N.:
A multi-resolution deep learning framework for lung adenocar-
cinoma growth pattern classification, Comm. Com. Inf. Sc., 894,
3-11, https://doi.org/10.1007/978-3-319-95921-4_1, 2018.

Barnes, R.: RichDEM: Terrain Analysis Software, http://github.
com/r-barnes/richdem (last access: 10 October 2023), 2016.

BenTaieb, A., Li-Chang, H., Huntsman, D., and Hamarneh, G.:
A structured latent model for ovarian carcinoma subtyping
from histopathology slides, Med. Image Anal., 39, 194-205,
https://doi.org/10.1016/j.media.2017.04.008, 2017.

Bentivoglio, R., Isufi, E., Jonkman, S. N., and Taormina, R.: Deep
learning methods for flood mapping: a review of existing applica-
tions and future research directions, Hydrol. Earth Syst. Sci., 26,
4345-4378, https://doi.org/10.5194/hess-26-4345-2022, 2022.

Berkhahn, S. and Neuweiler, I.: Data driven real-time prediction
of urban floods with spatial and temporal distribution, J. Hydro.
X, 22, 100167, https://doi.org/10.1016/j.hydroa.2023.100167,
2024.

Berndtsson, R., Becker, P., Persson, A., Aspegren, H., Haghigh-
atafshar, S., Jonsson, K., Larsson, R., Mobini, S., Mottaghi, M.,
Nilsson, J., Nordstrém, J., Pilesjo, P., Scholz, M., Sternudd, C.,
Sorensen, J., and Tussupova, K.: Drivers of changing urban flood
risk: A framework for action, J. Environ. Manage., 240, 47-56,
https://doi.org/10.1016/j.jenvman.2019.03.094, 2019.

Cache, T. and Gomez, M. S.: Context-Aware Data-Driven Urban
Flood Model, https://doi.org/10.5281/zenodo.10688079, 2024.
Dallan, E., Marra, F., Fosser, G., Marani, M., Formetta, G., Schir,

C., and Borga, M.: How well does a convection-permitting re-
gional climate model represent the reverse orographic effect
of extreme hourly precipitation?, Hydrol. Earth Syst. Sci., 27,
1133-1149, https://doi.org/10.5194/hess-27-1133-2023, 2023.
do Lago, C. A., Giacomoni, M. H., Bentivoglio, R., Taormina,
R., Gomes, M. N., and Mendiondo, E. M.: Generalizing rapid
flood predictions to unseen urban catchments with condi-
tional generative adversarial networks, J. Hydrol., 618, 129276,
https://doi.org/10.1016/j.jhydrol.2023.129276, 2023.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P.,
and Bengio, S.: Why Does Unsupervised Pre-training Help Deep
Learning?, J. Mach. Learn. Res., 11, 625-660, 2010.

Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P.,
Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guer-
reiro, S., Haerter, J. O., Kendon, E. J., Lewis, E., Schaer, C.,
Sharma, A., Villarini, G., Wasko, C., and Zhang, X.: Anthro-
pogenic intensification of short-duration rainfall extremes, Nat.
Rev. Earth Environ., 2, 107-122, https://doi.org/10.1038/s43017-
020-00128-6, 2021.

Fraehr, N., Wang, Q. J., Wu, W., and Nathan, R.: Supercharging hy-
drodynamic inundation models for instant flood insight, Nature
Water, 1, 835-843, https://doi.org/10.1038/s44221-023-00132-2,
2023.

Géron, A.: Hands-on machine learning with Scikit-Learn, Keras,
and TensorFlow: concepts, tools, and techniques to build intel-
ligent systems, 2nd Edn., O’Reilly Media, Inc, Beijing [China],
Sebastopol, CA, ISBN 978-1-492-03264-9, 2019.

https://doi.org/10.5194/hess-28-5443-2024


https://doi.org/10.5194/hess-28-5443-2024-supplement
https://www.tensorflow.org
https://www.tensorflow.org
https://doi.org/10.1016/j.landusepol.2018.05.051
https://doi.org/10.1007/978-3-319-95921-4_1
http://github.com/r-barnes/richdem
http://github.com/r-barnes/richdem
https://doi.org/10.1016/j.media.2017.04.008
https://doi.org/10.5194/hess-26-4345-2022
https://doi.org/10.1016/j.hydroa.2023.100167
https://doi.org/10.1016/j.jenvman.2019.03.094
https://doi.org/10.5281/zenodo.10688079
https://doi.org/10.5194/hess-27-1133-2023
https://doi.org/10.1016/j.jhydrol.2023.129276
https://doi.org/10.1038/s43017-020-00128-6
https://doi.org/10.1038/s43017-020-00128-6
https://doi.org/10.1038/s44221-023-00132-2

T. Cache et al.: Enhancing data-driven flood model generalizability 5457

Glorot, X. and Bengio, Y.: Understanding the difficulty of training
deep feedforward neural networks, https://proceedings.mlr.press/
v9/glorot10a.html (last access: 28 February 2024), 2010.

Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjevi¢,
S., and Savi¢, D. A.: A weighted cellular automata 2D inundation
model for rapid flood analysis, Environ. Modell. Softw., 84, 378—
394, https://doi.org/10.1016/J. ENVSOFT.2016.07.008, 2016.

Guo, Z.: Simulation data and source code for data-driven
flood emulation of urban flood, Tech. rep., ETH Zurich,
https://doi.org/10.3929/ethz-b-000365484, 2019.

Guo, Z., Leitdo, J. P., Simdes, N. E., and Moosavi, V.: Data-
driven flood emulation: Speeding up urban flood predictions by
deep convolutional neural networks, J. Flood Risk Manag., 14,
e12684, https://doi.org/10.1111/j{r3.12684, 2021.

Guo, Z., Moosavi, V., and Leitdo, J. P.: Data-driven rapid flood pre-
diction mapping with catchment generalizability, J. Hydrol., 609,
127726, https://doi.org/10.1016/].jhydrol.2022.127726, 2022.

Han, J. Y. and Baik, J. J.: A theoretical and numerical study of urban
heat island-induced circulation and convection, J. Atmos. Sci.,
65, 18591877, https://doi.org/10.1175/2007JAS2326.1, 2008.

Hirsch, R. M.: A Perspective on nonstationarity and wa-
ter management, J. Am. Water Resour. As., 47, 436-446,
https://doi.org/10.1111/j.1752-1688.2011.00539.x, 2011.

Hollis, G. E.: The effect of urbanization on floods of dif-
ferent recurrence interval, Water Resour. Res., 11, 431-435,
https://doi.org/10.1029/wr011i003p00431, 1975.

Houston, D., Werritty, A., Bassett, D., Geddes, A., Hoolachan, A.,
and Mcmillan, M.: Pluvial (rain-related) flooding in urban ar-
eas: the invisible hazard, https://www.jrf.org.uk (last access: 28
February 2024), 2011.

Huang, J., Fatichi, S., Mascaro, G., Manoli, G., and Pe-
leg, N.: Intensification of sub-daily rainfall extremes
in a low-rise urban area, Urban Climate, 42, 101124,
https://doi.org/10.1016/j.uclim.2022.101124, 2022.

IPCC: Impacts of 1.5°C Global Warming on Natural and
Human Systems, Cambridge University Press, 175-312,
https://doi.org/10.1017/9781009157940.005, 2022.

Kingma, D. P. and Ba, J. L.: Adam: A Method for Stochastic
Optimization, 3rd International Conference on Learning Repre-
sentations, ICLR 2015 — Conference Track Proceedings, arXiv
[preprint], https://doi.org/10.48550/arxiv.1412.6980, 2014.

Kourtis, I. M. and Tsihrintzis, V. A.: Adaptation of urban drainage
networks to climate change: A review, Sci. Total Environ., 771,
145431, https://doi.org/10.1016/].scitotenv.2021.145431, 2021.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter,
S., and Nearing, G.: Towards learning universal, regional, and
local hydrological behaviors via machine learning applied to
large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089-5110,
https://doi.org/10.5194/hess-23-5089-2019, 2019.

Kundzewicz, Z. W. and Pinskwar, I.: Are Pluvial and Flu-
vial Floods on the Rise?, Water-Sui, 14, 2612 pp.,
https://doi.org/10.3390/w14172612, 2022.

Kundzewicz, Z. W., Kanae, S., Seneviratne, S. 1., Handmer, J.,
Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N.,
Mach, K., Muir-Wood, R., Brakenridge, G. R., Kron, W., Benito,
G., Honda, Y., Takahashi, K., and Sherstyukov, B.: Flood risk and
climate change: global and regional perspectives, Hydrolog. Sci.
J., 59, 1-28, https://doi.org/10.1080/02626667.2013.857411,
2014.

https://doi.org/10.5194/hess-28-5443-2024

Leopold, L. B.: Hydrology for Urban land Planning — A Guide-
book on the Hydrologic Effects of Urban Land Use, vol.
554, Geological Survey Circular 554, US Geological Survey,
https://doi.org/10.3133/cir554, 1968.

Li, Y., Fowler, H. J., Argiieso, D., Blenkinsop, S., Evans, J.
P., Lenderink, G., Yan, X., Guerreiro, S. B., Lewis, E., and
Li, X. F.: Strong Intensification of Hourly Rainfall Extremes
by Urbanization, Geophys. Res. Lett., 47, ¢2020GL088758,
https://doi.org/10.1029/2020GL088758, 2020.

Liu, W,, Li, Q., Lin, X., Yang, W., He, S., and Yu, Y.: Ultra-high
Resolution Image Segmentation via Locality-aware Context Fu-
sion and Alternating Local Enhancement, Int. J. Comput. Vision,
1-18 pp., https://doi.org/10.1007/s11263-024-02045-3, 2024.

Liang, P. and Ding, Y.: The long-term variation of extreme
heavy precipitation and its link to urbanization effects in
Shanghai during 1916-2014, Adv. Atmos. Sci., 34, 321-334,
https://doi.org/10.1007/s00376-016-6120-0, 2017.

Lowe, R., Bohm, J., Jensen, D. G., Leandro, J., and Rasmussen,
S. H.: U-FLOOD - Topographic deep learning for predict-
ing urban pluvial flood water depth, J. Hydrol., 603, 126898,
https://doi.org/10.1016/j.jhydrol.2021.126898, 2021.

Marra, F., Zoccatelli, D., Armon, M., and Morin, E.: A simpli-
fied MEV formulation to model extremes emerging from mul-
tiple nonstationary underlying processes, Adv. Water Resour.,
127, 280-290, https://doi.org/10.1016/j.advwatres.2019.04.002,
2019.

Marra, F., Koukoula, M., Canale, A., and Peleg, N.: Predict-
ing extreme sub-hourly precipitation intensification based on
temperature shifts, Hydrol. Earth Syst. Sci., 28, 375-389,
https://doi.org/10.5194/hess-28-375-2024, 2024.

Miller, J. D. and Hutchins, M.: The impacts of urbanisation and cli-
mate change on urban flooding and urban water quality: A review
of the evidence concerning the United Kingdom, J. Hydrol. Reg.
Stud., 12, 345-362, https://doi.org/10.1016/j.ejrh.2017.06.006,
2017.

Miller, J. D., Kim, H., Kjeldsen, T. R., Packman, J., Grebby,
S., and Dearden, R.: Assessing the impact of urbaniza-
tion on storm runoff in a peri-urban catchment using his-
torical change in impervious cover, J. Hydrol., 515, 59-70,
https://doi.org/10.1016/].jhydrol.2014.04.011, 2014.

Mou, L., Hua, Y., and Zhu, X. X.: Relation Matters: Re-

lational Context-Aware  Fully Convolutional ~ Network
for Semantic Segmentation of High-Resolution Aerial
Images, IEEE T. Geosci. Remote, 58, 7557-7569,

https://doi.org/10.1109/TGRS.2020.2979552, 2020.

Moy de Vitry, M., Kramer, S., Wegner, J. D., and Leitdo, J. P.: Scal-
able flood level trend monitoring with surveillance cameras using
a deep convolutional neural network, Hydrol. Earth Syst. Sci., 23,
4621-4634, https://doi.org/10.5194/hess-23-4621-2019, 2019.

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S.,
Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.: What
Role Does Hydrological Science Play in the Age of Ma-
chine Learning?, Water Resour. Res., 57, ¢2020WR028091,
https://doi.org/10.1029/2020WR028091, 2021.

Peduzzi, P, Chatenoux, B., Dao, H., Bono, A. D., Herold,
C., Kossin, J., Mouton, F., and Nordbeck, O.: Global trends
in tropical cyclone risk, Nat. Clim. Change, 2, 289-294,
https://doi.org/10.1038/nclimate1410, 2012.

Hydrol. Earth Syst. Sci., 28, 5443-5458, 2024


https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1016/J.ENVSOFT.2016.07.008
https://doi.org/10.3929/ethz-b-000365484
https://doi.org/10.1111/jfr3.12684
https://doi.org/10.1016/j.jhydrol.2022.127726
https://doi.org/10.1175/2007JAS2326.1
https://doi.org/10.1111/j.1752-1688.2011.00539.x
https://doi.org/10.1029/wr011i003p00431
https://www.jrf.org.uk
https://doi.org/10.1016/j.uclim.2022.101124
https://doi.org/10.1017/9781009157940.005
https://doi.org/10.48550/arxiv.1412.6980
https://doi.org/10.1016/j.scitotenv.2021.145431
https://doi.org/10.5194/hess-23-5089-2019
https://doi.org/10.3390/w14172612
https://doi.org/10.1080/02626667.2013.857411
https://doi.org/10.3133/cir554
https://doi.org/10.1029/2020GL088758
https://doi.org/10.1007/s11263-024-02045-3
https://doi.org/10.1007/s00376-016-6120-0
https://doi.org/10.1016/j.jhydrol.2021.126898
https://doi.org/10.1016/j.advwatres.2019.04.002
https://doi.org/10.5194/hess-28-375-2024
https://doi.org/10.1016/j.ejrh.2017.06.006
https://doi.org/10.1016/j.jhydrol.2014.04.011
https://doi.org/10.1109/TGRS.2020.2979552
https://doi.org/10.5194/hess-23-4621-2019
https://doi.org/10.1029/2020WR028091
https://doi.org/10.1038/nclimate1410

5458

Peleg, N., Blumensaat, F., Molnar, P., Fatichi, S., and Burlando,
P.: Partitioning the impacts of spatial and climatological rain-
fall variability in urban drainage modeling, Hydrol. Earth Syst.
Sci., 21, 1559-1572, https://doi.org/10.5194/hess-21-1559-2017,
2017.

Peleg, N., Ban, N., Gibson, M. J., Chen, A. S., Paschalis, A., Bur-
lando, P., and Leitdo, J. P.. Mapping storm spatial profiles for
flood impact assessments, Adv. Water Resour., 166, 104258,
https://doi.org/10.1016/j.advwatres.2022.104258, 2022.

Romano, Y. and Elad, M.: Con-Patch: When a Patch Meets its Con-
text, IEEE, https://doi.org/10.1109/T1P.2016.2576402, 2016.

Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional
Networks for Biomedical Image Segmentation, in: Medical Im-
age Computing and Computer-Assisted Intervention — MIC-
CAI 2015: 18th international conference, Munich, Germany, 5—
9 October 2015, proceedings, part III 18, edited by: Navab,
N., Hornegger, J., Wells, W. M., and Frangi, A. F., Springer,
https://doi.org/10.1007/978-3-319-24574-4_28, 2015.

Rosenzweig, B. R., McPhillips, L., Chang, H., Cheng, C., Welty,
C., Matsler, M., Iwaniec, D., and Davidson, C. I.: Pluvial flood
risk and opportunities for resilience, WIRes Water, Wiley Online
Library, 5, 1302, https://doi.org/10.1002/wat2.1302, 2018.

Seleem, O., Ayzel, G., Bronstert, A., and Heistermann, M.: Trans-
ferability of data-driven models to predict urban pluvial flood
water depth in Berlin, Germany, Nat. Hazards Earth Syst. Sci.,
23, 809-822, https://doi.org/10.5194/nhess-23-809-2023, 2023.

Semadeni-Davies, A., Hernebring, C., Svensson, G., and
Gustafsson, L. G.: The impacts of climate change
and urbanisation on drainage in Helsingborg, Swe-
den: Suburban stormwater, J. Hydrol., 350, 114-125,
https://doi.org/10.1016/j.jhydrol.2007.11.006, 2008.

Shaban, M., Awan, R., Fraz, M. M., Azam, A., Snead, D.,
and Rajpoot, N. M.: Context-Aware Convolutional Neural
Network for Grading of Colorectal Cancer Histology Im-
ages, IEEE transactions on medical imaging, 39, 295-2405,
https://doi.org/10.1109/TM1.2020.2971006, 2020.

Hydrol. Earth Syst. Sci., 28, 5443-5458, 2024

T. Cache et al.: Enhancing data-driven flood model generalizability

Sirinukunwattana, K., Alham, N. K., Verrill, C., and Rittscher, J.:
Improving Whole Slide Segmentation Through Visual Context
— A Systematic Study, in: Medical Image Computing and Com-
puter Assisted Intervention — MICCAI 2018, edited by: Frangi,
A. F, Schnabel, J. A., Davatzikos, C., Alberola-Lépez, C., and
Fichtinger, G., Springer International Publishing, Cham, 192—
200, https://doi.org/10.1007/978-3-030-00934-2_22, 2018.

Skougaard Kaspersen, P., Hgegh Ravn, N., Arnbjerg-Nielsen, K.,
Madsen, H., and Drews, M.: Comparison of the impacts of urban
development and climate change on exposing European cities
to pluvial flooding, Hydrol. Earth Syst. Sci., 21, 41314147,
https://doi.org/10.5194/hess-21-4131-2017, 2017.

Tabari, H., Madani, K., and Willems, P.: The contribution
of anthropogenic influence to more anomalous extreme
precipitation in Europe, Environ. Res. Lett., 15, 104077,
https://doi.org/10.1088/1748-9326/abb268, 2020.

tcachel: context_aware_flood_model, GitHub, https://github.com/
tcachel/context_aware_flood_model (last access: 28 February
2024), 2024.

UN: World Urbanization Prospects: The 2018 Revision, United Na-
tions, ISBN 9789211483192, 2018.

Willems, P., Arnbjerg-Nielsen, K., Olsson, J., and Nguyen, V. T.:
Climate change impact assessment on urban rainfall extremes
and urban drainage: Methods and shortcomings, Atmos. Res.,
103, 106-118, https://doi.org/10.1016/j.atmosres.2011.04.003,
2012.

Winsemius, H. C., Aerts, J., van Beek, L., Bierkens, M.,
Bouwman, A., Jongman, B., Kwadijk, J., Ligtvoet, W., Lu-
cas, P, van Vuuren, D., and Ward, P. J.: Global drivers of
Future River Flood Risk, Nat. Clim. Change, 6, 381-385,
https://doi.org/10.1038/nclimate2893, 2016.

Zhang, Y., Ragettli, S., Molnar, P., Fink, O., and Peleg, N.:
Generalization of an Encoder-Decoder LSTM model for flood
prediction in ungauged catchments, J. Hydrol., 614, 128577,
https://doi.org/10.1016/j.jhydrol.2022.128577, 2022.

https://doi.org/10.5194/hess-28-5443-2024


https://doi.org/10.5194/hess-21-1559-2017
https://doi.org/10.1016/j.advwatres.2022.104258
https://doi.org/10.1109/TIP.2016.2576402
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1002/wat2.1302
https://doi.org/10.5194/nhess-23-809-2023
https://doi.org/10.1016/j.jhydrol.2007.11.006
https://doi.org/10.1109/TMI.2020.2971006
https://doi.org/10.1007/978-3-030-00934-2_22
https://doi.org/10.5194/hess-21-4131-2017
https://doi.org/10.1088/1748-9326/abb268
https://github.com/tcache1/context_aware_flood_model
https://github.com/tcache1/context_aware_flood_model
https://doi.org/10.1016/j.atmosres.2011.04.003
https://doi.org/10.1038/nclimate2893
https://doi.org/10.1016/j.jhydrol.2022.128577

	Abstract
	Introduction
	Context-aware flood model description
	Multi-scale terrain features
	Multi-scale convolutional encoders
	Contextual attention mechanism
	Hyetograph processing
	Fused terrain and hyetograph features upsampling
	Hyperparameters
	Urban flood map predictions

	Model input specifications
	Data specifications for model training
	Data specifications for flood map generation

	Model training and transfer learning
	Rainfall and terrain generalizability
	Dataset and training details
	Generalizability to rainfall events
	Generalizability to terrain

	Improving generalizability to terrain through transfer learning and parsimonious retraining
	Case study 1: a resembling terrain
	Terrain details
	Model performance

	Case study 2: a distinct terrain
	Training details
	Model performance


	Discussion
	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

