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The role of GABAB receptors in sleep is still poorly understood. GHB (�-hydroxybutyric acid) targets these receptors and is the only drug
approved to treat the sleep disorder narcolepsy. GABAB receptors are obligate dimers comprised of the GABAB2 subunit and either one of
the two GABAB1 subunit isoforms, GABAB1a and GABAB1b. To better understand the role of GABAB receptors in sleep regulation, we
performed electroencephalogram (EEG) recordings in mice devoid of functional GABAB receptors (1 �/ � and 2 �/�) or lacking one of the
subunit 1 isoforms (1a �/� and 1b �/�). The distribution of sleep over the day was profoundly altered in 1 �/� and 2 �/� mice, suggesting
a role for GABAB receptors in the circadian organization of sleep. Several other sleep and EEG phenotypes pointed to a more prominent
role for GABAB1a compared with the GABAB1b isoform. Moreover, we found that GABAB1a protects against the spontaneous seizure
activity observed in 1 �/� and 2 �/� mice. We also evaluated the effects of the GHB-prodrug GBL (�-butyrolactone) and of baclofen (BAC),
a high-affinity GABAB receptor agonist. Both drugs induced a state distinct from physiological sleep that was not observed in 1 �/� and
2 �/� mice. Subsequent sleep was not affected by GBL whereas BAC was followed by a delayed hypersomnia even in 1 �/� and 2 �/� mice.
The differential effects of GBL and BAC might be attributed to differences in GABAB-receptor affinity. These results also indicate that all
GBL effects are mediated through GABAB receptors, although these receptors do not seem to be involved in mediating the BAC-induced
hypersomnia.

Introduction
GABAB receptors are involved in epilepsy (Schuler et al., 2001;
Gambardella et al., 2003), anxiety and depression (Mombereau et
al., 2004; Jacobson et al., 2007a), nociception (Zarrindast et al.,
2000), memory (Levin et al., 2004; Jacobson et al., 2007b), addic-
tion (Cruz et al., 2004; Roberts, 2005; Filip and Frankowska,
2008), and potentially sleep (Juhász et al., 1994; Ulloor et al.,
2004). Although a prominent role of GABAA receptors in sleep is
firmly established and is central in the pharmacological manage-
ment of disturbed sleep (Winsky-Sommerer, 2009), little is
known about the importance of GABAB receptors in regulating
sleep and the electroencephalogram (EEG). Although the effects
of specific GABAB agonists, like baclofen (BAC), on rapid eye
movement sleep (REMS) remain unclear (Finnimore et al., 1995;
Ulloor et al., 2004), available data indicate that BAC increases
non-REMS (NREMS) and promotes EEG slow (delta) waves

(0.75– 4.5 Hz) during NREMS (Finnimore et al., 1995; Darbari et
al., 2005; Huang and Guilleminault, 2009).

�-Hydroxybutyrate (GHB) is a GABA metabolite found in
low concentrations throughout the mammalian brain (Bessman
and Fishbein, 1963; Cash, 1994; Maitre, 1997). Since its synthesis
in the 1960s (Laborit, 1964), GHB has been used as an anesthetic,
sedative, and hypnotic agent (Laborit et al., 1960; Vickers, 1969).
Because of its abuse potential, GHB is banned in many countries.
GHB is approved as a treatment for narcolepsy with cataplexy
(Fuller and Hornfeldt, 2003; U.S. Xyrem Multicenter Study
Group, 2003). Although the mechanism of action is still unclear,
GHB decreases excessive daytime sleepiness and attacks of cata-
plexy in narcolepsy patients (Xyrem International Study Group,
2005; Black and Houghton, 2006). Despite conflicting results
suggesting that GHB acts via specific GHB receptors (Doherty et
al., 1978; Castelli et al., 2004), compelling evidence suggests that
most of the physiological and pharmacological effects of exoge-
nous GHB are mediated through GABAB receptors (Waldmeier,
1991; Jensen and Mody, 2001; Kaupmann et al., 2003; Quéva et
al., 2003; Carai et al., 2008).

Both in patients and in healthy subjects, GHB decreases sleep
latency and promotes deep NREMS, evidenced by the marked
increase in the prevalence and amplitude of EEG delta waves
(Mamelak et al., 1977; Lapierre et al., 1990; Van Cauter et al.,
1997). Animal studies also suggest that GHB promotes NREMS
(Godschalk et al., 1977; Stock et al., 1978; Monti et al., 1979).
However, it was also reported that GHB and its prodrug
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�-butyrolactone (GBL) can induce paradoxical EEG slow/delta
waves in awake humans (Mamelak et al., 1977; Van Cauter et al.,
1997) and animals (Godschalk et al., 1977; Meerlo et al., 2004).
This finding challenges the claimed physiological sleep-
promoting effects of GHB. The first aim of the present study was
to investigate the role of each of the known GABAB receptor
subunits in sleep–wake regulation and in mediating the effects of
GHB. The second aim was to perform a detailed sleep and EEG
analysis to investigate whether the delta waves induced by GHB
contribute to normal physiological sleep.

Materials and Methods
Animals and housing conditions. All experiments were performed in ac-
cordance with the protocols approved by the Ethical Committee of the
State of Vaud Veterinary Office, Switzerland.

GABAB1
�/� (1 �/�), GABAB2

�/� (2 �/�), GABAB1a
�/� (1a �/�), and

GABAB1b
�/� (1b �/�) mice were generated on a BALB/c background as

described previously (Schuler et al., 2001; Gassmann et al., 2004; Vigot et
al., 2006). Adult male mice of the four genotypes along with their wild-
type (WT) controls were used in baseline conditions, 6 h sleep depriva-
tion, and experiments with GBL and saline injections (n � 8 –9 mice per
genotype; age, 10 –15 weeks; weight, 24 –31 g). For the BAC experiments,
BALB/cJ (WT) mice were purchased from Jackson Laboratory. All mice
were kept individually in polycarbonate cages (31 � 18 � 18 cm) under
a 12 h light/dark cycle (lights on at 9:00 A.M.) at an ambient temperature
of 24.5–25.5°C. Food and water were available ad libitum.

Surgery and sleep recordings. EEG and electromyogram (EMG) elec-
trodes were implanted while the mice were under deep anesthesia as
previously described (Hasan et al., 2009). Four to six days of recovery
from surgery were allowed before connecting animals to the recording
leads. A minimum of 6 adaptation days (or 10 including recovery from
surgery) were scheduled before data collection. The analog signals were
digitized at 2 kHz and subsequently stored at 200 Hz on a hard disc. The
EEG was subjected to a discrete Fourier transformation yielding power
spectra (range, 0.75–90 Hz; frequency resolution, 0.25 Hz; time resolu-
tion, consecutive 4 s epochs; window function, hamming). Hardware
(EMBLA) and software (Somnologica-3) were purchased from Medcare
Flaga. Activity in the 50 Hz band was discarded from further analysis
because of power line artifacts in the EEG of some of the animals.

Based on the EEG and EMG signals, the animals’ behaviors were
classified as REMS, NREMS, or wakefulness (Franken et al., 1998). In
addition to these three behavioral states, seizures and drug (i.e., GBL
or BAC)-induced states were also assessed (for description see GBL
and BAC administration, below). All states were scored by visual
inspection of the EEG and EMG signals displayed on a PC monitor.
Four second epochs containing EEG artifacts were marked and ex-
cluded from EEG spectral analyses.

Five to 12 animals were recorded together in one experimental session
(1 �/� mice, n � 8; 2 �/� mice, n � 8; 1a �/� mice, n � 8; 1b �/� mice,
n � 9; WT mice, n � 8). At least two genotypes were included per session
in an attempt to equally distribute the environmental variation over
genotypes. Overall, eight sessions were necessary to complete the study.

Baseline and sleep-deprivation experiments. EEG and EMG signals were
recorded continuously for at least 48 h with the first 24 h serving as
baseline followed by 6 h sleep deprivation (SD) starting at light onset and
18 h of recovery sleep. SD was achieved by gentle handling, consisting of
introducing novel objects into the cage, approaching a pipette next to the
mouse, or gentle cage tapping as soon as a sleeping behavior was ob-
served. Due to health deterioration, particularly when disturbed, 1 �/�

and 2 �/� mice were not included in the sleep-deprivation protocol. One
subset of mice was used for the baseline conditions protocol (n � 8 per
genotype) and one other subset of mice was included in the drug protocol
(see below).

Mean EEG spectra were calculated over 4 s epochs scored as artifact-
free NREMS, REMS, or wakefulness to construct behavioral state-
specific spectral EEG profiles for baseline. EEG delta power (a measure of
homeostatic sleep need) was calculated by averaging EEG power density
in the 1– 4 Hz range for 4 s epochs scored as NREMS. Time-course

analysis of EEG delta power during baseline and after SD was described in
detail previously (Franken et al., 2001). In short, the recording was di-
vided into sections to which an equal number of 4 s epochs scored as
NREMS contributed (i.e., percentiles). The first 6 h of the baseline light
period was divided into six such sections; the second 6 h into four. The
second 6 h of the recovery light period was divided into six sections, the
dark periods of both the baseline and recovery dark periods into eight
sections. The choice of the number of sections per recording period
depended on NREMS prevalence. Delta power values were normalized
by expressing them as a percentage of the individual mean value reached
over the last 4 h of the main rest period when delta power is minimal
during baseline.

The main rest period was calculated as described previously (Franken
et al., 1999) with modifications. Mean sleep duration was calculated over
a 2 h moving average at 15 min increments within individual mice.
Fifteen-minute intervals in which mice slept more than their individual
24 h baseline mean were termed as rest. Fourteen or more 15 min rest
intervals interrupted by �6 nonrest intervals constituted a rest period.
Applying this algorithm to mice, generally one main rest period was
obtained associated with the light period.

Sleep quality was assessed by analyzing its consolidation by counting
the number of brief awakenings and the number of short and long
NREMS episodes, as previously described (Franken et al., 1999).

GBL and BAC administration. Five days after the sleep deprivation
experiment, EEG and EMG signals were recorded continuously for six
consecutive 24 h periods, starting at lights-on. Twenty-four hour base-
line was followed by a saline day and 4 d with administration of four
different doses of GBL (50, 100, 150, and 300 mg/kg) or 3 d with admin-
istration of three different doses of BAC (5, 7.5, and 10 mg/kg). WT mice
taking part in the BAC experiment and 1 �/� and 2 �/� mice were not
previously used in the sleep deprivation experiment. Out of concern of
health conditions in 1 �/� and 2 �/� mice, the drug protocol was slightly
simplified, i.e., only saline and the highest drug dose were tested (n � 3
per genotype per drug). To exclude any carry-over or tachyphylaxis due
to our increasing dosing protocol, 18 wild-type BALB/cJ mice (n � 9 per
drug) were studied in a randomized crossover experiment with GBL and
BAC at the lowest and highest doses and saline. Mice were included in
one of three conditions: (1) administration of the highest dose followed
24 h later by the lowest dose and 24 h later by saline; (2) administration of
the highest dose followed by 48 h washout, then the lowest dose and then
24 h later saline; and (3) administration of saline followed 24 h later by
the lowest dose and then 24 h later by the highest dose. The results
indicated that the order of dose or duration of washout did not signifi-
cantly affect the results for three main and tested sleep phenotypes:
amount of drug-induced state, time course of delta power in NREMS
following the drug-induced state, and amount of NREMS after drug
administration (data not shown).

Drug doses were chosen according to the literature to cover a large
range of sedative/hypnotic effects that could be compared between drugs
(Schuler et al., 2001; de Fiebre et al., 2004; Meerlo et al., 2004; Koek et al.,
2007). Saline, GBL, and BAC were intraperitoneally administrated 6 h
after lights onset at Zeitgeber time (ZT) 6 (light onset being ZT0). At least
18 h were recorded after the last injection. BAC- and GBL-induced states
were characterized by an increase of hypersynchronous slow waves
and/or spiky EEG pattern following drug injection. The drug-induced
state can be readily distinguished from the three classical behavioral
states and were therefore analyzed separately. For both compounds, the
drug-induced state was determined as follows: at the onset of the drugs
effects, animals were awake while large-amplitude, short-lasting (2– 4 s)
burst of hypersynchronous slow waves appeared and progressively dom-
inated the EEG until normal EEG activity could no longer be discerned.
The first waking 4 s epoch in which abnormal EEG activity was observed
was taken as drug-induced state onset. Toward the end of the drug-
induced state, this alternation between normal waking and drug-induced
state reappeared. The last 4 s epoch with abnormal EEG was taken as the
end of the drug-induced state. The amount of drug-induced state was the
sum of 4 s epochs scored as drug-induced state.

Four second epochs of NREMS and BAC- and GBL-induced states
were subjected to spectral analysis to calculate the EEG power density in
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the delta frequency range (1– 4 Hz). Time-course analysis of the delta
power on the saline day and the 3 or 4 d with injections of BAC or GBL,
respectively, were performed similarly to the baseline condition. Delta
power during the BAC- and GBL-induced state is presented as a single
time point averaging over the duration of the state, which was too short
to reliably estimate a time course.

Spectral content of the EEG during NREMS, BAC-, and GBL-induced
state was quantified as described above. EEG spectra were normalized to
be directly comparable as follows: EEG power in each frequency bin for
each mean NREMS or drug-induced state spectrum was expressed as a
percentage of the mean NREMS EEG power determined over all artifact-
free 4 s epochs during 4 h of the rest period in baseline within individual
mice.

Analysis tools. TMT Pascal Multi-Target5 software (TMT Develop-
ment) was used to manage the data, SigmaPlot 10.0 (Systat Software) for
graphics, and SAS Institute software, version 9.1, for statistical analyses.

Drugs. Placebo was a saline solution (NaCl 0.9%, B. Braun Medical).
GBL and racemic BAC (Sigma-Aldrich Chemie) were freshly diluted in
saline solution to obtain different solutions of GBL (50, 100, 150, and 300
mg/kg) and BAC (5, 7.5, and 10 mg/kg) with an injection volume of 5
ml/kg of body weight.

GBL has a greater lipid solubility than GHB, allowing uniform and
rapid absorption (Snead, 1991). The in vivo pharmacological proper-
ties of GBL are secondary to its final conversion into GHB (Rubin and
Giarman, 1947). GBL is biologically inactive (Roth et al., 1966) and all
its physiologic and behavioral effects are due to its rapid conversion

(�1 min) to GHB by peripheral lactonases or by nonenzymatic hy-
drolysis (Roth et al., 1967; Carter et al., 2006).

Results
Spontaneous epileptiform activity in 1 �/�, 2 �/�, and 1a �/�

mice
Both 1�/� and 2�/� mice lack functional GABAB receptors
whereas 1a�/� mice still have functional GABAB1b,2 receptors
and 1b�/� mice have GABAB1a,2 receptors. As previously ob-
served (Schuler et al., 2001; Gassmann et al., 2004), all 1�/� and
2�/� mice displayed spontaneous seizures. Over the 24 h baseline
recording period, five of eight mice of both 1�/� and 2�/� geno-
types showed at least one seizure. Health status of 1�/� and 2�/�

mice gradually deteriorated, manifested as weight loss, ruffled
fur, and hunched posture accompanying the increasing number
of seizures (up to 20 seizures per day). Only data from healthy
animals were included in the analyses.

Interestingly, four of eight 1a �/� mice also exhibited sim-
ilar spontaneous epileptiform activity (Fig. 1 A), a phenotype
never described before for this genotype. This epileptiform
trait was, however, less severe, with the number of seizure
never exceeding four per day and without affecting their overt
health status. Almost all seizures observed in the three geno-

Figure 1. Sleep and EEG phenotypes for 1a �/�, 1b �/�, 1 �/�, 2 �/�, and WT mice. A, EEG and EMG signals illustrating a spontaneous clonic seizure in a 1a �/� mouse during
undisturbed baseline conditions. This seizure occurred during NREMS (2 s before seizure onset). Both EEG amplitude and frequency were increased as well as muscle tone (EMG). Animal
showed rearing and bilateral clonus of the forelimbs during the seizure. B, Twenty seconds of typical NREMS in a WT mouse characterized by a high amplitude of low-frequency EEG
oscillations (delta waves) and reduced muscle tone. C, Example of abnormal EEG during well identified NREMS in a 1 �/� mouse. Arrow points to an abrupt EEG sharp wave. This
epileptiform activity during NREMS was seen only in 1 �/� and 2 �/� mice, and was present during �20% of their NREMS. Waking and REMS were also affected to a lesser extent. These
abnormal EEG events were excluded from the spectral analysis depicted in Figure 3. D, Time course of hourly mean values of total sleep amount (NREMS � REMS; � SEM, n � 8 –9)
during baseline. Values of the dark period (gray areas) were depicted twice to illustrate the changes at the dark-to-light transition. Horizontal dashed lines mark the mean baseline (0 –24
h) value for total sleep. Genotype did not affect sleep amount but its distribution changed (two-way ANOVA with factor genotype, p � 0.11; hour, p � 0.0001; genotype � hour, p �
0.0001). Triangles below each curve indicate hourly intervals for which values differed from WT mice (Dunnett’s two-tailed t test; p � 0.05). For each genotype, the main rest period is
indicated by a horizontal bar connecting rest onset and end (mean � SEM, n � 8 –9). Rest periods were determined individually by selecting intervals in which NREMS and REMS were
above the individual baseline mean (see Materials and Methods). In all 1b �/� mice, the main rest period was interrupted by a 3 h gap. E, Sleep fragmentation was quantified by counting
the number of brief awakenings (�16 s; 1, 2, 3, or 4 s epochs of waking; top) interrupting sleep and the number of short (�1 min; �15 consecutive 4 s epoch of NREMS; center) and long
(�1 min; bottom) NREMS episodes according to previously published criteria (Franken et al., 1999). Variables were expressed per hour of NREMS to correct for differences in total NREMS
amount. Calculated over the 24 h of baseline, 1a �/� mice had more short NREMS episodes than 2 �/� mice and more brief awakenings compared with 1b �/� and 2 �/� mice (one-way
ANOVA factor genotype, p � 0.017 and p � 0.0089, respectively). The number of long NREMS episodes was generally higher in 1 �/� and 2 �/� mice compared with 1a �/�, 1b �/�,
and WT mice (one-way ANOVA factor genotype, p � 0.0001). Horizontal lines connect genotypes for which significant differences were observed (Tukey’s test, p � 0.05).
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types were of the clonic type lasting between 12 s and 1.5 min.
On occasion, tonic-clonic seizures were observed after audio-
genic stimuli, handling, or cage change. In addition, epileptic
mice displayed high-voltage EEG spikes generally in the hours

prior and/or following a seizure (Fig. 1B,C). Seizures occurred
in all behavioral states and during both light and dark periods.
No epileptiform activity was observed in any of the 1b �/� or
WT mice.

Figure 2. Time course of the amount of NREMS and EEG delta power (1– 4 Hz) in NREMS. A, B, Mean 1 h values for NREMS (A) and mean values for delta power (�SEM; B) during 24 h baseline
(BLN; 0 –24 h), 6 h sleep deprivation (SD; 24 –30 h) and 18 h recovery (REC; 30 – 48 h) in WT, 1a �/�, and 1b �/� mice (n � 8, n � 8, and n � 9, respectively). For comparison, baseline results
were also shown for 1 �/� and 2 �/� mice (n � 8 per genotype; these mice were not sleep deprived; see Materials and Methods). Delta power was expressed as a percentage of individual mean
NREMS delta power over the last 4 h of the rest period. Gray areas mark the dark periods, white areas the light periods, and the black bar on the top indicates the 6 h SD. Stars above the curves of
1a �/� and 1b �/� mice indicate significant differences from WT (one-way ANOVA; Dunnett’s two-tailed t test, p � 0.05). In recovery, triangles below the curves indicate hours at which values
differed from baseline (t tests, p � 0.05, ‚� baseline, ƒ� baseline). C, Mean values for NREMS amount during the last 6 h of the light periods of baseline and recovery in 1b �/� (n � 9), 1a �/�

(n�8), and WT (n�8) mice. These two values were compared among the three genotypes. Black stars indicate significant recovery– baseline differences (one-way ANOVA; Tukey’s test, p�0.05).
Horizontal connecting lines indicate significant differences among genotypes (one-way ANOVA; Tukey’s test, p � 0.05). Amount of NREMS during the last 6 h of the baseline light period was shown
also for 1 �/� and 2 �/� mice (n � 8 per genotype), but values were not included in the statistics.

Table 1. Behavioral states in baseline; 12 and 24 h values

Waking (min) NREMS (min) REMS (min) TS (min)

24 h period
WT 753.9 � 5.6 608.6 � 8.9 77.5 � 5.2 686.1 � 8.9
1a �/� 752.1 � 18.4 607.9 � 19.3 79.9 � 4.6 687.8 � 19.3
1b �/� 796.7 � 14.5 561.6 � 16.7 81.7 � 3.5 643.3 � 16.7
1 �/� 781.5 � 29.6 570.6 � 32.5 81.3 � 6.0 651.8 � 32.6
2 �/� 812.4 � 27.1 543.0 � 30.1 82.7 � 4.7 625.7 � 29.6
p 0.28 0.12 0.95 0.25

12 h light period
WT 328.5 � 13.3b,c 352.0 � 15.9a,b 39.5 � 3.7a 391.5 � 15.9a,b

1a �/� 283.3 � 7.8a,b 386.8 � 8.6b,c 49.7 � 4.5a,b 436.5 � 8.6b,c

1b �/� 350.9 � 10.6c 325.1 � 12.1a 44.0 � 2.7a 369.1 � 12.1a

1 �/� 244.5 � 18.9a 413.4 � 20.5c 58.8 � 4.3b 472.2 � 19.9c

2 �/� 244.7 � 16.6a 429.2 � 16.4c 64.4 � 2.9b 493.6 � 16.5c

p �0.0001 �0.0001 0.0001 �0.0001
12 h dark period

WT 425.4 � 14.4a 256.5 � 17.5b 38.0 � 4.0b 294.6 � 17.5b

1a �/� 468.8 � 16.9a,b 221.0 � 19.4b,c 30.2 � 2.7a,b 251.2 � 19.4b,c

1b �/� 445.8 � 11.5a,b 236.5 � 14.9b 37.7 � 4.1b 274.2 � 14.9b

1 �/� 537.0 � 24.7b,c 157.2 � 29.7a,c 22.4 � 5.1a,b 179.7 � 29.5a,c

2 �/� 587.7 � 28.3c 113.8 � 18.2a 18.2 � 4.7a 132.1 � 33.0a

p �0.0001 �0.0001 0.0048 �0.0001

Mean (�SEM; n � 8 –9) artifact free recording time in 24 h baseline, 12 h light, and 12 h dark period for the time spent in waking, NREMS, REMS, and total sleep time (TS; NREMS � REMS). Behavioral states varied among genotypes
( p values of one-way ANOVA indicated). a–c, Tukey’s test, p � 0.05; genotypes for which mean values significantly differed do not share the same character.
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Loss of GABAB receptors delays the rest period, reduces delta
and theta activity in the NREMS EEG, and increases theta
activity in the waking EEG
Although genotype did not affect behavioral state duration under
baseline conditions (Table 1), a lack of functional GABAB recep-
tors greatly altered the sleep–wake distribution (Fig. 1D). Al-
though the main rest period in 1a�/�, 1b�/�, and WT mice was
initiated several hours before light onset (�4.6 � 0.7, �6.9 � 0.4,
and �6.2 � 0.8 h, respectively; mean � SEM), which is typical for
male BALB/c mice (Franken et al., 1999; Shimomura et al., 2001),
in 1�/� and 2�/� mice, the onset of the rest period was delayed by
6 h compared with WT and became closely associated with light
onset. The end of the rest period was similarly delayed in 1�/�

and 2�/� mice compared with 1a�/�, WT, and 1b�/� mice
(11.7 � 0.2, 11.8 � 0.1, 10.0 � 0.3, 9.0 � 0.4, and 8.9 � 0.3 h after
light onset, respectively; 1-way ANOVA for rest onset and rest
end, p � 0.0001; paired t test, p � 0.05). 1a�/� mice displayed an
onset and end of their rest period intermediate between 1�/� and
2�/� mice on the one hand, and WT and 1b�/� mice on the
other. The delay of the end of the rest period was also reflected in
the increased time spent asleep in the second half of the light
period with highest values reached in 1�/� and 2�/� mice, inter-
mediate in 1a�/� mice, and lowest in WT and 1b�/� mice (Figs.
1D, 2A,C).

Genotype difference in the duration of the rest period, cal-
culated as the time span between the onset and end of the rest
period, also distinguished 1 �/� and 2 �/� mice from 1a �/�,
WT, and 1b �/� mice, the former two genotypes showing a
significantly shorter rest period (1-way ANOVA for total rest
duration, p � 0.0001; 1 �/� � 2 �/� � 1a �/� � WT � 1b �/�;
Tukey’s test, p � 0.05) (Fig. 1 D). Also, for this phenotype,
1a �/� mice appeared intermediate between mice completely
lacking GABAB receptors and WT and 1b �/� mice. Whereas
all other genotypes displayed only one rest period per 24 h,
1b �/� mice showed a consistent 3.0 � 0.2 h gap interrupting
the rest period (Fig. 1 D).

Apart from this marked redistribution of sleep and waking
over the day, we also noticed genotype differences in sleep archi-
tecture at the level of individual sleep episodes. Judging by the
increased number of brief awakenings (�16 s), sleep in 1a�/�

mice was generally more fragmented compared with all other
genotypes (Fig. 1E), consistent with the fragmented sleep re-
cently reported in mice lacking functional GABAB receptors in
orexin neurons specifically (Matsuki et al., 2009). In contrast, we
found that an overall lack of functional GABAB receptors (i.e., in
1�/� and 2�/� mice) lead to a greater number of longer periods
of sleep (�1 min) compared with the other genotypes (Fig. 1E).
Thus, brain site-specific effects of GABAB receptors and subcel-
lular localization of GABAB receptors subunits (Vigot et al., 2006;
Ulrich and Bettler, 2007) can have a profound impact on the
consolidation of sleep.

GABAB receptor genotype also affected EEG activity and the
main spectral changes were found in frequencies �20 Hz. During
NREMS, 1b�/� mice exhibited a reduced EEG activity in theta
frequency range compared with WT (3.75–7.5 Hz) (Fig. 3). This
decrease became more pronounced both in terms of amplitude
and frequency range in 1�/� and 2�/� mice, which showed a
strong decrease over a broad frequency range (1.75–10 Hz), in-
cluding both delta and theta frequencies, compared with WT
mice. This decrease is reminiscent of the reduction in EEG syn-
chronization observed after the thalamic administration of a
GABAB receptor antagonist (Juhász et al., 1994), underscoring
the crucial role of GABAB receptors in thalamocortical oscilla-

tions characteristic of NREMS (Huguenard and Prince, 1994;
Kim et al., 1997).

The waking EEG spectra of the latter two genotypes also mark-
edly differed from 1a�/�, 1b�/�, and WT mice in that theta
activity, especially �7 Hz, was more pronounced (Fig. 3 and data
not shown for 1a�/� and 1b�/� mice). The increase in theta
power during wakefulness might suggest an increase in active and
exploratory behavior, which is associated with hippocampal theta
oscillations (van Lier et al., 2003). Alternatively, GABAB receptors
seem to be directly involved in theta rhythm generation (Vertes,
2005), although the REMS spectral signature, with its characteristic
theta peak �7 Hz, remained unaffected by genotype.

The homeostatic regulation of sleep is not affected in mice
lacking GABAB receptor subunits
A 6 h SD was performed to assess whether GABAB receptor sub-
units contribute to sleep homeostasis. Due to the health deterio-
ration of 1�/� and 2�/� mice during SD, these two genotypes
were excluded from this experiment. Recovery of sleep loss in the
three remaining genotypes was evident by increases in both
NREMS duration and in EEG delta power in the first 6 h after SD
(i.e., recovery light period). This response did not differ among
1a�/�, 1b�/�, and WT mice (Fig. 2A–C). EEG delta power
steeply declined over the course of recovery and fell below base-
line in the subsequent recovery dark period. During this period,
levels of delta power in 1a�/� mice were higher than those ob-
served in 1b�/� and WT mice. This genotype difference was also
observed in the dark period of baseline after a spontaneous pe-
riod of wakefulness (Fig. 2B). Although the effect of SD could not
be evaluated in 1�/� and 2�/� mice (see Materials and Methods),
EEG delta power during baseline also decreased during the rest
period and increased over the course of the active period. Like for
1a�/� mice, delta power levels reached in the baseline dark pe-
riod in 1�/� and 2�/� mice seemed higher than WT and 1b�/�

Figure 3. Average EEG power spectra (�SEM) for NREMS, REMS, and waking during base-
line. For clarity, only the frequency range for which major genotype differences were observed
is shown (0.75–20 Hz at 0.25 Hz bins). Genotype affected the EEG spectra of the three behavioral
states (two-way ANOVA for each state; factors genotype, bin, and their interaction, p �
0.0001). Colored triangles above each set of spectra indicate frequency bins for which power
density differed from WT mice (Dunnett’s two-tailed t test, p � 0.05) (black, NREMS; blue,
REMS; red, waking; color coding of lines and triangles matches).
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mice (Fig. 2B). These results, together with the effects observed
after SD in the other three genotypes, suggest that GABAB recep-
tors do not play a major role in sleep homeostasis as indexed by
EEG delta power.

GBL, through GABAB receptors, induces an anesthetic-like
state distinct from physiological sleep
We tested the effects of GBL and BAC on sleep and the EEG at
various doses. Order of dose did not affect the main drug effects
presented here (see Materials and Methods). Administration of
GBL or BAC did not affect behavior or the EEG in 1�/� or 2�/�

mice. In contrast, GBL and BAC dose-dependently affected the
EEG and behavior in WT, 1a�/�, and 1b�/� mice without no-
ticeable behavioral or EEG differences among these three geno-
types. At low doses of GBL (50 and 100 mg/kg), EEG slow waves
appeared (Fig. 4A) and locomotor activity decreased, while ani-
mals remained behaviorally awake with eyes open and responded
normally when stimulated. At higher GBL doses (150 and 300
mg/kg), mice became immobile with an unnatural flat body pos-
ture with hind limbs stretched sideways while eyes remained
open. Their EEG displayed hypersynchronous slow waves and a
spike-like pattern, which was more abundant after the highest
dose (Fig. 4B). Importantly, at the highest GBL dose, animals
became completely unresponsive to stimulation, resembling be-
ing in a state of deep anesthesia. BAC, administered in WT mice,
also induced hypersynchronous slow waves and decreased loco-
motor activity. However, even at the highest dose (10 mg/kg),
BAC did not induce the spike-like EEG pattern observed after 300
mg/kg of GBL (Fig. 4C,D). Moreover, although at 10 mg/kg ani-

mals were also immobile with abnormal
flat posture and open eyes, they still re-
sponded to tactile stimuli. The EEG patterns
combined with behavioral observations in-
dicated that the state induced by the drugs
could not be interpreted as either normal
sleep or wakefulness. We therefore scored
periods with abnormal EEG following drug
administration as drug-induced state (see
Materials and Methods). The GBL-induced
state appeared 4–9 min after injection in
1a�/�, 1b�/�, and WT mice, and the BAC-
induced state appeared significantly later
(13–17 min; 1-way ANOVA, p � 0.001) in
WT mice. The length of both drug-induced
states varied according to dose and both
1a�/� and 1b�/� mice displayed an overall
shorter GBL-induced state amount than
WT mice did (Fig. 4E,F).

Because of the induction of slow
waves, especially at lower drug doses, rem-
iniscent of those present during NREMS, we
contrasted delta power during drug-
induced state to the levels usually obtained
during NREMS. Delta power during GBL-
induced state increased from 50 to 100
mg/kg but did not further increase at higher
doses (Fig. 5A). In 1a�/� and 1b�/� mice,
delta power reached at the highest three
doses was significantly higher compared
with that reached after 50 mg/kg of GBL
(Fig. 5A). Furthermore, in 1a�/� mice, lev-
els reached at the three highest doses were
approximately twofold higher compared

with 1b�/� and WT mice and threefold higher than the baseline
reference reached in NREMS. During the BAC-induced state, delta
power levels remained within the baseline range determined for
NREMS and did not differ among doses (Fig. 5B).

Similar to the analysis of delta power, we contrasted the full
EEG spectra during the drug-induced state to the EEG spectra
obtained during NREMS over the last 4 h of the baseline rest
period. In addition, because, like GBL and BAC, SD also in-
creased delta power (Fig. 2B), we compared the drug-induced
state EEG spectra to the EEG spectra obtained during NREMS
after 6 h SD. Spectral analyses revealed that the abnormal EEG
activity following the injection of the highest GBL dose (300 mg/
kg) (Fig. 4B) was due to a large increase of EEG activity in the low
delta frequencies (0.75–1.5 Hz) reaching three- to fourfold higher
levels than those reached after BAC and saline injections and
�1.5-fold higher compared with the effects of SD (Fig. 6A). An
equally large suppression of EEG activity was observed at fre-
quencies �3 Hz with the largest reduction reached at �13 Hz
(Fig. 6A). The GBL effects on the EEG spectra were dose-
dependent (two-way ANOVA in WT mice: factor dose, p �
0.0001; factor bin, p � 0.0001; interaction, p � 0.0001) with a
progressive increase with dose in the low delta frequencies (0.75–
1.75 Hz) and a decrease with dose for frequencies �3 Hz (analy-
ses not shown).

EEG spectra during the BAC-induced state revealed that only
fast delta activity (4 –5.25 Hz) contributed to the slow waves in-
duced by this drug (Fig. 6A). Although the increase in this fre-
quency range was similar to the increase observed in the NREMS
EEG after SD, the effect of SD also included slower delta oscilla-

Figure 4. A–D, Representative traces illustrating the effects of GBL and BAC on the EEG and EMG in WT animals after 50 (A) and
300 (B) mg/kg of GBL and after 5 (C) and 10 (D) mg/kg of BAC. Similar EEG and EMG patterns after GBL were found in 1a �/� and
1b �/� mice. GBL did not affect behavior or EEG in 1 �/� or 2 �/� mice (data not shown). E, Length of GBL-induced state in
1a �/�, 1b �/�, and WT mice. The length of GBL-induced state increased linearly and dose-dependently (linear regression; WT,
n � 8, R 2 � 0.99; 1a �/�, n � 8, R 2 � 0.99; 1b �/�, n � 9, R 2 � 0.96). The length of GBL-induced state varied with dose and
genotype and was, in general, longer in WT mice (two-way ANOVA, factor genotype, p � 0.0011; factor dose, p � 0.0001;
genotype � dose, p � 0.42; genotype, 1a �/� � 1b �/� � WT; Tukey’s test, p � 0.05; dose:,50 � 100 � 150 � 300 mg/kg;
Tukey’s test, p � 0.05). F, Length of BAC-induced state after each dose of BAC in WT mice. The length of BAC-induced state
increased linearly and dose-dependently within this dosage range (linear regression, WT, n � 8, R 2 � 0.96; one-way ANOVA,
factor dose, p � 0.033; 5 � 7.5 � 7.5 � 10 mg/kg; Tukey’s test, p � 0.05).
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tions (Fig. 6A). EEG activity in higher fre-
quencies (10.75–37.5 Hz), encompassing
the sigma and beta ranges, was clearly re-
duced by BAC compared with the
NREMS spectrum after saline injection
(Fig. 6A and data not shown).

Genotype affected the drug-induced
changes in EEG spectra. The most sa-
lient of these genotype differences are
illustrated for the highest dose of GBL
(300 mg/kg) in Figure 6 B. In 1a �/�

mice, the increase in low frequencies
during the GBL-induced state was more
pronounced compared with WT and
1b �/� mice. Moreover, the decrease in
EEG power density for frequencies �3
Hz, equally observed in 1b �/� and WT
mice, was less pronounced in 1a �/�

mice. In general, 1b �/� mice displayed a
GBL EEG signature very similar to that
observed in WT mice (Fig. 6 B). The
same held true for the EEG spectra dur-
ing subsequent NREMS (Fig. 6 D).

BAC induces hypersomnia similar to
that observed after sleep deprivation
After the acute effects of the drugs on be-
havior and the EEG waned, normal be-
havioral states could again be assigned.
We quantified the longer-term effects of
both drugs on sleep and the EEG in WT as
well as in 1�/� and 2�/� mice. Compared
with individually matched recording peri-
ods after saline injections, both BAC and
GBL initially suppressed REMS. This loss
in REMS time was fully compensated over
the course of the final 12 h of the record-
ing period in WT mice (Fig. 7A). The ef-
fect on NREMS amount importantly
differed between the two drugs, illustrated
for the highest doses of BAC and GBL in
Fig. 7B. Over the entire recovery period
after BAC injection, mice spent 40 min
more in NREMS than calculated over the
same period after saline injection (Fig.
7B). Especially during the dark period, ex-
tra NREMS was accumulated. In stark
contrast, GBL was followed by an imme-
diate decrease of NREMS in the recovery
light period (Fig. 7B) (Meerlo et al., 2004).
During the subsequent dark period, no
differences in NREMS time were observed. As a result of these
opposing drug effects, at the end of the recording period, WT
mice treated with BAC gained 1.0 h of NREMS compared with
WT mice treated with GBL, indicating that BAC induced a long-
term hypersomnia (one-way ANOVA, p � 0.0005) (Fig. 7A,B).
Interestingly, hypersomnia was also observed after BAC admin-
istration in 1�/� and 2�/� mice now concerning both NREMS
and REMS (Fig. 7C,D). This indicates that, in contrast to the
acute effects of BAC, BAC-induced hypersomnia might not be
mediated through GABAB receptors. In addition to sleep
amounts, we also quantified the distribution and consolidation
of sleep but did not observe significant changes in sleep fragmen-

tation after any dose of GBL or BAC compared with saline con-
ditions (data not shown).

Recovery from drug effects was also assessed at the level of
delta power in NREMS. Despite the pronounced increase in EEG
delta power during the GBL-induced state (Figs. 5A, 6A), the
time course of delta activity during subsequent recovery sleep
remained unaffected in the genotypes tested (i.e., 1a�/�, 1b�/�,
and WT) (Fig. 5A). As expected, GBL also failed to alter the time
course of EEG delta power during NREMS in 1�/� and 2�/�

mice (data not shown). In stark contrast to the lack of an effect of
GBL, the BAC-induced state was followed by an immediate in-
crease in NREMS delta power, independent of dose (Fig. 5B).

Figure 5. EEG delta power (1.0 – 4.0 Hz) during the GBL- and BAC-induced state and its time course during subsequent NREMS
(mean � SEM). A, Delta power during GBL-induced state (triangles) increased from 50 to 100 mg/kg, where it reached a plateau
(50 mg/kg, �3 highest doses in 1a �/� and 1b �/� mice; one-way ANOVA, Tukey’s test, p � 0.05). Plateau levels reached were
around twofold higher in 1a �/� mice than in 1b �/� and WT mice (one-way ANOVAs, p�0.0001; Tukey’s tests, p�0.05, stars).
For NREMS delta power (circles; mean � SEM), a comparison among genotype (1a �/�, 1b �/�, WT), day (1–5), and time (18
intervals per d) was performed (three-way ANOVA, factor genotype, time, p � 0.0001; factor day, p � 0.0003; interaction
genotype � day, p � 0.0020; genotype � time, p � 0.040; time � day, p � 0.10; genotype � day � time, p � 0.10).
Although the time course of NREMS delta power did not differ among the three genotypes, the overall dynamic range was smaller
in 1b �/� and larger in 1a �/� mice compared with WT mice (Tukey’s tests, p�0.05). For NREMS delta power, differences among
drug days were observed, but not in a dose-dependent manner (Tukey’s test, 150 � saline � 50 � 100 � 50 � 100 � 300
mg/kg). B, Delta power during BAC-induced state (black triangles) did not increase with dose in WT mice (one-way ANOVA, p �
0.64). BAC affected the time course of delta power in NREMS [circles; two-way ANOVA factor day (1– 4), p � 0.079; factor time (18
intervals per d), p�0.0001; interaction, p�0.0001]. A large increase in NREMS delta power occurred after the BAC-induced state,
followed by a decrease below saline levels during the subsequent dark period (white triangles mark significant differences from
saline; Dunnett’s two-tailed t test, p � 0.05). Note the dose-dependent decrease in delta power during the dark period (one-way
ANOVA, factor day, p � 0.0001; saline � 5 � 7.5 � 7.5 � 10 mg/kg; Tukey’s test, p � 0.05).
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Delta power quickly decreased in the presence of NREMS and, in
the dark period, values below those obtained during the same
period after saline injection were reached. This decrease became
more pronounced with increasing dose (one-way ANOVA factor
dose, p � 0.0001; Tukey’s test, saline � 5 � 7.5 � 7.5 � 10
mg/kg), consistent with the dose-dependent BAC-induced in-
crease in NREMS time during the dark period (data not shown).
In contrast to the BAC-induced hypersomnia (see above), the
BAC-induced increase in delta power during NREMS was not
observed in 1�/� and 2�/� mice (data not shown), suggesting
that only the latter effect involves the GABAB receptor. The
effects of BAC in WT mice on NREMS time and especially on
the dynamics of delta power are very similar to the effects of
SD. The similarity between the EEG effects of BAC and SD
were not restricted to the delta frequencies. EEG spectra cal-
culated over the first 20 min of NREMS following the BAC-

induced state and SD were similar over a
broad frequency range and differed only
in the low delta frequencies (1–2 Hz)
(Fig. 6C).

Discussion
We studied the role of GABAB receptors in
sleep in mice lacking functional GABAB

receptors or one of the two GABAB1 re-
ceptor isoforms. We identified a number
of sleep and EEG phenotypes under base-
line conditions and after the administra-
tion of GABAB-receptor agonists that not
only separated 1�/� and 2�/� mice from
1a�/�, 1b�/�, and WT mice but also
1a�/� from 1b�/� and WT mice. Among
the most salient phenotypes we observed
in 1�/� and 2�/� mice were the presence
of clonic seizures, the marked delay in the
distribution of sleep over the 24 h day,
the altered spectral composition of the
NREMS and waking EEG, and the com-
plete lack of the acute response to GBL
and BAC. 1a�/� mice differed from
1b�/� and WT mice in that they showed
seizures, their sleep was more fragmented
and more prevalent in the second half of
the light period, and they responded with
a larger increase in EEG delta power after
GBL administration. For several sleep and
EEG phenotypes, 1a�/� thus seemed in-
termediate between 1b�/� and WT mice
on one hand, and 1�/� and 2�/� mice on
the other, suggesting functional differ-
ences between the two GABAB1 receptor
isoforms. These differences are likely to be
due to differential subcellular localiza-
tions of the two isoforms because binding
pharmacology showed similar properties
(Pérez-Garci et al., 2006; Vigot et al.,
2006).

The GABAB1a receptor subunit protect
against seizures
Spontaneous epileptiform activity has been
reported in mice lacking functional GABAB

receptors (Schuler et al., 2001; Gassmann et
al., 2004). We discovered that mice lacking

subunit GABAB1a also displayed spontaneous seizures, indicating a
specific role for GABAB1a subunit in preventing seizures. GABAB1a

and GABAB1b subunits localize to distinct synaptic sites, thereby
conveying separate functions. Of relevance for the epileptiform trait
is the fact that at hippocampal synapses, GABAB1a,2 receptors inhibit
glutamate release, whereas GABAB1b,2 receptors predominantly me-
diate postsynaptic inhibition (Vigot et al., 2006). The lack of presyn-
aptic inhibition of glutaminergic neurons in 1a�/� mice might have
contributed to the presence of seizures. Functional differences be-
tween these two subunits might also have contributed to the sleep
and EEG genotype differences we report here.

GABAB receptors determine the diurnal organization of sleep
The distribution of sleep and wakefulness over the 24 h day mark-
edly differed among genotypes. BALB/c and BALB/cByJ mice ini-

Figure 6. EEG spectra during and after the drug-induced state for the highest doses of BAC (10 mg/kg) and GBL (300 mg/kg). All
spectra (0.75–90 Hz; at 0.25 Hz bins) were expressed as a percentage of the NREMS EEG spectrum averaged over the last 4 h of the
baseline rest period, thereby allowing direct comparison among genotypes, drugs, and conditions. A, BAC- and GBL-induced state
EEG spectra in WT mice (blue and red lines, respectively). For comparison, EEG spectra during the first 20 min of NREMS after 6 h
sleep deprivation (SD; black) and after saline administration (gray line) were included. Spectra significantly differed among
conditions (two-way ANOVA for factors condition, bin, and interaction, p � 0.0001). Horizontal colored lines indicate frequency
bins in which EEG power significantly differed (GBL vs SD, red; BAC vs SD, blue; GBL vs BAC, black; Tukey’s test, p � 0.05). The
GBL-induced state EEG spectrum differed strongly from that of the BAC-induced state, especially in the low delta (0.75–1.75 Hz)
frequencies and for frequencies �3 Hz. B, GBL-induced state spectra in 1a �/�, 1b �/�, and WT mice (light gray, dark gray, and
black lines, respectively; WT same as in A). Spectra significantly differed among genotypes (two-way ANOVA for factors genotype,
bin, and interaction, p � 0.0001). Horizontal colored lines mark frequency bins in which genotypes differed (1a �/� vs 1b �/�,
black; 1b �/� vs WT, dark gray; 1a �/� vs WT, light gray; Tukey’s test, p � 0.05). EEG changes in 1b �/� mice closely resembled
those of WT. C, EEG spectra during the first 20 min of NREMS after GBL- (red) and BAC- (blue) induced state and after SD (black) and
saline (gray line) in WT mice. SD and saline spectra same as in A. Spectra were affected by condition (two-way ANOVA for factors
condition, bin, and interaction, p � 0.0001; Tukey’s test for genotype, p � 0.05), largely due to the low spectral values reached
after GBL in frequencies �7 Hz. Statistics and color coding as in A. D, EEG spectra during the first 20 min of NREMS after GBL-
induced state in 1a �/�, 1b �/�, and WT mice (color coding as in B). Spectra significantly differed among genotypes (two-way
ANOVA for factors genotype, bin, and interaction, p � 0.0001; statistics and color coding as in B).
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tiated their main rest period in the middle
of the dark period (Fig. 1) (Franken et al.,
1999; Shimomura et al., 2001), whereas
the rest period in 1�/� and 2�/� mice co-
incided largely with the light period,
which is common for most other inbred
strains. We and others attributed the ear-
lier rest onset and resulting compression
of the active period to the shorter endog-
enous circadian period length observed in
BALB/c mice (Schwartz and Zimmerman,
1990; Franken et al., 1999; Shimomura et al.,
2001). Several studies implicate GABAB re-
ceptors in circadian timing. Activation of
GABAB receptors in the suprachiasmatic
nucleus (SCN), the master circadian clock,
phase-shifts circadian rhythms both in vitro
and in vivo (Biggs and Prosser, 1998; Novak
et al., 2004), and the effects of light on circa-
dian phase are blocked by BAC (Ralph and
Menaker, 1989; Crosio et al., 2000). It re-
mains to be established whether the large
delay in the timing of the rest period we re-
port here is due to a role of GABAB receptors
at the level of the (light) input to the SCN or
at the level of rhythm generation itself.

GABAB receptor agonists do not
promote physiological sleep
The lack of any behavioral and EEG effects
of GBL in 1�/� and 2�/� mice clearly in-
dicates that exogenous GHB acts via
GABAB receptors only. A similar lack of
effect in 1�/� mice has been reported for
other variables, such as the GHB-induced
decrease in locomotor activity and hypo-
thermia (Kaupmann et al., 2003; Quéva et
al., 2003). Our behavioral and EEG obser-
vations show that GBL does not induce
physiological sleep, but a subanesthetic
state with EEG hypersynchrony consis-
tent with reports by others (Godschalk et
al., 1977; Meerlo et al., 2004). Also, BAC
did not initially induce physiological sleep
and its acute effects in WT mice had some
similarities with the acute effects of GBL.
However, BAC even at the highest dose,
failed to induce the spiky EEG pattern characteristic of the GBL-
induced state, whereas the amount of the drug-induced state was
comparable between the two drugs. First evidence of spiky EEG pat-
terns appeared at an extremely high BAC dose (50 mg/kg), but at this
dose the drug-induced state lasted �5 h (data not shown), demon-
strating that the drug dynamics for EEG and behavioral aspects
greatly differ.

Delta power during NREMS is in a quantitative and predictive
relationship with prior wakefulness and is therefore thought to re-
flect a need or pressure for NREMS and its underlying homeostati-
cally regulated recovery process (Franken et al., 2001). Delta power
during NREMS is also considered a measure of the efficiency with
which sleep need decreases during NREMS (Dijk and Beersma,
1989; Borbély and Achermann, 1999). The profound increase in
EEG delta activity during the GBL-induced state did not affect the
dynamics of delta power in subsequent NREMS, indicating that

functionally, GBL-induced delta oscillations differ from those ex-
pressed during physiological NREMS.

The changes evoked by BAC on subsequent NREMS were even
more remarkable than the lack of response observed after GBL; delta
power increased and the subsequent recovery dynamics were highly
similar to those observed after SD. This similarity was true for the
entire NREMS EEG spectrum, supporting the puzzling conclusion
that the BAC-induced state is functionally similar to intense wake-
fulness. Nevertheless, we cannot rule out that the increase in delta
power is a residual direct effect of BAC on EEG synchronization
rather than reflecting increased homeostatic drive. Also, the pattern
of NREMS recovery, with its largest increase in the dark period, is
reminiscent of the effect of SD (Franken et al., 1999). This delayed
hypersomnia was also observed in 1�/� and 2�/� mice, suggesting
that this aspect of the sleep response is most probably not mediated
through GABAB receptors. Studies in human subjects reported a

Figure 7. A–D, Drug–saline differences in NREMS and REMS length (mean � SEM), counted from the end of drug-induced
state in WT mice (A, B) or from the time of injection in 1 �/� and 2 �/� mice (C, D), to the end of the following dark period. Drug
effects are shown only for the highest dose of GBL (300 mg/kg) and BAC (10 mg/kg). A, Both drugs decreased REMS during the
remainder of the light period (Light) in WT mice (n � 8), a decrease that was compensated for during the subsequent dark period
(Dark; gray area), resulting in no overall difference (Total). B, During the light period, NREMS amount significantly decreased only
after GBL. In the subsequent dark period NREMS, BAC increased NREMS compared with saline, resulting in a large overall increase
(hypersomnia). C, D, Although neither drug affected REMS (C) or NREMS (D) during the light period in 1 �/� and 2 �/� mice, in
the subsequent dark period, BAC surprisingly increased both sleep states whereas GBL tended to decrease sleep. Over the entire
18 h following drug injection (Total), BAC strongly increased REMS and NREMS. Note that results from 1 �/� and 2 �/� mice were
pooled (n � 3 per genotype per group), as no genotype differences were observed. Stars mark statistical differences from saline
(one-way ANOVA, p � 0.05; paired t test, p � 0.05). Significant differences between drugs are shown by connecting lines
(one-way ANOVA, p � 0.05; Tukey’s test, p � 0.05).
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BAC-induced increase in NREMS (Guilleminault and Flagg, 1984;
Finnimore et al., 1995) and somnolence as a side effect (Hulme et al.,
1985; Huang and Guilleminault, 2009). In contrast and similar to
our findings in mice, GHB given at night did not increase total sleep
time in healthy men or narcolepsy patients (Van Cauter et al., 1997;
Mamelak et al., 2004) and did not induce daytime somnolence
and, importantly, reduces excessive daytime sleepiness in narco-
lepsy patients (Black and Houghton, 2006).

Although GABAB receptors mediate the acute effects of both
GBL/GHB and BAC and the two drugs have several effects in
common (e.g., hypothermia, catalepsy, sedation) (van Nieuwen-
huijzen et al., 2009), the underlying mechanisms may not be
identical (Koek et al., 2005, 2007). For instance, in mice, NMDA
receptor antagonists enhanced the cataleptic effects of GHB but
not those of BAC (Koek and France, 2008), suggesting a differen-
tial role of glutamate in GABAB receptor-mediated effects of
GHB and BAC. Moreover, BAC inhibited both dopaminergic
and GABAergic neurons in the ventral tegmental area, whereas
GHB inhibited only GABAergic (Cruz et al., 2004). This discrep-
ancy may be explained by the fact that GHB is a full, low-affinity
agonist and BAC a full, high-affinity agonist of GABAB recep-
tors (Lingenhoehl et al., 1999). Thus, low-affinity compounds
can have very different or even opposite effects compared with
high-affinity agonists. These differences in drug kinetics could
be further modulated by potassium channel tetramerization
domain-containing proteins that function as auxiliary sub-
units of GABAB receptors (Schwenk et al., 2010).

Conclusions
It is believed that GHB, by consolidating sleep and promoting
EEG delta oscillations, reduces excessive daytime sleepiness and
cataplexy associated with narcolepsy. Although it has been re-
ported that GHB consolidates sleep in narcolepsy patients (Black
et al., 2009) and that BAC promotes sleep efficiency in healthy
subjects (Finnimore et al., 1995), we found no evidence for in-
creased sleep consolidation after GBL or BAC in mice. Given the
contradictory effects of both drugs on EEG and sleep among the
various studies, species differences and potentially the dose used
might play a role. Our in-depth quantitative EEG analyses show
that, at least in the mouse, GBL and BAC do not promote physi-
ological sleep at the doses used and that delta oscillations during
the drug-induced state functionally differ from those during
NREMS. We further identified several functional differences be-
tween the two GABAB1 isoforms, the most salient of which con-
cerns the role of the GABAB1a subunit epileptogenesis and sleep
consolidation. Finally, BAC, but not GHB, seems to mobilize a
sleep homeostatic mechanism comprised of hypersomnia and
increased EEG delta power. Identifying the cellular mechanism
contributing to this differential response might give insight into
the elusive sleep homeostatic process.

References
Bessman SP, Fishbein WN (1963) Gamma-hydroxybutyrate, a normal

brain metabolite. Nature 200:1207–1208.
Biggs KR, Prosser RA (1998) GABAB receptor stimulation phase-shifts the

mammalian circadian clock in vitro. Brain Res 807:250 –254.
Black J, Houghton WC (2006) Sodium oxybate improves excessive daytime

sleepiness in narcolepsy. Sleep 29:939 –946.
Black J, Pardi D, Hornfeldt CS, Inhaber N (2009) The nightly administra-

tion of sodium oxybate results in significant reduction in the nocturnal
sleep disruption of patients with narcolepsy. Sleep Med 10:829 – 835.
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Vigot R, Barbieri S, Bräuner-Osborne H, Turecek R, Shigemoto R, Zhang YP,

Luján R, Jacobson LH, Biermann B, Fritschy JM, Vacher CM, Müller M,
Sansig G, Guetg N, Cryan JF, Kaupmann K, Gassmann M, Oertner TG,
Bettler B (2006) Differential compartmentalization and distinct func-
tions of GABAB receptor variants. Neuron 50:589 – 601.

Waldmeier PC (1991) The GABAB antagonist, CGP 35348, antagonizes the
effects of baclofen, gamma-butyrolactone and HA 966 on rat striatal do-
pamine synthesis. Naunyn Schmiedebergs Arch Pharmacol 343:173–178.

Winsky-Sommerer R (2009) Role of GABAA receptors in the physiology
and pharmacology of sleep. Eur J Neurosci 29:1779 –1794.

Xyrem International Study Group (2005) Further evidence supporting the
use of sodium oxybate for the treatment of cataplexy: a double-blind,
placebo-controlled study in 228 patients. Sleep Med 6:415– 421.

Zarrindast M, Valizadeh S, Sahebgharani M (2000) GABA(B) receptor
mechanism and imipramine-induced antinociception in ligated and non-
ligated mice. Eur J Pharmacol 407:65–72.

14204 • J. Neurosci., October 20, 2010 • 30(42):14194 –14204 Vienne et al. • GABAB Signaling, Sleep, and the EEG


