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Key Points: 

 We develop a numerical upscaling procedure to calculate seismic signatures based on a 

novel coupled fluid-poroelastic model. 

 In the presence of fluid-saturated mesoscopic voids, the newly proposed coupled approach 

is more flexible and more accurate than existing methodologies. 

 Application to a synthetic “vuggy” carbonate-type rock sample provides new insights into 

seismic energy dissipation related to fluid pressure diffusion between micro- and meso-

scale pores. 
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Abstract  

We present a novel coupled fluid-poroelastic model and an associated numerical upscaling 

procedure to calculate seismic attenuation and velocity dispersion in porous rocks induced by fluid 

pressure diffusion (FPD) in the presence of mesoscopic fluid-saturated voids, such as, for example, 

vugs or factures. By applying appropriate interface conditions, the proposed model couples the 

Navier-Stokes equations for viscous fluids with Biot’s equations of poroelasticity to model the 

mesoscopic voids and the embedding background, respectively. A finite element method is 

employed to solve the coupled problem for a set of three relaxation tests, which enables us to 

compute the complex-valued and frequency-dependent equivalent stiffness matrix of the 

considered synthetic sample. The newly proposed fluid-poroelastic approach is compared with a 

purely poroelastic one as well as a fluid-elastic approach in a benchmark model containing 

interconnected mesoscopic fractures embedded in a poroelastic background. We obtain excellent 

agreement for the proposed approach and the purely poroelastic model by optimizing the material 

properties of the fractures for the latter, which demonstrates both the correctness and advantages 

of our method over the purely poroelastic approach for modeling fluid-saturated mesoscopic voids. 

We also observe that, while the coupled fluid-elastic approach and the proposed method provide 

consistent results with regard to seismic attenuation due to the fracture-to-fracture FPD, the latter 

also allows to account for the effects of fracture-to-background FPD. Finally, we employ the 

proposed methodology to explore the seismic characteristics of a synthetic “vuggy” carbonate-

type sample, for which we visualize and interpret the resulting seismic attenuation in terms of FPD 

between the microscopic and mesoscopic pores. 

 

Plain Language Summary  

Seismic waves are commonly employed to study porous and/or fractured geological formations in 

the Earth's upper crust. In the presence of relatively small heterogeneities, such as fluid-saturated 

fractures or vugs, seismic waves may exhibit velocity variation and amplitude decay due to fluid 

pressure diffusion processes, which are important characteristics of seismic waves. To date, it 

remains difficult to understand how complex and fluid-saturated voids impact these seismic 

characteristics. To address this problem, we propose a novel coupled fluid-poroelastic model and 

develop a corresponding numerical upscaling procedure to calculate seismic characteristics of 
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porous media containing mesoscopic heterogeneities. Our results demonstrate that the proposed 

approach is more accurate and flexible than previous related models, which, in turn, opens new 

and interesting perspectives for the seismic exploration of corresponding geological environments. 

 

1 Introduction 

The remote detection and characterization of fluid-saturated features, such as, for example, 

fractures and vugs, is of preeminent importance in many scenarios of applied and environmental 

geophysics, including groundwater management and remediation, hydrocarbon exploration, and 

geothermal energy production (e.g., Klimentos, 1995; Jha et al., 2007; Tester et al., 2007). Seismic 

methods are widely recognized as being particularly effective and valuable in this regard (e.g., Liu 

& Martinez, 2012). However, for rocks containing fluid inclusions in the mesoscopic scale range, 

that is, larger than the typical pore and grain sizes but much smaller than the prevailing 

wavelengths, the seismic resolution is generally insufficient to allow for direct imaging of such 

features. Therefore, most related research efforts focus on analyses of particular attributes of 

seismic data. Notably, seismic attenuation and velocity dispersion as well as corresponding 

variations with the direction of wave propagation have been identified as diagnostic features that 

may permit to estimate valuable properties of heterogeneous porous rocks, such as, for example, 

fluid saturation, fracture orientations, and fracture compliances (e.g., Liu et al., 2007; Müller et al., 

2010; Schijns et al., 2012). 

 

In the presence of fluid-filled pores and/or voids, a passing seismic wave causes fluid pressure 

gradients and, thus, dissipates energy due to viscous friction. This mechanism of seismic 

attenuation is generally referred to as wave-induced fluid flow (WIFF) or fluid pressure diffusion 

(FPD). White (1975) first proposed this mechanism at the mesoscopic scale and Dutta & Ode 

(1979a, 1979b) subsequently framed it in the context of Biot’s (1941, 1962) theory of 

poroelasticity. Pride et al. (2004) developed a double-porosity model to include the effect of 

mesoscopic fluid inclusions on the basis of Biot’s (1941, 1962) theory. Ba et al. (2011) also 

presented the so-called Biot-Rayleigh theory for double-porosity media, which provides 

qualitatively similar seismic attenuation of fast compressional wave with that of Pride’s model 
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(2004) but allows to calculate additionally the velocity and attenuation of two slow compressional 

waves. More recently, Fu et al. (2018, 2020) derived numerical solutions to quantify seismic 

dispersion and attenuation as well as semi-analytical solutions to assess frequency-dependent 

velocity anisotropy of porous rocks in the presence of a sparse distribution of aligned slit cracks. 

Due to inherent limitations of the above analytical solutions, accurate numerical schemes for 

calculating seismic signatures in porous rocks with mesoscopic‐ scale heterogeneities are needed, 

for example, for heterogeneities with complex geometries and/or spatial distributions. Although 

many numerical schemes have been developed to solve the poroelastic wave equations in 

heterogeneous media, they become computationally inefficient when used to calculate seismic 

attenuation due to WIFF. This is due to the fact that seismic wave propagation and wave-induced 

FPD prevail at significantly different spatial scales. Correspondingly, numerical upscaling 

techniques based on creep and/or relaxation tests are currently the most efficient approaches to 

quantify the corresponding FPD effects (Masson & Pride, 2007; Rubino et al., 2009; Wenzlau et 

al., 2010; Quintal et al., 2011).  

 

Numerical upscaling approaches for assessing the seismic response of heterogeneous porous rocks 

are commonly based on Biot’s (1941, 1962) equations, where mesoscopic heterogeneities are 

represented as poroelastic features with different hydraulic and mechanical properties compared 

to the embedding porous background (e.g., Brajanovski et al., 2005; Rubino et al., 2013, 2014). 

Masson and Pride (2007) proposed a quasi‐ static creep test to estimate seismic attenuation 

induced by FPD with a finite difference algorithm. Rubino et al. (2009) presented a related 

numerical upscaling procedure to calculate equivalent seismic signatures of heterogeneous fluid-

saturated porous media based on a frequency-domain finite element method. Wenzlau et al. (2010) 

and Carcione et al. (2011) performed numerical relaxation experiments based on the poroelastic 

equations to estimate equivalent seismic characteristics in the presence of effective vertical 

transverse isotropy (VTI). Quintal et al. (2011) solved the so-called u-p form of Biot’s (1941) 

consolidation equations to upscale seismic signatures of poroelastic rocks with mesoscopic 

heterogeneities. Masson and Pride (2014) extended their original isotropic methodology (Masson 

& Pride, 2007) to orthotropic materials. The common aspect shared by all these works is that they 

are designed for isotropic or specific anisotropic systems of relatively high symmetry. To 

overcome this limitation, Rubino et al. (2016) developed a fully generalized numerical upscaling 
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procedure that allows for computing equivalent seismic signatures in the presence of arbitrary 

effective anisotropy.  

 

Although the Biot-based upscaling procedures mentioned above facilitate the study of the effects 

of FPD on seismic signatures (e.g., Rubino et al., 2013, 2014, 2017; Hunziker et al., 2018; Solazzi 

et al., 2020), they are only effective as long as the considered mesoscopic heterogeneities can be 

represented as porous features. However, in some scenarios, such as in the presence of vugs and 

open fractures, the mesoscopic heterogeneities effectively correspond to fluid-saturated voids, 

which, in turn, defies their representation as parts of a poroelastic continuum. While attempts have 

been made to model mesoscopic voids as fluid-saturated inclusions (e.g., Chapman, 2003, Hudson, 

1981, Quintal, 2016, 2019), the common limitation of these approaches is that they do not allow 

for a comprehensive quantification of FPD effects. For example, corresponding analytical 

characterizations (e.g., Hudson, 1981; Chapman, 2003) assume simplified geometries of fluid 

inclusions and, hence, their applicability is restricted to idealized geometries and they cannot 

properly account for interactions between fluid inclusions (Lissa et al., 2019). On the other hand, 

current numerical approaches dealing with fluid-saturated voids (Quintal et al., 2016, 2019) cannot 

adequately describe the multiplicity of scales associated with FPD effects because the background 

is modeled as an elastic solid. Vinci et al. (2014b) studied seismic attenuation associated with flow 

in fractures based on a hybrid upscaling approach (Vinci et al., 2014a), where the background 

medium is characterized by Biot’s (1941) quasi-static poroelastic equations, while the dynamic 

aspect related to fluid flow within the fractures is approximated by a 1D solution of the Navier-

Stokes (NS) equations in the laminar regime. Due to the assumption of axial symmetry and the use 

of the cubic law for the approximation of the fluid flow in fractures, the applicability of this 

approach is, however, limited to idealized and simplistic scenarios. For example, it is neither 

applicable to fracture surfaces with asperities and/or contact areas nor to multiple intersecting 

fractures. 

 

To overcome these limitations, we propose a novel upscaling framework, in which the mesoscopic 

fluid-saturated voids are represented by the linearized quasi-static NS equations (Landau & 

Lifshitz, 1959), while the embedding poroelastic background is described by the Biot’s (1941) 
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consolidation equations. The two systems of equations are coupled using appropriate interface 

conditions. The numerical upscaling procedure is then implemented by solving the coupled 

problem with a finite element method for three oscillatory relaxation tests applied to a 

representative elementary volume (REV) of the heterogeneous formation of interest. The spatially 

averaged responses of the probed REV enable us to determine the components of an effective 

frequency-dependent and complex-valued symmetric stiffness matrix through a least-squares 

procedure (Rubino et al., 2016), which, in turn, permits to obtain the anisotropic seismic response 

of the formation of interest. An important advantage of the proposed approach is that, while being 

more flexible with respect to the representation of mesoscopic fluid-saturated voids than current 

methods, it also permits to quantify the associated FPD effects without the need to replace the fluid 

inclusions with equivalent media. Moreover, this novel methodology enables us to assess in which 

scenarios a purely poroelastic representation is appropriate for estimating seismic signatures of 

porous media containing mesoscopic fluid inclusions. We validate the proposed approach by first 

making a comprehensive comparison with pertinent benchmark models of fractured samples 

before considering a more realistic synthetic vuggy carbonate-type model, where we analyze the 

seismic attenuation due to fluid pressure communication between the prevailing mesoscopic and 

microscopic pores. 

2 Methodology 

Figure 1a illustrates the concept of seismic wave propagation in a heterogeneous porous 

environment, which locally may contain fluid filled voids, such as, for example, fractures, vuggy 

pores, and karstic dissolution features. To determine the dynamic properties of the probed porous 

medium, we consider REVs of the formations of interest (Figure 1b). Figure 1c illustrates a 

canonical example of a fluid inclusion Ω𝑓 embedded in a poroelastic domain Ω𝑝. To model the 

response of the heterogeneous medium under harmonic deformation, we consider Biot’s (1941) 

consolidation equations and the linearized NS equations (Landau & Lifshitz, 1959; Quintal et al., 

2016) to describe the behavior of the poroelastic background and the fluid inclusion, respectively. 

The two domains are coupled by imposing suitable conditions along the interface Γ𝑝𝑓. Several 

oscillatory relaxation tests are carried out under appropriate boundary conditions (BCs) along 

external edges of the REV. This enables us to calculate the harmonic response of the coupled 

system in term of, for example, the averaged stresses and strains, the fluid pressure distribution as 
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well as the local energy dissipation. Assuming that the probed poroelastic environment containing 

mesoscopic fluid inclusions can be approximated by a homogeneous anisotropic viscoelastic 

medium at the wavelength scale, we can estimate the complex-valued and frequency-dependent 

stiffness matrix of the equivalent viscoelastic medium using the averaged stresses and strains 

(Rubino et al., 2016). Finally, we solve the corresponding viscoelastic wave equations to calculate 

the effective phase velocities and inverse quality factors as functions of frequency and direction of 

propagation. In the following, we introduce the mathematical description of the proposed 

methodology. 

 

Figure 1. Schematic illustration of the problem considered in this study. (a) Seismic wave 

propagation in heterogeneous porous environment containing fluid-filled voids. (b) Conceptual 

representation of two typical types of such fluid inclusions (green color) embedded in a porous 

background (gray color). Top: carbonate-type vuggy mesopores (modified from Anselmetti et al., 

1998); bottom: fracture network in a porous medium (modified from Montemagno & Pyrak-Nolte, 

1995). (c) Sketch of fluid-filled void Ω𝑓 embedded in a porous background Ω𝑝. 

2.1 Coupled System of NS-Biot Equations 

When a seismic wave propagates through porous rocks containing mesoscopic fluid inclusions, it 

experiences attenuation and velocity dispersion in response to energy dissipation. In the context of 

this work, the dominant physical process of interest is FPD and, hence, inertial effects can 

generally be neglected (Rubino et al., 2016). In the following, we outline a new model to 

adequately describe this phenomenon in the presence of mesoscopic fluid-filled voids, which uses 
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the Biot’s (1941) consolidation equations to describe the porous background and the linearized 

quasi-static NS equations to characterize the fluid inclusions.  

 

In the poroelastic domain Ω𝑝 , Biot’s (1941) consolidation equations in the frequency-space 

domain respond to  

−∇ ∙ 𝐓 = 0, (1) 

∇ ∙ 𝐓𝑓 = 𝑗𝜔
휂

𝜅
𝐰, (2) 

where we use the sign convention for which the time derivative operator is equal to the factor 

“ +𝑗𝜔 ” in the frequency domain, with 𝑗  denoting the imaginary unit, 𝜔 = 2𝜋𝑓  the angular 

frequency, and 𝑓 the frequency; 휂 is the dynamic viscosity of the pore fluid, 𝜅 the permeability, 

and 𝐰  the displacement vector of the pore fluid relative to the solid skeleton. For small 

deformations of the porous medium in response to passing seismic waves, we can use the linear 

approximation 𝐰 = 𝜙(𝐔 − 𝐮) (Biot, 1962), where 𝜙 denotes the porosity, and 𝐔 and 𝐮 are the 

absolute displacement vectors of the particles of the pore fluid and the solid matrix, respectively. 

The total stress tensor 𝐓 and the pore fluid stress 𝐓𝑓 in the porous medium can be expressed as 

(Biot, 1941) 

𝐓 = [(𝐾𝑏 −
2

3
𝜇𝑏 + 𝛼2𝑀) ∇ ∙ 𝐮 − 𝛼𝑀휁] 𝚰 + 2𝜇𝑏𝐄, (3) 

𝐓𝑓 = 𝑀(𝛼∇ ∙ 𝐮 − ζ)𝚰, (4) 

where 𝚰 is the identity tensor, 𝐄 =
𝟏

𝟐
[𝛁𝐮 + (𝛁𝐮)T] the second-order elastic strain tensor, 휁 = −∇ ∙

𝐰 a measure of the local change in the fluid content, 𝜇𝑏  the shear modulus of the poroelastic 

medium, and 𝐾𝑏  the bulk modulus of the dry porous matrix. Recall that 𝐓𝑓 = −𝑃𝑓𝚰, with 𝑃𝑓 

denoting the pressure of the pore fluid. The Biot-Willis constant 𝛼 and the fluid storage coefficient 

M are defined as 

𝛼 = 1 −
𝐾𝑏

𝐾𝑠
, (5) 

1

𝑀
=

𝛼 − 𝜙

𝐾𝑠
+

𝜙

𝐾𝑓
, (6) 
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where 𝐾𝑠 and 𝐾𝑓 are the bulk moduli of the solid grains and the pore fluid, respectively.  

 

In the fluid domain Ω𝑓, we assume that the frequencies of seismically induced fluid displacements 

are sufficiently low so that we can ignore acceleration terms as well as the bulk viscosity of the 

fluid. Thus, we consider the linearized quasi-static NS equations (Landau & Lifshitz, 1959; Quintal 

et al., 2016) 

∇ ∙ 𝛔𝑓 = 0 , (7) 

where 𝛔𝑓 is the stress tensor of the fluid in Ω𝑓. The constitutive relation of the fluid, accounting 

for the viscosity and compressibility, responds to (Landau & Lifshitz, 1959; Quintal et al., 2016) 

𝛔𝑓 = −𝑝𝚰 −
2

3
𝑗𝜔휂(∇ ∙ 𝐮𝑓)𝚰 + 2𝑗𝜔휂𝐄𝑓 , (8) 

where the vector 𝐮𝑓 denotes the displacement of the fluid, 𝐄𝑓 =
1

2
(𝛁𝐮𝑓 + (𝛁𝐮𝑓)T) is the strain 

tensor, 𝑝 is the in-situ pressure of the fluid, which can be explicitly expressed in terms of the fluid 

displacement vector as 

𝑝 = −𝐾𝑓∇ ∙ 𝐮𝑓 . (9) 

Equations (7) to (9) can be used to describe the laminar flow behavior of a Newtonian fluid. By 

substituting equations (8) and (9) into equation (7), one can obtain a more compact form of NS 

equations expressed in terms of fluid displacement variables only. This displacement form of NS 

equations will be used for the numerical implementation because of its inherent computational 

efficiency. 

 

Considering the interaction between the fluid inclusions and the embedding porous background, 

coupling between the fluid domain Ω𝑓 and the poroelastic domain Ω𝑝 can be achieved by imposing 

the following interface conditions along Γ𝑝𝑓: 

1) Requiring mass conservation implies (Ager et al., 2019a, 2019b) 

𝐮𝑓 ∙ 𝐧𝑓 = (𝐮 + 𝐰) ∙ 𝐧𝑓 , (10) 

where 𝐧𝑓 is an outward-directed unit vector normal to the fluid boundary. 
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2) Assuming that there is no-slip between the porous background and the fluid inclusions, this 

can be expressed as (Ager et al., 2019a, 2019b) 

[𝐮𝑓 − (𝐮 + 𝐰)] ∙ 𝐭𝑓 = 0,  (11) 

where 𝐭𝒇 is the tangential unit vector on the fluid boundary. Please notice that other conditions are 

conceivable to allow for more detailed descriptions of relative motion between fluid inclusions 

and a poroelastic background. For example, Beavers & Joseph (1967) pointed out that a fluid in 

contact with a porous medium tends to flow faster at the interface than in the porous medium. This 

particular behavior is related with the fact that the interface separating the two media is difficult 

to define, and the porous system is a mixture of fluid and solid grains (Badia et al., 2009). The 

impact of these additional complexities will be explored in future works. 

 

3) Requiring that the stress of the porous medium is balanced by the stress of the fluid (Ager et 

al., 2019a, 2019b) 

𝛔𝑓 ∙ 𝐧𝑓 = −𝐓 ∙ 𝐧𝑝, (12) 

where 𝐧𝑝 is an outward-directed unit vector normal to the poroelastic boundary. At the coupling 

interface Γ𝑝𝑓, it is noted that 𝐧𝑓 = −𝐧𝑝. 

 

4) Normal component of stress applied by the fluid being balanced by pressure of pore fluid 

implies (Ager et al., 2019a, 2019b) 

𝐧𝑓 ∙ (𝛔𝑓 ∙ 𝐧𝑓) = −𝑃𝑓 ≡ 𝐧𝑝 ∙ (𝐓𝑓 ∙ 𝐧𝑝). (13) 

Equations (1) to (9), together with the coupling conditions (10) to (13), fully describe the physical 

behavior of the considered poroelastic samples containing mesoscopic-scale fluid inclusions.  

 

Equations (10) to (13) describe the coupling between a fluid and a porous medium. As in our work 

the behavior of the latter is governed by Biot’s theory, which cannot explicitly handle microscopic 

features, potential microscopic details of the interface should be neglected when using equations 

(10) to (13). This scale limitation of the interface conditions is similar to that mentioned by 

Gurevich & Schoenberg (1999) when deriving conditions for an interface separating two fluid-

saturated porous media. In addition, the interface conditions describe an open-pore scenario, that 
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is, we assume that the inclusions and the porous background are hydraulically connected. In 

practice, scenarios involving partially connected or fully sealed interfaces are also conceivable, as, 

for example, clays or fines may clog the pores in the vicinity of the interfaces between the fluid 

inclusions and the poroelastic background (Gurevich & Schoenberg, 1999). In future works, we 

will consider the partially open and sealed interface cases and analyze the effects of interface 

hydraulic connectivity on the seismic signatures. 

2.2 Oscillatory Relaxation Tests 

Mesoscale fluid inclusions often exhibit complicated geometries, orientations, and distributions. 

As a result, seismic signatures, such as phase velocity and attenuation, usually show anisotropic 

characteristics. Following Rubino et al. (2016), we apply two compressive oscillatory relaxation 

tests and one shear relaxation test on a corresponding REV in order to calculate the effective 

anisotropic response of a 2D medium of interest. For each test, boundary conditions, similar to 

those provided by Rubino et al. (2016), are assigned at the outer edges of the REV (Figure 1c). 

While, due to the immense computational cost of 3D simulations, we limit the current study to 2D, 

it is important to note that the extension of the proposed methodology to 3D is conceptually 

straightforward. The governing equations (1) to (13) would remain the same and, for the upscaling 

procedure, one can follow the 3D generalization presented by Jian et al. (2021) for poroelastic 

media.  

 

For mathematical simplicity, we define the corresponding outer boundaries of a rectangular REV 

as Γ = Γ𝑇 ∪ Γ𝐵 ∪ Γ𝐿 ∪ Γ𝑅 , where Γ𝑇 , Γ𝐵 ,  Γ𝐿 and Γ𝑅  refer to the top, bottom, left, and right 

boundaries, respectively. The three tests and corresponding BCs used are summarized as follows. 

 Compressive oscillatory relaxation test in vertical direction. This is achieved by imposing 

the following BCs: 

𝐮 ∙ 𝐧𝑝 = −∆u,          (𝑥, 𝑦) ∈ Γ𝑇 ∪ Γ𝐵, (14) 

𝐮 ∙ 𝐧𝑝 = 0,          (𝑥, 𝑦) ∈ Γ𝐿 ∪ Γ𝑅 , (15) 

(𝐓𝐧𝑝) ∙ 𝐭𝑝 = 0,          (𝑥, 𝑦) ∈ Γ, (16) 

𝐰 = 0,              (𝑥, 𝑦) ∈ Γ, (17) 

where 𝐭𝑝 is the unit tangent on Γ. 
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 Compressive oscillatory relaxation test in horizontal direction. This is achieved by 

imposing the following BCs: 

𝐮 ∙ 𝐧𝑝 = −∆u,          (𝑥, 𝑦) ∈ Γ𝐿 ∪ Γ𝑅 , (18) 

𝐮 ∙ 𝐧𝑝 = 0,          (𝑥, 𝑦) ∈ Γ𝑇 ∪ Γ𝐵, (19) 

(𝐓𝐧𝑝) ∙ 𝐭𝑝 = 0,             (𝑥, 𝑦) ∈ Γ, (20) 

𝐰 = 0,           (𝑥, 𝑦) ∈ Γ. (21) 

 Shear oscillatory relaxation test. This is achieved by imposing the following BCs: 

𝐮 ∙ 𝐭𝑝 = ∆u,         (𝑥, 𝑦) ∈ Γ𝑇 ∪ Γ𝐵, (22) 

𝐮 ∙ 𝐭𝑝 = 0,          (𝑥, 𝑦) ∈ Γ𝐿 ∪ Γ𝑅 , (23) 

(𝐓𝐧𝑝) ∙ 𝐧𝑝 = 0,          (𝑥, 𝑦) ∈ Γ, (24) 

𝐰 = 0,           (𝑥, 𝑦) ∈ Γ. (25) 

By solving the coupled system of equations under the above boundary conditions for each of the 

three oscillatory tests, we can compute the averaged stress and strain tensor components over the 

REV, which allows us to calculate its effective anisotropic viscoelastic stiffness matrix. For the 

considered 2D case under plain strain conditions, the generalized anisotropic stress-strain 

relationship can be expressed as (Rubino et al., 2016) 

[

〈𝜎11〉

〈𝜎22〉

〈𝜎12〉
] = [

𝐶11 𝐶12 𝐶16

𝐶12 𝐶22 𝐶26

𝐶16 𝐶26 𝐶66

] [

〈휀11〉

〈휀22〉

〈휀12〉
] , (26) 

where 〈𝜎𝑖𝑗〉 and 〈ε𝑖𝑗〉 denote the volume averages of the stress and strain components, and 𝑪 is a 

complex-valued and frequency-dependent stiffness matrix. Unlike in Rubino et al. (2016), who 

employed a fully poroelastic framework, we are dealing with the coupled fluid-poroelastic problem 

and, thus, it is important to define the averaged stress and strain components that need to be used 

in equation (26). The averaged stress components can be expressed as 

〈𝜎𝑖𝑗〉 =
1

𝑆
(∫ 𝑇𝑖𝑗

 

Ω𝑝

𝑑Ω + ∫ 𝜎𝑖𝑗
𝑓

 

Ω𝑓

𝑑Ω) , (27) 
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where 𝑆 is the area of the REV. With respect to the averaged strain over the sample, the context of 

this work highlights that the contribution of the poroelastic regions to this quantity is not obvious. 

In previous works performed in a fully poroelastic context, 〈휀𝑖𝑗〉 was simply the spatial average of 

Biot’s definition of solid strain component 𝐸𝑖𝑗 (e.g., Rubino et al., 2016). However, this strain 

tensor contains only information on the displacement of the solid phase. Recall that even though 

the behavior of the sample in response to a relaxation test is obtained in the context of 

poroelasticity, the interpretation of the results is made in a viscoelastic context and, then, there is 

no clear reason as to why the deformation should be quantified using Biot’s definition of solid 

strain. Indeed, it seems to be more appropriate to use an average displacement field 𝐮𝑝𝑚  to 

approximate the deformation of the pore fluid-solid matrix system, that is, 

𝜺𝑝𝑚 =
1

2
[(𝛁𝐮𝑝𝑚) + (𝛁𝐮𝑝𝑚)

T
] , (28) 

where 𝐮𝑝𝑚 = (1 − 𝜙)𝐮 + 𝜙𝐔 = 𝐮 + 𝐰. Again, it is noted that the approximation is accurate as 

long as the deformation of the medium due to the passing of seismic waves is sufficiently small. Based 

on this approximation, the average strain of the sample can be expressed as 

〈휀𝑖𝑗〉 =
1

𝑆
(∫ 휀𝑖𝑗

𝑝𝑚
 

Ω𝑝

𝑑Ω + ∫ 𝐸𝑖𝑗
𝑓

 

Ω𝑓

𝑑Ω) . (29) 

Note that this approximation of strain is only used to estimate the overall averaged strain in the 

sample. However, we remark the following important aspects for this approximation. First, this 

new approximation of averaged strain accounting for the contribution of both solid and fluid 

phases in the poroelastic domain is reconcilable with the definition of the averaged stress in 

equation (27), where the total stress, rather than the solid stress, components 𝑇𝑖𝑗 are used for the 

poroelastic domain. In addition, the approximation in equations (28) and (29) is compatible with 

the interface conditions (equations (10) and (11)) imposed on the displacement fields at the contact 

between the porous background and the fluid inclusions and, thus, the resulting average strain 〈휀𝑖𝑗〉 

equals the values computed using the displacements imposed at the outer boundaries of the sample, 

as expected and demonstrated in Appendix A. Moreover, this new approximation of strain is 

compatible with energetic considerations in the original heterogeneous, porous material. To 

support this, we introduce an independent energy-based approach (Solazzi et al., 2016) in section 

2.3, which calculates seismic attenuation using the Biot’s (1962) definitions of dissipation power 
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and strain energy, but not using the dynamic-equivalent viscoelastic medium assumption. Note 

that in Biot’s (1962) definition of strain energy, the contribution of the pore-fluid pressure is also 

included. For the considered coupled NS-Biot problem, this new approximation of equivalent 

strain, as opposed to Biot’s (1962) definition of solid strain, provides results that are consistent 

with those using the independent energy-based approach (Appendix B). Finally, it should be noted 

that, in a purely poroelastic context and due to the periodicity usually imposed on the fluid flow at 

opposite boundaries of the sample, Biot’s (1962) definition of strain 𝐸𝑖𝑗 (equation (3)) and that 

proposed in this work (equation (28)) provide the same averaged strain and, thus, the same 

effective seismic characteristics (Appendix B). 

 

The relationship established by equation (26) holds for the three oscillatory relaxation tests 

applied. This implies that we have nine equations and six unknowns (𝐶𝑖𝑗, with 𝑖 ≤ 𝑗). Following 

Rubino et al. (2016), we obtain the components of the effective stiffness matrix C through a least-

squares procedure. Once these elements have been retrieved, it is possible to compute the effective 

complex-valued as well as frequency- and angle-dependent wavenumber 𝑘𝑞𝑃 and 𝑘𝑞𝑆 for quasi-P-

(qP) and quasi-S-waves (qS) (Rubino et al., 2016). The corresponding phase velocity and inverse 

quality factor as functions of frequency and incidence angle 휃 can be calculated using  

𝑉𝑞𝑃,𝑞𝑆(𝜔, 휃) =
𝜔

ℛ (𝑘𝑞𝑃,𝑞𝑆(𝜔, 휃))
, (30)

 

1

𝑄𝑞𝑃,𝑞𝑆(𝜔, 휃)
= −

ℐ(𝑘𝑞𝑃,𝑞𝑆(𝜔, 휃)2)

ℛ(𝑘𝑞𝑃,𝑞𝑆(𝜔, 휃)2)
, (31) 

where ℛ and ℐ refer to the real and imaginary parts, respectively. 

2.3 Local Energy Dissipation 

When studying seismic attenuation mechanisms, it is, in some cases, necessary to identify where, 

at a given frequency, the energy dissipation is taking place inside the probed sample. Following 

Solazzi et al. (2016), we therefore quantify the local contribution to the inverse quality factor, 

which is also referred to as the inverse quality factor density. For this, we first define several 

frequency-dependent functions. In the fluid domain Ω𝑓, the local dissipation power averaged over 

one wave cycle for a considered computational cell Δ𝑛 of area 𝛿𝑛
2 is given by (Lissa et al., 2020) 
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〈∆𝒫𝑓(𝜔)𝑛〉 = 2𝜇𝑓𝜔2ℛ [(𝐸11
𝑓

𝐸11
𝑓∗

+ 𝐸22
𝑓

𝐸22
𝑓∗

+ 𝐸12
𝑓

𝐸12
𝑓∗

) −
1

3
(𝐸11

𝑓
+ 𝐸22

𝑓
) (𝐸11

𝑓∗
+ 𝐸22

𝑓∗
)]

𝑛
𝛿𝑛

2
, (32) 

where the superscripts 𝑓 and the asterisk (*) denote the fluid domain and the complex conjugate, 

respectively. In the poroelastic domain Ω𝑝, the local dissipation power in a cell Δ𝑚 of the domain 

responds to (Rubino et al., 2016; Solazzi et al., 2016) 

〈∆𝒫𝑝(𝜔)𝑚〉 =
𝜔2

2
(

휂

𝜅
‖𝐰(x, y)‖2)

𝑚
𝛿𝑚

2
, (33) 

where the superscript 𝑝 refers to the poroelastic domain Ω𝑝. In addition, the total strain energy 

function  〈𝒲(𝜔)〉 of the REV is 

〈𝒲(𝜔)〉 = ∑〈𝒲𝑓(𝜔)𝑛〉

𝑛

+ ∑〈𝒲𝑝(𝜔)𝑚〉

𝑚

,  (34) 

where 〈𝒲𝑓(𝜔)𝑛〉 and 〈𝒲𝑝(𝜔)𝑚〉 are the strain energy functions for the fluid domain Ω𝑓 and for 

the poroelastic domain Ω𝑝, respectively. They can be calculated using (Biot, 1962; Lissa et al., 

2020; Rubino et al., 2016; Solazzi et al., 2016) 

〈𝒲𝑓
(𝜔)𝑛〉 =

1

4
ℛ(𝜎11

𝑓
𝐸11

𝑓∗
+ 𝜎22

𝑓
𝐸22

𝑓∗
+ 2𝜎12

𝑓
𝐸12

𝑓∗
)

𝑛
𝛿𝑛

2
, (35) 

〈𝒲𝑝
(𝜔)𝑚〉 =

1

4
ℛ[(𝑇11𝐸11

∗ + 𝑇22𝐸22
∗ + 2𝑇12𝐸12

∗ ) + 𝑃𝑓휁∗]
𝑚

𝛿𝑚
2

 
. (36) 

Note that, in equation (36), the contribution of the pore fluid pressure to the strain energy is 

considered. We can now define the inverse quality factor density in terms of average power 

dissipation density and strain energy functions as (Solazzi et al., 2016) 

𝑞−1(𝜔) =
〈∆𝒫(𝜔)〉

2𝜔𝛿2〈𝒲(𝜔)〉
, (37) 

which will be used to study the wave attenuation mechanism. The summation of inverse quality 

factor density in equation (37) over the entirety of the probed sample then results in the inverse 

quality factor at a given frequency 

𝑄−1(𝜔) = ∑  𝑞−1(𝜔)𝛿2

 

Ω𝑝+Ω𝑓

. (38) 

                                                

2.4 Numerical Implementation 

In the preceding sections, we presented the set of equations that permit to describe a coupled fluid-

poroelastic model as well as three associated oscillatory relaxation tests to obtain the upscaled 
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response of the medium. To solve this set of equations, we employ the “mathematical module” in 

the finite-element-based software COMSOL Multiphysics. We use unstructured triangular meshes, 

which allow for an efficient discretization of narrow features, such as fractures or fluid channels. 

For the fluid domains and in their vicinities, we employ sufficiently fine meshing to accurately 

capture the FPD effect in and near the fluid-poroelastic interface. Moreover, we use quadratic 

Lagrange shape functions for both solid and relative fluid displacement variables of Biot’s 

equations in the poroelastic domain. For the NS equations, quadratic shape functions are used for 

fluid displacement variables. The discretized problem is solved using the direct parallel solver 

MUMPS in the frequency domain, which readily enables us to evaluate the velocity dispersion and 

attenuation spectra of seismic waves in the probed medium.  

3 Results 

In this section, we verify the effectiveness of the proposed approach using two numerical 

examples. First, we analyze two orthogonal fractures embedded in a poroelastic background. We 

assess the correctness of the proposed coupled fluid-poroelastic approach by comparing it with 

two widely used numerical upscaling schemes. One is the purely poroelastic approach (Rubino et 

al., 2016), in which both the background and fractures are characterized using the Biot’s equations. 

The other is the coupled fluid-elastic approach (Quintal et al., 2019), where the fractures are 

similarly characterized by the NS equations, while the dynamic behavior of the background is 

characterized using the quasi-static elastic equations. Then, we compare the three approaches 

considering the influence of material properties as well as fracture apertures. In the second 

example, we investigate the seismic attenuation and velocity dispersion of a synthetic carbonate-

type sample containing mesoscopic vugs embedded in a microscopic porous matrix. 

3.1 Comparison with Previous Approaches  

We consider a square REV with a side length of 0.2 m (Figure 2a) that contains two interconnected 

orthogonal fractures orientated along the vertical and horizontal axes. The poroelastic background 

medium is characterized by physical properties representative of a stiff quartz sandstone. We 

assume that both the background and the fractures are fully saturated with water. The 

corresponding physical rock and fluid properties are summarized in Table 1 (Bourbié et al., 1987; 

Rubino et al., 2016). A schematic view of the mesh employed in the finite element simulations is 
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provided in Figure 2b. The mesh is refined near the boundaries of the fractures to correctly 

represent FPD processes. Note that for the considered model, in both the purely poroelastic 

approach and the proposed coupled fluid-poroelastic approach, two attenuation peaks are expected, 

which correspond to fracture-to-background (FB) FPD and fracture-to-fracture (FF) FPD (Rubino 

et al., 2013). However, the coupled fluid-elastic approach can only predict one attenuation peak 

associated with FF-FPD effect. For the attenuation peak due to FB-FPD, the characteristic 

frequency of the associated maximum attenuation is directly proportional to the background 

permeability, while, for the attenuation peak due to FF-FPD, the characteristic frequency is directly 

proportional to the fracture permeability and inversely proportional to the length of the fractures 

(Rubino et al., 2017). 

 

Figure 2. (a) Canonical fracture model and (b) its discretization. 

 

Table 1. Physical properties of background rock and pore fluid. 

Background rock Value 

Grain density 𝜌𝑠 (kg m3⁄ ) 2650 

Grain bulk modulus 𝐾𝑠 (GPa) 37 

Porosity 𝜙 0.04 

Drained bulk modulus 𝐾𝑏 (GPa) 26 

Drained shear modulus 𝜇𝑏 (GPa) 31 

Permeability 𝜅(D) 0.01 

Fluid phase  

Density 𝜌𝑓 (kg m3⁄ ) 1090 
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Bulk modulus 𝐾𝑓 (GPa) 2.25 

Viscosity 휂 (Pa ∙ 𝑠) 0.001 

 

3.1.1 Seismic Attenuation and Phase Velocity Dispersion 

To validate the newly proposed method for computing seismic attenuation and phase velocity 

dispersion of porous rocks containing fluid-filled voids in the mesoscopic scale range, we compare 

our results with those obtained using a purely poroelastic approach (Rubino et al., 2016) and also 

with those using a coupled fluid-elastic approach (Quintal et al., 2019). For the coupled fluid-

elastic approach, the poroelastic background is approximated with an equivalent elastic solid, for 

which the effective bulk 𝐾𝑒  and shear moduli 𝜇𝑒  are calculated using the Gassmann’s (1951) 

equations: 𝐾𝑒 = 𝐾𝑏 + 𝛼2𝑀  and 𝜇𝑒 = 𝜇𝑏 . The effective density is obtained using 𝜌𝑒 = 𝜌𝑠(1 −

𝜙) + 𝜌𝑓𝜙. On the other hand, when using the purely poroelastic approach to represent fluid-filled 

voids, we need to determine the corresponding effective properties of the porous material 

representing them. For example, the permeability of the fracture has to be specified, whereas in 

the proposed approach, the permeability is controlled by the geometrical characteristics of the 

corresponding voids. Using the coupled fluid-elastic approach, Quintal et al. (2019) already 

showed that, if appropriate material properties are used for the fractures, the two solutions should 

be identical, at least with regard to FF-FPD effects. For the comparison, we assume that, at the 

grain level, the physical properties of the fractures in the fully poroelastic model are the same as 

those of the embedding background. With respect to the dry frame properties, as we intend to 

represent mesoscopic void inclusions in a poroelasticity framework, we use a porosity value 𝜙 =

0.999 , which in turn, implies very low values of bulk and shear moduli. To choose these values, 

we have checked that when 𝐾𝑏 and 𝜇b are reduced to values that are much lower than the fluid 

bulk modulus, the results of the purely poroelastic approach converge to those provided by the 

proposed coupled approach. However, we cannot further reduce these moduli, otherwise, 

numerical instabilities can occur. Therefore, in our work, we use 𝐾𝑏 = 𝜇𝑏 = 3 × 105 Pa. Given 

that each fracture has a rectangular geometry, with a constant aperture of ℎ = 3 × 10−4 m and a 

length of 0.16 m, we estimate the permeability of the porous material representing the fractures 

using the so-called cubic law 𝜅 = ℎ2 ⁄ 12 (e.g., Jaeger et al., 2007). In this context, it is important 

to notice that for the model considered, the two attenuation peaks are clearly separated in the 
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frequency domain. This implies that near the characteristic frequency of the attenuation peak due 

to the fracture-to-fracture FPD, the induced fluid flow is restricted within the fractures and fluid 

flow between fractures and porous background is negligible. Therefore, the cubic law provides 

accurate estimation of fracture permeability. Using these material properties, the velocity 

dispersion and attenuation characteristics of both qP- and qS-waves are calculated using the three 

approaches. In doing so, we consider propagation angles 휃 with respect to the vertical of 0° and 

45°. The corresponding results are shown in Figure 3 for frequencies ranging from 1 to 107 Hz.  

 

We first compare the proposed coupled fluid-poroelastic approach and the purely poroelastic 

approach. For 휃 = 0°, the qP-wave exhibits significant phase velocity dispersion (Figure 3a) 

presenting two inflections associated with FB-FPD and FF-FPD. Correspondingly, the 𝑄−1 -

spectra show two attenuation peaks (Figure 3b). For 휃 = 45°, we observe only one attenuation 

peak of the qP-wave in the low-frequency range due to FB-FPD (Figure 3b). The attenuation peak 

due to the FF-FPD is not present due to the symmetry of the fracture network since, in this case, 

both horizontal and vertical fractures are compressed equally by the passing qP-wave and 

experience a similar fluid pressure increase. For both propagation angles, the two approaches 

provide quite consistent results, with the maximum relative differences of phase velocity for the 

two methods being less than 0.2%. Figures 3c and 3d illustrate the corresponding behavior of the 

qS-wave. This wave mode exhibits very little dispersion and attenuation for 휃 = 0° due to the 

intrinsic geometry of the system. However, for 휃 = 45°, the attenuation related to FB-FPD is 

insignificant, while we observe rather pronounced attenuation due to FF-FPD. For the latter, the 

fluid pressures in the two fractures have opposite signs because the deformation induced by the 

qS-wave extensional in one of the fractures and compressional in the other. Therefore, the 

corresponding pressure gradient becomes very large between the two fractures (Rubino et al., 

2017). Again, the results are in quite good agreement for the two approaches, and the maximum 

relative difference of qS-wave velocity for the two approaches is less than 0.7%. 

 

When the coupled fluid-elastic approach is used, we observe consistent results only in the high-

frequency range where FF-FPD controls the seismic attenuation and velocity dispersion. This 

further supports the effectiveness of the proposed coupled fluid-poroelastic approach. However, 
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as expected, no attenuation and velocity dispersion are observed in the low-frequency range, which 

is one of the intrinsic limitations of the coupled fluid-elastic approach. 

 

In summary, the results obtained using the newly proposed coupled fluid-poroelastic approach to 

model seismic signatures of porous rocks containing mesoscopic fluid-saturated fractures shows 

good agreement with a fully poroelastic representation of the medium, provided that suitable 

poroelastic fracture properties are considered. This demonstrates the correctness of the proposed 

upscaling scheme for representing FPD between mesoscopic fluid-filled inclusions and the porous 

background as well as between the mesoscopic inclusions themselves. The comparison with the 

coupled fluid-elastic approach further supports the effectiveness of the proposed approach and 

highlights the contribution of this work. 

 

Figure 3. Comparison of qP-wave (a) phase velocity and (b) inverse quality factor and qS-wave 

(c) phase velocity and (d) inverse quality factor as functions of frequency for propagation angle 휃 

of 0° and 45° with respect to the vertical. The results correspond to the fracture model shown in 

Figure 2. The “coupled NS-Biot” results are obtained using the proposed coupled fluid-poroelastic 
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approach; the “Pure Biot” results are obtained using the purely poroelastic approach (Rubino et 

al., 2016), where both the background and the fractures are characterized by the Biot’s poroelastic 

equations (Biot, 1941); the “coupled NS-Elastic” results are obtained using the coupled fluid-

elastic approach (Quintal et al., 2019), where the fractures are characterized using the NS 

equations, while the background is fully elastic with effective material parameters obtained using 

the Gassmann’s (1951) equation.  

 

3.1.2 Influence of Fracture Compliance in Purely Poroelastic Approach 

As shown above, the proposed fluid-poroelastic approach to compute the seismic signatures of 

porous media containing mesoscopic fluid inclusions provides results that, in some cases, can also 

be obtained following a purely poroelastic approach by optimizing the material properties inside 

the fluid inclusions. As previously mentioned, this is due to the fact that Biot’s (1941) equations 

involve more parameters when representing fluid inclusions, which may lead to ambiguity in their 

identification from seismic data. In the following, we investigate the influence of the drained bulk 

and shear moduli which are needed in the purely poroelastic approach to model the mesoscopic 

fluid-filled fractures. To this end, we analyze the response obtained using the purely poroelastic 

approach by varying the drained bulk modulus 𝐾𝑏 for the fractures, which is a parameter that is 

not present in the proposed coupled fluid-poroelastic approach. In the simulations, the drained 

shear modulus 𝜇𝑏 is assumed to be equal to the drained bulk modulus 𝐾𝑏 to facilitate the analysis. 

The remaining physical properties and geometrical parameters are identical to those employed in 

Section 3.1.1.  

 

Figure 4 illustrates the spectra of phase velocity and inverse quality factor of the qP-wave for 휃 =

0° and of the qS-wave for 휃 = 45°. We notice that the choice of the drained bulk and shear moduli 

has indeed a significant impact on the results, which, in relative terms, is more pronounced for the 

qS-wave (Figure 4d). For relatively small values of these moduli, the phase velocity curves 

converge to the same results as those obtained using the proposed coupled fluid-poroelastic 

approach (Figures 4a to 4d). However, when larger values of the drained bulk modulus are used, 

significant changes are observed in the low-frequency range. The optimal value for emulating the 

NS representation of the fractures is 𝐾𝑏 = 𝜇𝑏 = 3 × 105 Pa. It should be noted that this optimized 
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value cannot be generalized for other scenarios, as it varies with the model geometry. Another 

observation regarding the attenuation spectra is that the peaks are shifted towards higher 

frequencies and their amplitude decreases when increasing the fracture drained bulk and shear 

moduli. 

 

Figure 4. Influence of drained bulk and shear moduli of the fractures in the purely poroelastic 

approach on the qP-wave (a) phase velocity and (b) inverse quality factor as functions of frequency 

for propagation angle 휃 = 0°. (c) Phase velocity and (d) inverse quality factor of the qS-wave for 

휃 = 45°. For all the simulations, the model is the same as that in Figure 2 and we set 𝜇𝑏 = 𝐾𝑏 for 

simplicity. In the purely poroelastic approach, the permeability in the fracture is calculated using 

the cubic law. 

 

For this comparison, we assume that the mesoscopic fractures are fully fluid-saturated. However, 

we note that, for heterogeneities of this kind containing porous infills, such as unconsolidated 

grains, the purely poroelastic approach remains a suitable option, because both the geometry of 

inclusions and the infill determine the hydromechanical properties of heterogeneous porous rocks. 
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3.1.3 Fracture Asperities 

Natural fractures tend to exhibit complicated roughness along their walls, also known as asperities, 

which affect the FPD process and, thus, the hydraulic and mechanical properties of the fractured 

rock mass. For generic asperities, there is no analytical expression that can relate explicitly the 

permeability and the fracture aperture. Quintal et al. (2019) studied squirt flow effects in 

interconnected fractures with asperities and compared the coupled fluid-elastic approach with a 

purely poroelastic solution. However, they ignored the low-frequency peak associated with FB-

FPD predicted by the Biot’s (1941) poroelastic equations because the coupled fluid-elastic 

approach assumes no fluid exchange between the elastic background and the fracture fluid. 

Recently, Lissa et al. (2020) investigated squirt flow in more complicated fractures and arrived to 

the conclusion that seismic signatures are significantly influenced by the roughness of the crack 

walls. In this section, we revisit this problem and compare the three approaches for the full 

frequency range to analyze both FB- and FF-FPD effects.  

 

To emulate asperities, we consider a fracture wall with a symmetrically constricted geometry. 

Apart from the asperities, the considered model is the same as that employed previously (Figure 

2, Table 1). The local variation of the aperture is governed by a sinusoidal function except for the 

intersection between the two fractures. A unit cell of the considered fracture wall is illustrated in 

Figure 5, with 𝛿 and 𝜆 denoting the amplitude and wavelength, respectively, of the sinusoidal 

function, and d the mean aperture. For all simulations, we use 𝑑 = 0.3 mm, 𝛿 = 0.2 mm and 𝜆 =

0.8 mm, which results in a minimum and maximum aperture of ℎ𝑚𝑖𝑛 = 0.1 mm and ℎ𝑚𝑎𝑥 =

0.5 mm, respectively.   

 

Figure 5. Schematic illustration of a unit cell of the considered fracture wall characterized by 

harmonic asperities. 
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We consider qP- and qS-waves with propagation angles 휃 of 0° and 45°, respectively. Figure 6 

shows the phase velocity and the inverse quality factor as functions of frequency for the three 

approaches. Note that during the simulations, we keep the roughness of the fracture wall the same 

(Figure 5), but for the purely poroelastic approach, we use two different effective apertures (ℎ𝑚𝑖𝑛 

and ℎ𝑚𝑎𝑥) to estimate the fracture permeability using the cubic law. We can still observe two 

distinct attenuation peaks in the attenuation spectrum of the qP-wave when using the coupled fluid-

poroelastic approach and purely poroelastic approach. Compared to the model with rectangular 

fractures (Figure 2), the attenuation peaks are shifted to lower frequencies, this effect being more 

pronounced for the high-frequency peak. For the first attenuation peak, the results of the proposed 

coupled fluid-poroelastic approach and the purely poroelastic approach considering the fracture 

asperities are almost identical (Figure 6). The characteristic frequency associated with the first 

peak is mainly controlled by the background permeability. In this sense, this attenuation peak 

related to FB-FPD is insensitive to the fracture permeability. Both the proposed coupled fluid-

poroelastic approach and the purely poroelastic approach therefore predict similar values of 

seismic attenuation and velocity dispersion at the frequencies where the energy dissipation is 

controlled by the FB-FPD mechanism. Again, this attenuation is not predicted by the coupled fluid-

elastic approach (Figure 6b). For the second attenuation peak, we see that the results of the 

proposed coupled fluid-poroelastic approach and the coupled fluid-elastic approach predict 

identical values for both qP- and qS-waves (Figures 6b and 6d). However, we observe some 

obvious differences in the characteristic frequency for the coupled fluid-poroelastic approach and 

the purely poroelastic approach, even though they provide similar magnitude of attenuation. The 

characteristic frequency predicted by the proposed coupled fluid-poroelastic approach and coupled 

fluid-elastic approach is 2 × 104 Hz, while for the purely poroelastic approach we get 4 × 103 Hz 

and ~105 Hz when the minimum and maximum apertures, respectively, are used to evaluate the 

effective permeability. As this second attenuation peak is an effect of FF-FPD, its characteristic 

frequency is influenced by the fracture permeability. Even for this simple scenario, the peak 

frequency of the purely poroelastic model can vary by more than one order-of-magnitude because 

of the uncertainty of equivalent aperture selection to determine the effective permeability. In 

practice, fracture networks tend to exhibit much more complicated aperture variations and 
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orientations. This renders the determination of an effective permeability for each fracture largely 

impossible, which, in turn, makes the use of the purely poroelastic approach impractical.  

 

It is important to remark here that a similar model that considers the dynamic interaction between 

a fluid medium and a porous background has been previously proposed by Vinci et al. (2014a). 

The authors use a 1D solution of the NS equations for laminar flow to characterize the dynamic 

aspect within a fracture. Their approach is, however, incapable of dealing with fracture surfaces 

exhibiting asperities or multiple intersecting fractures due to the inherent assumptions of axial 

symmetry and the validity of the cubic law. These limitations were alleviated in our work by 

solving the quasi-static linearized NS equations (Landau & Lifshitz, 1959; Quintal et al., 2016). 

As shown in Figure 6, the employment of cubic law to estimate fracture permeability results in 

uncertainties and errors, while the proposed coupled fluid-poroelastic approach naturally accounts 

for the fracture permeability and provides reliable results. In Figures 3 and 6, we demonstrated the 

correctness of the proposed approach using a model with two interconnected and orthogonal 

fractures orientated in the vertical and horizontal directions. It is important to note that the 

proposed approach can be readily applied to multiple intersecting fractures with arbitrary 

inclination angles since the proposed scheme permits to calculate anisotropic characteristics of 

both qP- and qS-waves. 

 

We analyzed above the influence of fracture asperities on the fracture permeability based on the 

fracture model given in Figure 5. However, it is important to mention that asperities could also 

have a strong impact on fracture compliance. Indeed, the fracture contact area density and 

distribution play a very important role in the stiffness of fractured rocks (Rubino et al., 2015; Lissa 

et al., 2020). In this context, it is important to notice that changes in effective fluid pressure of 

fractures may induce variation in contact density and distribution of asperities. When the pressure 

inside the fracture is increased, for example, due to fluid injection, the fracture aperture will 

increase and fractures will have only isolated regions of contact. Conversely, when the fluid 

pressure inside the fracture is decreased, for example due to production, the fracture aperture will 

decrease, and the contact area increases (Rubino et al., 2015). The change of contact areas has a 

significant impact on fracture permeability and compliance, which will result in variations of 

seismic attenuation as well as other seismic attributes. In the future, we intend to perform a 
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comprehensive analysis of fracture contact area effects on permeability and compliance and on the 

corresponding impact on WIFF in 3D configurations. 

 

 

Figure 6. Comparison of qP-wave (a) phase velocity and (b) inverse quality factor as functions of 

frequency for 휃 = 0°, and qS-wave (c) phase velocity and (d) inverse quality factor for 휃 = 45° 

obtained using three different approaches for a model of intersecting perpendicular fractures 

(Figure 2) with symmetric harmonically constricted walls (Figure 5). The “NS-Biot” results 

correspond to the proposed coupled fluid-poroelastic approach, “pure Biot” results to the purely 

poroelastic model (Rubino et al., 2016), and “NS-Elastic” to the coupled fluid-elastic approach 

(Quintal et al., 2019).   

 

To corroborate the above analyses and to investigate the seismic attenuation mechanism, we 

calculate the inverse quality factor density corresponding to the frequency of the first and the 

second attenuation peaks in Figure 6b using the coupled fluid-poroelastic approach and the purely 
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poroelastic approach, respectively. Results for the first attenuation peak are illustrated in Figures 

7a and 7b using a logarithmic scale. The two approaches provide very similar energy dissipation 

distributions with strong energy dissipation occurring mainly in the poroelastic background, being 

more pronounced near the fracture walls and particularly in the vicinity of the fracture tips. The 

results in Figures 7c and 7d correspond to the characteristic frequency of the second peak. We 

depict the inverse quality factor density near the intersection area where the energy dissipation is 

most representative and pronounced. We see that, for both approaches, energy dissipation mainly 

takes place at the narrowest regions of the fractures, where fluid flow is enhanced due to fluid mass 

conservation and a change in fracture cross section, while it is almost negligible in the poroelastic 

background. For the coupled approach, we observe minimal energy dissipation at the center of the 

fracture, and the maximum values at the fracture walls, where fluid velocity reaches its lowest 

values due to viscous friction (Figure 7c). For the purely poroelastic approach, the energy 

dissipation is more uniform in the narrowest regions (Figure 7d). Analyses of this kind are of 

relevance for applications, in which the location of maximal fluid shearing is relevant, such as, for 

example, studies regarding the mobilization of colloids and particles in response to FPD (e.g., 

Barbosa et al., 2019).  
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Figure 7. Distribution of inverse quality factor density for intersecting fractures with symmetric 

harmonically constricted walls. (a) and (b) correspond to the frequency of the first attenuation peak 

related to FB-FPD and (c) and (d) to that of the second attenuation peak related to FF-FPD shown 

in Figure 6b. (a) and (c) are based on the proposed coupled fluid-poroelastic approach, while (b) 

and (d) are based on the purely poroelastic approach. Note that the top panel is displayed in a 

logarithmic colorscale.  

3.2 Application in a Vuggy Carbonate-type Sample 

Porous and/or karstic carbonates play an important role in the oil and gas industry, accounting for 

~60% of the global reserves (e.g., Burchette, 2012, Agada et al., 2016). Furthermore, carbonate 

aquifers provide drinking water to ~10% of the world’s population (e.g., Goldscheider et al., 2020). 

One of the major challenges when studying carbonates is the correct characterization of their 

hydro-mechanical characteristics. In this sense, permeabilities of carbonates can vary several 

orders-of-magnitude for the same porosity and the pore sizes tend to exhibit an extreme variability 

ranging from the micro- all the way to the macroscale (e.g., Burchette, 2012). These distinctive 

properties of carbonates were analyzed by Anselmetti et al. (1998), who explored the relations 

between the local permeability and the associated size distributions of the pores, which were 

constituted of both micro- and mesopores in the micro- and millimeter scale ranges, respectively. 

Agersborg et al. (2009) showed that significant variations of the acoustic properties in carbonates 

can be explained by the effects of dual porosity and pore pressure communication. In a more recent 

work, Bailly et al. (2019) studied the elastic properties of carbonates based on a multiscale 

geophysical dataset obtained through seismic refraction surveying as well as sonic and ultrasonic 

measurements on outcrop samples. Their results indicate that mesoscale fluid inclusions have a 

considerable impact on P-wave velocities. However, as far as we know, there are, as of yet, no 

works assessing the effective seismic characteristics of carbonates accounting for complex fluid-

filled mesopores in combination with a poroelastic background. In the following, we seek to 

overcome this limitation by applying the proposed coupled fluid-poroelastic upscaling scheme to 

a pertinent synthetic sample. 

 

Inspired by the optical thin-section images of Anselmetti et al. (1998), we emulate the mesoscale 

voids of a synthetic carbonate-type sample using a binarized stochastic model based on a Gaussian 
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spectral density function. The considered REV is illustrated in Figure 8. The side length of the 

sample is 0.18 m. The model contains a number of mesoscale voids (green regions) embedded in 

a porous background (white region). The latter is constituted of a calcite matrix containing 

micropores and, as such, is represented by the Biot’s (1941) equations. The characteristic size of 

the mesopores varies from hundreds of micrometers to several centimeters and they present a 

horizontal-to-vertical aspect ratio of 4. Within these mesopores, the NS equations are used to 

describe the motion of the saturating fluid.  

 

Figure 8. Synthetic carbonate-type sample containing mesoscale fluid-saturated voids (green) 

embedded in a poroelastic background (white).  

 

For computing the effective seismic characteristics of this medium, we consider for the porous 

background that, at the grain scale, the elastic properties are those of pure calcite: 𝐾𝑠 = 𝐾𝑐𝑎𝑙𝑐𝑖𝑡𝑒 =

71 GPa, 𝜇𝑠 = 𝜇𝑐𝑎𝑙𝑐𝑖𝑡𝑒 = 30 GPa, and 𝜌𝑠 = 𝜌𝑐𝑎𝑙𝑐𝑖𝑡𝑒 = 2710 kg m3⁄  (Mavko et al., 2009). For the 

porous matrix, we use typical values of microporosities and micropermeabilities of carbonate 

samples measured by Anselmetti et al. (1998): 𝜙 = 0.12 and 𝜅 = 0.1 mD. The drained bulk and 

shear moduli are calculated employing the asymptotic expressions proposed by David and 

Zimmerman (2011), where the medium is assumed to contain dry circular pores. Using the values 

of grain moduli and the porosity, we get 𝐾𝑏 = 50.41 GPa and 𝜇𝑏 = 23.54 GPa. We assume that 

both the micropores and mesopores are fully saturated with water, the physical properties of which 

are summarized in Table 1. The model is discretized using unstructured triangular meshes, which 

are locally refined in the vicinity of the boundary of the fluid-filled voids. 
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The seismic velocity dispersion and attenuation spectra of the qP- and qS-waves are shown in 

Figure 9 for a range of incidence angles 휃. For the qP-wave, we observe that, both the phase 

velocity and the inverse quality factor are dependent on the frequency and on the propagation angle 

(Figures 9a and 9b). In particular, the qP-wave shows very significant dispersion for vertical 

propagation. At the peak frequency 𝑓 = 7.5 Hz , the 𝑄𝑝 -values are ~40. With increasing 

propagation angle, dispersion and attenuation decrease very rapidly and, for the horizontal 

propagation, become almost insignificant. Another observation is the high degree of qP-wave 

velocity anisotropy, which is more pronounced at low frequencies. The results of the qS-wave are 

depicted in Figures 9c and 9d. Again, we observe a distinct attenuation peak, for which the peak 

frequency is the same as that for the qP-wave. However, the dispersion of the qS-wave is weaker. 

In the case of horizontal and vertical propagation, the dispersion and attenuation of the qS-wave 

are largely insignificant. The most pronounced velocity dispersion and attenuation occur for a 

propagation angle of  휃 = 45°. The anisotropy associated with the propagation of the qS-wave is 

very small compared to that of the qP-wave. 

 

 

Figure 9. qP-wave (a) phase velocity and (b) inverse quality factor and qS-wave (c) phase velocity 

and (d) inverse quality factor as functions of frequency and propagation angle 휃. 
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To understand the underlying mechanism of the observed seismic attenuation and velocity 

dispersion, we study the inverse quality factor density and the fluid pressure distributions in 

response to the oscillatory relaxation tests. For the considered carbonate sample, the coefficients 

𝐶16 and 𝐶26 are much smaller than other components in the stiffness matrix (not shown here), 

which implies that it can be considered as a transversely isotropic medium. In this case, the vertical 

and horizontal compressibility tests can be associated with the qP-wave propagating with an angle  

휃 of 0° and 90°, and the shear test corresponds to the qS-wave propagation in the vertical direction. 

Figure 10 illustrates the inverse quality factor density of both qP- and qS-waves at the frequency 

of the attenuation peak. In each case, we observe that the dissipation occurs mainly in the 

poroelastic background. For qP-wave propagation with 휃 = 90°  (Figure 10b), the spatial 

attenuation pattern is similar to that of 휃 = 0° (Figure 10a), but the regions with significant energy 

dissipation are much smaller and are associated with lower values. This explains the reduction of 

attenuation observed in Figure 9 for  휃 = 90°. As expected, small values of quality factor density 

are also observed when the qS-wave propagates vertically (Figure 10c). For all these results, the 

attenuation is dominated by FPD between the larger mesopores and the embedding microporous 

background, while the contribution of the smaller voids is of subordinate importance. This is due 

to the fact that the compliance of larger voids is significantly higher than that of smaller ones. 

 

Figure 10. Distribution of the inverse quality factor density for the synthetic carbonate-type rock 

shown in Figure 8 at the frequency of the attenuation peak (Figures 9b and 9d). Results of the qP-

wave propagation in (a) vertical direction, (b) horizontal direction; and (c) result of the qS-wave 

propagation in vertical direction. 
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To further explore the role played by the different pore sizes on the seismic response, we illustrate 

in Figure 11 the corresponding fluid pressure distributions. It is observed that, where energy 

dissipation is strong (Figure 10), there are relatively obvious pressure surges inside the 

corresponding fluid inclusions. Recall that the fluid inclusions and the poroelastic background are 

hydraulically connected. The seismic wave motion causes some of the mesoscopic voids to be 

strongly deformed due to their large compliances, which, in turn, increases the fluid pressure in 

the corresponding voids. Due to the thus arising pressure disequilibrium, fluid pressure 

communication takes place locally between the mesoscopic voids and the embedding microporous 

background. The diffusion of the fluid pressure in the poroelastic background leads to the observed 

local energy dissipation and resulting seismic attenuation (Figures 9 and 10). Since the 

compliances of fluid-filled inclusions are related to their elongated shapes and their sizes, this leads 

to the anisotropic characteristics of seismic velocity dispersion and attenuation depicted in Figure 

9. 

 

Based on the visualizations of the prevailing energy dissipation process in Figures 10 and 11, our 

results confirm the observation of Agersborg et al. (2009) that FB-FPD is responsible for the 

seismic attenuation in carbonate rocks. The characteristic frequency of this manifestation is mainly 

controlled by the permeability of the embedding porous medium and is expected to be influenced 

by the geometry and distribution of mesoscopic voids. Due to the preferential orientation of the 

inclusions, our results show no significant evidence of FPD within the limited number of connected 

voids. For mesopore networks that are more complex in terms of orientation and interconnectivity, 

the results might, however, differ in this regard. In the future, we will extend the numerical scheme 

to the 3D case and will explore the response of more realistic mesopore and/or fracture networks. 

It should also be noted that seismic attenuation in real carbonate rocks is a multiscale problem. In 

this work, we focused on mesoscopic FPD effects and, hence, ignored scattering effects and other 

dissipation mechanisms prevailing at high frequencies, such as attenuation due to macroscopic 

global flow and microscopic squirt flow. 
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Figure 11. Distribution of fluid pressure at the frequency of the attenuation peak (Figure 9) in the 

poroelastic background and in the mesoscale voids for qP-wave propagation in the (a) vertical 

direction and (b) horizontal direction.  (c) Corresponding results for qS-wave propagation in the 

vertical direction. 

 

4 Discussion 

While the numerical results demonstrate the robustness and flexibility of the proposed numerical 

upscaling procedure to calculate seismic attenuation of porous rocks containing mesoscopic fluid 

inclusions, assumptions upon which the proposed approach is based merit some consideration. 

First, we consider that seismic attenuation is controlled by FPD at the mesoscopic scale, and other 

factors that potentially affect the seismic response at higher frequencies, such as squirt flow (e. g., 

Gueguen & Sarout, 2011), Biot’s global flow and scattering, are neglected. This is reasonable in 

the seismic exploration frequency band for the considered characteristic sizes of the inclusions. 

We also assumed that the mesoscopic voids and the embedding porous background are fully 

saturated with a unique fluid. The partially saturated case warrants further exploration, as the 

presence of a second fluid phase may change the characteristics of the FPD processes (Solazzi et 

al, 2021). Moreover, we considered open-pore interface conditions between the fluid inclusions 

and embedding porous background. Future work should further explore the influence of sealed-

pore and partially open-pore interface conditions. In addition, we assumed that there is no slip at 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

the interface in the tangential direction between the fluid inclusions and porous background. This 

is reasonable in the framework of small deformation assumed throughout this work.  

 

There are also some intrinsic limitations in the proposed approach. For example, the overall 

procedure is conceived for heterogeneities having sizes at the mesoscopic scale range and, hence, 

not appropriate for assessing physical processes occurring at the microscopic scale. In addition, 

poroelasticity belongs to the macroscopic framework of continuum mechanics (Fortin & Guéguen, 

2021), whereas the Navier-Stokes equation determines the behavior of fluids at microscopic scale. 

In this work, we attempted to couple these two different systems using appropriate interface 

conditions. To achieve this, at the interface, the microscopic details should be neglected due to the 

employment of Biot’s equations. For the region governed by the Navier-Stokes equation, once the 

microscopic details of the interface are neglected, the microscopic characteristics of the fluid can 

be upscaled to the macroscopic and mesoscopic scales (Zampogna et al., 2019). This, in turn, 

allows the coupling between the fluid region and the adjacent poroelastic system. In this context, 

it is important to remark that the coupling between a porous medium and a fluid is very common 

and has wide applications in many fields, such as, for example, geophysics (e. g., Lefeuve-

Mesgouez et al., 2012), fluid mechanics (e. g., Badia et al., 2009) and civil engineering (e. g., 

Vuong et al., 2015). The good agreement of the numerical results obtained using different 

upscaling approaches supports the correctness of our methodology.  

 

5 Conclusions 

We introduced a novel fluid-poroelastic model and an associate numerical upscaling procedure to 

the determine the effective seismic characteristics of porous rocks containing mesoscopic fluid-

filled voids. The model couples the quasi-static NS equations describing the fluid-filled 

heterogeneities and Biot’s consolidation equations for the poroelastic background through 

appropriate interface conditions. Numerical upscaling is performed through three numerical 

oscillatory relaxation tests on representative 2D samples characterized by the proposed hybrid 

fluid-poroelastic model. The averaged stress and strain inferred from the three tests can be used to 

compute the complex-valued and frequency-dependent stiffness matrix of an effective viscoelastic 
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medium, which then enables us to calculate the equivalent seismic attenuation and phase velocity 

spectra. In this context, we also introduce the inverse quality factor density to explore the 

prevailing attenuation mechanisms in more detail. 

 

We first compare the proposed approach to the purely poroelastic approach as well as the coupled 

fluid-elastic approach based on a well-known benchmark-type fracture model. We observed that 

the proposed approach and purely poroelastic approach provide similar results of inverse quality 

factors and phase velocities provided that the material properties are optimized when representing 

voids as poroelastic features. Accounting for the effects of asperities along the fracture walls 

reveals that the two approaches provide consistent results with regard to seismic attenuation due 

to FB-FPD. Conversely, the results related to FF-FPD significantly differ in terms of the 

characteristic frequencies associated with the corresponding attenuation peaks, while the 

magnitudes are comparable. This frequency shift is related to the estimation of the effective 

permeability of the fracture, which is a key parameter for the purely poroelastic approach. 

Conversely, the permeability is naturally accounted for through the model geometry in the 

proposed coupled fluid-poroelastic approach. We also observe that the proposed approach and the 

coupled fluid-elastic approach predict similar seismic attenuation due to FF-FPD, which further 

supports the correctness of the proposed approach. However, the limitation of the coupled fluid-

elastic approach is that it assumes a fully elastic background and, hence, does not account for FB-

FPD. Finally, we explore the seismic characteristics of a synthetic vuggy carbonate-type rock 

sample using the proposed approach. We observe significant velocity dispersion and attenuation 

of qP- and qS-waves in the seismic frequency band, which, based on the spatial distributions of 

the inverse quality factor density and the fluid pressure, can be attributed to fluid pressure 

communication between the mesoscopic vugs and microscopic pores of the embedding 

background. 

 

 

Appendix A. Analysis of the New Approximation of Effective Strain for Poroelastic Media 

 

In section 2.2, in the framework of the proposed procedure of numerical upscaling, it is necessary 

to compute the averaged strains over the sample. Since the interpretation is made in a viscoelastic 
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context, the final values of averaged strain should be consistent with those obtained using the 

imposed BCs for our problem. In the following, we analyze this consistency for the new 

approximation of effective poroelastic strains proposed in equation (28). To this end, we consider 

two oscillatory relaxation tests as illustrated in Figure A1 for the coupled problem, where a fluid 

inclusion Ω𝑓 is embedded in the porous background Ω𝑝. 

 

Figure A1. Sketch of 2D coupled fluid-poroelastic problem to analyze the volume average of (a) 

diagonal components and (b) non-diagonal component of strain. 

 

1. Diagonal components of averaged strain 

For the analysis of the diagonal components of averaged strain, we consider the vertical 

compressibility relaxation test shown in Figure A1(a). We calculate the volume average of the 

vertical component of strain over the coupled medium as 

〈𝜖22〉 =
1

𝐿𝑥𝐿𝑦

∫ ∫ 𝜖22(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝐿𝑥

0

𝐿𝑦

0

=
1

𝐿𝑥𝐿𝑦

[∫  휀22
𝑝𝑚(𝑥, 𝑦)𝑑𝑉

 

Ω𝑝

+ ∫ 𝐸22
𝑓 (𝑥, 𝑦)𝑑𝑉

 

Ω𝑓

] . (A1) 

For the poroelastic medium, we consider the new approximation of effective strain proposed in 

equation (28), for which the vertical component takes the form 

휀22
𝑝𝑚(𝑥, 𝑦) =

𝜕(𝑢2+𝑤2)

𝜕𝑦
,  (A2)

where 𝑢𝑖  is the ith component of solid displacement, and 𝑤𝑖  is the ith component of fluid 

displacement relative to the solid matrix. For the fluid inclusion, the vertical component of strain 

is given by equation (8) as 
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𝐸22
𝑓 (𝑥, 𝑦) =

𝜕𝑢2
𝑓

𝜕𝑦
, (A3) 

where 𝑢𝑖
𝑓 is the ith component of fluid displacement. 

For mathematical simplicity, we define two functions as  

𝐏(𝑥, 𝑦) = (0, 𝑢2(𝑥, 𝑦) + 𝑤2(𝑥, 𝑦)),                   𝐐(𝑥, 𝑦) = (0, 𝑢2
𝑓

(𝑥, 𝑦)). (A4) 

Thus, we have 

∫  휀22
𝑝𝑚(𝑥, 𝑦)𝑑𝑉

 

Ω𝑝

= ∫ 𝛁 ∙ 𝐏(𝑥, 𝑦)𝑑𝑉
 

Ω𝑝

, ∫ 𝐸22
𝑓 (𝑥, 𝑦)𝑑𝑉

 

Ω𝑓

= ∫ 𝛁 ∙ 𝐐(𝑥, 𝑦)𝑑𝑉.
 

Ω𝑓

 (A5) 

By applying the divergence theorem, we get 

∫ 휀22
𝑝𝑚(𝑥, 𝑦)𝑑𝑉

 

Ω𝑝

= ∫ 𝐏(𝑥, 𝑦) ∙ 𝐧𝑑𝑠
 

Γ𝑝

, ∫ 𝐸22
𝑓 (𝑥, 𝑦)𝑑𝑉

 

Ω𝑓

= ∫ 𝐐(𝑥, 𝑦) ∙ 𝐧′𝑑𝑠
 

Γ𝑝𝑓

. (A6) 

where 𝐧 is the outward-directed unit normal vector on the boundaries Γ𝑝 of the porous domain, 

and Γ𝑝𝑓 is a closed trajectory defining the interface of the fluid and porous domains. Note that at 

the interface, we have 𝐧 = −𝐧′. 

Operating with equation (A6), we obtain 

∫ 휀22
𝑝𝑚(𝑥, 𝑦)𝑑𝑉

 

Ω𝑝

= ∫ 𝐏(𝑥, 0) ∙ (0, −1)𝑑𝑥
𝐿𝑥

0
+ ∫ 𝐏(𝐿𝑥, 𝑦) ∙ (1,0)𝑑𝑦

𝐿𝑦

0
+ ∫ 𝐏(𝑥, 𝐿𝑦) ∙ (0,1)𝑑𝑥

𝐿𝑥

0

+ ∫ 𝐏(0, 𝑦) ∙ (−1,0)𝑑𝑦
𝐿𝑦

0
+ ∫ 𝐏(𝑥, 𝑦) ∙ 𝐧𝑑𝑠

 

Γ𝑝𝑓

.  (A7)

 

From equation (A4), we have 

𝐏(𝐿𝑥, 𝑦) ∙ (1,0) = [0, 𝑢2(𝐿𝑥, 𝑦) + 𝑤2(𝐿𝑥 , 𝑦)] ∙ (1,0) = 0, (A8) 

𝐏(0, 𝑦) ∙ (−1,0) = [0, 𝑢2(0, 𝑦) + 𝑤2(0, 𝑦)] ∙ (−1,0) = 0. (A9) 

Considering the imposed BCs on the bottom edge of the REV (equations (14) and (17)), that is, 

𝑢2(𝑥, 0) = ∆𝑢 and 𝑤2(𝑥, 0) = 0, we have   

∫ 𝐏(𝑥, 0) ∙ (0, −1)𝑑𝑥
𝐿𝑥

0

= −∆𝑢 ∙ 𝐿𝑥 . (A10) 

On the top edge of the REV, we impose 𝑢2(𝑥, 𝐿𝑦) = −∆𝑢 and 𝑤2(𝑥, 𝐿𝑦) = 0 (equations (14) and 

(17)), so we have 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

∫ 𝐏(𝑥, 𝐿𝑦) ∙ (0,1)𝑑𝑥
𝐿𝑥

0

= −∆𝑢 ∙ 𝐿𝑥. (A11) 

Substituting equations (A8) to (A11) into equation (A7), we get                                        

∫ 휀22
𝑝𝑚(𝑥, 𝑦)𝑑𝑉

 

Ω𝑝

= −2∆𝑢 ∙ 𝐿𝑥 + ∫ 𝐏(𝑥, 𝑦) ∙ 𝐧𝑑𝑠
 

Γ𝑝𝑓

. (A12) 

For equation (A6), we also have                       

∫ 𝐸22
𝑓 (𝑥, 𝑦)𝑑𝑉

 

Ω𝑓

= ∫ 𝐐(𝑥, 𝑦) ∙ 𝐧′𝑑𝑠
 

Γ𝑝𝑓

= − ∫ 𝐐(𝑥, 𝑦) ∙ 𝐧𝑑𝑠
 

Γ𝑝𝑓

. (A13) 

Substituting equations (A12) and (A13) into equation (A1) yields 

〈𝜖22〉 =
−2∆𝑢

𝐿𝑦

+
1

𝐿𝑥𝐿𝑦

∫ [𝐏(𝑥, 𝑦) − 𝐐(𝑥, 𝑦)] ∙ 𝐧𝑑𝑠
 

Γ𝑝𝑓

. (A14) 

Recalling the interface conditions (equations (10) and (11)), we have 𝐮 + 𝐰 = 𝐮𝑓 at all points of 

Γ𝑝𝑓, which means that 

1

𝐿𝑥𝐿𝑦

∫ [𝐏(𝑥, 𝑦) − 𝐐(𝑥, 𝑦)] ∙ 𝐧𝑑𝑠
 

Γ𝑝𝑓

= 0. (A15) 

The volume average of strain is finally obtained as 

〈𝜖22〉 =
−2∆𝑢

𝐿𝑦

,  (A16) 

which is consistent with the value that we obtain from the imposed BCs.  

 

It is important to remark here that, if the Biot’s definition of solid strain is used, we can define the 

function  

𝐏′(𝑥, 𝑦) = (0, 𝑢2). (A17) 

Following a similar derivation, the volume average of strain is obtained 

〈𝜖22〉 =
−2∆𝑢

𝐿𝑦

+
1

𝐿𝑥𝐿𝑦

∫ [𝐏′(𝑥, 𝑦) − 𝐐(𝑥, 𝑦)] ∙ 𝐧𝑑𝑠
 

Γ𝑝𝑓

. (A18) 

The second term on the right-hand side of the equation corresponds to a residual due to the 

incorrect representation of the displacement field of the porous region using a single-phase 

medium in a viscoelastic context.  
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We can draw similar conclusions for 〈𝜖11〉  if a horizontal compressibility relaxation test is 

considered, which is omitted here for brevity. 

 

2. Non-diagonal components of averaged strain 

For the analysis of the non-diagonal components of strain, we consider the shear relaxation test 

illustrated in Figure A1(b). The volume average of the shear strain over the REV can be computed 

as 

〈𝜖12〉 =
1

𝐿𝑥𝐿𝑦

∫ ∫ 𝜖12(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝐿𝑥

0

𝐿𝑦

0

=
1

𝐿𝑥𝐿𝑦

[∫ 휀12
𝑝𝑚(𝑥, 𝑦)𝑑𝑉

 

Ω𝑝

+ ∫ 𝐸12
𝑓 (𝑥, 𝑦)𝑑𝑉

 

Ω𝑓

] , (A19) 

where we consider the new approximation of strain 휀12
𝑝𝑚(𝑥, 𝑦) defined in equation (28) for the 

poroelastic medium. Thus, we have  

∫ 휀12
𝑝𝑚(𝑥, 𝑦)𝑑𝑉

 

Ω𝑝

=
1

2
∫ [

𝜕(𝑢1 + 𝑤1)

𝜕𝑦
+

𝜕(𝑢2 + 𝑤2)

𝜕𝑥
] 𝑑𝑉

 

Ω𝑝

, (A20) 

and using the definition in equation (8) for the fluid inclusion, we get 

∫ 𝐸12
𝑓 (𝑥, 𝑦)𝑑𝑉

 

Ω𝑓

=
1

2
∫ [

𝜕𝑢1
𝑓

𝜕𝑦
+

𝜕𝑢2
𝑓

𝜕𝑥
] 𝑑𝑉

 

Ω𝑓

. (A21) 

We define the following functions 

𝐅(𝑥, 𝑦) = (𝑢2 + 𝑤2, 𝑢1 + 𝑤1),      𝐆(𝑥, 𝑦) = (𝑢2
𝑓

, 𝑢1
𝑓

). (𝐴22) 

Combining equations (A19) to (A22) and using the divergence theorem, we have 

〈𝜖12〉 =
1

𝐿𝑥𝐿𝑦

[
1

2
∫ 𝐅(𝑥, 𝑦) ∙ 𝐧𝑑𝑠

 

Γ𝑝

+
1

2
∫ 𝐆(𝑥, 𝑦) ∙ 𝐧′𝑑𝑠

 

Γ𝑝𝑓

] . (A23) 

For the first term on the right-hand side of equation (A23), we have 

1

2
∫ 𝐅 ∙ 𝐧𝑑𝑠

 

Γ𝑝

=
1

2
∫ 𝐅(𝑥, 0) ∙ (0, −1)𝑑𝑥

𝐿𝑥

0

+
1

2
∫ 𝐅(𝐿𝑥 , 𝑦) ∙ (1,0)𝑑𝑦

𝐿𝑦

0

+
1

2
∫ 𝐅(𝑥, 𝐿𝑦) ∙ (0,1)𝑑𝑥

𝐿𝑥

0

+  
1

2
∫ 𝐅(0, 𝑦) ∙ (−1,0)𝑑𝑦

𝐿𝑦

0

+
1

2
∫ 𝐅(𝑥, 𝑦) ∙ 𝐧𝑑𝑠

 

Γ𝑝𝑓

. (A24)

 

Considering the imposed BCs on the bottom edge of the REV (equations (22) and (25)), that is, 

𝑢1(𝑥, 0) = −∆𝑢 and 𝑤1(𝑥, 0) = 0, we get   
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1

2
∫ 𝐅(𝑥, 0) ∙ (0, −1)𝑑𝑥

𝐿𝑥

0

=
1

2
∆𝑢 ∙ 𝐿𝑥 . (A25) 

For the BCs on the right edge of the REV (equations (23) and (25)), we impose 𝑢2(𝐿𝑥, 𝑦) = 0 and 

𝑤2(𝐿𝑥, 𝑦) = 0. We obtain 

1

2
∫ 𝐅(𝐿𝑥 , 𝑦) ∙ (1,0)𝑑𝑦

𝐿𝑦

0

= 0. (A26) 

On the top edge of the REV (equations (22) and (25)), we impose 𝑢1(𝑥, 𝐿𝑦) = ∆𝑢  and 

𝑤1(𝑥, 𝐿𝑦) = 0. We thus have 

1

2
∫ 𝐅(𝑥, 𝐿𝑦) ∙ (0,1)𝑑𝑥

𝐿𝑥

0

=
1

2
∆𝑢 ∙ 𝐿𝑥 . (A27) 

Finally, on the left edge of the REV (equations (23) and (25)), we impose 𝑢2(0, 𝑦) = 0 and 

𝑤2(0, 𝑦) = 0. Thus, we have 

1

2
∫ 𝐅(0, 𝑦) ∙ (−1,0)𝑑𝑦

𝐿𝑦

0

= 0. (A28) 

Substituting equations (A25) to (A28) into equation (A24), we get 

1

2
∫ 𝐅 ∙ 𝐧𝑑𝑠

 

Γ𝑝

= ∆𝑢 ∙ 𝐿𝑥 +
1

2
∫ 𝐅(𝑥, 𝑦) ∙ 𝐧𝑑𝑠

 

Γ𝑝𝑓

. (A29) 

For the second term on the right-hand side of the equation (A23), we have  

1

2
∫ 𝐆(𝑥, 𝑦) ∙ 𝐧′𝑑𝑠

 

Γ𝑝𝑓

= −
1

2
∫ 𝐆(𝑥, 𝑦) ∙ 𝐧𝑑𝑠.

 

Γ𝑝𝑓

(A30) 

Substituting equations (A29) and (A30) into equation (A23), we have 

〈𝜖12〉 =
1

𝐿𝑦

∆𝑢 +
1

2𝐿𝑥𝐿𝑦

∫ [𝐅(𝑥, 𝑦) − 𝐆(𝑥, 𝑦)] ∙ 𝐧𝑑𝑠
 

Γ𝑝𝑓

. (A31) 

Recalling the interface condition in equations (10) and (11), we have 𝐮 + 𝐰 = 𝐮𝑓 at all points of 

Γ𝑝𝑓, which means that 

1

2𝐿𝑥𝐿𝑦

∫ [𝐅(𝑥, 𝑦) − 𝐆(𝑥, 𝑦)] ∙ 𝐧𝑑𝑠
 

Γ𝑝𝑓

= 0. (A34) 

Finally, we get  
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〈𝜖12〉 =
∆𝑢

𝐿𝑦

,   (A35) 

which is the same value as that obtained using the imposed displacement on the outer boundaries.  

 

If the Biot’s definition of solid strain is used instead, we define 

𝐅′(𝑥, 𝑦) = (𝑢2, 𝑢1). (A36) 

Following similar steps as before, we obtain 

〈𝜖12〉 =
∆𝑢

𝐿𝑦

+
1

2𝐿𝑥𝐿𝑦

∫ [𝐅′(𝑥, 𝑦) − 𝐆(𝑥, 𝑦)] ∙ 𝐧𝑑𝑠
 

Γ𝑝𝑓

,   (A37) 

where, on the right-hand side of the equation, the integral term is the residual due to an incorrect 

representation of the displacement field of the porous region using a single-phase medium in a 

viscoelastic context. 

 

Appendix B. Consistency of the New Approximation of Average Strain with the Energy-

based Approach 

We consider the same model as presented in Figure 2, and calculate the inverse quality factor of 

the qP-wave for a vertical direction of propagation. We compare the results obtained using the 

proposed approach based on the dynamic-equivalent viscoelastic assumption with a reference 

solution obtained using the energy-based approach (equation (38)). More specifically, when using 

the former, we consider both Biot’s definition of solid strain (defined in equation (3)) and the new 

approximation of strain (equation (28)) for the porous domain to compute the volume average 

strain of the sample. Results for the proposed coupled fluid-poroelastic approach are depicted in 

Figure B1(a). We see that the attenuation spectrum corresponding to the new approximation of 

effective strain is in good agreement with that using the energy-based approach. However, when 

Biot’s definition of solid strain is considered, the attenuation is different from that of the energy-

based approach due to the incorrect estimation of the volume average strain of the sample. We also 

show the results based on the purely poroelastic approach in Figure B1(b). In this case, we observe 

that both the new approximation and Biot’s definition of strain provide the same result as that 

using the energy-based approach. This agreement is due to the periodicity imposed on the fluid 

flow at opposite boundaries of the REV. Similar results were also observed for the qS-wave, which 

are omitted here for brevity. 
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Figure B1. Inverse quality factor of the qP-wave as a function of frequency for vertical propagation 

obtained using (a) the proposed coupled fluid-poroelastic approach and (b) the purely poroelastic 

approach. The results correspond to the model in Figure 2. For the inputs of the approach based 

on the dynamic-equivalent viscoelastic assumption, “New approximation” refers to the estimation 

of average strain in the poroelastic domain using equation (28), while “Biot’s definition” denotes 

using the Biot’s definition of solid strain defined in equation (3). 

 

Data Availability Statement 

Data sets are available online (https://doi.org/10.5281/zenodo.5574304). 
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