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Abstract 

Aims 

The aims of this study were: 1) to test a new methodology to overcome the issue of the 

predictive capacity of soil water availability in geographic space due to measurement scarcity, 

2) to model and generalize soil water availability spatially to a whole region, and 3) to test its 

predictive capacity in plant SDMs.  

Methods 

First, we modelled the measured Soil Water Holding Capacity (SWHC at different pFs) of 24 

soils in a focal research area, using a weighted ensemble of small bivariate models (ESM). We 

then used these models to predict 256 locations of a larger region and used the differences in 

these pF predictions to calculate three different indices of soil water availability for plants 

(SWAP. These SWAP variables were added one by one to a set of conventional topo-climatic 

predictors to model 104 plant species distributions.  

Results 

We showed that adding SWAP to the SDMs could improve our ability to predict plant species 

distributions, and more specifically, pF1.8–pF4.2 became the third most important predictor 

across all plant models. 
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Conclusions 

Soil water availability can contribute a significant increase in the predictive power of plant 

distribution models, by identifying important additional abiotic information to describe plant 

ecological niches.  

 

Key words: ensemble of small weighted bivariate models, soil water holding capacity, habitat 

suitability, predictions, environmental niche, topo-climate, Swiss Alps 
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Introduction  

The capacity of soils to retain water is known to be an important factor that influences plant 

distributions, with effects on carbon allocation, microbial activity, nutrient cycling, and the 

photosynthetic rate (Adhikari & Hartemink 2016). Under climate change, soil water content is 

expected to suffer from the decreasing summer precipitation and air humidity and the increasing 

solar radiation and evapotranspiration (Jasper, Calanca & Fuhrer 2006). This decrease in soil 

water content added to the predicted increase in the severity and frequency of drought events 

will result in more stressful water conditions for plants (Calanca 2007). Thus, the capacity of 

the soils to retain water might become critical for supplying water to mountain plants (Jasper, 

Calanca & Fuhrer 2006), which was already shown to affect plant species diversity (Kammer 

et al. 2013).  

Despite its importance, the soil capacity to retain water was only used as an explanatory variable 

in a very few interdisciplinary studies, such as vegetation modelling (e.g., Mod et al. (2016), 

likely due to the paucity of available data caused by the time-consuming and expensive 

laboratory analyses required to obtain them. This paucity also prevented its spatial 

generalization to large areas or entire regions, and consequently, its inclusion in field-based 

spatially explicit modelling studies. The potential benefit of including soil water content in plant 

species distribution models (SDMs) has already been argued (Guisan & Zimmermann 2000; 

Austin & Van Niel 2011; Adhikari & Hartemink 2016; Mod et al. 2016) because it provides a 

way to determine the soil moisture content necessary for the growth of a given species (Viji & 

Rajesh 2012). Mod et al. (2016) pointed out that the variables that are generally used in SDMs 

to represent water availability for plants are derived from precipitation, but the latter does not 

measure the amount of water actually available for plants. Consequently, the real measurement 

of the soil water available for plants is rarely considered to be an explanatory variable in plant 

distribution modelling. 
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Soil water availability may be estimated using the soil water retention curve, which relates the 

soil water content to applied suction or tension (Buckman & Brady 1922; Richards & Weaver 

1944). Tension is represented by the matric potential (F), which corresponds to the force 

necessary to extract water from soils, thereby overcoming capillary retention. The logarithm of 

the absolute value of matric potential is commonly used as a measure of applied tension (Gobat, 

Aragno & Matthey 2004):  

pF=log10 |F|     (1) 

with F expressed as the height of the water column (cm). 

The soil water content at different values of pF characterizes the soil water holding capacity 

(SWHC). The following points may be of interest on the water retention curve. For instance, 

water content at pF=4.2, which is named the permanent wilting point, corresponds to the point 

where most plants will wilt beyond recovery. Water content at pF=3.7, which is sometimes 

named the temporary wilting point, corresponds to the point where most plants will begin to 

experience severe water stress. Water content at pF=2.7, which is named the field capacity, is 

defined as the amount of water remaining in the soil after downward gravitational drainage has 

stopped, i.e., the water retained naturally in the soil (Fig. 1). 

The change in water content between different pFs is used to estimate the quantity of water that 

may be available for plant uptake in soil. Plant available water is conventionally defined as the 

difference between the field capacity and the permanent wilting point. It is also possible to 

define other indices of water availability. For instance, the difference between the field capacity 

and the temporary wilting point represents the range of optimal hydric status for most plants, 

while the difference between the field capacity for sands and the permanent wilting point could 

be an upper-bound indicator of accessible water in soils, including coarse-textured soils, which 

have often lost most of their water by pF=2.7 (Veihmeyer & Hendrickson 1928) (Fig. 1). 
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Fig. 1 – Types of soil water availability in relationship to its corresponding points on the water 

retention curve. The soil water content at different values of pF characterizes the soil water 

holding capacity (SWHC). The change in water content between different pFs is used to 

estimate the quantity of water that may be available for plant uptake in soils (indices of SWAP).  

 

 

The field capacity and wilting point values can change depending on the environment and the 

plants species, making different soils and habitats react differently. However, we still have very 

limited knowledge on the spatial variability of these properties in natural ecosystems, especially 

in mountain areas. Numerous studies have focused on the development of pedotransfer 

functions, which aim to predict the SWHC using basic soil properties. In particular, during the 

last two decades, continuous pedotransfer functions have been developed (Wosten, Pachepsky 

& Rawls 2001; Patil & Singh 2016). However, their prediction accuracy depends on the number 

of soil samples used for their calibration, although these are often insufficient for developing a 

good model, especially in a heterogeneous non-agricultural landscape (De Vos et al. 2005). 

 

In this study, we aimed to solve the issue of data scarcity of SWHC measurements in hampering 

prediction accuracy, by investigating the effect of soil water holding capacity on plant species 

distributions across a whole temperate mountain region. For this purpose, we: i) used a new 

modelling method to spatially predict local SWHC measurements over an entire region, ii) used 

the predicted SWHC to calculate three indices of soil water available for plants (SWAP) 

obtained by the differences among the SWHC values, and iii) included the SWAP indices as 
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predictors in plants species distribution models (plant SDMs) in order to assess if their inclusion 

resulted in improvements of the plant SDMs.  

 

Materials and methods 

General study framework  

This study was based on an intensive sampling of a sub-region (NAA sector) of our larger study 

area in order to test the capacity to predict the parameter values for the whole region (VA area). 

The study was carried out following four different steps (Fig. 2). The first step consisted of 

using a new method for low sample sizes to spatially predict local SWHC measurements (24 

measurements in the NAA sector at pF=1.8, pF=2.7, pF=3.7, pF=4.2; see Fig. 2) over larger 

areas (256 locations in the whole VA area; see Fig. 2). The second step consisted of using the 

predicted SWHC to calculate three values of SWAP obtained by the differences among the 

SWHCs ([pF2.7-pF4.2], [pF1.8-pF4.2] and [pF2.7-pF3.7]). The third step consisted of the 

inclusion of three indices of SWAP as predictors in plants species distribution models (plant 

SDMs) over the larger region, for which large species observation data sets were already 

available. Finally, the last steps aimed to assess whether the inclusion of SWAP improved the 

plant SDMs (Fig. 3).  

 

Study area  

The study was conducted in the Swiss western Alps covering the Vaud Canton (Vaud Alps, VA 

in Fig. 2). The study area covered approximately 700 km2 and encompassed whole massifs, 

thus spanning a large elevation gradient, from 375 to 3210 m a.s.l. Natural vegetation changes 

along the elevation gradient, starting from scarce nival vegetation patches at high elevations, to 

alpine grasslands, to subalpine heaths and coniferous forests, to mixed coniferous-broadleaf 

forests at mid elevation (montane), to broadleaf forests at low elevation. The mountainous areas 



7 
 

(montane to subalpine) are under moderate human influence and are mainly used for mowing 

and grazing by sheep and cattle that maintain many open habitats; however, human influence 

is quite high in the lowlands, where more intense use of the land and urbanization are observed 

(see http://rechalp.unil.ch). SWHC measurements were obtained from the soil samples 

collected in the Vallon de Nant-Argentine-Anzeindaz sector (NAA sector in Fig. 2), which is 

located in the southwestern part of the larger VA area and ranges from mid- to high elevations.  

 

 

Fig. 2 – Study area and sampling strategy. SWHC: soil water holding capacity, SOM: soil 

organic matter. 

 

Step 1 - Soil water holding capacity (SWHC) modelling through weighted Ensemble of Small 

Models (ESM) 

 

SWHC measurements 

Twenty-four soil samples were collected in the NAA sector during the summer 2014 by 

following an equal random-stratified design (Hirzel & Guisan 2002), with the elevation, slope 
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and vegetation type (Randin et al. 2009b; Dubuis et al. 2013; Buri et al. 2017) as stratifying 

factors to take into account the variability of the study area. Soil samples were extracted from 

the organo-mineral topsoil (5-10 cm deep) by taking off a core of circa 4 x15 cm and 350 g of 

soil for analysis after drying at 105°C. The SWHC was measured in the laboratory at four 

different matrix potentials or pressures that correspond to different water availabilities for 

plants: pF=1.8, pF=2.7 (field capacity), pF=3.7 and pF=4.2 (wilting point; see Fig. SI1, Fig. 

SI2 and Tab. SI1 in Supplementary Information for measured values). The soil volumetric water 

content (cm3/cm3) was determined using a sandbox (Eijkelkamp, Sandbox 08.01) for the lower 

pF values (i.e. < pF 2.5) and a ceramic plate extractor for the higher pF values (Soil Moisture 

Equipment Corp, ceramic plate extractor 1500). Soil samples were first saturated with water, 

then different pressures were applied (through suction or constant pressure) and measures were 

taken once the equilibrium with the applied pressure was reach. Finally, samples were oven 

dried at 105°C to find their dry weight which were used to calculate the final volumetric water 

content at each pF. 

 

Soil texture and organic matter measurements 

Soil texture and organic matter content were measured for 24 samples of the NAA sector during 

summer 2014 and at 256 locations in the VA area during the summers of 2012 and 2013, with 

the following sampling method: a 4 m2 square was delimited for each plot, and the soil cores 

were extracted from the topsoil (5-10 cm deep) at the four corners and in the centre of the 

square, and the five samples were mixed and homogenized. We selected samples by following 

an equal random-stratified design that is particularly suited for fitting species distribution 

models (Hirzel & Guisan 2002), with the elevation, slope and aspect as stratifying factors. Soil 

samples were first dried and sieved at 2 mm (for fine earth). Then, organic matter (OM) was 

removed from a subsample of the soil by adding 10-35% hydrogen peroxide (H2O2). This 
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fraction of the soil was then analysed by laser diffraction (Malvern™ Mastersizer 2000) to 

measure the particle size distribution. Textural classes were attributed according to the USDA 

texture classification (Shirazi & Boersma 1984). 

For the NAA sector, a loss of ignition (LOI) at 450°C was performed to determine the OM 

content. For the VA sector, we characterized the total organic carbon (TOC) by thermal analysis 

on crushed samples using a Rock-Eval 6 Pyrolyser (Vinci Technologies) with a standard whole-

rock pyrolysis method (Lafargue, Marquis & Pillot 1998). Finally, we used the formula 

TOC=SOM / 1.724 to convert the result of LOI to TOC (Pribyl 2010).  

 

Ensemble of small models of SWHC  

We fitted models for each of the 4 SWHC pF measured in the 24 plots using the R-3.5.0 

software. The soil organic matter (TOC), soil texture (proportion of sand, silt, clay), and 

topographic variables (elevation, aspect and convexity) were used as predictors (Fig. 2; Tab. 

SI2 in Supplementary Information). The TOC, sand, silt, and clay are known to influence the 

SWHC of any kind of soil, and they are commonly used in pedotransfer functions or PTF 

(Gupta, Dowdy & Larson 1977; Weil & Brady 2017). We included topographic variables as 

indirect predictors because these parameters have been shown to increase the quality of PTF 

(Sharma, Mohanty & Zhu 2006; Blanco et al. 2018). The elevation, aspect, and convexity were 

extracted from maps at 5 m resolution. Convexity being sensitive to scale, it was calculated 

with two different radii of moving windows, i.e., at 3 and 10 pixels. The selected variables 

presented a Spearman correlation coefficient < 0.70 (Dormann et al. 2012). 

To overpass the risk of model overfitting due to the low number of SWHC measurements 

available (n=24) and the use of 8 predictors, we used a new approach  ensemble of small models 

(Breiner et al. 2015; Breiner et al. 2017)  specifically developed recently for modelling small 

sample sizes. We fitted bivariate models using the 28 possible combinations of pairs of 
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predictors with linear models (LM). Each bivariate model was evaluated by measuring an 

adjusted-R2 through a leave-one-out cross-validation (form of jackknife). We selected only 

bivariate models with an adjusted-R2 > 0.5 in the final ensemble and weighted them in the 

ensemble models based on the cross-validated adjusted-R2 (Fig. 3). We then calculated an 

adjusted-R2 between the value predicted by the final ensemble model and the observed values 

(Fig. 3). Last, we projected these models on the 256 plots distributed across the entire VA area 

(Fig. 2).  

 

Measurements of Soil Water Available for Plants   

We calculated three indices of SWAP.  

1) [pF2.7 – pF4.2]: the theoretical SWAP found in the literature, corresponding to the 

difference between field capacity (pF=2.7) and wilting point (pF=4.2) (Gobat et al. 2004); 

2) [pF1.8 – pF4.2]: a larger range of SWAP that also includes gravitational water; 

3) [pF2.7 – pF3.7]: a more restricted SWAP range with a temporary wilting point (pF=3.7) that 

does not take into account the slowly availably water (Lal & Greenland 1979, Weil & Brady 

2017). 

 

 

Fig. 3 – Flowchart of methods. SWHC: soil water holding capacity; SWAP: soil water available 

for plants. 

 

Step 2 - Plant species distribution modelling 
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We modelled the distribution of 104 plant species (only herbaceous species were considered) 

over the 256 plots covering the VA area (Fig. 2). We considered only species with a minimum 

of 30 occurrences throughout the 256 plots (Buri et al. 2017). We ran models that consider four 

combinations of predictors. The first set of predictors – hereafter, TopoClim - was common to 

all models and included the following predictors, which were shown to be important for 

predicting plant species distributions (SDMs) (Randin et al. 2009a; Dubuis et al. 2013; Buri et 

al. 2017): the slope, mean temperature, solar radiation, mean precipitation and 

evapotranspiration (https://www.swisstopo.admin.ch/). The other three combinations of 

predictors included TopoClim and one of the different indices of SWAP: TopoClim+[pF2.7-

pF4.2], TopoClim+[pF2.7-3.7], and TopoClim+[pF1.8-pF4.2]. Finally, we randomized the 

values of the SWAP that gave the best evaluation values between the existing plots to create a 

new randomized SWAP variable. Thus, we maintained realistic ranges of measurements for 

SWAP but broke the link of each measurement with its geographical space. This randomized 

SWAP variable was used to run a fifth set of predictors: TopoClim+pF-random. 

Plant SDMs were fitted in the R-3.5.0 statistical software using the biomod2 packages (Thuiller 

et al. 2016). We used a regression random forest to calibrate the model. The “randomForest” 

package of the R software, which implements the Breiman’s algorithm, was used as well as the 

default parametrization of the function (i.e number of variables sampled randomly and proposed 

at candidate at each split = p/3, where p is the number of variables; number of grown trees = 

500, trees are allowed to grow to the maximal number of terminal nodes). The selection of 80% 

of the data for model calibration and 20 % for model validation is a standard procedure used in 

many modelling papers (Buri et al. 2017; Guisan, Thuiller & Zimmermann 2017). We split the 

dataset into two partitions; 80% of the plots was used for model calibration, and the remaining 

20% was used for independent evaluation. The predictive power of the models was determined 

by the maximization approach of the true skills statistics (TSS, Allouche, Tsoar & Kadmon 
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2006; for its maximization, maxTSS, see Guisan Thuiller & Zimmermann 2017), based on 100 

repeated runs, which looks for the maximum value of TSS measured across a series of 

thresholds to binarize the probability predictions (as described in Guisan et al. 2017). TSS 

compares the number of correct predictions (minus those attributable to random guessing) to 

that of a hypothetical set of perfect predictions (Allouche, Tsoar & Kadmon 2006; Fernandes, 

Scherrer & Guisan 2019). TSS takes into account both omission and commission errors and is 

successful as a result of random guessing (TSS = Sensitivity + Specificity – 1). It ranges from 

− 1 to +1, where +1 indicates perfect agreement and values of zero or less indicate a 

performance not better than a random effect. This evaluation method has been proved recently 

by Fernandes, Scherrer and Guisan (2019) to better evaluate the fitness of models than the more 

standard AUC measure (Swets 1988). For each species, we also calculated the importance of 

each variable in the different models using the approach described below. 

 

Step 3 - Plant species distribution model comparisons 

We compared the performance of the five sets of models built with the different combinations 

of predictors by comparing their maxTSS. We also calculated the percentage of plant species 

that experienced a maxTSS increase due to the addition of SWAP as a supplementary predictor. 

For each set of models, the variable importance for each variable used in the models was fitted 

in the R 3.0.1 statistical software using the biomod2 packages (Thuiller et al. 2016). The 

package calculates the variables’ importance by shuffling a single variable of the given data 

and then making a model prediction with this ‘shuffled’ data set. Then, the package computes 

a Pearson’s correlation coefficient between the reference predictions and the ‘shuffled’ 

prediction. The return score is 1 minus the correlation between the references and the ‘shuffled’ 

prediction. The higher the value, the more influence the variable has on the model. A value of 

0 assumes no influence of that variable on the model (Thuiller et al. 2016). Finally, we 
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calculated the mean change in the maxTSS values of all plant species present per plot in order 

to obtain an estimation of the change that occurs due to the addition of SWAP as predictors in 

each community. For this, vegetation alliances (Delarze & Gonseth 2008) were used with the 

average of delta maxTSS values per plot to determine which vegetation communities were most 

improved. Vegetation alliances were then grouped into four classes according to their 

characteristics: meadow, pasture, alpine grassland and scree. 

 

Results 

Evaluation of the bivariate models predicting SWHC at different pFs 

From the 28 models of bivariate combinations, 7 showed an adjusted-R2 > 0.5 for at least one 

SWHC pF model (Table 1). For SWHC at pF=1.8, pF=2.7 and pF=4.2, only one combination 

of bivariate variables gave an adjusted-R2 > 0.5, i.e., the pairs’ TOC-elevation, clay-convex3 

and elevation-convex10, respectively. In contrast, for pF=3.7, six combinations of bivariate 

models gave an adjusted-R2 > 0.5. Four of the combinations contained each time the soil texture 

as a predictor, and the two others contained the elevation with either convexity3 or convexity10. 

The ensemble model for SWHC pF=3.7 had an adjusted-R2 of 0.63.  

 

Comparisons of the plant species distribution models  

The four sets of models (TopoClim alone and with the three different indices of SWAP) 

obtained predictions with average values of maxTSS ranging from 0.661 to 0.676 (Fig. SI2 and 

Table SI2 in Supplementary Information).  
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Variables used in the 
bivariate model 

Water content 
at pF1.8 

Water content 
at pF2.7 

Water content 
at pF3.7 

Water content 
at pF4.2 

TOC, elevation 0.519 0.459 0.119 0.036 

Clay, convex3 0.435 0.551 0.660 0.112 

Clay, convex10 0.312 0.283 0.597 0.151 

Silt, convex3 0.193 0.313 0.567 -0.018 

Sand, convex3 0.254 0.394 0.542 -0.035 

Elevation, convex3 0.367 0.407 0.550 0.305 

Elevation, convex10 0.179 0.094 0.567 0.627 

ESM 0.519 0.551 0.646 0.627 

 

Tab. 1 – Leave-one-out-validation values of bivariate models and ensemble of weighted-small-

models (ESM) using an adjusted-R2 for each water content modelled. 

 

We found that adding indices of SWAP improved the overall model quality and that maxTSS 

especially increased significantly (paired t-test, p-value <0.05) when [pF1.8-pF4.2] was 

included (Fig. 4-a, Table SI4 in Supplementary Information). The greatest increase in maxTSS 

was found by adding [pF1.8-pF4.2] (Fig. 4-a, Tab. 2). For some species (i.e., Hieracium 

lactucella, Poa trivialis, Alchemilla xanthochlora, Crocus albiflorus, and Trifolium thalii), the 

addition of one of the SWAP variables increased the maxTSS of their model by more than 10% 

(Tab. 2). The highest increase of 40% was observed when [pF1.8-pF4.2] was added to the 

model of Hieracium lactucella (Table 2). Overall, the addition of the three different SWAP 

ranges induced a maxTSS increase from 45% to 56% for the plant species considered (Fig. 4-

b). Specifically, the addition of [pF1.8-pF4.2] to TopoClim caused an increase greater than 

10% of maxTSS for 14% of the plant species (Fig. 4-b). 

In general, the minimum temperature was the most important variable in all four sets of models 

for the majority of species. When we added the various SWAP predictors, [pF1.8-pF4.2] 

became the third most important variable set for predicting plant species distribution, after 

temperature and precipitation (Fig. 5).  
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Fig. 4 – a. Boxplot of the maxTSS percentage change after adding different SWAP ranges. 

Outliers were defined in the boxplots as data points outside the fences (“whiskers”) of the 

boxplot (outside refers to 1.5 times the interquartile range above the upper quartile and bellow 

the lower quartile). No outlier was removed from any analysis in our study, these outliers are 

only appearing visually in the boxplots. b. Bar plot of the percentage of species with improved 

maxTSS after adding one of the SWAP variables.   

 

 

   

Fig. 5 – Boxplot of variable importance calculated or each set of models. Sol_rad: solar 

radiation, Temp_mean: mean temperature, Prec_mean: mean precipitation, ETP: 

evapotranspiration, Slope: slope at the site. Outliers were defined in the boxplots as data points 

outside the fences (“whiskers”) of the boxplot (outside refers to 1.5 times the interquartile range 
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above the upper quartile and bellow the lower quartile). No outlier was removed from any 

analysis in our study, these outliers are only appearing visually in the boxplots. 

 

Looking at plant communities, we found that, in general, meadows and pastures were the most 

improved by adding SWAP [pF1.8-pF4.2] as a predictor (Fig. 4). Overall, meadows showed 

the best improvements, while alpine grasslands in rocky conditions benefitted the least from 

the addition of the different SWAP indices, i.e., Carex dry calcareous grasslands (Caricion 

firmae), Sesleria dry calcareous grasslands (Seslerion), and calcareous snow beds (Arabidion 

caeruleae). Among the screes, one of the plots belonging to the wet calcareous screes 

(Petasition paradoxi) showed the highest maxTSS increase by adding SWAP [pF1.8-pF4.2] 

(Fig. 6). 

 

 

Fig. 6 - Boxplot of maxTSS percentage change after adding the different SWAP ranges in 

relation to the alliances that were determined to be the average of the delta maxTSS values per 

plot. 
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Discussion 

In this study, we showed that using the weighted ensemble of small models (ESM) approach 

allowed predicting the SWHC over a large and complex mountain area, from models calibrated 

in a smaller subarea. In addition, it has been emphasized that including different predicted 

ranges of SWAP derived from SWHC as predictors in plant species distribution models (plant 

SDMS) could significantly improve the SDM predictive capacity for many mountain plant 

species. Moreover, when added to the set of basic topo-climatic predictors, SWAP [pF1.8-

pF4.2] allowed improving model performance. 

 

Ensemble of Small Models   

Only a few studies attempted to spatialize SWHC and used it subsequently in models of plant 

distributions (plant SDMs). For instance, Piedallu et al. (2011) investigated how the use of soil 

information from numerous forest plots achieved a fine-resolution SWHC map over a large 

area. To do this, they evaluated six classes of pedotransfer functions to convert the soil texture 

in SWHC; then, they used the results of the best pedotransfer functions to map the SWHC using 

ordinary kriging, which is a geostatistical method that is very different from the predictive 

approach used in this study. The authors employed a large set of data (> 100,000 sampled plots) 

to build their pedotransfer functions and to interpolate the obtained SWHC. This is an isolated 

example of a study where a very large dataset was available, but the majority of studies have to 

face a scarcity of SWHC measurements (and, in general, a scarcity of soil property 

measurements). In the latter cases, our methodology represents a pertinent solution to generalize 

SWHC spatially from only a few measurements. Moreover, it includes more environmental 

variables without the risk of overfitting the models (Breiner et al. 2015; Breiner et al. 2017; Di 

Cola et al. 2017.).  
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It is known that SWHC depends on organic matter content and soil texture (Weil & Brady 

2017). Organic matter content plays a role on the support of the soil structure and porosity and 

increases the water holding capacity of the soil (Brady & Weil 2010). Organic matter interacts 

with soil texture and, globally, the finer the grain size, the more water is retained by the soil. 

Thus, a fine texture avoids losing too much water through percolation due to gravity (Gobat, 

Aragno & Matthey 2004). Texture and organic matter are taken into account in the pedotransfer 

functions to obtain SWHC values (Bastet et al. 2008). Nevertheless, as SWHC is expected to 

be variably influenced by these two variables in different soils (Brady et al. 2008), the use of 

topographic predictors can help to refine their incorporation into the models or can be used as 

proxies for other factors that explain SWHC variation (e.g., soil depth, type of pedogenesis) 

that cannot be measured across large areas. Some studies even used only one predictor derived 

from the Landsat images and a digital elevation model (Blanco et al. 2018) to spatialize the soil 

water retention capacity. In our study, topographic variables were significantly selected as 

predictors for all pF values.  

Organic matter content was able to correctly capture the spatial variation of SWHC at pF=1.8, 

and the texture was useful for pF=2.7 and 3.7. Conversely, these variables were not able to 

reflect the variation of pF=4.2, for which only topographic variables were selected. This result 

suggests that organic matter is able to retain soil water when water is abundant but that when 

water becomes rare, texture and topography (as a surrogate of soil depth) have important roles; 

for that reason, topographic information is more useful for modelling soil response to dry 

conditions.  

 

Improvement of plant SDMs with SWAP  

In general, plant SDMs were significantly improved by the addition of SWAP calculated from 

the different SWHCs as a predictor. A greater improvement was given by SWAP [pF1.8- 
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pF4.2], which includes the largest ranges between the wilting point and the field capacity tested 

in our study. Hence, the better predictive power of SWAP [pF1.8- pF4.2], compared to that of 

the other range values, may correspond to the fact that this larger estimation of available water 

can discriminate better the establishment of plant populations. We can hypothesize that with 

lower pF values, water becomes more available to all plant species, but pF=1.8 appeared to be 

more discriminant than the pF classically used in the literature (i.e., pF=2.7) to define the 

amount of water available for plants.  

We highlighted that the available water started to be discriminant among species when the pF 

values exceeded 4.2. This finding might translate to responses that are modulated by various 

plant adaptations: sites with high SWAP (above these values) can probably be colonized easily 

by most species, with an advantage then given to the most competitive species in productive 

conditions (Grime’s C strategy; (Grime 2006)), whereas meso- or xerophilous species tend to 

find advantageous conditions in drier soils with lower SWAP values. In fact, most of the species 

showing the strongest improvement in adding SWAP have a C strategy, or more precisely, 

species living in deep soils (Table 2). It is important to note that plant species that have long 

roots could overpass the limitation of a low water holding capacity in the upper soil by reaching 

water in deeper parts of the soil. Thus, those species would not be influenced by the topsoil 

SWAP, as measured in this work. 

Looking at habitat types, plants inhabiting deeper soils and lowlands (e.g., Arrhenatherion, 

Mesobromion, Calthion, and Polygono-Trisetion) were better predicted by the addition of the 

SWAP in their SDMs, and conversely, alpine grasslands in rocky conditions (Caricion firmae, 

Seslerion, and Arabidion caeruleae) showed poor improvements, if any. 
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Species 
TSS percentage 
change 

 

Poa trivialis 22.25 

p
F2

.7
 –

 p
F4

.2
 

Hieracium lactucella 19.99 

Alchemilla xanthochlora 18.05 

Heracleum sphondylium 17.46 

Chaerophyllum hirsutum 13.96 

Crocus albiflorus 10.66 

Geranium sylvaticum 10.27 

Trifolium thalii 9.89 

Ranunculus nemorosus 9.87 

Galium anisophyllon 8.5 

Heracleum sphondylium 14.97 

 p
F2

.7
 –

 p
F3

.7
 

Hieracium lactucella 14.84 

Deschampsia cespitosa 11.99 

Ajuga reptans 11.99 

Poa trivialis 11.79 

Chaerophyllum hirsutum 11.49 

Trifolium thalii 9.57 

Trifolium pratense 9.57 

Crocus albiflorus 9.55 

Briza media 9.2 

Hieracium lactucella 40.11 

p
F1

.8
 –

 p
F4

.2
 

Alchemilla xanthochlora 25.15 

Crocus albiflorus 16.98 

Carum carvi 16.66 

Hypericum maculatum 14.42 

Carex flacca 14.06 

Anthoxanthum odoratum 12.28 

Trifolium thalii 11.34 

Trifolium pratense 10.45 

Poa trivialis 10.01 

 

Tab. 2 – List of the 10 species that had the greatest improvement of their maxTSS by adding 

one of the SWAP variables. 

 

In their review of which predictors are necessary, available and used to model plant species 

distributions, Mod et al. (2016) found only 15 out of 200 studies that incorporated SWAP or 

soil moisture in SDMs, and only three of these focused on mountain regions. Mellert et al. 
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(2011) showed the usefulness of adding available water capacity even at a coarse resolution 

(1:200,000) to model tree species distributions in the Bavarian Alps. Boulangeat, Gravel and 

Thuiller (2012) also incorporated a coarse estimate of soil water capacity extracted from a 1 km 

resolution European soil database to model plant species distributions. Gallien et al. (2012) did 

the same with a water holding capacity that originated from the Aurelhy meteorological model 

(Bénichou & Le Breton 1987). In this study, we observed the same trend in the improvement 

of plant distribution models at a much higher resolution and with precise SWHC measurements 

to calculate the SWAP indices. We could infer that SWAP influences the vegetation at both a 

small and large scale and that some SWAP ranges (e.g., [pF1.8-pF4.2]) have a greater 

predictive power than others.  

SWAP can convey into the plant models both direct and indirect information about water 

availability and its effect on plant growth and survival, which would be lacking in models based 

on topo-climatic variables only. First, soil water availability has a direct effect on plant 

germination and establishment and, thus, on plant distribution. It has been shown that drought 

is one of the main seedling mortality causes in alpine environments (Venn & Morgan 2009). 

However, Körner and Life (2003) showed that a low soil water content may limit nutrient 

cycling and bacterial activity, which could in turn reduce nutrient supply to plants. In that sense, 

SWAP plays an indirect role on plant species distributions through nutrient availability, as the 

water content not only depends on soil texture and OM proportions, such as nutrients, but it 

also governs the exchanges between plants and nutrients through the soil solution quality 

(Doran & Parkin 1999).  

Soil moisture measured in the field has also been proved to be an important predictor in plant 

SDMs, but such direct measurements of soil wetness have a large temporal variability (le Roux, 

Aalto & Luoto 2013). In contrast, SWAP is mainly determined by soil texture and, thus, is more 

stable throughout time (Gobat, Aragno & Matthey 2004) and, therefore, likely better represents 
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long-term plant species distribution—i.e., the soil water supply relationship. We showed the 

importance of combining SWAP values with precipitations (which represent the total water 

entering the system) in plant species distribution models. These indices with a physiological 

significance could be used to characterize water availability for plants over large areas, thereby 

improving plant distribution models and their potential productivity or diversity. This 

knowledge is particularly important in the climate change context to identify and monitor 

potential impacts on vegetation. 

 

Conclusions, limitation, and perspectives 

SWHC is a quite complex analysis to carry out, especially costly and time consuming, which 

explains the low sample size of SWHC measurements. It therefore also explains why this 

variable is still very rarely included in spatial modelling studies of plant distributions. An 

important side aspect of this study was to use a newly developed approach  ensemble of small 

models (see Breiner et al. (2015); Breiner et al. (2017) here using an ensemble of bivariate 

models)  that can deal with very low sample sizes for the response variable (here SWHC 

modelled from 24 locations) while still accounting for multiple predictors in the model and 

allowing spatial predictions. In this regard, we feel that our approach remains a very valuable 

first step in the right direction, by proposing such methodology to ‘spatialize’ variables that are 

difficult to measure and thus have usually low sample size. The proposed ESM approach could 

therefore also be applied to other complex soil variables for which few data are available.  

We used a weighted ensemble of small bivariate models to circumvent the small number of pF 

values that were measured in the field and prevented the inclusion of more than two variables 

at a time in a single model. Because we already obtained pertinent results, it is likely that with 

a higher sample size, we would probably have obtained better predictions. However, a trade-

off between costly field measurements and gains in model quality should be investigated to 
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obtain the minimum number of additional field samples required to obtain reliable models. In 

our case, we analysed four different pF variables to assess which one could bring more 

information to our models. For future studies, we would suggest focusing on the few most 

predictive pFs identified in this study, such as pF=1.8 and pF=4.2, and collect many more 

samples in the geographic space to increase model quality. Moreover, sampling shallow soils 

with too high lithological content proved very difficult or even impossible in some cases. Thus, 

as these types of soil were de facto excluded from the analysis, we must be careful when 

applying our model to areas that are characterized by such types of soils. This consideration 

could explain the high variability in the model outputs of scree habitat types, for instance. 

In this study we only considered the 15 cm top soil, while being aware that many plants can 

extract water from much deeper than 15 cm in the soil profile, especially at lower elevations. 

However, in our case of subalpine/alpine high-elevation plant communities, and although the 

description of soil profiles at each of the 24 sampling locations indicated rooting depth in the 

range 0 to 60 cm , the highest root density was always observed in the 0-15 cm layer (Zingg 

2015). In profiles with deep rooting, there was no sharp textural discontinuity between the 0-

15 cm and 15+ cm layers, the texture being one of the main determinant of SWHC. Therefore, 

if texture is homogeneous through the soil profile, we expected that SWHC should not be 

completely different near the surface and at greater depth. As a result, we choose to use 15 cm 

soil cores as an indicator of water holding conditions at each site. Ideally, one should consider 

for each plant species a soil sample collected at different depths depending on the length of its 

root network. This would however be very difficult in practice and time consuming, also 

reducing our ability to make spatial predictions. Moreover, the upper soil is the most responsive 

part to fluctuations of water availability, the first to dry and the first to be wet after short rains. 

It also plays an essential role in plant nutrition, with nutrient availability strongly declining 

when dry. For all these reasons, our soil samples confined to the upper 15 cm of soil should 
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remain a reasonable proxy of available water and a good tradeoff between the time spent in the 

lab to perform analyses and the ability of a measurement to capture information for both shallow 

rooting species and deeper rooting plant species.  

In this study we used topographic variables and soil properties as predictors of different pF 

variables, which represent soil moisture content at different standardized pressures in laboratory 

conditions and therefore serve as estimates of the SWHC. It is expected that SWHC is a direct 

representation of soil porosity parameters (mainly soil organic matter and soil texture), which 

are then used to fit pedotransfer functions. We supposed that topographic variables could 

indirectly predict SWHC values. Our study interestingly revealed that pF=4.2 is indeed more 

influenced by topographic features than by organic matter or texture measured in the field. 

However, being based on a correlative approach and a limited number of samples, our results 

cannot establish a formal causal link between topography and SWHC. We can presume that 

topographic features act as a surrogate of texture at a larger scale that considers neighbourhood 

features rather than a precise point data. Combining pF differences with precipitations allowed 

for the estimation of soil water availability for plants, but similarly, with such a correlative 

approach, we cannot establish a formal causal link between SWAP and plants species 

distributions. Complementary field experiments, for instance, those deployed along a gradient 

of SWHC or SWAP predictions such as in our models, would be necessary to establish such a 

causal link between either the topography and SWHC or between the SWAP and plants 

distributions. An explanation we can propose for the link between SWHC and topography 

observed here is the strong glacial history of the region (Joerin, Stocker & Schlüchter 2006). 

Moraines and loess have been deposited everywhere during the glacial periods. Wind erosion 

then displaced the fine elements, which are important for water retention, from sloping and 

convex surfaces to concave surfaces. 
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We also showed that SWHC models and derived SWAP indices combined with precipitation 

improved the predictions of grassland plant species distributions in the Western Swiss Alps, 

across a large range of elevations. It would be of interest to repeat this study in other regions, 

using other topographic, climate, and soil conditions, to test whether similar results can be 

obtained and to what extent the SWHC models and SWAP indices can be transferred to other 

areas and different environments.  
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Supplementary Information 

 

Fig. SI1 – Study area and location of plots.  

 

Plot 
OM 

[%] 

TOC 

[%] 

Clay 

[%] 

Silt 

[%] 

Sand 

[%] 

pF 1.8 

[cm3/cm3] 

pF 2.7 

[cm3/cm3] 

pF 3.7 

[cm3/cm3] 

pF 4.2 

[cm3/cm3] 

Soil type according 

to the World 

Reference Base 

(IUSS Working 

Group WRB, 2015) 

80 4.8 2.8 8.3 66.8 25.0 28.6 25.5 20.9 6.9 Dystric Cambisol 

95 22.0 12.8 9.1 68.9 22.0 33.7 30.0 28.2 12.8 Dystric Cambisol 

141 10.4 6.0 10.3 59.1 30.5 33.2 28.6 27.0 13.7 Dystric Cambisol 

197 20.8 12.0 11.6 73.2 15.2 27.6 25.6 24.4 10.9 Dystric Cambisol 

199 17.9 10.4 10.9 63.3 25.8 24.6 21.9 20.4 10.7 Eutric Leptosol 

245 10.5 6.1 10.4 71.0 18.6 33.9 29.7 27.7 17.4 Dystric Cambisol 

304 11.7 6.8 13.3 54.0 32.7 27.1 24.1 22.6 11.1 Eutric Cambisol 

363 68.4 39.7 13.4 70.5 16.1 18.6 16.8 16.0 7.3 
Hyperdystric 

Cambisol 

367 33.6 19.5 17.9 65.7 16.4 24.2 22.1 20.8 13.3 Eutric Cambisol 

370 12.8 7.4 15.1 65.7 19.2 30.0 26.6 24.5 14.6 
Hypereutric 

Cambisol 

403 1.8 1.0 2.9 21.8 75.3 35.2 32.4 28.7 10.9 Orsteinic Podzol 

457 43.1 25.0 12.2 54.4 33.3 23.2 20.5 19.1 9.2 Luvic Cambisol 

555 25.5 14.8 21.8 52.9 25.4 29.6 26.4 23.8 15.3 Dystric Cambisol 
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565 28.4 16.5 18.9 71.8 9.3 28.0 25.1 NA 17.8 
Stagnic Dystric 

Cambisol 

572 41.8 24.2 14.7 68.9 16.4 17.4 15.9 NA 11.5 
Endogleyic 

Stagnosol 

575 16.6 9.6 21.1 65.6 13.3 28.3 25.3 23.2 15.4 
Hypereutric 

Cambisol 

577 18.8 10.9 17.8 71.7 10.5 35.9 32.7 29.8 23.6 Stagnosol  

578 5.8 3.3 21.7 67.3 11.0 34.3 31.2 27.2 19.8 Dystric Cambisol 

609 30.4 17.6 12.4 64.9 22.7 22.7 21.0 20.3 NA Dystric Cambisol 

611 4.1 2.4 7.3 434.0 48.7 31.2 26.1 19.4 6.4 
Hyperdystric 

Cambisol 

612 19.0 11.0 10.4 39.9 49.7 30.4 27.4 24.4 14.2 Dystric Cambisol 

751 13.3 7.7 16.1 56.6 27.3 29.5 26.3 24.3 16.6 
Hypereutric 

Cambisol 

788 9.8 5.7 19.1 72.0 8.8 33.2 29.8 NA 23.2 
Hypereutric 

Cambisol 

797 15.6 9.1 14.3 48.2 37.5 26.0 22.4 NA 17.5 Dystric Cambisol 

 

Tab. SI 1  – Soil properties measured  

 

 

Fig. SI2 – Soil water holding capacity values measured at different pF. For plots n° 14, 15, 23 no 

measurements were available for pF3.7. 

 

Table SI2 – Means and standard deviations of Total Organic Carbon (TOC) content, and sand, silt, 

and clay proportions in the NAA sector (24 plots) and VA sector (256 plots).  

 TOC clay silt sand 

Mean NAA sector 11.77 13.7968189 60.76 25.44 

Sd NAA sector 8.77 4.84376544 12.51 15.44 
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Mean VA sector 22.36 20.7924357 57.49 21.71 

SD VA sector 11.73 5.83003459 6.65 9.41 

 

 

 

Fig. SI3 – Boxplot of TSS values for each set of models. 

 

Table SI3 – Evaluation of plants species distribution models for the five sets of predictors through 

TSS (mean). 

Model Mean TSS 

TopoClim+[pF1.8-pF4.2] 0.676 

TopoClim+[pF2.7-3.7] 0.667 

TopoClim+[pF2.7-pF4.2] 0.661 

TopoClim+pF-random 0.662 

TopoClim 0.665 
 

 

Table SI4 – Paired t-test between the Topoclim set of model and the TopoClim+one of the 3 different 

ranges of SWAP. The t-statistic, df and p-value of each test are shown.  

 t-statistic df p-value 

TopoClim+[pF1.8-pF4.2] -1.8623 70 0.06675 

TopoClim+[pF2.7-3.7] -0.39578 70 0.6935 

TopoClim+[pF2.7-pF4.2] 0.70965 70 0.4803 

 

 


