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Abstract

Purpose—To evaluate the technical feasibility of automatically removing the ribs and spine from 

C-arm cone-beam computed tomography (CBCT) images acquired during transcatheter arterial 

chemoembolization (TACE).

Material and methods—Fifty-eight patients (45.8 ± 5.0 years) with unresectable hepatocellular 

carcinoma (HCC) underwent transcatheter arterial chemoembolization and had intraprocedural 

CBCT imaging. Automatic bone removal was performed using model-based segmentation of the 

ventral cavity. Two interventional radiologists independently evaluated the performance of bone 

removal, remaining soft tissue retention, and general usability (where both the bone is 

appropriately removed while retaining soft tissue) for 3D TACE planning on a four-level 

(complete/excellent, adequate/good, incomplete/questionable, insufficient/bad) score. The 

proportion of inter-reader agreement was calculated.

Results—For ribs and spine removal, 98.3–100% and 100% of cases showed complete or 

adequate performance, respectively. In 96.6% of the cases, soft tissue was at least adequately 

retained. 91.3–93.1% of the cases demonstrated good or excellent general usability for TACE 
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planning. Satisfactory inter-reader agreement proportion was achieved in ribs (93.1%) and spine 

removal (89.7%), soft tissue retention (84.5%), and general usability for TACE planning (72.4%).

Conclusion—Intraprocedural automatic bone removal on CBCT images is technically feasible 

and offers good removal of ribs and spine while preserving soft tissue. Its clinical value needs 

further assessment.
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Introduction

Bony structures within the field of view in intra-procedurally acquired C-arm cone-beam CT 

(CBCT) imaging, in particular when 3D maximum intensity projection (MIP) 

reconstructions are used represent a challenge for interventional radiologists when 

performing vascular interventions in soft tissues close to the skeleton. As such, intra-

procedural visualization of small vascular structures close to the spinal column, pelvis or the 

rib cage may impede correct catheter placement. One such procedure is transcatheter arterial 

chemoembolization (TACE) for the treatment of unresectable hepatocellular carcinoma 

(HCC) tumors. Generally, TACE can be performed in either a selective or non-selective 

(lobar or segmental catheterization) intra-arterial catheterization manner. While the non-

selective manner is workflow-efficient, the selective method, and especially superselective 

(catheterization up to the sole vessel feeding the tumor) TACE, has the benefit of avoiding 

damage to the nontumoral liver parenchyma and, in comparison to nonselective TACE, has 

been shown to have better short-term effects and increased long-term survival (1–3). The 

proper identification and catheterization of tumor-feeding arteries is very important for 

successful superselective embolization, which was previously achieved using two-

dimensional (2D) imaging only, specifically fluoroscopy and digital subtraction angiography 

(DSA). However, some tumors and their feeding arteries can be difficult to detect, identify 

and catheterize using 2D projection imaging (4). Possible reasons are overlapping blood 

vessels, insufficient tumor vascularity, small tumors, low dynamic range, and reduced 

hypervascularity after several TACE procedures. This can lead to misidentification of the 

feeding artery and incorrect or suboptimal catheterization (3,5). A recent solution is the use 

of intraprocedural CBCT imaging. Compared with 2D standard angiography and guidance, 

CBCT has shown several advantages: It provides more information on tumor detection and 

localization, intraprocedural 3D guidance for catheter/micro-catheter positioning, and 

intraprocedural assessment of embolization success (5–10). As such, the use of CBCT 

during TACE has been shown to improve survival (11). It has been suggested that the 3D 

CBCT guidance planning workflow during TACE should include a dual phase CBCT scan, 

tumor segmentation, bone (ribs and spine) removal and feeding artery identification (12,13). 

TACE with 3D CBCT guidance technology can help the interventional radiologist to find 

tumor feeding arteries and thus catheterize them more easily (13–15). However, surrounding 

bone (ribs and spine) can obscure the vessels, making visualization difficult. Therefore, 

manual bone masking is often necessary to achieve an unobstructed visualization of the 
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vessel (14). However, this manual process adds another layer of user interaction and makes 

the workflow of TACE planning less time-efficient (16). To address this limitation, we 

developed a fully automatic bone removal software as described in previous work (17).The 

purpose of our study is to assess the technical feasibility of automatic bone removal for 3D 

TACE planning.

Material and methods

Patient selection

This was a two-institution retrospective analysis of prospectively collected data. The Health 

Insurance Portability and Accountability Act (HIPPA) compliant and Institutional Review 

Board (IRB) approved. All patients were provided with informed consent before inclusion 

into the study. The diagnosis of HCC was confirmed by biopsy or by typical radiologic 

findings in addition to an increased serum alpha-fetoprotein level [>200 ng/ml]. All patients 

were treated for unresectable HCC after discussion at the institution’s multidisciplinary liver 

conference. Eligibility criteria for TACE were as follows: uni- or multifocal HCC, Child-

Pugh classification A or B, Eastern Cooperative Oncology Group performance status 0 or 1, 

absence or traces of ascites; albumin >2.5 g/dl; alanine aminotransferase and aspartate 

aminotransferase<5 times the upper normal limit; total serum bilirubin<3.0 mg/dl; serum 

creatinine<2.0 mg/dl; platelet count >50,000/mm3; international normalized ratio (INR) ≤ 

1.5; no contraindication to iodinated contrast. Exclusion criteria were tumor burden >70%, 

presence of extrahepatic disease, or complete tumor occlusion of portal vein, or no 

intraprocedural CBCT imaging. Patients receiving at least one dual phase intra-procedural 

CBCT scan were included in this study.

From August 2011 to September 2012, 38 patients from the USA and 20 patients from 

France underwent segmental or subsegmental TACE. Patient characteristics are described in 

Table 1. In this study, all 58 patients for automatic bone removal assessment met the same 

inclusion and exclusion criteria for TACE. CBCT acquisitions were performed in 13 cases at 

the level of the celiac artery, 11 at the level of the common hepatic artery, 11 at the level of 

the proper hepatic artery, 12 at the level of the right hepatic artery, and 11 at the level of the 

left artery.

Intraprocedural dual phase CBCT technique

All patients underwent C-arm dual-phase CBCT imaging during hepatic arteriography 

before TACE therapy. CBCT was performed using a commercially available angiographic 

system (Allura Xper FD20, Philips Healthcare, Best, The Netherlands) with the XperCT 

option, enabling CBCT acquisition and volumetric image reconstruction (Feldkamp 

backprojection). For each CBCT scan, the area of interest was positioned in the system 

center and in approximately 5s, 312 projection images (30frames/s) were acquired with the 

motorized C-arm covering a 200° clockwise arc at a 40°/s rotation speed under a fixed 120-

kVp, 50-mA, 3-ms setting. As the images were being acquired, the projections were 

transferred to the reconstruction computer. The 2D projection images were reconstructed 

using Feldkamp backprojection into 3D volumetric images (17–19) with an isotropic 

resolution of 0.65 mm for a 250 × 250 × 194 mm3 field of view (FOV) (matrix size 384 × 
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384 × 298). The dual-phase CBCT prototype uses a modified XperCT protocol for the 

acquisition of two sequential, back-to-back CBCT scans, so both arterial and delayed arterial 

phases are captured using only one contrast injection (20). In this study, the two scans were 

triggered at three and 28 seconds after a selective single injection of undiluted contrast 

medium. A 5F SIM-1 catheter (Angiodynamics, Latham, NY, USA) was used if the injection 

location was from the celiac artery or the common hepatic artery or a 3F Renegade High-Flo 

microcatheter (Boston Scientific, Natick, MA, USA) was used if the injection location was 

from the proper, right, or left hepatic artery. The contrast injection protocol was as follows: 

20 ml at 2 ml/s for the celiac artery and the common hepatic artery; 15 ml at 1.5 ml/s for the 

right or left hepatic artery (Oxilan, Guerbet LLC, Bloomington, IN, USA). Bone removal 

was evaluated on the arterial phase volume only, since this is used for feeding arteries 

visualization and detection.

Automatic bone removal

Automatic bone removal was performed using prototype software which uses a model-based 

segmentation of the ventral cavity (17). Briefly, a surface model of the ventral cavity which 

delineates the boundary between the interior organs and the rib cage and spine is used (21). 

In the anterior abdominal area, the model is suitably extended downward from the rib cage, 

including all interior organs but excluding the spine. The model is automatically adapted to a 

specific target image, using a shape-constrained deformable model with learned boundary 

features (22,23). Boundary features are selected from a set of candidate features and trained 

to optimize robustness and accuracy of the model adaptation. This training was done by 

providing ground truth through manual segmentation of 30 cases by a radiologist with eight 

years of experience who did not participate in the TACE procedure, as published previously 

(17). For this study, another 58 cases were obtained from the same institutions. The manual 

portion of the study was for creating a trained segmentation model from which the automatic 

segmentation could then be applied to the study patients. Initialization of the model is 

performed by automatic detection of the spinal column and corresponding positioning and 

bending of the model. This is followed by the deformable model adaptation. In previous 

work, it was shown that the automatic segmentation of the ventral cavity can achieve an 

average mesh-to-mesh distance of 2.7 ± 5.4 mm when compared to manual segmentation 

(17). After adaptation, the model exterior is masked to achieve bone removal. In other 

words, only the interior of the ventral cavity is retained for visualization, masking the bones 

outside of it. The software works automatically (<1 sec) and eliminates the need for manual 

interaction.

Assessment

For each case, images before and after automatic bone removal were visualized side-by-side. 

Image properties were assessed by two interventional radiologists (Reader1: five years of 

experience and Reader2: nine years pf experience) that did not participate in the TACE 

procedure. Images after bone removal (ribs and spine) were assessed on a four-level score, 

using the questionnaire shown in Table 2. The different grades of general usability for TACE 

where classified from “excellent” to “bad”, which is described in detail below. For bone 

removal, “complete” represented no remaining bones (Figure 1A–D; Figure 2A1–A2); 

“adequate” indicated a small amount of remainders that obstructed non-relevant vasculature 
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in a limited view range (Figure 2B1–B2); “incomplete” indicated a medium amount of 

remainders that obstructed tumor feeding arteries in a limited view range, and “insufficient” 

indicated substantial remainders that obstructed a substantial portion of the tumor-feeding 

vasculature. We used the parameter of soft tissue retention to assess the effect of bone 

removal on unintentional removal of soft tissue. For soft tissue retention (i.e. healthy liver 

tissue, vessels and tumor), “complete” indicated no soft tissue was unintentionally removed; 

“adequate” indicated no tumor or vessel was removed and only minimal removal of liver 

tissue; “incomplete” indicated no tumor or vessel was removed and a moderate removal of 

liver tissue or minimal removal of liver tissue which is adjacent to tumor (Figure 2C1–C2), 

and “insufficient” indicated removal of vessels or tumor, irrespective of liver tissue. For 

general usability in TACE planning, it indicated the benefit of the CBCT images after bone 

removal while retaining soft tissue information for 3D TACE planning. A four-level scoring 

of general usability after bone removal for 3D TACE planning is shown in Table 3 and 

examples of the different grades from “excellent” to “bad” are described in detail in Figure 

2. If general usability for TACE planning after bone removal was questionable or bad, the 

readers were further asked to assess general image quality to find the potential factors that 

affect image quality apart from automatic bone removal.

Statistics

To better understand the results, a conversion was performed to allow binary classification 

into “satisfactory” and “unsatisfactory”, “complete” and “adequate” or “excellent” and 

“good” were combined into “satisfactory”; “incomplete” and “insufficient” or 

“questionable” and “bad” were combined into “unsatisfactory”. The proportion of 

“satisfactory” and “unsatisfactory” responses was calculated for each reader and parameter. 

The proportion of inter-reader agreement in a four-level score and a combined two-level 

score were also calculated for each parameter. All data analysis was performed with STATA 

Statistical Software, Release 11.0 (College Station, TX, USA).

Results

Results of bone removal for 3D TACE planning

For ribs and spine removal, 98.3–100% of cases and 100% of cases showed complete or 

adequate removal, respectively. 96.6% of cases showed at least adequate retention of the soft 

tissue. 91.3–93.1% of cases obtained at least good performance in general usability for 

TACE planning after bone removal (Table 4). The remaining 6.9–8.7% of cases with 

questionable or bad scores included those with unsatisfactory ribs removal (one case, 

Reader2), soft tissue removal (two cases, Reader 1&2), sub-optimal image quality due to 

inadequate execution of acquisition (e.g. delay in image acquisition after contrast injection) 

and/or contrast injection protocols (2 cases, Reader1&2). One case was found (by Reader 1) 

for which a small part of the liver was not included in the CBCT; however, this did not affect 

the image usability for TACE planning. The limitation of a small field of view in CBCT 

imaging could be solved using a liver-centered CBCT acquisition to be able to image the 

entire liver (24). Example results from bone removal are shown in Figure 1.
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When using a four-level score, satisfactory inter-reader agreement was achieved in ribs and 

spine removal, soft tissue retention, and general usability after bone removal for TACE 

planning. 93.1% inter-reader agreement was obtained in ribs removal, 89.7% inter-reader 

agreement was obtained in spine removal, 84.5% inter-reader agreement was obtained in soft 

tissue retention and 72.4% inter-reader agreement was obtained in general usability after 

bone removal for TACE planning.

Using a combined two-level score, a more satisfactory inter-reader agreement was achieved 

in the above four parameters. 98.3% inter-reader agreement was obtained in rib removal, 

100% inter-reader agreement was obtained in spine removal, 100% inter-reader agreement 

was obtained in soft tissue retention and 100% inter-reader agreement was obtained in 

general usability after bone removal for TACE planning.

Discussion

The main findings of our study are that there is a satisfactory removal of ribs and spine 

(>98%), while preserving soft tissue (96.6%) when using the automatic bone removal 

software. A high degree of general usability was achieved (>91.3%) for 3D TACE guidance. 

In addition, a satisfactory inter-reader agreement proportion for all parameters using a four-

level score (>70%) was found.

Superselective TACE has been shown to be beneficial for patients with unresectable HCC 

(1–3,5). TACE with CBCT assistance has demonstrated several distinct advantages over 2D 

imaging including the identification and visualization of the tumor-feeding artery, which can 

be especially challenging for small tumors and for reduced hypervascularity after several 

TACE sessions (8,15,16,23,25–26). 3D guidance technology that uses CBCT is capable of 

automatic feeding artery identification and 3D guidance (14–16). 3D CBCT guidance 

workflow during TACE was suggested to include dual phase CBCT imaging, tumor 

segmentation, manual bone removal and feeding artery identification (12,13). The whole 

process usually takes several minutes and requires an involved manual interaction. Thus, it 

has been challenging to use 3D image guidance routinely, especially when compared to real-

time 2D imaging, even with several methods that can accelerate the workflow through the 

automatic identification of tumor-feeding arteries (5,14–16,27). Furthermore, bone (ribs and 

spine) that obstructs the visualization of the tumor and its feeding vessels is another factor 

that affects routine use of intraprocedural CBCT guidance. Removing bone can improve the 

visibility of vessels and benefit 3D guidance, especially when the tumor is small, located 

peripherally, and needs superselective TACE. Bone masking is currently done manually. 

However, this manual process adds another layer of user interaction and makes the overall 

process of identifying the feeding artery and TACE planning workflow inefficient. A number 

of automatic bone segmentation methods have been described in the past. However, many of 

them use gray-value-based thresholding which could also remove contrast-enhanced vessels, 

reducing the general usability for TACE planning (28,29). Other methods rely on watershed 

segmentation with manual corrections (30,31). For CT angiography, special acquisition 

protocols are used, such as performing both a contrast and a non-contrast scan with 

subsequent subtraction or using a dual-energy acquisition for bone separation (32–35). Such 
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methods cannot be applied with the present CBCT imaging systems and acquisition 

protocols. Furthermore, this increases the amount of radiation exposure of the patient.

There exist model-based methods for segmentation of certain bone structures, such as the rib 

cage and spine with great accuracy (36–37). While such methods could in principle be used 

for bone removal, what is required is not a complete and accurate delineation of the bones, 

but just their removal while retaining the soft tissue anatomy of interest. Furthermore, these 

methods have a computation time penalty, on the order of minutes, and thus do not 

contribute much to workflow efficiency. The presented method is the leading solution 

because it is conceptually simple and thus is computationally efficient, and robust in the 

terms of anatomical variation, especially in the presence of contrast agent filled vessels. 

More importantly, the underlying technology of the presented method is easily translatable 

from transcatheter vascular interventions to other regions of the body such as the pelvis, 

skull base or the spinal column.

The technical performance of the bone removal method used in our study was evaluated in a 

previous study on 30 patient cases by quantitatively comparing its accuracy to manual 

segmentation (17). The main finding was that the mean mesh-to-mesh distance between 

manual and automatic bone segmentation was 2.7 mm, with best performance in the spine 

area (1.1 mm) and worst in the anterior portion of the CBCT volumes (4.4 mm). Our study 

focused on the technical feasibility of applying such software and it was found to have 

satisfactory bone removal performance while retaining soft tissue. A satisfactory inter-reader 

agreement proportion was obtained for all parameters when using both a four-level score and 

a combined two-level score. When using a combined two-level score, more satisfactory 

inter-reader agreement was achieved than when using a four-level score. This can be 

attributed to the following two factors: First, the categories were qualitative, not quantitative. 

Second, the different scores between Reader1 and Reader2 for the same image usually 

occurred between “excellent” and “good”, or “questionable” and “bad”, not between “good” 

and “questionable”. For example, in some images, Reader1 gave an “excellent” score 

whereas Reader2 gave a “good” score. Satisfactory automatic bone removal performance 

and inter-user agreement shows its feasibility and repeatability in different readers. The 

study results demonstrate that automatic software is technically feasible, and it could 

optimize the workflow of 3D CBCT guidance for TACE.

Several factors affect general usability such as the dual phase CBCT protocol and the 

performance of automatic bone removal. In this study, there was a high degree (91.3–93.1%) 

of general usability for TACE planning with both readers. However, Reader 1 reported 6.9% 

and Reader 2 reported 8.7% of the cases in our study could not be visualized well and were 

judged as unusable for 3D TACE planning. Sub-optimal image acquisition and/or contrast 

injection protocols were the major source of poor image quality, which is independent of 

automatic bone removal.

There were some limitations in this study. First, the parameters were subjective (qualitative) 

and not quantitative, but this is an inherent limitation of reading studies. Second, the 

processing was done offline and retrospectively. Utilization of the method during a 
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prospective study would be beneficial. However, the scope of our study as the first step in 

introducing this method was to show feasibility.

Conclusion

Intraprocedural automatic bone removal on CBCT images is technically feasible, workflow 

efficient, and offers good removal of ribs and spine while preserving soft tissue in the 

majority of patients. Its clinical value needs further assessment in a prospective study to 

evaluate how this technique might alter the management/change in catheter position.
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Figure 1. 
Example case before (A and C) and after (B and D) complete bone removal shown as a 

volume rendering at two orientations (top and bottom rows).
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Figure 2. 
Examples of before and after bone removal with different grades from “Excellent” to “Bad”. 

The pointers refer to notable image visualization features of the spine (*), ribs (arrow), and 

soft tissue (triangle).
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Table 1

Baseline patient characteristics.

Parameter Value

No. of patients 58

  Age(y)* 45.8 ± 5.0

Sex

  Male 35

  Female 23

Etiology

  Hepatitis B virus 19

  Hepatitis C virus 28

  Other 11

Diagnosis

  Clinical 13

  Pathological 45

Disease pattern

  Unifocal 14

  Bifocal 14

  Multifocal 30

Child-Pugh class

  A 32

  B 26

Barcelona Clinic Liver Cancer stage

  A 17

  B 41

ECOG

  0 25

  1 33

Position of catheter

  Celiac artery 13

  Common hepatic artery 11

  Proper hepatic artery 11

  Right/left hepatic artery 12/11

*Data are expressed as means ± standard deviations
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Table 2

Questionnaire for readers on scoring the image quality on a four-level scale (mark respective score).

Complete Adequate Incomplete Insufficient

How much of the ribs was removed

How much of the spine was removed

Which amount of relevant soft tissue is
  retained after bone removal

Excellent Good Questionable Bad

General usability after bone removal for TACE planning
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