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In 1920, during a meeting of the New York Pathological Society, 
James Ewing described an unusual tumor in a 14-year-old girl as a “diffuse 
endothelioma of bone.”1 The tumor had initially been diagnosed as an osteo-

sarcoma, but its architecture, the morphologic features of its cells, and its marked 
sensitivity to radiation therapy led Ewing to consider it as a distinct entity, going 
so far as to hypothesize an endothelial-cell origin.1 He later reported similar tu-
mors in other adolescents, which pathologists variously referred to as Ewing’s 
sarcoma, Askin’s tumor, and peripheral primitive neuroectodermal tumor, on the 
basis of their shared morphologic and immunohistochemical features. The first 
landmark discovery toward unequivocally diagnosing Ewing’s sarcoma was made 
more than 70 years later, when the most frequent of the chromosomal transloca-
tions that define the tumor was identified.2 A century after Ewing’s seminal ob-
servation, the cancer that bears his name has become a paradigm for solid-tumor 
development after a single genetic rearrangement.

In this review, we discuss the clinical features and pathogenesis of Ewing’s 
sarcoma, along with current and experimental therapeutic approaches. From the 
mechanistic point of view, we review the way in which a unique chromosomal 
translocation harnesses the epigenetic machinery of permissive cells to rewire 
their transcriptome and initiate a heterogeneous cancer that can elude even the 
most intensive conventional therapy available.

Incidence a nd Clinic a l Fe at ur es

An aggressive bone and soft-tissue cancer, Ewing’s sarcoma arises predominantly 
in children and young adults, with an incidence of 1 case per 1.5 million popula-
tion, a frequency among persons of European ancestry that is almost 10 times as 
high as the frequency among those of African ancestry, a slight predilection for 
males (ratio of cases among males to cases among females, 1.6:1.0), and a peak 
incidence at 15 years of age.3 Ewing’s sarcoma accounts for about 2% of cancers 
in children, is the second most common bone cancer in children, and can occur 
in any part of the body but most commonly involves the pelvis and proximal long 
bones.3 In approximately 20% of patients, tumors are extraosseous and can arise 
in numerous organs (Fig.  1); extraosseous Ewing’s sarcoma occurs much more 
frequently in adults than in children.4,5 The discovery of an undifferentiated round-
cell tumor in the soft tissues of an adult warrants inclusion of Ewing’s sarcoma in 
the differential diagnosis.

The clinical features of Ewing’s sarcoma are largely nonspecific. Patients may 
report localized pain, which may be accompanied by swelling that can be mis-
taken for a minor injury.6 The pain is often mild, sometimes increasing at night 
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or after exercise, although some patients do not 
have pain at all. In the absence of pain, the only 
sign may be the fortuitous palpation of a firm 
mass. Nevertheless, a pathological fracture is 
reported in 10 to 15% of cases, and in cases of 
advanced disease, nonspecific constitutive symp-
toms may appear, including fever, night sweats, 
fatigue, and weight loss.6 Blood tests may show 
elevated levels of nonspecific markers of inflam-
mation and bone remodeling, including alkaline 
phosphatase, which are generally not informa-
tive; however, an elevated serum lactate dehydro-
genase level is reported to correlate with the 

tumor burden and to have diagnostic and prog-
nostic value.7

Radiologic analysis is usually more strongly 
suggestive, with the typical multiple, confluent, 
lytic bone lesions giving rise to images described 
as “moth eaten” on standard films. Subperiosteal 
growth may translate into two other classic im-
ages — Codman’s triangle and the “onion peel” 
— which, respectively, represent the displaced 
periosteum and the resulting proliferative reac-
tion (Fig. 1). Metastases and response to treatment 
are typically monitored by means of computed 
tomography or magnetic resonance imaging.

Figure 1. Clinical Features of Ewing’s Sarcoma.

The sites where primary Ewing’s sarcoma develops are shown, along with radiologic patterns, histologic features (hematoxylin and eosin; 
blue cells appear purple here), and the most common metastatic sites.
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Diagnosis relies on histologic and molecular 
analysis of biopsy specimens or surgically re-
sected tumor tissue. Histologic examination 
typically reveals sheets of small, round, blue 
cells with a prominent nucleus and scant cyto-
plasm (Fig. 1). These features, which reflect 
impaired differentiation, are common to several 
cancers, including neuroblastoma, desmoplastic 
small round-cell tumor (DSRCT), alveolar rhab-
domyosarcoma, peripheral neuroectodermal tu-
mor, non-Hodgkin’s lymphoma, acute lympho-
blastic leukemia, poorly differentiated synovial 
sarcoma, and rare “Ewing-like” tumors that bear 
distinct genetic signatures. Immunohistochemi-
cal findings, although not specific, include strong 
membrane expression of CD99 (also called MIC2), 
along with frequent expression of CD56 and 
synaptophysin; the absence of CD99 expression 

virtually rules out the diagnosis of Ewing’s sar-
coma.8,9 A definitive diagnosis relies on the 
identification of signature chromosomal trans-
locations (discussed below)10,11 by means of ei-
ther in situ hybridization or the more rapid 
quantitative polymerase chain reaction.

By far the most important prognostic factor 
is the presence of metastasis at the time of diag-
nosis.12 Patients with local disease that responds 
to multimodal therapy currently have a 5-year 
survival rate of more than 70%. In contrast, less 
than 30% of patients presenting with metastases 
survive for 5 years. The most common meta-
static sites are the lungs, bone, and bone mar-
row, although Ewing’s sarcoma can metastasize 
to a broad panel of organs, including lymph 
nodes, liver, and brain.12,13 Patients with metas-
tasis limited to the lung have a better prognosis 
than those with metastasis to the bone or bone 
marrow.12 In the absence of metastasis, the tu-
mor site constitutes the single most important 
prognostic factor, with a worse outcome for pa-
tients with proximal primary tumors (i.e., in the 
pelvis and sacrum) than for patients with distal 
tumors.12,14 Other clinical indicators of unfavor-
able evolution include a large primary neoplasm, 
older age at diagnosis (>18 years), and elevated 
serum lactate dehydrogenase levels.7,12

 FE T  a nd E T S  Gene Fa milies

Ewing’s sarcoma carries a low mutational burden 
and, at 0.15 mutations per megabase, has one of 
the lower mutational rates of all cancers.15,16 The 
defining genetic alteration is one of several pos-
sible reciprocal chromosomal translocations that 
generate the fusion between the gene encoding 
Ewing’s sarcoma breakpoint region 1 (EWSR1) 
and a gene encoding a member of the E-twenty-
six (ETS) family of transcription factors.9,17 About 
85 to 90% of cases bear the chromosomal trans-
location t(11;22)(q24;q12), which leads to the 
fusion of EWSR1 to the gene encoding Friend 
leukemia virus integration 1 (FLI1)2 (Fig. 2). In 
roughly a quarter of the cases, the only detect-
able genetic event is the chromosomal transloca-
tion, supporting the notion that the resulting 
fusion protein is predominantly, if not solely, 
responsible for transformation. Mutations of 
other genes, notably STAG2 and TP53, occur in a 
minority of tumors at diagnosis. Although these 

Figure 2. FET and ETS Fusion Proteins in Ewing’s Sarcoma.

Shown are FET and ETS family members that participate in the pathogene­
sis of Ewing’s sarcoma (top), the EWS and FLI1 domain structure (middle; 
dashed lines indicate the protein region that corresponds to the breakpoint 
of each gene as a result of the chromosomal translocation), and the fusion 
proteins that generate Ewing’s sarcoma, with their relative frequency indi­
cated (bottom). ATA denotes amino­terminal transcriptional activation, and 
DBD DNA­binding domain.
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mutations may accelerate disease progression at 
late stages, they are not required for tumor ini-
tiation or maintenance.15,18

Together with FUS/TLS and TAF15, EWSR1 
forms the FET (or TET) gene family and encodes 
the ubiquitously expressed EWS protein. Although 
the vast majority of Ewing’s sarcomas harbor a 
fusion protein containing EWS, about 1% of the 
tumors bear chromosomal translocations that 
implicate FUS.17,19 Substitution of FUS for EWSR1 
does not appear to alter the phenotype or behav-
ior of Ewing’s sarcoma.

EWS, FUS, and TAF15 are RNA-binding pro-
teins that share a structure composed of an in-
trinsically disordered, low-complexity, prionlike, 
SYGQ-rich N-terminal transactivation domain, 
followed by three arginine-and-glycine–rich (RGG) 
repeats of different lengths. RGG1 and RGG2 
are separated by an RNA recognition motif con-
sisting of 87 amino acids, and RGG2 and RGG3 
by a zinc-finger domain20 (Fig. 2). The transacti-
vation domain of EWS, encoded by the first 
seven exons of EWSR1, is largely silent in the 
wild-type protein but becomes highly active on 
loss of the C-terminal region after the chromo-
somal translocation.21 It is inhibited by the RGG 
repeats, which is consistent with its activation 
after their substitution by the fusion partner.21,22 
Prionlike domains display phase-transition prop-
erties, defined as the ability of a biologic system 
to undergo a change of phase or state, which 
may include transition from protein solutions to 
liquidlike, phase-separated compartments that 
constitute membraneless organelles.20 Why fu-
sion proteins containing FET family members 
display oncogenic activity requires further expla-
nation, but one possibility is that the phase-
transition properties of FET proteins endow the 
associated transcription factors with tumor-
promoting functions.

In addition, and like most RNA-binding pro-
teins, EWS participates in the regulation of di-
verse aspects of RNA metabolism,23 and in vivo 
EWSR1 knockout studies have shown that EWS is 
implicated in meiosis, B-lymphocyte maturation, 
hematopoietic stem-cell self-renewal, DNA repair, 
and cell senescence.24 EWS also plays an impor-
tant role in neuronal structure, dopaminergic 
signaling pathways, and motor function in the 
central nervous system25 and regulates transcrip-
tion by binding to various transcriptional activa-

tors and repressors, as well as RNA polymerase 
II through its prionlike domain.26 EWSR1 can 
partner not only with genes encoding ETS fam-
ily members but also with a broad range of non-
ETS genes to generate fusion proteins implicated 
in the pathogenesis of diverse soft-tissue tu-
mors.17,27,28 EWSR1-NFATC2, EWSR1-POUF1, EWSR1-
PATZ1, EWSR1-SMARCA, and EWSR1-SP3 give rise 
to rare, undifferentiated round-cell tumors re-
sembling Ewing’s sarcoma. Their rarity has 
hampered detailed characterization, leading to 
an unresolved debate over whether they should 
be considered Ewing’s sarcomas. Other EWSR1–
non-ETS fusions give rise to well-defined enti-
ties, including DSRCT (EWSR1-WT1), myxoid 
liposarcoma (EWSR1-DDIT3), clear-cell sarcoma 
(EWSR1-ATF1), and extraskeletal myxoid chondro-
sarcoma (EWSR1-NR4A3).28 Unrelated chromo-
somal translocations, which generate the non-
FET–non-ETS gene fusions BCOR-CCNB329 and 
CIC-DUX4,30 give rise to tumors with morpho-
logic features resembling those of Ewing’s sar-
coma. These tumors were initially classified as 
Ewing’s sarcoma, but their pathogenesis and 
biologic properties are now known to be clearly 
distinct from those of Ewing’s sarcoma.31

At least 5 of the 27 members of the ETS fam-
ily can fuse to EWS to generate Ewing’s sarco-
ma: FLI1,2 ERG,32 FEV,33 ETV1,34 and E1AF35; FLI1 
is found in 85 to 90% of cases. ETS factors are 
implicated in differentiation and cell-cycle con-
trol,36 and their activity is associated with the 
development of diverse cancers, including pre–
B-cell acute lymphoblastic leukemia and pros-
tate cancer.37 All members of the family share a 
DNA-binding domain that recognizes the con-
sensus core 5′-GGAA/T-3′ DNA motif, often re-
ferred to as the ETS binding motif. FLI1 has two 
ETS-binding domains separated by an FLI1-spe-
cific (FLS) sequence.38,39 The 5′ ETS domain and 
the FLS sequence form the N-terminal transacti-
vating domain, which is substantially less potent 
than the EWS N-terminal transactivating domain 
by which it is replaced in the fusion protein. 
After chromosomal translocation, the portion of 
FLI1 containing the 3′ ETS-binding domain that 
becomes fused to EWS undergoes a conforma-
tional change, which allows it to activate a broad-
er repertoire of genes than wild-type FLI1 does.38,39

The range and diversity of tumors arising in 
response to EWS-bearing fusion protein expres-
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sion suggest that EWS plays a major role in cell 
transformation, whereas its fusion partner bears 
responsibility for cell-type specificity and tumor 
phenotype. The same FET-ETS40 and FET–non-
ETS41 fusion proteins can give rise to divergent 
tumors, supporting the notion that the proper-
ties of the cell undergoing transformation modu-
late fusion protein activity and its consequences.

E WS-FLI1 Fusion Pro tein a nd 
R egul ation of the Epigenome

Shortly after its discovery, EWS-FLI1 was ob-
served to act as an aberrant transcription factor, 
inducing the expression of genes with oncogenic 
properties but also repressing numerous genes 
through mechanisms that remained obscure.9 
Regardless of its mechanism of action, it be-
came clear that EWS-FLI1 plays a central role in 
the pathogenesis of Ewing’s sarcoma. Its deple-
tion from cell lines resulted in their inability to 
grow 42 and to form tumors in mice,43 whereas im-
mortalized fibroblasts engineered to express the 
fusion protein formed colonies in soft agar and 
tumors resembling Ewing’s sarcoma in vivo.44

The observations that EWS-FLI1 causes both 
induction and repression of selected gene reper-
toires suggested a mode of action that may de-
pend on epigenetic mechanisms. Epigenetic con-
trol of gene expression does not implicate 
nucleotide sequence changes but instead relies 
on modification of chromatin structure and 
DNA accessibility to transcription factors and 
transcriptional regulators.45-47 Such control is 
orchestrated by chromatin remodeling (resulting 
primarily from histone modification), DNA 
methylation, and noncoding RNA expression.45 
Although EWS-FLI1 affects all these events, the 
manner in which it harnesses chromatin-remod-
eling mechanisms has set a new paradigm for 
oncogene-mediated epigenetic instruction of cell 
transformation (Fig. 3).

EWS-FLI1 binds consensus core GGAA ETS-
binding sites,49,50 which are found either in isolation 
or as microsatellites (multiple repeats) through-
out the genome. However, the effects of the 
binding of EWS-FLI1 to single or repeat GGAA 
elements are in stark opposition. On recognizing 
GGAA microsatellites, the phase-transition prop-
erties of the EWS prionlike domain allow EWS-

Figure 3 (facing page). Role of EWS-FLI1 in Epigenetic 
Regulation of Gene Expression.

EWS-FLI1 affects epigenetic control of gene expression 
by altering histone modifications, DNA methylation, 
and noncoding RNA expression. Nucleosomal histones, 
around which DNA is wound, can undergo a variety  
of posttranslational modifications that contribute to 
structural chromatin changes associated with gene 
silencing (e.g., heterochromatin or chromatin compac­
tion) or activation (e.g., euchromatin or chromatin re­
laxation). The two best-characterized modifications that 
affect gene activity are acetylation and methylation of 
lysine residues on histone H3. Histone H3 acetylation 
of lysine 27 (H3K27ac) is associated with gene activa­
tion, whereas H3 methylation can be associated with 
both activation and silencing. Thus, trimethylation of 
lysine 9 and lysine 27 (H3K9me3 and H3K27me3, re­
spectively) are repressive marks, whereas monomethyl­
ation, bimethylation, and trimethylation of lysine 4 
(H3K4me1, H3K4me2, and H3K4me3, respectively) are 
activation marks.46 Chromatin regulators (CR) include 
histone acetyltransferases (e.g., CBP/p300), histone 
deacetylases, methyltransferases (e.g., mixed-lineage 
leukemia [MLL] methyltransferases), and demethylases 
(e.g., lysine-specific histone demethylase 1 [LSD1]),  
as well as large complexes such as BAF, which relaxes 
chromatin by antagonizing the deposition of H3K27me3 
by polycomb group proteins.46 On binding to GGAA 
microsatellites, EWS-FLI1 multimers recruit the BAF 
complex; CBP/p300, which generates H3K27ac; and 
MLL methyltransferase, which forms H3K4me1, pri­
marily at distal (enhancer) regulatory elements that 
synergize with promoters (shown here bearing the 
H3K4me3 and H3K27ac marks) to drive gene expres­
sion.48 The combined effect of these CR complexes is  
to relax the compacted heterochromatin (bottom of 
figure), resulting in euchromatin, in which the nucleo­
somes appear as beads on a string and where the DNA 
is accessible to transcription factors. The binding of 
EWS-FLI1 monomers to single GGAA elements results 
in the removal of wild-type (WT) ETS factors, along 
with their associated activating CR complexes, leading 
to chromatin compaction and silencing of associated 
genes. EWS-FLI1 can reduce DNA methylation, which 
acts as a barrier to transcription factor binding. DNA 
methylation occurs on cytosine residues within CpG 
islands (characterized by a cytosine preceding a gua­
nine in the 5′ to 3′ strand). In Ewing’s sarcoma, reduc­
tion in DNA methylation occurs predominantly within 
sequences that correspond to enhancers. EWS-FLI1 re­
presses numerous microRNAs (miRNAs) that drive cell 
differentiation. MicroRNAs guide RNA-induced silencing 
complexes (RISCs) to target messenger RNAs (mRNAs), 
resulting in their degradation or in the inhibition of their 
translation. By repressing miRNA-145, which targets 
numerous mRNAs encoding proteins that maintain cell 
plasticity, such as SOX2, EWS-FLI1 impairs differentia­
tion and promotes pluripotency.
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FLI1 multimers to bind and open these other-
wise inaccessible genomic regions by recruiting 
the major ATP-dependent chromatin-remodeling 
complex SWI/SNF (switch/sucrose nonferment-
able), also known as BAF (BRG1/BRM–associated 
factor), which regulates genomic architecture and 
DNA accessibility.51 In addition, EWS-FLI1 mul-
timers recruit enzymes that catalyze methylation 
or acetylation of specific lysine residues on his-
tone 3, inducing chromatin relaxation, including 
the mixed-lineage leukemia (MLL) methyltrans-
ferase complex and the histone acetyltransferase 
p300.48 By orchestrating the activities of BAF, 
MLL, and p300, EWS-FLI1 behaves like a pioneer 

factor, converting silent chromatin regions into 
fully active enhancers (Fig. 3).48 These normally 
quiescent GGAA microsatellite–containing re-
gions, which show no baseline activity in any 
physiological setting, now become the major 
drivers of the fusion protein’s target gene reper-
toire. GGAA-repeat-length polymorphisms ap-
pear to affect EWS-FLI1 function. Long repeats, 
predominantly found in populations of African 
ancestry, are associated with decreased tran-
scriptional activation properties of EWS-FLI1, 
possibly explaining the lower frequency of Ew-
ing’s sarcoma in populations of African ancestry 
than in populations of European ancestry.52
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Conversely, on reaching single GGAA ele-
ments, EWS-FLI1 monomers can displace physi-
ologically bound ETS factors along with their 
associated chromatin regulators, which estab-
lish active chromatin marks, resulting in the si-
lencing of genes driven by wild-type ETS fac-
tors.48 The precise mechanism of gene silencing 
by EWS-FLI1 remains to be elucidated, but a 
possible explanation lies in the ability of EWS-
FLI1 to interact with the corepressor complex 
NuRD (nucleosome remodeling and deacetylase); 
the histone deacetylase and lysine-specific his-
tone demethylase 1 (LSD1) activities associated 
with the NuRD complex remove acetyl and methyl 
groups, respectively, from histones, reducing DNA 
accessibility.53 The overall effect of EWS-FLI1–
mediated establishment of new enhancers in 
parallel with the silencing of a repertoire of ETS-
driven genes is to rewire a portion of the genome, 
leading to the expression of a gene repertoire that 
causes transformation of permissive cells.

DNA methylation undergoes a marked de-
crease in regions of the genome that correspond 
to putative enhancer elements,54 which is consis-
tent with the generation of active enhancers 
through chromatin relaxation and suggests syn-
chrony between DNA methylation and chroma-
tin remodeling. The DNA methylation patterns 
associated with EWS-FLI1 expression are highly 
specific to Ewing’s sarcoma.54 EWS-FLI1 also af-
fects noncoding RNA expression in diverse ways. 
One mechanism entails partial inhibition of 
TAR RNA-binding protein 2 (TARBP2) activity, 
implicated in microRNA (miRNA) processing, 
which leads to decreased maturation of a broad 
panel of miRNAs.55 Another, more direct effect 
appears to target the expression or maturation 
of selected miRNAs, including let-7a, miR-30, 
and miR-145.56 The net result of TARBP2 and 
miR-145 inhibition is to impair cell differentia-
tion and contribute to the establishment and 
maintenance of tumor-cell subpopulations that 
display a high degree of plasticity, driving both 
tumor initiation and heterogeneity in Ewing’s 
sarcoma.55,57 EWS-FLI1 can also induce the ex-
pression of long, noncoding RNAs (lncRNAs), 
one of which, EWSAT1, facilitates the develop-
ment of Ewing’s sarcoma by repressing selected 
target genes.58 Although epigenetic rewiring is 
arguably the most prominent mechanism under-
lying the development of Ewing’s sarcoma, its 

extent depends, at least in part, on the cellular 
context in which the translocation arises.

E w ing’s  S a rcom a Pr ecur sor 
Cell s a nd T umor He tero genei t y

Expression of EWS-FLI1 induces senescence or 
apoptosis in most nontransformed primary 
cells,59,60 suggesting that a specific, permissive 
environment is required for the maintenance of 
EWS-FLI1 expression and function. Divergent 
approaches have shown that mesenchymal stem 
or stromal cells, which provide the permissive 
environment required for EWS-FLI1 to induce 
transformation, constitute a candidate cell of 
origin in Ewing’s sarcoma61-64 (Fig.  4). These 
cells originate in the mesenchyme, the mesoder-
mal part of the embryo that evolves into connec-
tive and skeletal tissues, and display a high de-
gree of heterogeneity, as well as the plasticity 
required to differentiate into a broad range of 
lineages in vitro. However, Ewing’s sarcoma may 
also arise from other primary cells characterized 
by pluripotency, with neural crest cells as an ad-
ditional candidate.65

Ewing’s sarcoma displays marked intratumor 
heterogeneity generated by a subpopulation of 
poorly differentiated cells, which can initiate 
tumor growth and give rise to nontumorigenic 
progeny. These cells, which depend at least in 
part on noncoding RNA regulation by EWS-FLI1, 
have the functional properties of cancer stem 
cells and express the neural stem-cell markers 
CD133 and SOX2.66 Single-cell expression profil-
ing, used to assess the intratumor heterogeneity 
in Ewing’s sarcoma models, has highlighted 
cell-to-cell fluctuation in EWS-FLI1 expression. 
EWS-FLI1hi cells are associated with high prolif-
eration but low migration, whereas EWS-FLI1low 
cells migrate but have a low proliferation rate.67 
Transcriptional assessment of Ewing’s sarcoma 
models at the single-cell level revealed that EWS-
FLI1hi cells display proliferation and strong oxi-
dative phosphorylation, whereas EWS-FLI1low sub-
populations display a signature associated with 
hypoxia.68 Thus, both developmental trajectories 
and variation in expression levels of the genetic 
driver may contribute to the phenotypic hetero-
geneity of Ewing’s sarcoma cells, possibly pos-
ing an additional challenge for clinical man-
agement.
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Ther a peu tic A pproaches

Current management of primary Ewing’s sarco-
ma, which relies on a combination of cytotoxic 
drugs and local reduction through surgery, ra-
diotherapy, or both, according to feasibility, has 
improved the 5-year survival rate among patients 
with localized disease from 10% in the era be-
fore chemotherapy to about 70% currently. Cur-
rent regimens include intensive induction che-
motherapy, comprising doxorubicin, etoposide, 
cyclophosphamide, vincristine, and ifosfamide, 
to reduce the size of the primary tumor and 
target micrometastatic disease, followed by con-
solidation chemotherapy to eliminate residual 
cells.69-71 European centers have designed trials 
of dose intensification through high-dose ther-
apy, with autologous stem-cell rescue,69,71 where-
as the Children’s Oncology Group has tested 
dose intensification through shortened intervals 
between doses (interval compression).70 Com-
parison of the two strategies suggests that the 
approach based on interval compression may be 
more effective and associated with fewer toxic 
effects.72 However, successfully treated patients 
are at risk for the development of long-term dis-
abilities73 and other cancers, particularly chemo-
therapy-associated myeloid dysplastic syndrome 
or leukemia74 and radiation-associated sarcoma.75

Moreover, recurrent disease is currently incurable.
Although the obvious treatment strategy for 

Ewing’s sarcoma would be direct inhibition of 
the FET-ETS fusion protein, its lack of enzy-
matic activity and disordered structure make it 
difficult to target with currently available tech-
nology. Effective therapy will therefore have to 
rely on alternative mechanism-based approaches 
such as inhibition of effector molecules of the 
FET-ETS fusion protein, reversion of the FET-
ETS–induced epigenetic modifications, targeting 
of molecules and signaling pathways that sup-
port and cooperate with fusion protein function, 
or a combination of these approaches. Several 
candidate effector molecules have been targeted, 
including the receptor tyrosine kinase insulin-
like growth factor I receptor (IGF-IR), which is 
induced by EWS-FLI176 and is required for the 
transformation of fibroblasts.77 Despite the sen-
sitivity of Ewing’s sarcoma cells to IGF-IR inhi-
bition,78,79 in vivo studies using anti–IGF-IR anti-

bodies have shown limited effectiveness.80,81

Poly(adenosine diphosphate–ribose) polymerase 
(PARP), which is implicated in DNA single-
strand break base excision repair, is highly ex-
pressed in Ewing’s sarcoma, and in preclinical 
models, the response to PARP inhibitors was 
promising.82,83 However, the results of a clinical 
trial were disappointing.84

The small molecule YK-4-279 has shown 
promising results in Ewing’s sarcoma cell lines 
in vitro, as well as in xenografts.85 YK-4-279 in-
hibits the direct interaction between RNA heli-
case A and EWS-FLI1, disrupting EWS-FLI1 in-
teractions within the spliceosomes and leading 

Figure 4. Permissive Cells for FET and ETS Fusion Proteins.

Although the mechanisms that render any given cell permissive to an on­
cogene are numerous and remain to be fully elucidated, cells that display 
plasticity or pluripotency typically contain extensive regions of less tightly 
compacted DNA than do differentiated cells, providing greater accessibility 
to physiologic but also aberrant transcription factors that can lead to nuclear 
reprogramming.46 These cells may also display partial repression of cell cy­
cle inhibitors, resulting in failure to induce replicative stress in response to 
the expression of an oncogene, which leads to senescence or apoptosis in 
differentiated cells.
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to an alternative splicing pattern that mimics 
EWS-FLI1 reduction.86 However, limited bioavail-
ability and acquired resistance to the drug ham-
pered its usefulness.87,88 The antibiotic enoxacin, 
which enhances TARBP2 activity and restores 
miRNA maturation, leads to the elimination of 
Ewing’s sarcoma–initiating cells in preclinical 
models, with a preeminent synergistic activity in 
combination with chemotherapy.89 Finally, inhibi-
tors of the histone demethylase LSD1, implicated 
in transcriptional repression by EWS-FLI-1, in-
duce apoptosis selectively in Ewing’s sarcoma 
cell lines and are currently being tested in a 
clinical study.90

Conclusions

A century after the seminal discovery of Ewing’s 
sarcoma, the prognosis for patients with local-
ized forms of the tumor has improved dramati-
cally, thanks to aggressive multimodal therapy. 

However, recurrent and metastatic disease re-
mains a major challenge, and the inability to 
effectively target the fusion protein that drives 
the malignant process has led to continued ex-
ploration of alternative mechanism-based ap-
proaches. Although success has been limited 
thus far, investigation at the single-cell level is 
holding promise for the definition of subpopula-
tions of cells that are responsible for driving the 
tumor and identification of their potential vul-
nerabilities. The lessons learned from Ewing’s 
sarcoma are not only forging new lines of 
thought in terms of therapeutic approaches but 
also providing a road map for addressing the 
pathogenesis of additional solid cancers in chil-
dren driven by unique chromosomal transloca-
tions and aberrant fusion proteins.
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