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Summary

Cooperation is ubiquitous in nature: genes cooperate in genomes, cells in muti-
cellular organims, and individuals in societies. In humans, division of labor and
trade are key elements of most known societies, where social life is regulated by
moral systems specifying rights and duties often enforced by third party punish-
ment. Over the last decades, several primary mechanisms, such as kin selection,
direct and indirect reciprocity, have been advanced to explain the evolution of
cooperation from a naturalistic approach. In this thesis, I focus on the study
of three secondary mechanisms which, although insufficient to allow for the evo-
lution of cooperation, have been hypothesized to further promote it when they
are linked to proper primary mechanisms: conformity (the tendency to imitate
common behaviors), upstream reciprocity (the tendency to help somebody once
help has been received from somebody else) and social diversity (heterogeneous
social contexts). I make use of mathematical and computational models in the
formal framework of evolutionary game theory in order to investigate the theoret-
ical conditions under which conformity, upstream reciprocity and social diversity
are able to raise the levels of cooperation attained in evolving populations.

Résumé

La coopération est ubiquitaire dans la nature: les gènes coopèrent dans les
génomes, les cellules dans les organismes muticellulaires, et les organismes dans
les sociétés. Chez les humains, la division du travail et le commerce sont des
éléments centraux de la plupart des sociétés connues, où la vie sociale est régie
par des systèmes moraux établissant des droits et des devoirs, souvent renforcés
par la punition. Au cours des dernières décennies, plusieurs mécanismes pri-
maires, tels que la sélection de parentèle et les réciprocités directe et indirecte,
ont été avancés pour expliquer l’évolution de la coopération d’un point de vue nat-
uraliste. Dans cette thèse, nous nous concentrons sur l’étude de trois mécanismes
secondaires qui, bien qu’insuffisants pour permettre l’évolution de la coopération,
sont capables de la promouvoir davantage s’ils sont liés aux mécanismes primaires
appropriés: la conformité (tendance à imiter des comportements en commun), la
‘réciprocité en amont’ (tendance à aider quelqu’un après avoir reçu l’aide de
quelqu’un d’autre) et la diversité sociale (contextes sociaux hétérogènes). Nous
faisons usage de modèles mathématiques et informatiques dans le cadre formel
de la théorie des jeux évolutionnaires afin d’examiner les conditions théoriques
dans lesquelles la conformité, la ‘réciprocité en amont’ et la diversité sociale sont
capables d’élever le niveau de coopération des populations en évolution.
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Resumen

La cooperación es ubicua en la naturaleza: genes cooperan en genomas, orgánulos
en células eucariotas, células en organismos multicelulares, e individuos en so-
ciedades. En los humanos, la división del trabajo y el comercio son elementos
centrales en la mayor parte de las sociedades conocidas, donde la vida social es
regulada por sistemas morales que especifican derechos y deberes, usualmente
sancionados por terceros. Durante las últimas décadas, diversos mecanismos pri-
marios, como la selección familiar y la reciprocidad directa e indirecta, han sido
propuestos para explicar la evolución de la cooperación desde un punto de vista
naturalista. En esta tesis trato el estudio de tres mecanismos secundarios que,
aunque insuficientes para permitir la evolución de la cooperación, son capaces de
promoverla actuando en sinergia con mecanismos primarios adecuados: el con-
formismo (tendencia a imitar comportamientos comunes), la ‘reciprocidad hacia
arriba’ (tendencia a ayudar a alguien después de haber recibido la ayuda de otra
persona) y la diversidad social (resultante de contextos sociales heterogéneos).
Hago uso de modelos matemáticos y computacionales en el marco formal de la
teoŕıa de juegos evolutiva para investigar las condiciones teóricas bajo las cuales
el conformismo, la ‘reciprocidad hacia arriba’ y la diversidad social son capaces
de elevar los niveles de cooperación obtenidos en poblaciones en evolución.
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Better call on evolution,
better way to make a revolution.

Cat Power
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de Mathématiques Appliquées (IMA) of the University of Lausanne
(UNIL). I appreciate the freedom he gave me to work on my disser-
tation and the support he provided.

I was able to work at the IMA the first three and a half years of my
thesis thanks to the financial support by the PERPLEXUS project
of the European Commission (grant IST-034632). Many thanks to
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and Henri Volken. Thanks also to Marco Archetti, Michael Doe-
beli, Laurent Lehmann, Yamir Moreno, Andrés Pérez-Uribe, Daniel
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Chapter 1

Introduction

1.1 The problem of cooperation

It is true that certain living creatures, as bees and ants, live sociably
with one another [...] and therefore some man may perhaps desire to
know why mankind cannot do the same.

Thomas Hobbes, Leviathan

The question of why and how individuals voluntarily give up their natural
freedom in order to unite and live in society – in Hobbesian terms, why and
how a commonwealth is instituted – has been central to the social and political
sciences ever since Aristotle’s Politics. During the last decades, this question
has also been transferred to biology, where it is best identified with the problem
of the major evolutionary transitions, whereby entities capable of independent
reproduction before a transition can only reproduce as a part of a group after
it (Maynard Smith & Szathmáry, 1995). Within this broader picture, the origin
of social groups (be they composed of ants, bees or humans) is only one of the
last major transitions in evolution, which also include the origin of chromosomes,
the invention of sex and the shift from unicellularity to multicellularity, among
others. The problem of living together does not start with humans nor with social
insects: it has been there almost since the origin of life itself.

The snag of living with one another is that it almost invariably leads to a
conflict between individual and collective interests, because what is best for the
individual is not necessarily best for the group and vice versa. These situations,
in which the common good is at odds with private interests, are usually referred
to as social dilemmas (Kollock, 1998). They abound in both natural and human
social systems: in microorganisms whose metabolism partially depend on extra-
cellular enzymes, non-producers benefit from the enzymes secreted by producers
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without paying the associated cost (Crespi, 2001); in groups of vertebrates that
hunt collectivelly, such as lion prides and hyena packs, the prey is distributed
evenly among the group members independently of the effort invested in the
hunt, making it possible for lazy individuals to benefit from the hunting efforts
of others (Packer & Ruttan, 1988). Alarm calls against predators also embody
a social dilemma: while everybody benefits from the alarm, individuals giving
the alarm pay an energetic cost or a higher predation risk (Clutton-Brock et al.,
1999). In humans, collective efforts such as warfare and hunting, and the con-
tribution to public services in the form of taxes or the exploitation of common
resources in modern societies (Hardin, 1968; Kollock, 1998) are typical examples
of social dilemmas.

The most well-known and maybe the simplest game exemplifying a social
dilemma is the so-called prisoner’s dilemma. Imagine two players, each having to
decide (in ignorance of the co-player’s decision) whether to cooperate with their
co-player or not. To cooperate (C) entails a cost c, in order for the co-player to
receive a benefit b, with b > c. To defect (D) means refusing to cooperate and
does not entail any cost. This yields the following payoff matrix:

( C D

C b− c −c
D b 0

)
. (1.1)

Note that the payoff entries are such that the two players gain more if they opt
for mutual cooperation than if they opt for mutual defection, since b − c > 0.
Cooperation is however strictly dominated in this game. This means that, no
matter what the other player does, one is better off not cooperating: if my co-
player defects, it is better for me to defect than to cooperate, since 0 > −c; if
my co-player cooperates it is still better for me to defect than to cooperate, since
b > b− c. Thus, rational players will choose to defect in the prisoner’s dilemma
and end up gaining nothing, while each could have earned b− c if they both had
cooperated. Hence the dilemma: although mutual cooperation is a preferrable
outcome than mutual defection, no player has the incentive to cooperate. Using
the language of game theory, we say that the Nash equilibrium of the game
(the strategy profile where no player can do better by unilaterally changing her
strategy) is Pareto inefficient (an alternative outcome that makes at least one
player better off without reducing any other player’s payoff is possible).

The prisoner’s dilemma is an extreme example of a social dilemma, because
(D,D) is the only Nash equilibrium. In many situations, less stringent games
may be more realistic models of the underlying social dilemma. One such game
is the stag hunt, named after the following passage of Rousseau’s A Discourse on
Inequality :
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“If it was a matter of hunting a deer, everyone well realized that
he must remain faithfully at his post; but if a hare happened to pass
within the reach of one of them, we cannot doubt that we would
have gone off in pursuit of it without scruple and, having caught his
own prey, he would have cared very little about having caused his
companions to lose theirs”1.

Imagine a two-person stag hunt. Each player has to decide either to ‘remain
faithfully at his post’ to hunt the stag, which is to cooperate, or to go off in pursuit
of the hare just passing by, which is to defect. Two hunters are needed to hunt
a stag, but just one is required to hunt a hare. Additionally, half a stag provides
more meat per person than a single hare. Payoffs are measured in kilograms of
meat: h for the hare and s for the stag. This yields the payoff matrix

( C D

C s/2 0
D h h

)
. (1.2)

In this case, both (C,C) and (D,D) are Nash equilibria: once playing one of
them, no player would be willing to unilaterally change his mind. The cooperative
equilibrium is Pareto optimal, which means that no further Pareto improvements
(changes in the strategy profile making at least one player better off without mak-
ing the other player worse off) are possible. The defective equilibrium, however,
is risk-dominant ; no matter what my co-player does, if I decide to hunt hare I
will get h; if I decide to hunt stag instead and my co-player abandons me, I will
get nothing. In other words, stag hunters depend on each other whereas hare
hunters are independent. This makes the defective equilibrium salient for risk-
averse individuals, even if it is Pareto inferior. Pessimists will invariably prefer
to play D.

In addition to the prisoner’s dilemma and the stag hunt, there is literally
an entire zoo of games modeling social dilemmas. There is the snowdrift game,
the volunteer’s dilemma, the public goods game, and many others. In all of
these games, there is at least one Nash equilibrium which is not Pareto optimal
and hence the possibility that rational individuals who care about their private
interest (or personal risk) end up choosing to forgo the common good: hunting
hares individually rather than stags collectively; opting out of helping others
and therefore also of being helped in return. Hobbes’s question – why and how
individuals stop living in a state of nature and institute a commonwealth in order
to reap the benefits of living in society – can be recast in game theory terms
as the question of why and how a population of players coordinate themselves

1Rousseau, A Discourse on Inequality, Pt. II.
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not in the Pareto inefficient equilibrium of defection but in the Pareto optimal
equilibrium of cooperation.

Hobbes thought that explaining cooperation and social life in ants and bees
was simpler than explaining it in humans, partly because “amongst these crea-
tures, the common good differeth not from the private; and being by nature in-
clined to their private, they procure thereby the common benefit”2. In Hobbes’s
view, social insects succeed in cooperating with each other because they instinc-
tively seek the common good; humans fail to do so in the absence of any coercive
power because they act by rational self-interest: “the agreement of these creatures
is natural; that of men, by covenant only, which is artificial”3. Hobbes is right in
suggesting that social insects behave cooperatively by nature, whereas large-scale
human cooperation heavily depends on the existence of laws, police and many
other “artificial” contracts. He is wrong, however, in assuming that instinctive
cooperation in non-human life forms, being natural, requires no further expla-
nation. This is because what is true for rational humans is also true for genes
regulating the behavior of insects and other life forms: if a rational individual can
gain from defecting while others cooperate, then in a population of (genetically
programmed) cooperators a (genetically programmed) defector arising by muta-
tion will reap off the benefits of the cooperation of others without incurring in any
cost and hence, because of its greater fitness, eventually outnumber cooperators
and invade the population. Hobbes might be right in appealing to instinct as
an answer for the question of cooperation, but by doing so he is just replacing a
sociological problem involving rational self-interested individuals (humans) with
a biological one concerning self-replicating molecules (genes).

How can a commonwealth be created and maintained? How do we escape
from Pareto inefficient Nash equilibria? The solution proposed by Hobbes in
Leviathan is central control under a sovereign:

“[T]he only way to erect such a common power, as may be able
to defend [men] from [...] the injuries of one another, and thereby to
secure them [...] is, to confer all the power and strength upon one
man, or upon one assembly of men, that may reduce all their wills,
by plurality of voices, unto one will”4.

In other words, Hobbes’s solution to the N-person social dilemma game is
to convert it into a one-player game – the sovereign’s – where there is, by defi-
nition, no social dilemma: since the outcome of the game depends only on the
sovereign’s decision, the problem becomes a trivial optimization problem. Ac-
cording to Hobbes’s account, individuals tired of living in the state of nature,

2Hobbes, Leviathan, Pt. II. Ch. 17.
3Ibid.
4Ibid.
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“where every man is enemy to every man”5 agree to forego their individual rights
(their right to play the game) and submit to a sovereign which will have the power
of creating laws and policing his subjects’s behavior.

Hobbes’s solution is at the same time satisfactory and problematic. It is
satisfactory because the institution of a state with laws and police is the solution
to the problem of living sociably with one another currently in use by most of
contemporary human societies. It is problematic because it is not at all clear how
the transition from the state of nature to the establishment of the commonwealth
was carried out. Hobbes’s account seems to require rationality and language
from the parties ‘signing’ the contract, but it is obvious that ants or bees (not
to mention single cells or RNA molecules) lack both. Even in fully rational
individuals capable of language, it is hard to see a fully-fledged state emerging out
of Hobbes’s bellum omnium contra omnes, as if it were a hopeful monster arising
from a single incredible mutation. Like chromosomes, cells and insect colonies,
human states are only the final outcomes of a gradual process of evolution. If
we want to understand the origin and stability of the existing social contracts all
around us, we have to adopt an evolutionary approach.

1.2 The evolution of cooperation

In thus discovering and tracing the lost and forgotten paths which
must have led men from the natural state to the civil state, in
reconstructing together with the intermediate situations which I
have just noted, those which lack of time has made me omit or
which imagination has not suggested to me, no attentive reader can
fail to be impressed by the immense space which separates these two
states. It is in this slow succession of things that he will see the
solution to an infinity of moral and political problems which
philosophers cannot solve.

Jean-Jacques Rousseau, A Discourse on Inequality

Hobbes imagined a hypothetical population of rational decision makers trying
to agree on a social contract that would take them away from a state of nature
where human life was “solitary, poor, nasty, brutish, and short”6. In A Discourse
on Inequality, Rousseau took a different approach. He looked at the way a gradual
change would have unraveled, taking a real human population from the state of
nature to the state of society. For Hobbes, society is rationally planned; for

5Ibid, Pt. I. Ch. 13.
6Ibid.
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Rousseau, it is the outcome of evolution and historical contingency. In this sense,
if Hobbes is “the grandfather of game theory” (Skyrms, 2004) Rousseau is that
of evolutionary game theory.

What is evolution? Merrian Webster lists as one of the alternative definitions
of the word: “a process of change in a certain direction”. In our case, we are
interested in the process of change of behaviors in a population. To a first approx-
imation, behavior depends on at least two things: nature (biology) and nurture
(culture). Accordingly, we can consider two kinds of evolution: biological and
cultural. Biological evolution is the process of change of genotypes in a popula-
tion of individuals capable of reproduction. Cultural evolution is the process of
change of ideas in a population of individuals capable of social learning. Change
should be more precisely understood as Darwinian change, or differential repli-
cation. Replication means reproduction in biological evolution and imitation in
cultural evolution. Differential replication means that different types replicate at
different rates, so that fitter or more successful individuals reproduce faster or are
imitated more often than less fit or less successful individuals. Behaviors, coded
for by genes or ideas, affect fitness: the ability of individuals to reproduce or
to be imitated. Change can also be brought about by mutation and recombina-
tion in biological evolution and by their cultural analogues in cultural evolution.
We focus, however, on differential replication or natural selection. Evolutionary
game theory (Maynard Smith, 1982; Maynard Smith & Price, 1973) deals with
the evolution of social behaviors making use of the formalism of game theory:
social interactions are modeled as a game, genes or ideas code for strategies in
the game, and fitness is equated to the resulting payoff.

In order to illustrate the problem of the evolution of cooperation, think of the
prisoner’s dilemma with payoff matrix given by Eq. 1.1. The Hobbesian’s state of
nature is here a population entirely comprised of defectors, where nobody helps
and the payoff for everyone is equal to zero. Now, imagine that a cooperator
arises by mutation. All the individuals she plays with are defectors, so that she
earns −c per interaction. Defectors earn nothing when they meet each other,
and occasionally earn b when they meet the cooperator. The average payoff to
defectors is thus slightly above zero. When it is time to reproduce or imitate,
defectors are obviously more successful and the single cooperator is wiped out
from the population of defectors. Now imagine the ideal world where everybody
cooperates in the prisoner’s dilemma. One defector arises by mutation. Cooper-
ators get b− c when they meet each other and −c when they meet the defector,
for an average payoff slightly less than b−c. The defector only meets cooperators
and obtains an average payoff of b. Since b > b − c the defector will reproduce
faster than cooperators, so that the next generation there will be more defectors.
Actually, it is easy to see that if individuals meet randomly, the average payoff
for defectors is greater than that for cooperators no matter the respective propor-
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tions of cooperators and defectors. Defectors always reproduce faster so that, in
the long run and in an environment with a finite carrying capacity, cooperation
is doomed to extinction. The final evolutionary outcome is the state of nature
feared by Hobbes. Both the origin and the stability of cooperation are impossible
in this model.

In more technical terms, we say that defection is the only evolutionarily sta-
ble strategy (ESS) in the prisoner’s dilemma. An ESS is a strategy that, when
common, can resist invasion by another available strategy, provided that each
other strategy invades alone and in small numbers. The concept was invented
by Maynard Smith & Price (1973) when they were unaware of the concept of
Nash equilibrium in classical game theory. The two concepts are however closely
related. Note that a sufficient condition for a given strategy to be an ESS is
for it to be a strict Nash equilibrium. This is the reason why Hobbes’s appeal
to instinct does no ultimately solve the problem of cooperation: in a sense, if
you cannot get mutual cooperation by rational choice you cannot get mutual
cooperation by evolved instincts.

How can cooperation evolve in the prisoner’s dilemma? Biologists’s favorite
solution is kin selection (Grafen, 1985; Hamilton, 1964). The basic idea is that
cooperation can evolve if a cooperator preferentially helps its relatives, since they
will likely be cooperators as well. In the case of asexually reproducing individuals
this is obviously true, since relatives are (except for mutations) clones, but the
argument equally applies to sexually reproducing individuals with different sex-
determination systems. Kin selection can be brought about by kin recognition,
whereby individuals recognize relatives and direct their help towards them. It can
also be brought about by limited dispersal, even in the absence of kin recognition:
if relatives tend to stay closer to each other, then even random interactions in such
a ‘viscous population’ can lead to kin selection (Hamilton, 1964). The evolution
of sterility in the ant worker and of the suicidal honeybee worker’s sting are
paradigmatic examples of kin selection at work.

Although nepotism is obviously part of human behavior, it cannot be the only
solution to the problem of cooperation, even in small-scale and stateless societies.
Human cooperation is unique in the sense that it takes place in communities com-
posed of large numbers of relatively unrelated individuals. Reciprocity has been
often invoked as one of the most important mechanisms for the evolution of coop-
eration in humans (Alexander, 1987; Trivers, 1971). In the following, I succinctly
review two forms of reciprocity: direct reciprocity and indirect reciprocity.

Direct reciprocity is brought about by repeated interactions with the same
partner. It was already hinted at by Darwin in 1871, who wrote in The Descent
of Man: “each man would soon learn that if he aided his fellow-men, he would
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commonly receive aid in return”7. The modern theory of direct reciprocity was
however established a century after, with the seminal article by Trivers (1971) and
the model by Axelrod & Hamilton (1981), which finally launched the theoretical
study of this mechanism.

Let us consider individuals playing an iterated prisoner’s dilemma game im-
plementing the most famous strategy coding for direct reciprocity: tit-for-tat
(TFT). TFT prescribes cooperation on the first move and whatever the co-player
previously played on all subsequent moves, thus rewarding cooperation with co-
operation and punishing defection with defection. In Axelrod (1984)’s words,
individuals implementing TFT are ‘nice’, ‘provokable’ and ‘forgiving’. They are
nice because they are never the first to defect: they cooperate as long as their
partners cooperate. They are however provokable, in the sense that they respond
by defecting at once in response to defect. Finally, they are forgiving, as they
readily return to cooperation once their partners do so.

How do TFT-based reciprocators fare against defectors? Imagine a very large
population in which individuals implement one of two strategies, TFT and ALLD
(which defects in every round). Each generation, a large number of pairs of
individuals are randomly sampled from the population and play the iterated
prisoner’s dilemma with payoffs per round given by Eq. 1.1. With probability
w, another round of the game is played, while with probability 1 − w the game
ends. The average number of rounds per game is thus 1/(1 − w). When two
TFTs play with each other both always cooperate, for a total average payoff of
(b− c)/(1− w) for each player. When a TFT meets an ALLD, TFT cooperates
and ALLD defects on the first round. On each subsequent interaction, TFT also
defects since ALLD defected on the previous round. The payoffs for ALLD and
TFT are thus respectively equal to b and −c. Finally, when two ALLDs meet
they defect during each round, each obtaining a total average payoff of zero. The
payoff matrix for TFT versus ALLD in the iterated prisoner’s dilemma is thus
given by (TFT ALLD

TFT b−c
1−w −c

ALLD b 0

)
. (1.3)

Note that ALLD is always an ESS since 0 > −c always hold. TFT is an ESS
if (b − c)/(1 − w) > b or, equivalently, if b/c > 1/w. Cooperation based on
reciprocity in repeated interactions with the same partner is stable, as long as w
– ‘the shadow of the future’ – is high enough.

Direct reciprocity depends on repeated interactions between the same two
partners. In his seminal paper on direct reciprocity (which he called “reciprocal
altruism”), Trivers (1971) suggested the possibility of expanding such minimal

7Darwin, The Descent of Man, Pt. I, Ch. 5.
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circle. In what he named “generalised altruism”, “[i]ndividuals [...] may respond
to an altruistic act that benefits themselves by acting altruistically toward a
third individual uninvolved in the initial interaction”. Alexander (1987) extended
this idea and coined the term indirect reciprocity for referring to cases where
A helps B and A does not expect a return directly from B, but from someone
else. One of the possibilities suggested by Alexander is that, by helping B,
A acquires a good reputation that can be then rewarded by a player C when
she finds herself in the position of helping A. Likewise, by refusing to help
B, A acquires a bad reputation, that can be then punished by C. In the words
of Alexander, “indirect reciprocity is a consequence of direct reciprocity occurring
in the presence of others”, a mechanism which “involves reputation and status,
and results in everyone in the group continually being assessed and reassessed”.

Boyd & Richerson (1989) were the first to put the insights of Alexander (1987)
in mathematical form, but we owe the first successful models to Nowak & Sig-
mund (1998a,b). Consider the simplest of such models. In a large population,
individuals meet in randomly sampled pairs and interact in a prisoner’s dilemma.
With probability w the population plays another round, so that on average each
individual is paired with 1/(1 − w) other players. Since the population is large,
every pair is new: no individual meets the same partner again. Individuals can
implement one of two strategies: Discriminator (DSC) cooperates on the first
interaction and then cooperates on each subsequent interaction if the co-player
cooperated on the previous round; ALLD never cooperate. It can be easily shown
that DSC is an ESS in this model, and that the conditions are exactly the same
as the above-mentioned model of direct reciprocity. This shows that the key
concept in reciprocity is knowledge about past behavior. Both direct and indi-
rect reciprocity implement strategies which are conditional on the past behavior
of co-players, allowing cooperators to channel cooperation towards cooperative
members of the community. Such knowledge can be direct (via personal experi-
ence) or indirect (via observation of others or gossip).

There are two snags with considering direct and indirect reciprocity as so-
lutions for the problem of the evolution of cooperation8. The first snag is the
so-called second order free rider problem. I will illustrate the phenomenon for the
case of direct reciprocity, but pretty much the same happens for indirect reci-
procity. In the model of direct reciprocity presented in this section, I assumed
individuals implemented one of two strategies: TFT or ALLD. Consider now the
effects of adding a third strategy: ALLC, which prescribes unconditional cooper-
ation. If TFTs are common and there are rare individuals playing ALLC, they

8The same two problems are to be found in another mechanism proposed to explain the
evolution of large-scale human cooperation: altruistic punishment (Boyd et al., 2003; Boyd
& Richerson, 1992; Fehr & Gächter, 2002). Altruistic punishers punish those who do not
cooperate, at a personal cost.
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will have the same payoff as TFTs because all individuals cooperate during all
the rounds. Since the fitness of both TFTs and ALLCs are the same, there is no
selection and evolution will operate by random drift only. Eventually, drift will
cause the proportion of ALLCs to exceed a critical threshold frequency above
which ALLD can invade, leading to a world of universal defection (which is sta-
ble against both ALLCs and TFTs). If ALLDs are first order free riders that
do not cooperate but enjoy the cooperation of others, ALLCs are second order
free riders: they cooperate but then free ride on the policing and punishing of
defectors made by TFTs. There are several plausible solutions to the second
order free rider problem. In the case of direct and indirect reciprocity, the re-
ciprocator strategy can be made to be an ESS by considering the possibility of
making implementation errors (i.e. defecting when intending to cooperate) in
combination with more sophisticated social norms prescribing cooperation. For
instance, an indirect reciprocity strategy known as ‘standing’ can be shown to be
evolutionarily stable against both ALLDs and ALLCs (Leimar & Hammerstein,
2001; Ohtsuki & Iwasa, 2007). Standing prescribes cooperation to individuals in
good standing and defection to individuals in bad standing, with an individual
acquiring bad standing only if defecting against an individual in good standing.

Once the second order free rider problem is solved by considering more com-
plex social norms, cooperation based on reciprocity or punishment can be shown
to be stable. ALLD, however, is obviously also stable both for models of direct
and indirect reciprocity. The problem is now exactly that of equilibrium selection
in the stag hunt game, in which both the defective and the cooperative equilib-
rium are stable. In a sense, repetition, reputation and punishment do not solve
the problem of the evolution of cooperation under the prisoner’s dilemma: they
simply transform the underlying game into a stag hunt (Skyrms, 2004; Taylor &
Nowak, 2007). Cooperation under the stag hunt is however easier to achieve, as
the problem of the stability of cooperation is now solved. The only problem now
is the origin or initial viability of cooperation: given that cooperation is stable,
how can it get a foothold in a population entirely comprised of defectors?

The key concept to give a satisfactory answer to this question is population
structure. Darwin (always Darwin) already had a hint at this. In an oft-cited
passage of The Descent of Man, he writes:

“It must not be forgotten that although a high standard of moral-
ity gives but a slight or no advantage to each individual man and his
children over the other men of the same tribe, yet that an increase in
the number of well-endowed men and an advancement in the standard
of morality will certainly given an immense advantage to one tribe
over another. A tribe including many members who, from possessing
in a high degree the spirit of patriotism, fidelity, obedience, courage,
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and sympathy, were always ready to aid one another, and to sacrifice
themselves for the common good, would be victorious over most other
tribes; and this would be natural selection. At all times throughout
the world tribes have supplanted other tribes; and as morality is one
important element in their success, the standard of morality and the
number of well-endowed men will thus everywhere tend to rise and
increase”9.

Evolving populations are not monolithic blocks nor perfect gases: they always
possess some kind of structure. Darwin observed that human populations are
subdivided in groups (tribes) and suggested that although selection within groups
disfavors altruism (‘although a high standard of morality gives but a slight or no
advantage to each individual man and his children over the other men of the same
tribe [...]’) selection between groups can favor it (‘an increase in the number of
well-endowed men and an advancement in the standard of morality will certainly
given an immense advantage to one tribe over another’).

Darwin’s insight on the balance between within-group and between-group
selection is neatly captured by the mathematical formalism due to Price (1970,
1972). According to Price’s equation, the change in frequency of cooperators ∆x
in the whole population can be written as

∆x ∝ VGβG︸ ︷︷ ︸
between groups

+ VWβW︸ ︷︷ ︸
within groups

.

The first term gives the change due to selection between groups and the second
the change due to selection within groups. βG and βW are regression coefficients
giving, respectively, the effect of behavior on the fitness of groups and individuals.
A behavior which is beneficial to the group but costly to the individual leads to
βG > 0 and βW < 0. Finally, VG and VW give, respectively, the variance in the
proportion x between groups and within groups. Note that, for x to increase, it
is necessary that |VGβG| > |VWβW |.

Interdemic group selection as the one characterized by Price’s equation is
unlikely to be an important evolutionary process in the absence of multiple
stable equilibria. This is because migration (the movement of individuals be-
tween groups) and selection within groups makes VG to be very small and, un-
less βG � βW , between-group selection cannot overcome within-group selection.
When there are multiple stable equilibria, however, and assuming that selection
within groups is much stronger than migration, VW will be small and VG will be
large. Boyd, Richerson and co-workers have argued that if evolution is cultural
rather than biological, selection is strong enough for counterbalancing migration,

9Darwin, The Descent of Man, Pt. I, Ch. 5.
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so that cultural group selection could be an important mechanism for equilibrium
selection among multiple stable equilibria such as those arising in the presence
of reciprocity or altruistic punishment (Boyd & Richerson, 1985, 2010; Henrich,
2004).

Population structure can also have other forms. In their seminal paper, Ax-
elrod & Hamilton (1981) thought of “clustering” as another way of introducing
population structure in the population of players. They imagined a small, clus-
tered group of TFTs in a population of ALLDs such that a proportion p of the
interactions of members of the cluster are with other members of the cluster. In
this case, the average payoff to TFTs is

p

(
b− c
1− w

)
+ (1− p)(−c),

while that of ALLDs (if the cluster of TFTs is small enough) is still 0. From this,
it follows that the cluster of TFTs can invade provided that

b/c >
(1− w)(1− p)

p
. (1.4)

If p and w are large enough, an initial cluster of TFTs can invade a population
where ALLD is common.

Later on, Axelrod (1984) proposed another kind of population structure, which
he called “territoriality”. He imagined sessile individuals interacting in a simple
territorial structure in which each individual has four neighbors: one to the north,
one to the east, one to the south and one to the west. Interaction is constrained
to nearest neighbors so that the success of a given strategy depends on how well
it does when interacting with neighbors. Evolutionary competition is also con-
strained to nearest neighbors. Evolutionary competition can be biological, by a
colonization process allowing “the location of a less successful strategy [to be]
taken over by the offspring of a more successful neighboring strategy” Axelrod
(1984). Or it can be cultural. In the words of Axelrod: “A neighbor can provide
a role model. If the neighbor is doing well, the behavior of the neighbor can be
imitated. In this way successful strategies can spread throughout a population,
from neighbor to neighbor” Axelrod (1984). In the former case such popula-
tion structure leads to kin selection operating via limited dispersal. In any case
the logical consequence of restraining imitation or dispersal to nearest neighbors
would allow for clusters of individuals of the same strategy to develop, much as
they were hypothesized in the original paper by Axelrod & Hamilton (1981), and
to TFTs to be evolutionarily viable. In another seminal paper, Nowak & May
(1992) showed that even unconditional cooperators (ALLCs) could be evolution-
arily viable in a world of defectors by means of such territoriality, albeit to a
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lesser degree than TFTs. This possibility is already evident from Eq. 1.4 by let-
ting w = 0 (in which case the iterated prisoner’s dilemma becomes the one-shot
prisoner’s dilemma and TFT becomes equivalent to ALLC) and observing that
cooperation can still invade provided that b/c > (1 − p)/p. Reciprocity is not
required for cooperation to evolve in a spatial setting, but it obviously help.

In summary, the first stages of the evolution of large-scale cooperation in hu-
mans can be hypothesized as a combination of reciprocity, altruistic punishment
and other mechanisms converting prisoner’s dilemmas into stag hunts, and pop-
ulation structures conducive to a process of equilibrium selection and/or desta-
bilizing the defective equilibrium. The resulting societites rely in a distributed
form of social control via reciprocity, gossiping and moralistic punishment. Such
societies represent a midpoint between the Hobessian state of nature and the
commonwealths envisaged by the moral philosophers with laws, police and cen-
tral control.

1.3 Secondary mechanisms: conformity, upstream

reciprocity and social diversity

As it is evident from the last section, many different mechanisms have been ad-
vanced during the last decades in order to explain the evolution of cooperation.
Recent review papers have proposed several classification frameworks aiming to
compare models and mechanisms (Lehmann & Keller, 2006; Nowak, 2006b; Sachs
et al., 2004; West et al., 2007). According to the conceptual framework proposed
by Lehmann & Keller (2006), at least one of four conditions must be fulfilled
for cooperation to evolve: (i) direct fitness benefits to the focal individual per-
forming the cooperative act, e.g. mutualism or weak altruism, and “altruistic”
punishment, (ii) indirect fitness benefits to the focal individual performing the
cooperative act via preferential interactions between related individuals, i.e. kin
or group selection, (iii) direct or indirect information about the cooperativeness
of partners in repeated interactions allowing for direct or indirect reciprocity to
work, and (iv) genetic correlation between genes for altruism and identifiable phe-
notypic traits, i.e. green beards. Condition (i) implies social interactions modeled
after games different from the prisoner’s dilemma. Conditions (ii), (iii) and (iv)
make cooperation to be preferentially channeled towards cooperative individuals,
so that helping evolves “because there is a positive association between individuals
at the genotypic and/or phenotypic levels” (Lehmann & Keller, 2006). Such pos-
itive association, referred to as “assortment” in other papers, has been identified
as “the most fundamental requirement for the evolution of altruism” (Fletcher &
Doebeli, 2009) in interactions modeled after the prisoner’s dilemma.

The classification framework proposed by Lehmann & Keller (2006) together
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with the concept of positive assortment between cooperative genotypes and coop-
erative phenotypes allows us to distinguish between primary and secondary mech-
anisms for the evolution of cooperation under the prisoner’s dilemma. Primary
mechanisms are to be understood in this thesis as those that either (1) change
payoffs in the one-shot game so that there is a direct fitness benefit arising from
the cooperative act, or (2) introduce the necessary assortment for cooperation to
be preferentially directed to cooperative members of the population. Secondary
mechanisms are those that fail to do any of these two things, but, under some
conditions, are able to enhance the levels of cooperation that are achieved in the
presence of a primary mechanism. The key idea behind the concept of a sec-
ondary mechanism for the evolution of cooperation is that although it does not
allow for cooperation to evolve per se, it can further promote the evolution of
cooperation when acting in tandem with a primary mechanism.

In this thesis, I explore three secondary mechanisms that have been proposed
to be important for the evolution of cooperation, particularly in humans: con-
formity, upstream reciprocity and social diversity. Conformity is the tendency to
imitate common behaviors argued to be a key component of our social learning
psychology (Boyd & Richerson, 1985). Upstream reciprocity (Boyd & Richerson,
1989; Iwagami & Masuda, 2010; Nowak & Roch, 2007; Nowak & Sigmund, 2005),
also known as generalized reciprocity (Barta et al., 2011; Hamilton & Taborsky,
2005; Pfeiffer et al., 2005; Rankin & Taborsky, 2009; van Doorn & Taborsky,
2011), is a special kind of indirect reciprocity that, instead of prescribing cooper-
ation to those that you know have cooperated with somebody, prescribes coop-
eration to somebody if the focal individual has experienced cooperation. Social
diversity means heterogeneity in the social contexts experienced by individuals,
e.g. heterogeneity in the number of interactions per individual and/or in the
number of individuals per interaction group. Standard models of the evolution
of cooperation assume that individuals implementing the same strategy are the
same in all respects, including for instance the number of interaction partners.
In reality some individuals can have more interaction partners than others and
groups facing social dilemmas can greatly vary with respect to the number of
participants.

Conformity, upstream reciprocity and social diversity are not primary mech-
anisms for the evolution of cooperation: acting alone, they do not select for the
evolution of cooperation. However, existing models have shown that, in some
cases, and in the presence of proper population structures, the addition of one
of these mechanisms can significantly promote cooperation under the prisoner’s
dilemma. Conformity, for instance, and if sufficiently strong, can stabilize any
behavior and thus be conducive to generate multiple stable equilibria in a popula-
tion subdivided in demes, favoring the evolution of cooperation by cultural group
selection (Boyd et al., 2011; Boyd & Richerson, 1985, 2009, 2010). It has also
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been proposed as a solution for the problem of the second order free rider problem
in models of altruistic punishment (Henrich & Boyd, 2001). Upstream reciprocity
has been shown to be conducive to the evolution of cooperation in small and/or
structured populations and under some modeling assumptions (Iwagami & Ma-
suda, 2010; Nowak & Roch, 2007; Pfeiffer et al., 2005; van Doorn & Taborsky,
2011). Finally, when social diversity takes the form of heterogeneous population
structures leading to a high variation in the number of interaction partners per
individual, the evolution of cooperation has been shown to be greatly promoted
in the one-shot prisoner’s dilemma game (Santos & Pacheco, 2005; Santos et al.,
2006, 2008).

1.4 From spherical to cylindrical cows

In that Empire, the Art of Cartography attained such Perfection
that the map of a single Province occupied the entirety of a City,
and the map of the Empire, the entirety of a Province. In time,
those Unconscionable Maps no longer satisfied, and the
Cartographers Guilds struck a Map of the Empire whose size was
that of the Empire, and which coincided point for point with it. The
following Generations, who were not so fond of the Study of
Cartography as their Forebears had been, saw that that vast Map
was Useless, and not without some Pitilessness was it, that they
delivered it up to the Inclemencies of Sun and Winters. In the
Deserts of the West, still today, there are Tattered Ruins of that
Map, inhabited by Animals and Beggars; in all the Land there is no
other Relic of the Disciplines of Geography.
Suárez Miranda: Viajes de varones prudentes, libro cuarto, cap.
XLV, Lérida, 1658.

Jorge Luis Borges, On Exactitude in Science

Borges’s short story On Exactitude in Science (credited as a quotation from
the fictional writer Suárez Miranda and originally published under the pseudonym
B. Lynch Davis) further develops an idea from Lewis Carroll’s Sylvie and Bruno
Concluded about “a map of the country, on the scale of a mile to the mile”. Like
“the following Generations” in Borges’s short story, the characters of Sylvie and
Bruno Concluded also recognize the inconveniences of such degree of exactitude
on the art of cartography: “The farmers objected: they said it would cover the
whole country, and shut out the sunlight! So now we use the country itself, as its
own map, and I assure you it does nearly as well”.

The point of both Borges’s short story and Lewis Carroll’s passage is that
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maps are useful only when they are smaller than the city, the country or the
world they represent. Ideally, a map should be small enough to fit in your pocket
and contain only the information you need. A map for guiding pedestrians in a
given city’s old town shouldn’t be obfuscated with the details of networks of gas
or electricity distribution. If all you need to know about Switzerland is how to
get to Lausanne from Madrid or Brussels, a very sketchy drawing of mine with
one dot for Geneva (where there is the closest international airport) and one dot
for Lausanne (the final destination) connected by a path representing the railway
will be enough. There is no need for me to digress by accurately representing
the shape of the country, its 26 cantons, its 16 (large) lakes and the whole of its
railway network. Exactly the same can be said of models and scientific theories:
they are most useful when they contain all the necessary details, but ignore all
the rest.

The futility of complicated models and the utility of simple ones is also nicely
illustrated by an old joke about a mathematician, an engineer and a physicist
who are asked to calculate the volume of a cow by a farmer. The mathematician
suggests to use geometry, representing the irregular shape of the cow as the union
of many small regular polyhedra. “The volume of the cow”, the mathematician
says, “would be equal to the sum of the volumes of the regular solids, each of which
can be calculated exactly”. Although aesthetically pleasing, the idea is rejected
by the engineer and the physicist on the grounds of it being extremely time-
consuming. The engineer proposes to emulate the great Archimedes of Syracusa
and submerge the cow in a pool of water. “The volume of the cow”, the engineer
says, “would be equal to the amount of water displaced”. Although interesting,
the idea is rejected by the mathematician and the physicist not only because it
is impractical, but also because it could put the life of the animal in danger.
Finally, when it is the physicist’s turn, he unabashedly proposes to assume that
the cow is a sphere with a radius r equal to half the lenght of the animal, its
volume being equal to (4/3)πr3 (the volume of a sphere, whose formula was first
given by the same Archimedes of the engineer’s solution).

The physicist’s solution may be a gross oversimplification, but it delivers.
Does the farmer really need to know the exact volume of the cow? Most likely
not. He just needs a hint of what the volume would be, and that is exactly what
is offered by approximating the cow by a sphere.

Spherical cows and extremely sketchy maps, though useful, obviously also
open the door to oversimplification. Following the famous Einsteinian command-
ment, we should make models as simple as possible, but not simpler. Maybe I
could add a quick drawing of the Lake Léman to the map for your travel from
Geneva Airport to Lausanne, so that you know the name of the lake you will be
looking at through the window. I could also add a note specifying the expected
travel time: 42 minutes if you take the InterCity, 48 if you take the InterRegio.
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A B C

Figure 1.1: The utility of simple models. A. A Swiss cow. B. A spherical cow.
C. A cylindrical cow.

If we wish to give an approximation for the volume of a cow, maybe we could
do slightly better if instead of a sphere we think of a right regular cylinder with
radius r equal to half the height of the animal and height h equal to the length
of the animal. In this case, the volume of our now cylindrical cow would be equal
to πr2h, almost certainly closer to the volume of the actual cow that the one
previously approximated assuming the cow was a sphere.

This illustrates the general methodology I have used in all of the models pre-
sented in this thesis (see Fig. 1.1). Aiming to explain how cooperation evolves
in a given context, I start with an existing but maybe oversimplified model (a
spherical cow) and try to add a bit of more detail until I have a slightly more
realistic model (a cylindrical cow). In doing so I replace some unrealistic assump-
tions (the cow is a sphere) by somewhat less unrealistic assumptions (the cow
is a cylinder) in order to add a bit of more realism to the model, but without
going all the way up to extremely complex models that become intractable or
difficult to analyze (the cow is a cow). Once I have the cylindrical cow, I solve it
(measure the volume of the cylinder) and compare the results with those of the
original model (provided that the length of the animal is greater than its length,
the volume of a cylindrical cow is always less than that of a spherical cow).

Each of the ‘spherical cows’ used as starting points for the models presented
in the following chapters are built using one of the two following tools from the
standard toolkit of evolutionary game theory: the replicator dynamics and the
modeling framework of games on graphs.

The replicator dynamics, or the replicator equation, is a deterministic, non-
linear game dynamic often used in evolutionary game theory for modeling se-
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lection in the absence of mutations and in the limit of very large, well-mixed
populations (Hofbauer & Sigmund, 1998; Taylor & Jonker, 1978). In its standard
continuous form, the replicator dynamics is given by the system of differential
equations:

ẋi = xi [fi (x)− φ (x)] , (1.5)

with
φ (x) =

∑
xifi (x) , (1.6)

where xi is the proportion of players of type i, x = (x1, . . . , xn) is a vector giving
the proportion of types in the population, fi (x) is the average payoff to players
of type i and φ (x) is the average population payoff. In the simplest case where
there are only two kinds of players, equations 1.5 and 1.6 reduce to

ẋ = x(1− x)f(x), (1.7)

where x1 = x and f(x) = f1(x)− f2(x). This is the general form of the replicator
dynamics used in chapter 3 (equation 3.1 with α = 0), chapter 4 (equation 4.2)
and chapter 6 (equation 6.1). In chapter 2, I use a discrete instead of a contin-
uous form of the replicator dynamics, so that evolution unfolds in discrete time
according to:

∆x = x(1− x)f(x). (1.8)

In chapters 2, 3, 4 and 6, modified replicator dynamics are derived by changing
the assumptions of the replicator dynamics used in standard models. I will show
how the introduction of conformity (chapters 2 and 3), participation costs in
games of upstream reciprocity (chapter 4) and variable group sizes in public
goods games (chapter 6) automatically lead to structural changes in the resulting
replicator dynamics and, thus, to different evolutionary outcomes.

One of the main implicit assumptions of the replicator dynamics as a model of
social evolution is that populations are not only large but also well-mixed. This
means that any individual is equally likely to interact and compete with (or so-
cially learn from) any other individual in the population. Well-mixed populations
are obviously only a first approximation to real evolving populations, that most
likely possess some kind of structure so that individuals interact and/or compete
with some individuals more often than with others. Games on graphs (Szabó
& Fáth, 2007), sometimes called evolutionary graph theory (Lieberman et al.,
2005), studies the influence of population structures represented by graphs on
the evolutionary dynamics of different games. According to this approach, the
individuals of a population occupy the vertices of a graph (one per vertex). The
edges of the graph determine both who interacts with whom and who competes
with whom. A given individual’s fitness is determined by the games she plays
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with neighbors. Evolution by natural selection is modeled by defining an updat-
ing rule that prescribes how individuals change their strategies as a function of
their own fitness and the fitness of their neighbors. Due to the huge number of
possible configurations arising by combinatorial explosion, games on graphs are
not, in general, straightforward to analyze mathematically. They are, however,
well suited for computer simulations. I make use of the formal approach of games
on graphs in all of the chapters of this thesis, with the exception of chapter 6,
which only deals with large and well-mixed populations.

In games on graphs, different kinds of graphs (or networks) represent pop-
ulation structures with different structural properties. Among these, the degree
distribution, the characteristic path length and the clustering coefficient are par-
ticularly important. The degree distribution is the probability distribution of the
degrees of the nodes of a family of graphs, where the degree of a node is the
number of its connections to other nodes. The characteristic path length is the
number of edges in the shortest path between two vertices, averaged over all
pairs of vertices in the graph. Finally, the clustering coefficient is a measure of
the degree to which nodes tend to cluster together, that can be defined as the
probability that any two neighbors of a given node are neighbors themselves.

In this thesis, and among all the possible network models, I make use of cycles
(chapter 5), rings (chapters 3, 4, 7, and 8), square lattices (chapter 2), regular
random networks (chapters 4), Erdős-Rényi random networks (chapter 8) and
Barabási-Albert scale-free networks (chapters 3, 4, 7, and 8). Examples of all
these different graphs are shown in Fig. 1.2.

A cycle graph (Fig. 1.2A) is the simplest kind of population topology. It
consists of a single cycle, so that all of its vertices are connected in a closed chain
and each vertex has exactly two neighbors. Due to the simplicity of this topology,
some mathematical results of the evolutionary dynamics on this topology can be
readily available (e.g. Ohtsuki & Nowak (2006a); van Veelen & Nowak (2012)).
I make use of cycles in chapter 5 to study (mathematically) the evolutionary
dynamics of upstream reciprocity in structured populations. A ring (of degree k)
is a straightforward generalization of a cycle, in which each vertex is connected to
the k nearest neighbors, with k ≥ 2 (Fig. 1.2B). Square lattices are graphs whose
drawings correspond to lattices, so that the vertices of the graph are the nodes of
the lattice and the edges are the connections between the nodes. Two different
types of square lattice are common in the literature. The square lattice with von
Neumann neighborhoods is a square lattice with edges defined in such a way that
each node has four neighbors: the nodes located at the north, east, south and
west (Fig. 1.2C). In the square lattice with Moore neighborhoods a given node is
also connected to the nodes located at the northeast, southeast, southwest and
northwest positions.

Cycles, rings and square lattices are all characterized by a regular or ho-
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A B C

D E F

Figure 1.2: Different kinds of networks used as population structures in this thesis.
A. Cycle. B. Ring. C. Square lattice with von Neumann neighborhoods. D.
Regular random network. E. Erdős-Rényi random network. F. Barabási-Albert
scale-free network. The size of the nodes is proportional to their degree in the
networks. With the exception of the cycle all networks have an average degree of
〈k〉 = 4.
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mogeneous degree distribution (all vertices have the same degree), a relatively
large characteristic path length and a high clustering coefficient. Regular ran-
dom networks (Fig. 1.2D) are ‘rewired’ lattices characterized by a regular degree
distribution but also, unlike ‘ordered’ lattices, by short path lengths and low
clustering. Erdős-Rényi random networks (Fig. 1.2E) are graphs constructed by
either of two related random process, first proposed by Erdős & Rényi (1959):
the G(n, p) model and the G(n,m) model. The G(n, p) model (the one used in
this thesis) connects n nodes randomly so that each possible edge is included
with a probability p. The degree distribution of a G(n, p) is binomial, so that the
probability that a given vertex v has a degree kv equal to k is given by

Pr (kv = k) =

(
n− 1

k

)
pk(1− p)n−1−k,

where n is the number of nodes of the graph. In the limit n→∞ (with np held
constant), the degree distribution is Poisson:

Pr (kv = k) =
(np)k e−np

k!
.

In addition to some heterogeneity in the degree distribution, Erdős-Rényi ran-
dom networks of the G(n, p) type are characterized by short path lengths and
low clustering. Finally, Barabási-Albert scale-free networks (Fig. 1.2F), first pro-
posed by Barabási & Albert (1999), are random networks generated by a growing
mechanism involving preferential attachment, so that the more connected a node
is, the more likely it will be connected to new incoming nodes during the growing
procedure. The resulting networks are characterized by short path lengths, low
clustering and highly heterogeneous degree distributions. Indeed, for networks of
large size, the degree distribution follows a power law of the form

Pr (kv = k) ∝ k−3.

The use of different models of networks allows us to investigate how different
structural properties of the population structure (e.g. clustering, heterogeneity
in the degree distribution) affect the outcome of evolutionary games on graphs.
For instance, by comparing the evolutionary dynamics on regular random net-
works and on square lattices with the same degree distribution, clustering has
been identified as a structural property promoting the evolution of cooperation
in social dilemmas modeled after the Stag Hunt game, but hindering it in the
Snowdrift game (Roca et al., 2009a). Likewise, highly heterogeneous degree dis-
tributions have been shown to promote the evolution of cooperation in different
social dilemmas, by comparing evolutionary games on regular random networks
and on scale-free networks (Santos et al., 2006). In this thesis, and by making use
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of the same approach, I show that the addition of conformity to the social learn-
ing strategies of players can promote cooperation in clustered networks such as
lattices and rings, but it can also significantly hinder the evolution of cooperation
on scale-free networks (see chapters 2 and 3). I also show how the addition of par-
ticipation costs to the payoffs of upstream reciprocity games hinder cooperation
in several network topologies (see chapter 4). Chapters 7 and 8 suggest ways of
extending the formal framework of games on graphs, usually defined for symmet-
ric two-player games, in order to take into account multiplayer and asymmetric
games as well.

The replicator dynamics and the framework of games on graphs are simple
models of evolutionary processes, much as spheres are simple models of Swiss
cows. The replicator dynamics, for instance, does not incorporate mutation, re-
combination nor genetic drift, and the population is not subdivided into demes
of finite size linked by migration events, as in more elaborated models used in
population genetics (Ewens, 2004). Networks used in models of games of graphs
are usually static, while most real populations are dynamic, with links being
deleted and created and nodes leaving and joining the population. The particu-
lar network models used in this thesis (see Fig. 1.2) are also far simpler than even
static representations of real social networks, which are not single nor scale-free,
but broad scale, exhibiting modularity, high clustering and important correla-
tions (Newman, 2010). Despite these limitations (but maybe also because of
these limitations) the replicator dynamics and the formalism of games of graphs,
together with the modified versions of these models (our cylindrical cows) help us
understand the complex phenomena they aim to model, sharpening our intuition
about the way natural selection acts on evolving populations.

1.5 Outline of the thesis

The organization of the remainder of this thesis is as follows. In part I (com-
prising chapters 2 and 3) I start off by studying the effects of conformity in
the evolutionary dynamics of different social dilemmas both in well-mixed and
network-structured populations. I show that while conformity promotes coopera-
tion in regular networks, it can greatly hinder it in scale-free newtorks (otherwise
great amplifiers of cooperation). In part II (chapters 4 and 5) I deal with the rel-
ative merits of upstream reciprocity as a secondary mechanism for the evolution
of cooperation. In chapter 4, I challenge the assumptions of a model by Nowak
& Roch (2007) and show how the addition of participation costs can hinder the
evolution of cooperation by upstream reciprocity. Then, in chapter 5, I construct
a different model of upstream reciprocity, based on less restrictive assumptions,
and show how upstream reciprocity is never stable against both unconditional
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cooperation and unconditional defection, even in the case of a population struc-
tured as a cycle. Part III studies social diversity in public goods games (chapters 6
and 7) and the asymmetric Donation game (chapter 8). In these chapters I show
that social diversity at different levels can greatly affect the evolutionary dynam-
ics, sometimes favoring and sometimes hindering the evolution of cooperation.
Finally, chapter 9 draws some general conclusions.
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Part I

Conformity
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When I am at Rome, I fast on a Saturday; when I am at Milan, I do
not. Follow the custom of the church where you are.

St. Ambrose

The advice given by Aurelius Ambrosius (better known as St. Ambrose)
to Aurelius Augustinus Hipponensis (St. Augustine) has remained in English
as the saying ‘when in Rome, do as Romans do’. Other languages use exactly
the same formula10 or have a related saying11 meaning ‘conform to what others
do’. Conformity is the idea that humans show a disproportionated tendency to
imitate common behaviors, specially when they are uncertain about what is the
best behavioral choice. Boyd & Richerson (1985) and co-workers (e.g. Henrich
& McElreath (2003)) have argued that conformity is a particularly important
component of our social learning psychology, a heuristic for efficiently acquiring
locally adaptive behaviors. Conformity also plays an important role in some
models of the evolution of cooperation. If sufficiently strong, conformity can
stabilize any behavior and thus be conducive to generate multiple stable equilibria
in a population subdivided in demes, favoring the evolution of cooperation by
cultural group selection (Boyd et al., 2011; Boyd & Richerson, 1985, 2009, 2010);
see, however, Lehmann et al. (2008). Conformity has also been proposed as a
solution for the problem of the second order free rider problem in models of
altruistic punishment (Henrich & Boyd, 2001).

One standard interpretation of models of games on graphs is that they are
models of cultural evolution taking place in human network-structured popula-
tions (Ohtsuki et al., 2006; Szabó & Fáth, 2007). Despite this interpretation,
and to the best of my knowledge, no model has explored the effects of adding
a conformist bias in the social learning strategies of the individuals. The first
part of this thesis attempts to fill this gap. Chapter 2 focuses on the evolution
of cooperation under three games representing social dilemmas (the prisoner’s
dilemma, the snowdrift game and the stag hunt) when the population structure
is given by square lattices. The model considers individuals that imitate not
only according to a payoff-based bias (the usual assumption in evolutionary mod-
els) but also according to a conformist bias, so that locally common behaviors
are, ceteris paribus, more likely to be imitated. For comparison purposes, large
populations devoid of population structure, i.e. infinite well-mixed populations,
are also studied. In this case the addition of conformity is found to lead to a
standard replicator dynamics with a transformed payoff matrix. Chapter 3 is an
extension of the study presented in chapter 2. Other network topologies, partic-
ularly scale-free networks, are considered as population structures. An analytical

10French: ‘à Rome, fais comme les Romains’; Portuguese: ‘quando en Roma, faça como os
Romanos’; Hungarian: ‘ha Rómában élsz, élj úgy, mint a rómaiak’.

11Spanish: ‘alĺı donde fueres, haz lo que vieres’; Italian: ‘paese che vai, usanza che trovi’.
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solution of the model given by the method of pair approximation is also presented.
Overall, the obtained results indicate that conformity can promote or hinder the
evolution of cooperation, depending on the type of social dilemma and network
topology under consideration. Particularly, scale-free networks are not the strong
amplifiers of cooperation suggested by some studies [e.g. Santos & Pacheco (2005,
2006)] when individuals imitate according to partially conformist social learning.
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Chapter 2

Conformist transmission and the
evolution of cooperation†

Abstract

We study the effects of conformist transmission on the evolutionary dynamics
of the Prisoner’s Dilemma, the Snowdrift and the Stag Hunt games in both
well-mixed and spatially structured populations. The addition of conformism
introduces a transformation of the payoff matrix that favours the stability of
pure equilibria and reduces the basin of attraction of risk dominant equilibria.
When both conformism and local interactions are present, the system can exhibit
higher levels of cooperation than those obtained in the absence of either of the
two mechanisms.

2.1 Introduction and related work

Evolutionary game theory (Gintis, 2000; Hofbauer & Sigmund, 1998) is the the-
ory of evolutionary dynamics when selection is frequency-dependent, i.e. when
the success of an individual is conditioned not only by the strategy he or she
follows but also by the strategies followed by other individuals in the population.
Although originally developed as an application of game theory to the study of
genetic evolution (Maynard Smith, 1982), evolutionary game theory has also been
used to investigate cultural evolutionary processes, that is the way ideas or beliefs
spread through a population of individuals capable of imitation.

In cultural evolutionary game-theoretic models, ideas are transmitted via bi-

†J. Peña. In S. Bullock, J. Noble, R. W. and Bedau, M. A. (eds), Artificial Life XI:
Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living
Systems, MIT Press pp. 458-465 (MIT Press, Cambridge, MA, 2008).
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ased imitation. Most of these models posit that the only important psycho-
logical bias underlying imitation is prestige or payoff-based bias, defined as the
predisposition to imitate successful individuals. Assuming a very large and well-
mixed population, payoff-based biased transmission can be shown to generate a
famous differential equation, named the replicator dynamics (Gintis, 2000; Tay-
lor & Jonker, 1978). In the context of evolutionary game theory, the equilibrium
points and other characteristics of the dynamics of different games are studied in
order to better understand the evolutionary processes involved.

The Prisoner’s Dilemma (PD), Snowdrift1 (SD) and the Stag Hunt (SH) are
among the most studied two-person, symmetric games in the literature. They
are used for investigating under which circumstances altruistic traits can become
fixed in a population of “selfish” individuals. In social dilemmas of cooperation,
individuals’ behaviours are of two types: cooperative and non-cooperative. Coop-
erators are willing to engage in cooperative tasks, while non-cooperators (usually
called defectors) prefer not to. The success resulting from the interaction of co-
operators and defectors is given by the payoff matrix:

C D
C R S
D T P

where C denotes cooperators and D denotes defectors. R is the reward for mutual
cooperation, P is the punishment for mutual defection, T is the temptation to
defect and S is the sucker’s payoff.

In all three social dilemmas, mutual cooperation is favoured over both mu-
tual defection (R > P ) and an equal probability of unilateral cooperation and
defection (2R > T + S). The three dilemmas however differ in their ordering of
payoffs. In the PD, T > R > P > S; in SD, T > R > S > P , and in the SH,
R > T > P > S.

The evolution of cooperation can be studied by looking at the stable equilibria
of the replicator dynamics for each of these games. In the PD, the only stable
equilibrium occurs when the population is entirely comprised of defectors. In the
SD game cooperators and defectors coexist in equilibrium. In the SH there are
two equilibria: when all individuals cooperate and when all individuals defect.
This last equilibrium is however risk dominant, i.e. it has the largest basin of
attraction.

The replicator dynamics is a rough approximation of actual cultural evolu-
tionary dynamics as it assumes that populations are very large and well-mixed,
and that payoff-based bias is the sole psychological mechanism guiding cultural
transmission processes. More realistic models of cultural evolutionary processes

1Also known as Hawks-Doves or Chicken.
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correct at least one of these assumptions and arrive at different results from those
predicted by the standard replicator dynamics.

Evolutionary graph-theoretical models (Lieberman et al., 2005; Szabó & Fáth,
2007), for instance, go beyond the assumption of large, well-mixed populations by
restricting interaction and imitation to near neighbours in a graph representing
spatial locality or a social network. In many cases, this graph structure has been
shown to promote cooperation beyond the limits of the replicator dynamics in
a well-mixed population (Nowak et al., 1994; Nowak & May, 1992; Santos &
Pacheco, 2005; Skyrms, 2004).

Other researchers have augmented cultural evolution models by including dif-
ferent psychological biases that, together with payoff-based bias, could influence
the way people imitate. In particular, conformism or conformist bias (Boyd
& Richerson, 1985), which is the propensity for preferentially imitating common
behaviours, has been suggested to be an important component of our social learn-
ing psychology2 (Asch, 1951; Coultas, 2004). When conformist transmission is
introduced in cultural evolution models, the result (in the case of large, well-
mixed populations) is a modified replicator dynamics that can lead to different
equilibrium points and different dynamics from those predicted by the standard
replicator dynamics (Henrich, 2001; Skyrms, 2005). By making use of such equa-
tion, Henrich & Boyd (2001) have shown how even limited levels of conformism
are able to stabilise cooperative behaviour in a public goods game if punishment
is also included in the model. In related work, Skyrms (2005) has explored the
effect of conformist bias in a number of symmetric two-by-two games. Analyses
in that work were however restricted to some specific numerical cases and no
general conclusions were formally drawn.

The aim of this paper is to study the effects of conformist transmission on the
evolution of cooperation when considering two-person symmetric games such as
the PD, SD and the SH. We propose an evolutionary graph-theoretical model in
which cultural transmission is guided by both payoff-based and conformist biases,
and study it both analytically and by means of simulation.

The paper is organised as follows. The next section gives the agent-based
level specifications of the model. It is then shown how to recover the modified
replicator dynamics in the limiting case of a large and well-mixed population,
and the equation is studied by means of equilibrium analysis. This is followed by
a simulation study of the particular case of a population organised into a regular
2D lattice. Finally, conclusions are drawn.

2From an evolutionary psychology perspective, conformist bias could have evolved because
it is adaptive in the face of costly information. Boyd & Richerson (1985) and Henrich & Boyd
(1998) have theoretically shown that conformist transmission is adaptive in spatially and/or
temporally varying habitats since it provides a simple heuristic rule that increases the proba-
bility of acquiring locally adaptive beliefs and behaviours.
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2.2 The model

Our model considers a population of n individuals, where the i-th individual is
represented by the vertex vi of an undirected graph G(V,E) with vi ∈ V ∀i. The
open neighbourhood of i, N(i), is the set of all individuals j such that there is an
edge eij ∈ E. The number of neighbours of individual i is thus the degree ki of
vertex vi. The closed neighbourhood N [i] is the set of i’s neighbours plus i itself.

Each individual is characterised by its cultural trait or strategy si ∈ {A,B}.
Social interaction is modelled by means of a two-person, symmetric game with a
payoff matrix M given by3:

A B
A a b
B c d

Each time step t, individuals simultaneously engage in social interactions. As
a result of these interactions, individual i collects an average payoff given by:

ui(t) =
1

ki

∑
j∈N(i)

M (si(t), sj(t)) .

After interactions are completed, individual i randomly chooses one of its
neighbours j ∈ N(i) as its model for cultural transmission. Imitation is assumed
to be conformist-biased with probability α and payoff-biased with probability
1−α. Parameter α thus weighs the importance of conformism relative to payoff-
biased transmission.

The adoption of individual j’s strategy by the focal individual i depends on
j’s cultural fitness wij. Cultural fitness (the direct analogue to biological fitness
in genetic evolution) is a measure of the attractiveness or the transmissibility of
a model’s strategy. If transmission is payoff-biased, j’s cultural fitness is given
by the difference of average payoffs between j and i:

wij(t) = uj(t)− ui(t).

If transmission is conformist, j’s cultural fitness is given by

wij(t) = qij(t)−
1

2
,

where qij is the proportion of agents in N [i] having the same strategy as j. Notice
that wij is positive whenever uj > ui (payoff-biased transmission) or j follows the
strategy followed by the majority of i’s neighbours (conformist transmission).

3Without loss of generality, payoffs are assumed to be non-negative values.
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Agent i copies j’s strategy with a probability proportional to wij. Formally:

Pr (si(t+ 1) = sj(t)) = f (wij) ,

where f is assumed to be a monotonically increasing function, in order for models
with high cultural fitness to propagate their strategies more often than models
with low cultural fitness. Three alternative definitions of f are considered in this
paper, each one specifying a different imitation rule: (i) imitate-if-better (IIB);
(ii) replicator dynamics 1 (RD1); and (iii) replicator dynamics 2 (RD2)4.

The IIB rule is given by:

fIIB(wij) =

{
0 if wij ≤ 0
1 if wij > 0

,

whereas RD1 and RD2 are respectively defined by:

fRD1(wij) =

{
0 if wij ≤ 0

βwij if wij > 0
,

and

fRD2(wij) =
1

2
(1 + βwij) .

Parameter β normalises wij such that 0 ≤ Pr (si(t+ 1) = sj(t)) ≤ 1. Thus,
β = 2 in the case of conformist transmission and

β =
1

max {a, b, c, d} −min {a, b, c, d}
(2.1)

in the case of payoff-biased transmission. Fig. 2.1 depicts f for each imitation
rule.

The three imitation rules described above have been traditionally used in
the literature, either directly in evolutionary graph-theoretical models (e.g. RD1
by Hauert & Doebeli (2004) and Santos & Pacheco (2005)) or in order to derive
population-level analytical models (e.g. RD2 by Henrich (2001) and Boyd &
Richerson (2002)).

From the previous definitions it is possible to derive Pr (si(t+ 1) = A), which
is the probability of individual i following strategy A at time step t + 1 after
having chosen a neighbour j as a model. Individual i’s strategy will become or
remain A whenever: i) A is the current strategy of both i and j ; ii) i’s current
strategy is A, j’s current strategy is B, but i does not imitate j; or iii) i’s current
strategy is B, j’s current strategy is A, and i imitates j.

4We give RD1 and RD2 these names because both imitation rules can be shown to recover
the replicator dynamics in the well-mixed, 100% payoff-biased transmission case (Gintis, 2000;
McElreath & Boyd, 2007).
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Figure 2.1: Imitation rules. IIB is shown in black, RD1 (β = 0.2) in blue and
RD2 (β = 0.2) in red.

The formal equation is given by

Pr (si(t+ 1) = A) = Pr (si(t) = A, sj(t) = A)

+ Pr (si(t) = A, sj(t) = B)×{
(1− α) [1− f (uj(t)− ui(t))] + α

[
1− f

(
qij(t)−

1

2

)]}
+ Pr (si(t) = B, sj(t) = A)×{

(1− α) [f (uj(t)− ui(t))] + α

[
f

(
qij(t)−

1

2

)]}
. (2.2)

2.3 Exact analysis for the case of large, well-

mixed populations

2.3.1 General games

Here we analyse the limiting case of a complete graph with large n, which is equiv-
alent to having the large, well-mixed population that is traditionally assumed in
standard evolutionary game theory.

Let pt denote the frequency of individuals with strategy A at time step t. For
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a complete graph with n→∞, ki = n− 1 ≈ n ∀i, and

ui(t) =

{
uA(t) if si(t) = A
uB(t) if si(t) = B

∀i, where uA(t) and uB(t) are the average payoffs collected by individuals with
strategies A and B at time step t, respectively given by

uA(t) = apt + b(1− pt), (2.3)

and
uB(t) = cpt + d(1− pt). (2.4)

Additionally, since N [i] = V ∀i:

qi,j(t) =

{
pt if sj(t) = A

1− pt if sj(t) = B
∀i, j.

Using these relations and RD2 as imitation rule, Eq. 2.2 can be shown to
reduce to

∆p = pt(1− pt){(1− α)β [uA(t)− uB(t)]
+α(2pt − 1)}, (2.5)

where ∆p = pt+1−pt is the change in the proportion of individuals with behaviour
A between time steps t and t+1. The recursion of Eq. 2.5 is a modified replicator
dynamics that had been already derived in related work on cultural transmission
processes including both payoff-biased and conformist imitation (Carpenter, 2004;
Henrich, 2001; Henrich & Boyd, 2001; Skyrms, 2005).

Let us first analyse the particular case when cultural transmission is payoff-
biased only. Making α = 0, Eq. 2.5 reduces to:

∆p = pt(1− pt)β {uA(t)− uB(t)} ,

which is the discrete-time equivalent of the standard replicator dynamics (Gintis,
2000; Hofbauer & Sigmund, 1998; Taylor & Jonker, 1978). Substituting Eq. 2.3
and 2.4 in the last expression and doing little algebra:

∆p = pt(1− pt)β {(a− b− c+ d)pt + b− d} . (2.6)

Equilibria of this equation can be found by looking at the values of pt that
make ∆p = 0. The two pure equilibria are given by pt = 0 and pt = 1. In the
following, these equilibria will be respectively called all-B and all-A. A third
internal equilibrium, in which players with strategies A and B are present in the
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population, may exist. When this is the case, the proportion of individuals with
strategy A in equilibrium is given by

p∗ =
d− b

(a− c) + (d− b)
.

In general, the equilibrium p is stable5 whenever∣∣∣∣∣dpt+1

dpt

∣∣∣∣
pt=p

∣∣∣∣∣ < 1.

From this, it can be easily shown that

• all-B is stable when b < d,

• all-A is stable when a > c, and

• p∗ is stable when both a < c and b > d.

Depending on the ranking of the entries of the payoff matrix, four different pos-
sibilities6 for the imitation dynamics can thus be distinguished (Nowak, 2006b):

1. a > c ∧ b > d: only all-A is stable (A dominates B).

2. a < c ∧ b < d: only all-B is stable (B dominates A).

3. a > c ∧ b < d: both all-A and all-B are stable (A and B are bistable). In
this case, the internal unstable equilibrium p∗ determines the sizes of the
basins of attraction of the two pure equilibria. The equilibrium with the
largest basin of attraction is called risk dominant. In particular

(a) all-A is risk dominant if d− b < a− c, and

(b) all-B is risk dominant if d− b > a− c.

4. a < c ∧ b > d: pure equilibria are unstable and the internal equilibrium is
stable (A and B coexist).

How this picture changes when cultural transmission has also a conformist
component (α > 0)? In order to answer to this question, an equilibrium analysis

5The condition is necessary and sufficient for hyperbolic equilibria only. All-B (resp. all-A)
is non-hyperbolic when b = d (resp. a = c).

6Actually, there is a fifth possibiity: A and B are neutral when a = c and b = d. In this
case there is no evolution since ∆p = 0 ∀pt.

37



similar to the one done in the case α = 0 can be performed here for α 6= 0. A
second possibility is to rewrite Eq. 2.5 as

∆p = pt(1− pt){[(1− α)β(a− b− c+ d) + 2α] pt
+(1− α)β(b− d)− α},

and perform the following variable substitutions

a′ = (1− α)βa+ α,

b′ = (1− α)βb,

c′ = (1− α)βc,

d′ = (1− α)βd+ α,

to obtain
∆p = pt(1− pt) {(a′ − b′ − c′ + d′)pt + b′ − d′} . (2.7)

Notice (see Eq. 2.6) that this recursion is equivalent to the discrete replicator
dynamics of a population game with the following payoff matrix M ′

A B
A a′ b′

B c′ d′

Hence, in the framework of the replicator dynamics, the addition of con-
formism to the cultural evolutionary process is equivalent to a transformation
of the payoff matrix of the underlying game. Observe that α = 0 recovers the
original game and α = 1 completely transforms the original game into a pure
coordination game with the following payoff matrix

A B
A 1 0
B 0 1

The addition of conformism to imitation dynamics can have considerable
effects in the nature of equilibria of the modelled cultural evolutionary pro-
cess (Boyd & Richerson, 1985; Henrich, 2001; Henrich & Boyd, 2001; Skyrms,
2005). In particular, since the entries of M are non-negative and 0 ≤ α ≤ 1,

a < c; a′ < c′

b > d; b′ > d′,

which means that i) originally unstable pure equilibria could become stable and
ii) an originally stable internal equilibrium could become unstable. Furthermore,
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if A and B coexist, the proportion of individuals with strategy A in equilibrium
is now given by

p′∗ =
(1− α)β(d− b) + α

(1− α)β {(a− c) + (d− b)}+ 2α
.

Not everything changes in the dynamics of the game when conformism is
introduced. In particular,

a > c⇒ a′ > c′,

b < d⇒ b′ < d′,

which means that originally stable pure equilibria will continue to be stable in
the transformed game. Moreover,

d− b < a− c⇒ d′ − b′ < a′ − c′,
d− b > a− c⇒ d′ − b′ > a′ − c′,

which means that, if A and B are bistable, the risk dominant equilibrium of the
transformed game will be the same as the one of the original game.

The new conditions for stability are

1. All-B is stable if

α >
β(b− d)

1 + β(b− d)
(2.8)

2. All-A is stable if

α >
β(c− a)

1 + β(c− a)
(2.9)

3. The internal equilibrium, when it exists, is stable if neither Eq. 2.8 nor
Eq. 2.9 holds.

2.3.2 Social dilemmas

Let us now focus on the effect of conformist biases in games reflecting social
dilemmas, such as the PD, SD and the SH. In order to simplify the analysis for
these games, it is customary to rescale their payoff matrices so that they depend
on a single parameter. For the PD, we follow Nowak & May (1992) and make
T = b, R = 1, P = ε ≈ 0 and S = 0, where 1 < b < 2 characterises the advantage
of defectors against cooperators. For the SD game, we follow Hauert & Doebeli
(2004) and make T = γ > 1, R = γ − 1/2, S = γ − 1 and P = 0, such that
the cost-to-benefit ratio of mutual cooperation is given by r = 1/(2γ − 1), with
0 ≤ r ≤ 1. For the SH we make T = P = 1, R = g and S = 0, with 1 < g < 2.
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Figure 2.2: Effect of conformist bias in the PD (left) and the SD game (right).

With these settings, β = 1/b for the PD, β = 1/γ for SD and β = 1/g for the SH
in the case of payoff-based biased imitation (see Eq. 2.1).

As it has been previously analysed, the effect of conformist transmission may
be interpreted as a transformation in the payoff matrix that can alter the original
ordering of its entries. This in turn can drastically change the nature of the
game played. In the PD with conformism, the all-C equilibrium (unstable in the
original game) can become stable if R′ > T ′. This holds when

α >
b− 1

2b− 1
.

The resulting ordering of the payoffs (R′ > T ′ > P ′ > S ′), and the fact that
all-D is always the risk-dominant equilibrium, effectively converts the game into
a SH (see Fig. 2.2).

In the case of the SD game, the ordering of the entries of the transformed
payoff matrix M ′ can be different from that of the original matrix M if R′ > T ′

(all-C becomes stable), P ′ > S ′ (all-D becomes stable) or both conditions hold.
For the rescaled version of this game, R′ > T ′ whenever

α >
r

1 + 2r
,

and P ′ > S ′ when

α >
1− r

2
.

There are thus 4 different possibilities for the SD game with conformist trans-
mission (see Fig. 2.2):
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1. T ′ > R′ > S ′ > P ′ (the game is still a SD),

2. R′ > T ′ > S ′ > P ′ (C dominates D),

3. T ′ > R′ > P ′ > S ′ (the game becomes a PD), and

4. R′ > T ′ > P ′ > S ′ (the game becomes a SH). In this last case the game is a
proper SH (C andD are bistable and all-D is the risk-dominant equilibrium)
when r > 0.5. When r < 0.5, all-C is both payoff and risk dominant.

Finally, in the case of the SH the ordering of the payoffs is not importantly
affected, but the unstable equilibrium moves towards p = 1/2, thus reducing the
basin of attraction of all-D, i.e. the riskiness of all-C.

Broadly speaking, conformist transmission can promote cooperation in the PD
by turning it into a SH, and in the SH by diminishing the basin of attraction of all-
D. In the SD game, results are dependent on the cost-to-benefit ratio of mutual
cooperation. For r < 0.5, cooperation is generally favoured: all-C can become
the only stable equilibrium (when R′ > T ′ > S ′ > P ′), or the risk dominant
equilibrium (when R′ > T ′ > P ′ > S ′). For r > 0.5 the opposite happens, with
all-D possibly becoming the only stable equilibrium (when T ′ > R′ > P ′ > S ′)
or the risk-dominant equilibrium (when R′ > T ′ > P ′ > S ′).

Although conformist transmission opens the possibility of a cooperative equi-
librium in the PD and diminishes the riskiness of engaging in cooperative actions
in the SH, populations with an initial majority of defectors are always doomed to
a non-cooperative equilibrium in these two games. In the SD case, defection pre-
vails for r > 0.5, and this for any amount of conformism. In this sense, conformist
transmission alone is unable to sustain cooperation in both PD and SH, and it
promotes cooperation for the SD game only when r < 0.5. For cooperation to be
sustained, other mechanisms are necessary to be present along with conformism.
Punishment has been suggested as one such possible mechanism (Henrich & Boyd,
2001). In the next section, we explore another mechanism: graph reciprocity.

2.4 Simulation results for the case of medium-

sized, spatially structured populations

Here, the evolutionary dynamics of the three social dilemmas discussed above are
studied by means of computer simulations for the case of medium-sized popu-
lations (1024 individuals) organised into a 32 × 32 square lattice with periodic
boundary conditions. For the three games, the rescaled versions presented in the
last section were used7.

7We effectively set P = ε = 0 in the PD.
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Square lattices were implemented using both Moore and von Neumann neigh-
bourhoods with ranges equal to 1. Simulations were conducted using each of
the three imitation rules previously defined (IIB, RD1, RD2), varying values
of the game parameters (b in the PD, r in SD and g in the SH) and different
amounts of conformism (α ∈ {0.0, 0.125, 0.25, 0.375, 0.5}). Agents were updated
synchronously.

For each simulated condition, 50 runs were executed. Each simulation was
initialised with 50% cooperators and terminated whenever the population con-
verged to any of the two absorbing states (all-C, all-D) or after 3000 simulation
steps. In this last case, the equilibrium proportions of cooperators were calcu-
lated by averaging over the last 1000 time steps of each run, well after transients
have passed.

Fig. 2.3 shows the average level of cooperation in equilibrium for the Moore
neighbourhood case. Results for the von Neumann neighbourhood case are qual-
itatively similar and are not reproduced here for reasons of space. In the figures
corresponding to the SD game, the dashed lines represent the equilibrium fraction
of cooperators predicted by Eq. 2.7 (the well-mixed case).

Fig. 2.3 shows how cultural transmission including a conformist component
consistently promotes higher levels of cooperation than payoff-based biased trans-
mission alone for both the PD and the SH. Moreover, the larger the amount of
conformism, the larger the proportion of cooperators at equilibrium, as it can be
seen from the nice ordering of the curves for different values of α. For the SD
game, the addition of conformist bias results in higher frequencies of cooperators
for small r but also in lower frequencies of cooperators for large r. Thus, the
general observations made for the effects of conformist transmission on the well-
mixed case continue to hold for the case of spatially structured populations, i.e.
that conformism promotes cooperation in the PD and the SH for the whole range
of their game parameters, and that it promotes cooperation in the SD game for
r < 0.5 while inhibiting cooperation for r > 0.5.

Regarding the effects of embedding the population in a lattice, our results
confirm those already classic in evolutionary game theory: spatial structure pro-
motes cooperation in the PD (Nowak et al., 1994; Nowak & May, 1992) and the
SH (Skyrms, 2004), but can inhibit cooperation in the SD game (Hauert & Doe-
beli, 2004). In general, for the SD game, cooperators in a lattice do better than
their counterparts in a well-mixed population for i) α < 0.25 and small r, and ii)
α > 0.25 and large r.

Notice that these qualitative results do not depend on the specific imitation
rule being used. However, quantitative results do depend on the specificities of
these rules. For instance, the higher stochasticity of the RD2 with respect to the
other two imitation rules seems to hinder the evolution of cooperation in the PD
and SH games, where only moderate levels of cooperation can be sustained, and
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Figure 2.3: Average values of the equilibrium proportion of cooperators as a
function of the game parameter for the PD (first row), the SD game (second
row) and the SH (third row). Results are given for IIB (first column), RD1
(second column) and RD2 (third column) imitation rules and different amounts
of conformism: α = 0.0 (black), α = 0.125 (blue), α = 0.25 (green), α = 0.375
(magenta) and α = 0.5 (red). For the SD game, the corresponding proportions of
cooperators in well-mixed populations for each value α are also reported (dashed
lines).
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only for very small b or very large g.

2.5 Conclusions

We have augmented traditional evolutionary graph-theoretic models with con-
formist transmission (the tendency to imitate common behaviours) and studied
the effects of this extension on the evolutionary dynamics of social dilemmas.
From a replicator dynamics perspective, the addition of conformism is equivalent
to a simple transformation of the payoff matrix favouring the stability of pure
equilibria. In particular, a Prisoner’s Dilemma can become a Stag Hunt, and a
Snowdrift can become a Stag Hunt, a Prisoner’s Dilemma or a game in which
cooperation dominates defection. In the Stag Hunt case, where both pure equi-
libria are already stable, conformist transmission moves the unstable equilibrium
towards p = 1/2, thus reducing the basin of attraction of the non-cooperative
equilibrium. Although unable to sustain cooperation by its own when coopera-
tors are not the majority at the beginning of the evolutionary process, conformist
transmission enhances cooperation when other mechanisms, such as spatial local-
ity, are also present in the model, at least for the PD and the SH cases. For the
spatial SD, conformism can also be shown to promote higher levels of cooperative
behaviour, but only for small cost-to-benefit ratios.
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Chapter 3

Conformity hinders the evolution
of cooperation on scale-free
networks†

Abstract

We study the effects of conformity, the tendency of humans to imitate locally
common behaviors, in the evolution of cooperation when individuals occupy the
vertices of a graph and engage in the one-shot Prisoner’s Dilemma or the Snow-
drift game with their neighbors. Two different graphs are studied: rings (one-
dimensional lattices with cyclic boundary conditions) and scale-free networks of
the Barabási-Albert type. The proposed evolutionary-graph model is studied
both by means of Monte Carlo simulations and an extended pair-approximation
technique. We find improved levels of cooperation when evolution is carried on
rings and individuals imitate according to both the traditional pay-off bias and a
conformist bias. More important, we show that scale-free networks are no longer
powerful amplifiers of cooperation when fair amounts of conformity are intro-
duced in the imitation rules of the players. Such weakening of the cooperation-
promoting abilities of scale-free networks is the result of a less biased flow of
information in scale-free topologies, making hubs more susceptible of being influ-
enced by less-connected neighbors.

3.1 Introduction

Understanding the emergence and stability of cooperation is a central problem
in many fields of both natural and social sciences. Researchers have tradition-

†J. Peña, H. Volken, E. Pestelacci and M. Tomassini. Phys. Rev. E 80, 016110 (2009).
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ally adopted evolutionary game theory (Weibull, 1995) as common formal frame-
work for studying the dynamics of strategy change, and games like the Prisoner’s
Dilemma (PD) and the Snowdrift Game (SG) as metaphors for the tension be-
tween group welfare and individual selfishness. The PD and the SG (also known
as Chicken or Hawks-Doves) are two-person, symmetric games in which a given
player can be, at each time step, either a Cooperator (C) or a Defector (D). Cs
are willing to engage in cooperative tasks, while Ds prefer not to, thus exploiting
Cs. If two individuals of the same type interact, they both get the reward for
mutual cooperation R if they cooperate or the punishment for mutual defection
P if they defect. If a D and a C interact, the D receives the temptation to defect
T and the C receives the sucker’s pay-off S. In the PD, the pay-offs are ordered
such that T > R > P > S with 2R > T + S. Since T > R and P > S, the
only Nash equilibrium of the game is the pure strategy (D,D). In this case, the
dilemma is caused both by “greed” (or the temptation to cheat) and “fear” that
the other player cheats. In the SG, the order of P and S is reversed, yielding
T > R > S > P . Thus, when both players defect they get the lowest possible
pay-off. The pairs of pure strategies (C,D) and (D,C) are Nash equilibria of the
game. There is also a third equilibrium in mixed strategies in which strategy D is
played with probability p and strategy C with probability 1−p, where p depends
on the actual pay-off values. The dilemma in this game is caused only by “greed”,
i.e. players have a strong incentive to threat their opponent by playing D, which
is harmful for both parties if the outcome happens to be (D,D).

Conventional evolutionary game theoretical models assume an infinite popu-
lation in which pairs of randomly drawn individuals interact according to a given
game. Selection is strictly pay-off biased, which implies that fitter individuals
reproduce more (genetic evolution) or successful individuals tend to be imitated
more frequently (cultural evolution). In both genetic and cultural evolution, the
evolutionary process can be analytically described by a set of equations called
the replicator dynamics (Weibull, 1995). In the SG, the only stable equilibrium
of such equations is an internal one, corresponding to the mixed strategy of clas-
sical game theory, while the two pure equilibria are unstable. In the PD, the only
stable rest point occurs when the population is entirely composed of Ds: Cs are
doomed to extinction in this game.

Given these unfavorable predictions for the evolution of cooperation, several
mechanisms have been invoked in order to explain why altruism can actually
emerge, such as kin selection, group selection, direct reciprocity, indirect reci-
procity and network reciprocity (Nowak, 2006a). Network reciprocity (Lieberman
et al., 2005; Nowak & May, 1992; Santos & Pacheco, 2005; Szabó & Fáth, 2007)
arises when individuals occupy the vertices of a graph (modeling spatially sub-
divided populations or social networks) such that interactions are constrained to
direct neighbors. When the population of players possesses such a structure, Cs
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can survive in clusters of related individuals for certain ranges of the game param-
eters, as it has been known since the pioneering work by Nowak & May (1992).
Among the different conceivable population topologies, scale-free networks have
received particular attention since they have been found to promote coopera-
tion to a point that Cs dominate Ds in a significant portion of the parameters’
space (Santos & Pacheco, 2005).

In addition to positing infinite well-mixed populations, the replicator dynam-
ics relies on the assumption that selection is entirely pay-off biased. Such a
premise, although natural to posit in genetic evolution, is less straightforward
to postulate in cultural evolution where information is transmitted by means of
imitation. Humans not only have a bias for imitating more successful people, but
also to conform, or to show a disproportionate tendency to copy the behavior
of the majority (Boyd & Richerson, 1985). Recent empirical research has shown
that conformity is an important bias in our social learning psychology (Coultas,
2004; Efferson et al., 2008), and that it can partially account for the results ob-
tained in laboratory experiments on social dilemmas (Bardsley & Sausgruber,
2005; Carpenter, 2004). Theoretical research has also shown that conformity can
promote cooperation in the PD. In the standard case of a large, well-mixed popu-
lation, the dynamics can lead either to full defection or to bi-stability, depending
on the amount of conformity (Henrich, 2001; Henrich & Boyd, 2001; Peña, 2008).
In Peña (2008) the case of square lattices was studied by simulation, with the re-
sult that conformity stabilizes cooperation in such population topologies, a result
confirmed for rings in Mengel (2009) and, in a more detailed way, in the work
presented here.

In this paper we investigate the evolution of cooperation when individuals
imitate with a given amount of conformity and both interaction and imitation
are constrained to nearest neighbors in a network. In order to extend previous
work (Doebeli & Hauert, 2005; Hauert & Doebeli, 2004; Nowak & May, 1992;
Peña, 2008; Santos & Pacheco, 2005; Tomassini et al., 2006) and to study the
influence of the network topology, we use rings and Bárabasi-Albert scale-free
networks as examples of, respectively, simple degree-homogeneous (i.e. regular)
and highly degree-heterogeneous graphs. It will be shown that, while conformity
reinforces the cooperation-promoting advantages of network reciprocity in rings,
the very same mechanism may strongly hinder the evolution of cooperation when
the network topology is scale-free. Indeed, when Cs are not initially in the ma-
jority and imitation is partly conformist, scale-free networks are no longer the
powerful amplifiers of cooperation expected from the results of previous studies.
There is thus an interesting interplay between conformity and network reciprocity
so that the cooperation-promoting effects of conformity depend on the particular
type of networks on which evolutionary dynamics are played.
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3.2 Model

We consider a population of size N where the i-th individual is represented by
the vertex vi of an undirected, simple graph G(V,E). The neighborhood of i,
Γ(i), is the set of all individuals j such that there is an edge eij ∈ E. The number
of neighbors of i is thus the degree ki of vertex vi.

At each time step, each individual is either a C or a D. The system evolves
by the successive application of interaction and imitation phases. During the
interaction phase, individuals simultaneously engage in a single round of the game
with their neighbors. As a result, individual i collects an accumulated payoff
Πi =

∑
l∈Γ(i) πil, where πil is the pay-off player i receives when interacting with

player l (e.g. T , R, P or S). During the imitation phase, each individual randomly
chooses one of its neighbors as its cultural model. Let us denote i’s cultural model
by j. We consider two update rules for the cultural evolutionary dynamics: pay-
off biased imitation and conformist imitation. (i) For pay-off biased imitation, i
copies j’s strategy with a probability given by f ((Πj − Πi)/(θk>)), where f(x)
is equal to x if x > 0 and 0 otherwise, k> = max {ki, kj}, θ = T − S in the PD
and θ = T − P in the SG. This update rule is a local, finite population analogue
of the replicator dynamics, commonly used in the literature (Hauert & Doebeli,
2004; Santos & Pacheco, 2005). (ii) For conformist imitation the probability that
i copies j’s strategy is given by f

(
(nj|i − ni|i)/ki

)
where nl|i is the number of

i’s neighbors with strategy l. This update rule is related to the majority rule
and to the voter model, commonly used in interdisciplinary physics studies (Cox
& Durrett, 1991). In our model individuals imitate according to a pay-off bias
with probability 1 − α, and according to a conformist bias with probability α.
Thus, the parameter α represents the amount of conformity in the individuals’
behavior and gives the average proportion of players imitating according to the
conformity rule at each time step. When α = 0 our local dynamics reduce to the
strictly pay-off biased imitation rule used in previous studies (Hauert & Doebeli,
2004; Santos & Pacheco, 2005). Figure 3.1 gives some illustrative examples of the
imitation dynamics of the proposed model.

In order to allow comparison with previous studies, we focus on the commonly
used rescaled version of the PD (Nowak & May, 1992; Santos & Pacheco, 2005),
for which T = b, 1 ≤ b ≤ 2, R = 1 and P = S = 0. The parameter b represents
the advantage of defectors over cooperators. For the SG we make, as in Santos &
Pacheco (2005), T = β > 1, R = β−1/2, S = β−1, and P = 0, such that the cost-
to-benefit ratio of mutual cooperation is given by r = 1/(2β − 1). It is worthy
of note that, in degree-inhomogeneous networks, the local replicator dynamics
using accumulated payoff is not invariant with respect to affine transformations
of the payoff matrix (Luthi et al., 2009; Tomassini et al., 2007). Although this
fact invalidate generalizations of the obtained results to the extended parameter
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Figure 3.1: Individuals imitate following two different update rules, each reflecting
a different bias of our social learning psychology: pay-off based imitation and
conformist imitation. Cooperators are shown in light yellow; defectors in dark
blue. Social interaction is modeled by a rescaled Prisoner’s Dilemma with T =
b > 1, R = 1, P = S = 0. (a) Successful pay-off biased transmission. When
applying a pay-off biased rule of imitation, A can copy B’s strategy and become
a defector, since B’s pay-off is greater than A’s. (b) Unsuccessful conformist
transmission. If A were to imitate B according to conformity, no transmission
would take place, since defectors are in the minority of A’s neighborhood (3
defectors vs. 4 cooperators). (c) Unsuccessful pay-off biased transmission. B will
not copy A’s strategy under a pay-off biased rule since A’s pay-off is smaller than
B’s. (d) Successful conformist transmission. Conformist transmission from A to
B can take place because cooperators constitute the majority in B’s neighborhood
(5 cooperators vs. 1 defector).
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space, it allows us to compare our results with relevant previous work.
Before studying our model with actual network models (rings and scale-free

networks) by means of numerical simulation, we briefly present analytical results
obtained using the mean-field method and the pair approximation. Such an-
alytical results are important in order to identify the dynamical regions of the
system and to serve as starting point for comparisons with the dynamics on actual
networks studied in Section 3.4.

3.3 Analytical results

3.3.1 Mean-field approach

Within the framework of the traditional mean-field approach (Szabó & Fáth,
2007) network locality is ignored and the system is assumed to have an infinite
size, leading to an infinite, well-mixed population. In this case, it is easy to show
that the time evolution of the fraction of Cs ρ is ruled by the following equation:

ρ̇ = ρ(1− ρ) {γ [πC − πD] + α(2ρ− 1)} , (3.1)

where πC = ρR+ (1−ρ)S and πD = ρT + (1−ρ)P are the average pay-offs to Cs
and Ds, and γ = (1−α)/θ. Equation 3.1 (or a similar formula) has been derived
in related work on cultural transmission processes including both pay-off biased
imitation and conformist imitation (Carpenter, 2004; Henrich, 2001; Henrich &
Boyd, 2001; Peña, 2008; Skyrms, 2005). The dynamics has the two trivial fixed
points ρ∗0 = 0 and ρ∗1 = 1, as well as (possibly) one internal non-trivial equilibrium
given by

ρ∗ =
γ(P − S) + α

γ {R− T + P − S}+ 2α
.

For α = 0 (pure pay-off biased transmission) Eq. 3.1 recovers the standard repli-
cator dynamics of the original game, whereas for α = 1 (pure conformist trans-
mission), Eq. 3.1 is equivalent to the replicator dynamics of a pure coordination
game with internal (unstable) equilibrium ρ∗ = 1/2. For 0 < α < 1, variations
in the amount of conformity and the entries of the pay-off matrix can change the
evolutionary dynamics of the social dilemma. In particular, the global behavior
of the system depends on the two critical values αD = (S − P )/(θ + S − P ) and
αC = (T − R)/(θ + T − R) so that the system is in one of the following four
dynamical regions:

1. Dominant defection (α > αD ∧ α < αC): ρ∗0 = 0 is the only stable equilib-
rium. In this case, Cs are doomed to extinction regardless of their initial
frequency in the population.
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2. Co-existence (α < αD ∧α < αC): only the internal equilibrium ρ∗ is stable.
Cs and Ds coexist in equilibrium at proportions given by ρ∗ and 1 − ρ∗,
respectively.

3. Bi-stability (α > αD ∧ α > αC): both ρ∗0 = 0 and ρ∗1 = 1 are stable
whereas the internal fixed point ρ∗ is unstable. In this case, the evolutionary
dynamics depends on the initial frequency of Cs, ρ(0). For ρ(0) > ρ∗

cooperation prevails, whereas it vanishes for ρ(0) < ρ∗.

4. Dominant cooperation (α < αD ∧ α > αC): ρ∗1 = 1 is the only stable equi-
librium; Cs get fixed regardless of their initial frequency in the population.

These regimes can be seen in Fig. 3.2, which shows the phase diagrams of the
two rescaled games. In the PD with conformity, S < P ⇒ αD < 0, so that only
dominant defection and bi-stability are possible. In particular, for the rescaled
version of the game, conformity can make the system bi-stable if α > (b−1)/(2b−
1). However, for all values of b in the bi-stability region, the basin of attraction
of ρ∗0 is greater than the basin of attraction of ρ∗1, i.e. Cs initially in the minority
are doomed to extinction regardless of their initial proportion and the values of
b and α. In the SG with conformity, the four dynamical regions above described
are possible, with αD = (1−r)/2 and αC = r/(1+2r). In the co-existence region,
the equilibrium proportion of Cs is larger than what is expected in the α = 0 case
when r < 1/2 and smaller when r > 1/2. In the bi-stability region, the basin of
attraction of ρ∗1 is greater than the basin of attraction of ρ∗0 for r < 1/2.

In sum, conformity can promote cooperation in the PD to a certain degree in
the mean-field limit. If in the majority (and if conformity is strong enough) Cs
now have a chance of surviving invasion from Ds, and eventually take over the
whole population (Peña, 2008). In the SG, whether conformity helps or hinders
the evolution of cooperation actually depends on the cost-to-benefit ratio r. Cs
are favored for r < 1/2 and disfavored for r > 1/2.

3.3.2 Pair approximation

Pair approximation (Matsuda et al., 1992; van Baalen & Rand, 1998) improves
over traditional mean-field approach for structured populations by considering
the frequency of strategy pairs (i.e. C-C, C-D and D-D). Since the technique
assumes regular graphs without loops, it only applies to Bethe lattices in a strict
sense (Hauert & Szabó, 2005). However, pair approximation has been used to
predict evolutionary dynamics on more general regular graphs with considerable
success (Hauert & Doebeli, 2004; Hauert & Szabó, 2005). We extended the pair-
dynamics model presented in the Supplementary Information of Hauert & Doebeli
(2004) to investigate the cultural evolutionary dynamics of social dilemmas on
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Figure 3.2: Mean-field solutions of the phase diagrams for the PD with conformity
on the b-α plane (left) and for the SG with conformity on the r-α plane (right).
For the PD, the system can be in the dominant defection (D) or the bi-stability
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graphs. The pair approximation of our model leads to a system of ordinary
differential equations tracking changes in the proportions pc,c, pc,d and pd,d of,
respectively, the C-C, C-D and D-D links in the population graph. The resulting
system, although impossible to solve analytically due to the nonlinearity of the
equations, can be solved numerically after specifying suitable initial conditions.

Figure 3.3 shows the phase diagrams for the pair approximation of our model,
for regular graphs with degree k = 4 and k = 8. The figures were constructed
by numerically integrating the equations under different initial proportions of Cs
(ρ(0) = {0.1, 0.2, . . . , 0.9}) and averaging over all initial conditions. Pure spatial
effects can be seen when α = 0. For the PD, the dynamical regime of the game is
no longer of dominant defection, but of co-existence. Locality of interactions thus
favors Cs by allowing them to survive extinction. In addition to this classical
result, for k = 4 conformity is largely favorable to Cs. Indeed, augmenting α
increases the proportion of Cs in the co-existence region and, depending on the
value of b, can shift the system to the region of dominant cooperation. In the
SG with k = 4 conformity has similar effects, resulting in an analogous dynamic
picture. The fact that the SG represents a less stringent dilemma makes larger
the area of dominant cooperation. For k = 8, phase diagrams get closer to
those predicted by the mean-field method (see Fig. 3.2) but important levels of
cooperation are still sustained. In the PD, for instance, the basins of attraction
of the cooperative equilibrium in the bi-stability region are larger than those
expected in a well-mixed population (compare the top right panel of Fig. 3.3
with the left panel of Fig. 3.2).

In a nutshell, when the population of players possesses local structure, a given
amount of conformity in the imitation rules of the players is able to foster coop-
eration, at least for low values of the mean degree k. The reason for this is the
easier formation of clusters of individuals playing the same strategy induced by
conformist imitation.

3.4 Simulation results

We now turn our attention to actual networks as population topologies, in partic-
ular (i) rings (regular 1D-lattices with cyclic boundary conditions) with degrees
k = 4, k = 8 and k = 16, and (ii) Barabási–Albert scale-free networks (Albert &
Barabási, 2002) with average degrees k̄ = 4, k̄ = 8, and k̄ = 16. For both types
of networks we generated graphs of size N = 104. In the case of rings, graphs are
constructed by arranging the nodes on a circle and connecting each node to the
k most-neighboring nodes.

We study the model by Monte Carlo simulations in populations randomly
initialized with 50% Cs and 50% Ds (but see Section 3.4.3 for other initial con-
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ditions). The probability α of conformist transmission was set to α ∈ [0, 0.5] in
steps of 0.1. We privilege values of α ≤ 0.5 so that dynamics are primarily driven
by pay-off differences in the competing strategies. However, we also study the
limiting case α = 1 in Section 3.4.4 and the case 0 ≤ α ≤ 1 in Section 3.4.3. The
advantage of defectors b (PD) and the cost-to-benefit ratio r (SG) were varied in
steps of 0.05. We carried out 50 runs for each couple of values of α and the game
parameter. For the scale-free networks, we used a fresh graph realization in each
run. The average final frequency of Cs ρ̂ was obtained by averaging over 103 time
steps after a relaxation time of 104 time steps.

3.4.1 Results for rings

Figure 3.4 summarizes the results obtained for the PD and the SG on rings with
k = 4. These plots confirm the results previously obtained for the standard
α = 0 case on these population topologies (Santos & Pacheco, 2005; Tomassini
et al., 2006), which in turn are qualitatively similar to those obtained for square
lattices (Hauert & Doebeli, 2004; Nowak & May, 1992). In the PD, Cs are able to
survive for low values of b by forming clusters wherein they interact more often
with their own strategy than what is expected in well-mixed populations. Cs
can thus benefit from mutual cooperation and counterbalance the exploitation of
Ds at the borders of the clusters (Doebeli & Hauert, 2005). In the SG, spatial
structure hinders the evolution of cooperation (Hauert & Doebeli, 2004), such
that only for small values of r (i.e. r < 0.3) the final fraction of Cs is higher than
what is expected in a well-mixed population. As it is evident from our results,
conformity enhances cooperation in rings, moving rightward the critical value b∗

for which ρ̂ = 0 in the PD, and the value r∗ for which the ρ̂ becomes smaller than
the corresponding proportion in a well-mixed population in the SG. Furthermore,
the different curves are ordered in a way that the higher α, the higher ρ̂ for all
values of b and r (except for the SG, r = 0.5, α = 0.1) and the larger the critical
values b∗ and r∗.

Figure 3.5 plots the results for rings with k = 8. In the PD, conformity
enhances cooperation even more pronouncedly than in the k = 4 case. Indeed,
the threshold b∗ has moved rightward for every value of α. Such trend is still
present in the results obtained for rings with k = 16 (not shown here to avoid
cluttering the figures). In the SG, the increase in the degree of the graph makes
conformity cooperation-enhancing up to a threshold value r̂ (where a curve with
α > 0 crosses the curve with α = 0) but detrimental afterwards. As b∗ in the
PD, also r̂ moves rightward as α increases.

With respect to simulation results, pair approximation tends to underestimate
cooperation for low values of α and b or r and to overestimate it for medium
to large values of these parameters. For the PD with conformity, results for
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Figure 3.4: Final average frequency of Cs on rings with k = 4 for the PD (upper
panels) and the SG (lower panels) as a function of b or r for different values of
the propensity to conform α. Results by Monte Carlo simulations are shown in
the right panels while predictions by pair approximation are shown in the left
panels. Mean-field approximations for the SG and α = 0 are shown with dotted
lines.
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Figure 3.5: Final average frequency of Cs on rings with k = 8 for the PD (upper
panels) and the SG (lower panels) as a function of b or r for different values of
the propensity to conform α. Results by Monte Carlo simulations are shown in
the right panels while predictions by pair approximation are shown in the left
panels. Mean-field approximations for the SG and α = 0 are shown with dotted
lines.
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k = 8 are rather pessimistic and are much closer to what we have obtained
for random graphs (data not shown here). This is not surprising since random
graphs are locally similar to Bethe lattices (Bollobás, 1995). Notice, however, that
pair approximation predicts reasonably well the cooperation-enhancing effects of
conformity in the PD and the ordering of the curves for different values of α.
Also, for the SG, pair approximation accurately predicts the fact that the curves
with conformity (α > 0) are above the curve without conformity (α = 0) when
k = 4 (Fig. 3.4, lower panels), but that they cross it when k = 8 (Fig. 3.5, lower
panels). This means that pair approximation correctly predicts the fact that, for
k = 8, there is a point up to which conformity helps Cs but beyond which Ds are
favored with respect to the standard case without conformity.

3.4.2 Results for scale-free graphs

Let us now turn our attention to the results obtained for scale-free networks
(Fig. 3.6). When imitation is strictly pay-off biased (α = 0) these degree-
heterogeneous graphs importantly foster cooperation in both the PD and the
SG with respect to what is obtained in rings and other degree-homogeneous
graphs (Santos & Pacheco, 2005). As an aside, we note that the higher the
average degree k̄, the lower the gains in cooperation1. The addition of confor-
mity has important consequences in the evolution of cooperation on scale-free
graphs. In the PD, conformity improves ρ̂ for all values of b only for a scale-free
topology with k̄ = 4 and α < 0.3. For the other cases, conformity does not
hamper cooperation for small values of b but is detrimental for medium to large
values of the game parameter. Furthermore, the threshold value b̂ above which
ρ̂ is higher than in the case without conformity is a monotonically decreasing
function of both α and k̄, such that the higher the amount of conformity and the
average connectivity of the graph, the smaller the value of b̂. Particularly, for
scale-free networks with k̄ = 8 and α ≥ 0.2, conformity weakens the advantage
of these graphs in promoting cooperation to a point that ρ̂ becomes comparable
to the corresponding fraction obtained in rings (compare the right upper panels
of Fig. 3.6 and Fig. 3.5).

Results for the SG on scale-free networks (lower panels of Fig. 3.6) are quali-
tatively similar to those obtained for the PD. Again, conformity is beneficial for
cooperation for all values of the game parameter r only for k̄ = 4 and α < 0.3.
For the remaining cases, there is a threshold value r̂ of the cost-to-benefit ratio
above which ρ̂ is smaller than the corresponding frequency of Cs in the α = 0
case. We note again the fact that the higher the value of α, the lower the value

1When comparing our results with those of Santos & Pacheco (2005), note that the curves
are in the wrong order in Santos & Pacheco (2005) as cooperation should decrease with increas-
ing mean degree for scale-free networks.
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Figure 3.6: Final average frequency of Cs on scale-free networks for the PD (upper
panels) and the SG (lower panels) as a function of b (PD) or r (SG) for different
values of the propensity to conform α. Results are shown for k̄ = 4 (left panels)
and k̄ = 8 (right panels). Mean-field approximations for the SG and α = 0 are
shown with dotted lines.
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Figure 3.7: Phase diagrams for the PD game on rings with k = 8 (top row) and
for scale-free graphs with k̄ = 8 (bottom row) as a function of b and α. The
images are for increasing initial fractions of cooperation ρ(0) from left to right.

of r̂. Finally, and as in the PD, for k̄ = 8 and α ≥ 0.2 there are no important
quantitative differences in ρ̂ between rings and scale-free networks: scale-free net-
works have again lost the cooperation-enhancing capabilities they feature when
imitation is strictly pay-off biased. For k̄ = 8 and high values of r, the addi-
tion of conformity can even make Cs go extinct, which would not happen in the
non-conformist case.

3.4.3 Dependence on the initial conditions

In order to investigate the robustness of cooperation and to study the influence
of the initial fraction of Cs ρ(0) we have also run simulations for the PD on rings
and scale-free graphs for k̄ = 8 starting from values of ρ(0) other than 0.5, and
on an extended range of values of α going from 0 to 1. Results are shown in
Fig. 3.7 in the form of phase diagrams for each initial condition. In contrast to
the notion of bi-stability in a system of ordinary differential equations (such as
those resulting from the mean-field approach and the pair approximation), here
we define bi-stability as the ability of the system to reach either full cooperation or
full defection starting from the same global initial conditions, due to its stochastic
dynamics and finite size.

Not unexpectedly, initial conditions influence the final outcomes of the simula-
tions, so that the strategy initially in the majority is always favored with respect
to the case when ρ(0) = 0.5. Notice, however, that the effects of conformity are
still qualitatively different for each of the two types of networks considered in this
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Figure 3.8: Final population composition as a function of the average degree
k̄ and the initial proportion of cooperators when imitation is purely conformist
(α = 1).

study. On these phase diagrams the transition from the region of dominant co-
operation (C ) to dominant defection (D) is steeper on rings, where the two zones
with monomorphic populations are divided by a narrow region of co-existence
(C+D). On scale-free networks a large region of bi-stability (C or D) tends to be
formed in the middle of the parameter’s space, being the largest for ρ(0) close to
50%. Indeed, the cultural evolutionary dynamics are much more sensitive to the
initial conditions when applied on top of scale-free networks than when they are
played on top of rings. For rings, conformity favor Cs even if they are initially
in the minority, such that, in general, the higher the value of α the higher the
final fraction of Cs in the population. For scale-free networks, conformity can
be favorable to cooperation when Cs are initially in the majority, but decidedly
detrimental if they are in the minority. The remarkable observation is that in
scale-free networks even a small change in the initial fraction of Cs can drastically
change the final outcome (see the second and fourth images in the lower row of
Fig. 3.7 for ρ(0) = 0.45 and ρ(0) = 0.55). It would be tempting to compare
the numerical results for scale-free graphs with those obtained analytically in the
mean-field case and with the pair approximation (Figs. 3.2 and 3.3). However,
this cannot be done as both the mean-field and pair approximation approaches
give poor results in highly degree-inhomogeneous networks.
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3.4.4 Pure conformist dynamics

We briefly comment on the case with α = 1 which is special as the dynamics is
completely driven by the majority rule and games’ payoffs play no role. Figure 3.8
shows what happens in this case as a function of the network’s average degree k̄
and the initial proportion of Cs. For k̄ = 2 there is a large co-existence region for
both graphs, and the pure equilibria have relatively small basins of attraction.
With increasing k̄, the co-existence region decreases so that a greater connectivity
favors fixation in a monomorphic population. Whereas in rings co-existence is
still reached for k̄ as large as 12, for scale-free networks such regime disappears for
k̄ > 5. For these networks, only in the narrow central strip around ρ(0) = 0.5 may
bi-stability arise. Note that in this case the C and D labels indicating cooperators
or defectors are purely conventional as payoffs (and so, the behavioral strategies
of the individuals) are completely ignored.

3.5 Discussion

Conformity and network reciprocity are able to act together and foster coopera-
tion in degree-homogeneous graphs for social dilemmas such as the PD and the
SG. The basic principle behind network reciprocity is the formation of clusters of
related individuals leading to assortative interactions that favor Cs. Conformity
further helps such cluster formation thus improving the efficiency of cooperative
behavior in a network of interacting individuals.

More interestingly, conformity may hinder the evolution of cooperation on
the otherwise cooperation-promoting scale-free networks. The different dynami-
cal organization of cooperation in degree-heterogeneous graphs with conformity
can explain the reason of such phenomenon. When individuals imitate exclu-
sively according to a pay-off bias, Cs and Ds coexist in quasi-equilibrium, with
some nodes fixed in cooperative or defective behavior and others where there
is no fixation and cycles of invasion follow indefinitely (Gómez-Gardeñes et al.,
2007). Thus, the gradual drop in cooperation seen in Fig. 3.6 for the case α = 0
is mostly due to fluctuating individuals spending less and less time engaging in
cooperative behavior. This dynamical picture changes when individuals imitate
not only according to a pay-off bias, but also to conformity. In this case, for
k̄ = 8, the population always reaches one of the two absorbing states, so that
in the limit only one strategy gets fixed: Cs for low values of b, Cs or Ds (with
a certain probability) for intermediate values of b, and Ds for large values of b
(see also the bottom row of Fig. 3.7). In general, and contrary to what happens
without conformity, intermediate levels of cooperation for α > 0 (when averaging
over several runs) are not the result of the co-existence or fluctuation of differ-
ent strategies but of the fact that, for an interval of values of b, whose length
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Figure 3.9: Evolution of the frequency of Cs on scale-free networks (k̄ = 8) during
the first 500 time steps for the PD, without conformity (upper panel) and with
conformity (lower panel). In both figures, b = 1.35. 20 distinct curves are shown.

increases with α, the system sometimes converges to the cooperative equilibrium
and some others to the defective equilibrium (see Fig. 3.7 bottom row, central
image). Additionally, evolutionary dynamics develop much faster in the presence
of conformity. Figure 3.9 illustrates these observations for the case of scale-free
networks with k̄ = 8 and b = 1.35. Without conformity (upper panel of Fig. 3.9)
the fraction of Cs for each run slowly increases during the initial part of the
simulation until, eventually, it stabilizes around 0.9. Conversely, with conformity
(lower panel of Fig. 3.9), very early in the evolutionary process the population
goes either to full cooperation or to full defection.

We can gain an insight into the interplay between network reciprocity and
conformity by making use of the notion of the temperature of players (Lieberman
et al., 2005; Masuda, 2007). Hot players are those who play more since they have a
large number of neighbors, whereas cold players are those who have few neighbors
and, consequently, play less games. By playing more often, and provided that
pay-offs are positively biased (i.e. S ≥ 0 in the PD), hot players get higher
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Figure 3.10: Evolution of cooperation around the most connected hub of a scale-
free network with k̄ = 8. The game is a rescaled PD with b = 1.35 for α = 0
(upper panel) and α = 0.1 (lower panel). The fraction of C neighbors is shown in
solid lines and the strategy of the hub in dashed lines (D corresponds to 0; C to
1). As a reference, the level of 50% cooperation is depicted in dotted lines. The
most connected hub is initially set to D (upper panel) or to C (lower panel). The
rest of the population is initialized to around 50% Cs.

accumulated payoffs than cold players. Under pure pay-off biased imitation (α =
0) this implies that hot players are also more successful in being imitated and in
disseminating their strategies (Masuda, 2007).

Both Cs and Ds do better when they are surrounded by Cs. By spreading
defective behavior, hot Ds become less and less successful, since the number of
their C neighbors decreases. Hot Cs, on the contrary, see their pay-off increased
by spreading their own strategy. The more hot Cs are imitated the more they
earn and the more difficult it is for a surrounding D to invade. A typical example
of such “hub dynamics” is illustrated in Fig. 3.10 (upper panel) for the most
connected hub of a scale-free network. The hub is D at the beginning of the
simulation, while the rest of the population is initialized to around 50% Cs.
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Many C neighbors imitate the defective hub (or other surrounding Ds) during
the first steps of simulation, so that the proportion of C neighbors is reduced to
approximately 30%. As a consequence, the total pay-off of the hub is reduced,
and the hub becomes vulnerable to invasion from a neighboring C. When the
hub becomes a C, more and more of its D neighbors also switch their strategies.
Consequently, the proportion of C neighbors (and the total pay-off to the hub)
increases and is maintained at a high level afterwards. The presence of such
positive feedback mechanism, and the fact that it only works for Cs, greatly
enhances cooperation in degree-heterogeneous graphs and, particularly, in scale-
free networks (Santos & Pacheco, 2006).

The introduction of conformity decreases the bias in the flow of information
in degree-heterogeneous graphs, making hubs vulnerable to invasion from their
cold neighbors. While hubs are unlikely to imitate their low connected neighbors
when using a pay-off biased rule, nothing prevents them from imitating a cold
surrounding player if it holds the strategy of the local majority (see Fig. 3.1(d)).
Since the fraction of Cs generally decreases at the outset of the simulation (see
the first time steps of the curves shown in Fig. 3.9), conformity further favors
Ds, which become predominant in the population. An example of this dynamics
is shown in Fig. 3.10 (lower panel). Initially, the hub is a C. Many of the hub’s
neighbors turn to defection during the first time steps, making cooperation the less
common strategy in the hub’s neighborhood. Around the 100th time step, the hub
imitates by conformity one of its defector neighbors, leading to a quicker decrease
in the proportion of Cs in its neighborhood. Shortly after, Cs completely vanish
around the most connected hub. During those first time steps, hubs imitating
according to a conformist bias will have many chances of becoming Ds. When
Cs are not initially in the large majority, such initial asymmetry in the strategies
of the hubs can account for the negative effects of conformity in the evolution
of cooperation in scale-free networks. Conformity partly reverses the flow of
information on degree-heterogeneous networks so that hubs no longer conduct
the dynamics and instead quickly conform to the general trend of the whole
population.

3.6 Conclusions

To sum up, we have investigated the effects of conformity in the evolution of
cooperation on regular one-dimensional lattices (rings) and scale-free networks.
This was done by proposing an updating rule that is a stochastic average of
the traditional local replicator dynamics, which models pay-off biased imitation,
and a conformist biased rule of transmission favoring the most common variants
around focal individuals. We explored rings and scale-free networks with different
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average degrees, as well as different values of the propensity to conform α. Two
games representing social dilemmas were studied: the rescaled versions of the PD,
and the SG. In addition to Monte Carlo simulations, we also used an extended
pair-dynamics model to predict the average fraction of cooperators in equilibrium,
and compare them with the results obtained from our simulations.

The results presented in this paper show that whether conformity strengthens
or weakens the evolution of cooperation depends on the intrinsic characteristics
of the underlying graph. In the PD, conformity favors cooperation on rings by
allowing clusters of Cs forming more easily. Conversely, it can hinder cooperation
in scale-free networks for medium to large values of b, due to the exposure of hubs
to the opinions of the local majority in their neighborhoods. In particular, and
already for small amounts of conformity in the imitation rules of the players,
scale-free networks do not show the great improvement over regular structures
that has been previously reported in the literature. In the SG, conformity fosters
cooperation on rings in the case k = 4 for all values of the cost-to-benefit ratio
r, and for low to medium values of r in the case k = 8. In scale-free networks,
conformity is rather detrimental for large values of r. Thus, for both the PD
and the SG, conformity often hinders the evolution of cooperation on scale-free
networks for the cultural evolutionary dynamics described in this paper.

It is worth pointing out that other factors dismissing the advantage of scale-
free networks in the evolution of cooperation have been identified, such as partic-
ipation costs (Masuda, 2007), other positive affine transformations of the pay-off
matrix (Luthi et al., 2009; Tomassini et al., 2007), and the use of average instead
of accumulated pay-offs (Santos et al., 2006). While these factors are extrinsic
to the imitation rules of the agents, conformity is a simple mechanism undoubt-
edly present in our social learning psychology and central to better understand
cultural dynamics and the way cooperation evolves on real social networks.
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3.7 Appendix. Pair approximation

An analytical approximation of the dynamics of evolutionary games on graphs can
be obtained by means of pair approximation (Matsuda et al., 1992; van Baalen &
Rand, 1998). For detailed surveys of this technique, and its applications to games
on graphs, we refer the interested reader to Hauert & Doebeli (2004); Hauert &
Szabó (2005); Szabó & Fáth (2007). We limit ourselves to briefly introduce the
pair approximation and to explain how we have extended it for taking into account
conformity in the imitation rules of the players.

Pair approximation is a method for constructing a system of ordinary differ-
ential equations for the global frequencies of strategies by tracking the changes
in the frequencies of strategy pairs. In our case, we are interested in determining
the global frequency ρ of Cs by tracking the fluctuations in pc,c, pc,d, pd,c and pd,d,
where ps,s′ is the probability of having an individual playing strategy s connected
to an individual playing strategy s′. For pair approximation to be consistent
with the mean-field approach, it is assumed that ps =

∑
s′ ps,s′ . Furthermore,

and in order to “close” the set of equations, configurations of triplets and more
complicated configurations are approximated by the configuration probabilities
of strategy pairs. For example, the configuration probability of the triplet s, s′, s′′

is approximated by ps,s′,s′′ = ps,s′ps′,s′′/ps′ . It is important to note that pair ap-
proximation (i) requires regular graphs and (ii) corrections arising from loops are
ignored. Finally, note that the predictions of the pair approximation for any two
regular graphs with the same degree k are exactly the same. This allows us to
compare our results to those of Hauert & Doebeli (2004) when α = 0.

Let us consider individuals sitting on the vertices of a graph of degree k.
Whenever a randomly chosen site A updates its strategy, a random neighbor B
is selected as A’s cultural model. Common neighbors of any pair of vertices are
considered to be independent by pair approximation (i.e. loops are neglected).
Thus, let us denote by a1, . . . , ak−1 (resp. b1, . . . , bk−1) the k− 1 the neighbors of
A (resp. B) other than B (resp. A). The probability of a generic configuration
(see Fig. 3.11) is given by:

pA,B

∏k−1
i=1 pai,Apbi,B

pk−1
A pk−1

B

.

The probability that the pair A,B becomes B,B is calculated by multiplying the
transition probability σA→B by the configuration probability and summing over
all possible configurations, so that:

pA,B→B.B =
∑

a1,...,ak−1

∑
b1,...,bk−1

σA→B × pA,B
∏k−1

i=1 pai,Apbi,B

pk−1
A pk−1

B

.
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Figure 3.11: A generic configuration for pair approximation. A is the focal in-
dividual, B is A’s cultural model, a1, a2, . . . , ak−1 are A’s neighbors other than
B, and a1, a2, . . . , ak−1 are B’s neighbors other than A. A and B are assumed to
have no common neighbors, i.e. triangles and loops are neglected.

In our model, the transition probability σA→B depends not only on the payoffs
of A and B but also on α (the probability to imitate according to a conformist
bias) and on the number of players among a1, . . . , ak−1 playing the same strategy
of A and B. The transition probability is given by:

σA→B = (1− α)f

(
ΠB(b1, . . . , bk−1)− ΠA(a1, . . . , ak−1)

kθ

)
+

αf

(
nB(a1, . . . , ak−1, B)− nA(a1, . . . , ak−1, B)

k

)
,

where ΠB(x1, . . . , xk−1), ΠA(x1, . . . , xk−1) denote the payoffs of B (A) interacting
with x1, . . . , xk−1 plus A (B), and nB(a1, . . . , ak−1, B), nA(a1, . . . , ak−1, B) specify
the number of players with strategy B (A) among a1, . . . , ak−1 and B. The
definitions of the parameter θ and the function f are given in Section 3.2.

Whenever A imitates B, the pair configuration probabilities change so that
pB,B, pB,ai , . . . , pB,ak−1

increase, while pA,B, pA,ai , . . . , pA,ak−1
decrease. All these

changes lead to a set of ordinary differential equations governing the dynamics of
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the system:

ṗc,c =
∑

a1,...,ak−1

(nc(a1, . . . , ak−1) + 1)

k−1∏
i=1

pd,ai

∑
b1,...,bk−1

k−1∏
j=1

pc,bj ×{
(1− α)f

(
Πc(b1, . . . , bk−1)−Πd(a1, . . . , ak−1)

kθ

)
+ αf

(
2nc(a1, . . . , ak−1) + 2− k

k

)}

−
∑

a1,...,ak−1

nc(a1, . . . , ak−1)

k−1∏
i=1

pc,ai
∑

b1,...,bk−1

k−1∏
j=1

pd,bj ×{
(1− α)f

(
Πd(b1, . . . , bk−1)−Πc(a1, . . . , ak−1)

kθ

)
+ αf

(
k − nc(a1, . . . , ak−1)

k

)}

ṗc,d =
∑

a1,...,ak−1

(
k

2
− 1− nc(a1, . . . , ak−1)

) k−1∏
i=1

pd,ai

∑
b1,...,bk−1

k−1∏
j=1

pc,bj ×{
(1− α)f

(
Πc(b1, . . . , bk−1)−Πd(a1, . . . , ak−1)

kθ

)
+ αf

(
2nc(a1, . . . , ak−1) + 2− k

k

)}

−
∑

a1,...,ak−1

(
k

2
− nc(a1, . . . , ak−1)

) k−1∏
i=1

pc,ai
∑

b1,...,bk−1

k−1∏
j=1

pd,bj ×{
(1− α)f

(
Πd(b1, . . . , bk−1)−Πc(a1, . . . , ak−1)

kθ

)
+ αf

(
k − nc(a1, . . . , ak−1)

k

)}
,

where nc(a1, . . . , ak−1) gives the number of Cs among a1, . . . , ak−1 and Πc(x1, . . . , xk−1),
Πd(x1, . . . , xk−1) denote the payoffs of a C (D) interacting with x1, . . . , xk−1 plus
a D (C). Because of the symmetry condition pc,d = pd,c and the constraint
pc,c+pc,d+pd,c+pd,d = 1 these two differential equations are sufficient to describe
the system. Note that whenever α = 0 the system of equations is equivalent to
that derived in the supplementary information of Hauert & Doebeli (2004) and
the appendix of Hauert & Szabó (2005). Following those works, the above equa-
tions also omit the common factor 2pc,d/(ρ

k−1pk−1
d ), which has no influence in the

equilibria of the system. The equilibrium values p̂c,c, p̂c,d, were obtained by nu-
merically integrating the equations after specifying initial conditions for 1010 time
steps. In all cases, pc,c(0) = (ρ(0))2, pc,d(0) = ρ(0)(1 − ρ(0)). The equilibrium
frequency of Cs was then approximated by p̂c = p̂c,c + p̂c,d.
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Part II

Upstream reciprocity
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Show no pity: life for life, eye for eye, tooth for tooth, hand for
hand, foot for foot.

Deuteronomy 19:21

Cooperation in the prisoner’s dilemma may evolve through reciprocity if indi-
viduals interact repeatedly. Models of direct reciprocity suggest that cooperation
can arise if individuals repeatedly interact with the same partner (Axelrod, 1984;
Axelrod & Hamilton, 1981). A strategy such as tit-for-tat (TFT), which starts
cooperating and then continues to cooperate as long as the co-player cooperates
but defects if the co-player do so, can be evolutionarily stable with respect to
unconditional defection. TFT implements the biblical lex talionis : cooperation
for cooperation, defection for defection, eye for an eye.

Alexander (1987) proposed that networks of indirect reciprocity, in which A
helps or refuses to help B even though B does not directly reciprocate to A, are
crucial for understanding large-scale human cooperation. How should we reinter-
pret the principle of an eye for an eye when thinking of indirect reciprocity? Two
answers have been given in the literature (Alexander, 1987; Boyd & Richerson,
1989; Nowak & Sigmund, 2005). The first is that I shall do to A whatever he did
to B: in the case of defection, the wrongdoer’s eye for the victim’s eye. This has
been called downstream reciprocity (Boyd & Richerson, 1989; Nowak & Sigmund,
2005), vicarious reciprocity (Sigmund, 2010) or simply indirect reciprocity (Nowak
& Sigmund, 1998b). Downstream reciprocity has been shown to be evolutionarily
stable against defection and to constitute a robust mechanism for the evolution
of cooperation. Incidentally, downstream reciprocity is also what at least another
writer of the Hebrew Bible thought of the indirect implementation of lex talionis :
‘if anyone injures his neighbor, whatever he has done must be done to him’2.

The second interpretation of indirect reciprocity has been called upstream
reciprocity (Boyd & Richerson, 1989; Nowak & Sigmund, 2005), generalized reci-
procity (Pfeiffer et al., 2005) or misguided reciprocity (Sigmund, 2010). According
to it, whatever A has done to me I shall do to B: in the case of defection, an
inocent’s eye for mine. In stark contrast to direct or downstream reciprocity,
upstream reciprocity per se does not work as a correlation device and thus as a
primary mechanism for the evolution of cooperation under the prisoner’s dilemma.
Indeed, upstream reciprocity alone does not select for cooperation in infinite well-
mixed populations (Nowak & Roch, 2007; Rankin & Taborsky, 2009; Sigmund,
2010). The moral virtues of such a social norm are also questionable.

Despite these gloomy prospects, recent models suggest that, if some assump-
tions hold true, upstream reciprocity may evolve and resist invasion by defec-
tors (Barta et al., 2011; Hamilton & Taborsky, 2005; Pfeiffer et al., 2005; Rankin

2Leviticus 24:19.
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& Taborsky, 2009). Moreover, it has been proposed that upstream reciprocity
can promote cooperation when it is modeled as random walks of gratitude tak-
ing place in a structured population (Iwagami & Masuda, 2010; Nowak & Roch,
2007; van Doorn & Taborsky, 2011). Chapters 4 and 5 present two contribu-
tions to the study of upstream reciprocity. Chapter 4 is a critical re-examination
of Nowak & Roch (2007)’s use of ‘random walks of gratitude’ to model upstream
reciprocity. It is shown that the assumptions of such model lead to non-uniform
and strategy-dependent interaction rates, which greatly limit the generality of
the obtained results. In particular, accounting for participation costs can com-
pletely suppress the evolution of upstream reciprocity in structured populations.
In chapter 5, we get rid of several of the assumptions of Nowak & Roch (2007)
and model upstream reciprocity in a population structured as a one-dimensional
lattice. Analytical results are obtained by solving a particular instance of the
discrete heat equation, a partial difference equation used to model diffusion pro-
cesses. The results show that, even in the case where the evolving population
is structured as a cycle, upstream reciprocity is not evolutionarily stable against
both unconditional cooperators and unconditional defectors.
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Chapter 4

Participation costs can suppress
the evolution of upstream
reciprocity†

Abstract

Indirect reciprocity, one of the many mechanisms proposed to explain the evolu-
tion of cooperation, is the idea that altruistic actions can be rewarded by third
parties. Upstream or generalized reciprocity is one type of indirect reciprocity
in which individuals help someone if they have been helped by somebody else
in the past. Although empirically found to be at work in humans, the evolu-
tion of upstream reciprocity is difficult to explain from a theoretical point of
view. A recent model of upstream reciprocity, first proposed by Nowak & Roch
(2007) and further analyzed by Iwagami & Masuda (2010), shows that while up-
stream reciprocity alone does not lead to the evolution of cooperation, it can
act in tandem with mechanisms such as network reciprocity and increase the to-
tal level of cooperativity in the population. We argue, however, that Nowak &
Roch’s model systematically leads to non-uniform interaction rates, where more
cooperative individuals take part in more games than less cooperative ones. As
a result, the critical benefit-to-cost ratios derived under this model in previous
studies are not invariant with respect to the addition of participation costs. We
show that accounting for these costs can hinder and even suppress the evolution
of upstream reciprocity, both for populations with non-random encounters and
graph-structured populations.

†J. Peña, E. Pestelacci, A. Berchtold and M. Tomassini. Journal of Theoretical Biology,
273, 197-206 (2011).
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4.1 Introduction

In addition to kin selection (Hamilton, 1964) and group selection (Wilson, 1975),
different types of reciprocity have been proposed for explaining altruistic behav-
ior from an evolutionary perspective (Nowak, 2006b). In this paper, we focus
on upstream indirect reciprocity and network reciprocity. Contrastingly to di-
rect reciprocity (Axelrod & Hamilton, 1981; Trivers, 1971), which can induce
cooperation when individuals base their decision to cooperate on the outcome of
previous encounters with the same partner, indirect reciprocity is said to occur
when ‘the return is expected from someone other than the recipient of the benef-
icence’ (Alexander, 1987). This can happen in one of two ways. In downstream
indirect reciprocity (Brandt & Sigmund, 2004, 2006; Leimar & Hammerstein,
2001; Nowak & Sigmund, 1998a,b, 2005; Ohtsuki et al., 2006; Ohtsuki & Iwasa,
2004; Ohtsuki et al., 2007; Panchanathan & Boyd, 2003; Uchida & Sigmund,
2010) or vicarious reciprocity (Sigmund, 2010), first individual A helps individ-
ual B and then C helps A. Downstream reciprocity is based on reputation: A
acquires a good reputation by helping B, thereby increasing its chances of receiv-
ing help by C. In upstream indirect reciprocity (Boyd & Richerson, 1989; Iwagami
& Masuda, 2010; Nowak & Roch, 2007; Nowak & Sigmund, 2005), also known as
generalized reciprocity (Hamilton & Taborsky, 2005; Pfeiffer et al., 2005; Rankin
& Taborsky, 2009; Rutte & Taborsky, 2007) or misguided reciprocity (Sigmund,
2010), first individual A helps individual B and then B helps C. Upstream reci-
procity is based on gratitude or moral elevation: individuals who receive help are
more inclined to help others in the future. Finally, network reciprocity (Ohtsuki
et al., 2006) is at work when the population structure takes the form of a spatial
or social network in which clusters of cooperators can help each other and resist
invasion from surrounding defectors. Network reciprocity is the generalization of
spatial reciprocity (Nowak & May, 1992) to general network models. Under some
conditions other mechanisms are also at work in heterogeneous networks, where
highly connected individuals can play an important role in promoting coopera-
tion (Gómez-Gardeñes et al., 2007; Pacheco et al., 2009; Santos & Pacheco, 2005,
2006; Szabó & Fáth, 2007).

A simple and general explanation of the evolution of cooperation is the positive
assortment between cooperative genotypes and cooperative phenotypes (Fletcher
& Doebeli, 2009). In stark contrast with direct, downstream and network reci-
procity, upstream reciprocity per se fails to provide such assortment. Thus,
strategies based on upstream reciprocity go to extinction in well-mixed popula-
tions when competing with defectors (Nowak & Roch, 2007; Rankin & Taborsky,
2009; Sigmund, 2010). Despite this fact, models of upstream reciprocity are
worth studying for several reasons. Firstly, there is ample empirical evidence of
upstream reciprocity occurring in humans (Bartlett & DeSteno, 2006; Berkowitz
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& Daniels, 1964; Dufwenberg et al., 2001; Güth et al., 2001; Isen, 1987; Stanca,
2009) and some evidence in non-human animals such as Norwegian rats (Rutte
& Taborsky, 2007). Secondly, it has been theoretically shown that upstream
reciprocity can evolve if there is some pre-existent assortment among strate-
gies (Rankin & Taborsky, 2009). Such assortment can be provided, for in-
stance, by the random formation of small groups (Boyd & Richerson, 1989;
Pfeiffer et al., 2005), by incorporating group-leaving behavior when experienc-
ing defection (Hamilton & Taborsky, 2005), or by the simultaneous presence of
another cooperation-promoting mechanism, such as direct reciprocity (Nowak &
Roch, 2007) or network reciprocity (Iwagami & Masuda, 2010; Nowak & Roch,
2007). Finally, when acting in tandem with these mechanisms, the presence of
upstream reciprocity seems to lead to higher levels of cooperation and/or lower
critical cost-to-benefit ratios than those obtained by direct or network reciprocity
alone (Iwagami & Masuda, 2010; Nowak & Roch, 2007).

Usually, indirect reciprocity is theoretically studied in the framework of the
Donation game. Each round of the game, two players are chosen at random
from the population. One is assigned the role of the donor and the other the
role of the recipient. The donor has the option of either helping the recipient
or not. If the donor chooses to help, the donor will incur a cost c while the
recipient obtains a benefit b, with b > c > 0. If the donor refuses to help, payoffs
are left unchanged. In Nowak & Roch (2007) and Iwagami & Masuda (2010),
Donation games are played along ‘chains of altruism’ leading to random walks in
the population of players. Each player can start a chain of altruism by helping a
second player in the population, who can in turn help a third player, and so on
and so forth. Such sampling of donors and recipients differs from the one normally
used in standard models of indirect reciprocity (cf. Nowak & Sigmund, 1998a)
in which interaction partners are randomly and independently sampled from the
population. In particular, whereas in standard models individuals interact in
average the same number of times (half of the times as donors, half of the times as
recipients) in Nowak & Roch’s model more cooperative players end up interacting
more often than less cooperative players.

Whenever an evolutionary game model leads to non-uniform interaction rates,
some questions arise regarding the generality of the obtained results. It is not
clear, for instance, whether a given strategy is successful because it ‘plays well’
against competitors or because it plays more often, nor if the assumption of having
individuals with no limitations regarding the number of interactions they engage
in per generation is biologically or socially grounded. It is reasonable to think
that a number of extrinsic constraints limit the interacting capacity of individuals
or that participation in a game can have a non-negligible cost. This is an issue
that has been dealt with in the context of evolutionary games on heterogeneous
networks (Masuda, 2007; Santos & Pacheco, 2006; Santos et al., 2006; Tanimoto
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& Yamauchi, 2010; Tomassini et al., 2007). Different methods have been in-
troduced in order to control for the non-uniformity of interaction rates, such as
imposing cutoffs in the interaction distributions (Santos et al., 2006), using the
average payoff instead of the accumulated payoff when defining fitness (Santos
& Pacheco, 2006; Tomassini et al., 2007; see also Taylor & Nowak, 2006) and
introducing participation costs (Masuda, 2007; Tanimoto & Yamauchi, 2010). All
these studies have shown that adding such limits can hinder and even suppress the
evolution of cooperation based on network reciprocity in heterogeneous networks.

In this paper, we re-examine the model of upstream reciprocity first pro-
posed by Nowak & Roch (2007) and further investigated by Iwagami & Masuda
(2010). Nowak & Roch (2007) showed that upstream reciprocity is viable when
acting in tandem with direct reciprocity or when the population is arranged in a
one-dimensional array. Iwagami & Masuda (2010) extended the model to more
complex network structures and showed that heterogeneous networks can be im-
portant amplifiers of upstream reciprocity. We show that non-uniform interaction
rates naturally arise in the original model by Nowak & Roch (2007) and that when
population structure favors some assortment of strategies more cooperative play-
ers end up playing more often as recipients than less cooperative players, i.e. that
interaction rates are strategy-dependent. We find that the evolutionary dynamics
of upstream reciprocity are modified when controlling for such non-uniformity by
introducing participation costs, to the extent that whether or not upstream reci-
procity is able to hitch-hike on mechanisms such as direct or network reciprocity
depends on the cost of participation in the game.

4.2 Upstream reciprocity with participation costs

We briefly describe Nowak & Roch’s model and its extension to include partic-
ipation costs. A population V of n individuals plays the upstream reciprocity
game. The strategy implemented by player v is denoted by Sv(pv, qv), where qv is
the probability to initiate a chain of gratitude and pv is the probability to pass a
chain initiated by another player. Consider the random walk originated in player
v. The random walk ends with probability 1 − qv or moves to another player
w ∈ V − {v} with probability qv. Then the walk ends with probability 1 − pw
or is passed to another player in V − {w} with probability pw. The process is
repeated until the random walk ends. Each time the random walk enters a player
it brings a benefit b to that player. Each time the random walk exits a player
(without ending) it costs c to that player. In order for the game to be a social
dilemma, b > c > 0.

Let us denote by N in
v the number of times the random walk started by any

player reaches v and by N out
v the number of times such walk exits v without
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ending. In other words, N in
v and N out

v are, respectively, the number of times
player v has acted as recipient and the number of times it has acted as donor.
Finally, denote by Nv the total number of participations in a game by player v,
i.e. Nv := N in

v + N out
v . With these definitions, the accumulated payoff to player

v is given by
πv = N in

v b−N out
v c. (4.1)

This expression assumes that participation in a game is free. Let us now
suppose that both the donor and the recipient pay a fee d > 0 for participating
in the game. With participation costs, every time the random walk of gratitude
reaches a player, it brings a net profit b−d to that player, whereas every time the
walk exits a player, it costs c + d to that player. In order to analyze the effects
of the introduction of participation costs in the game it thus suffices to make the
replacements b→ b− d and c→ c+ d in Eq. 4.1. We will make use of this simple
fact in the next sections.

Consider now the evolutionary competition between individuals v and w when
fitness is equated with the accumulated payoff. The difference in fitness can be
expressed as

∆π := πv − πw =
(
N in
v −N in

w

)
b−

(
N out
v −N out

w

)
c− (Nv −Nw) d.

When Nv = Nw, the third term vanishes and the difference in fitness between
players v and w is independent of the cost of participation d. When Nv 6= Nw,
however, the difference in fitness depends on the participation cost d. Evolution-
ary game dynamics based on the fitness difference, such as the replicator equa-
tion (Hofbauer & Sigmund, 1998; Taylor & Jonker, 1978; Weibull, 1995), are thus
influenced by the participation cost d when interaction rates are non-uniform.

Consider a random walk entering and exiting a player (i.e. an individual
participating as recipient and immediately as donor) so that the increase in payoff
for such player is equal to δπ := b−c−2d. One can identify two regimes in terms
of the participation cost d: (i) d < (b − c)/2, and (ii) d > (b − c)/2. In regime
(i), δπ > 0. In this case, gratitude-related altruists can prevail by maximizing
the number of waves of generosity being initiated and passed, as long as some
mechanism of assortment makes such waves return more often to gratitude-related
altruists than to other strategists. In regime (ii), δπ < 0, and the optimal strategy
is now to minimize the number of participations in a game. Defectors never
initiate nor pass waves of generosity. Thus, they are expected to perform better
than gratitude-related altruists in this regime, and to be evolutionarily stable.

In the following, we confirm these predictions in two models of upstream
reciprocity, each one providing assortment of strategies in a different way: (i) by
assuming non-random encounters, and (ii) by incorporating network reciprocity.
The last model extends the results by Nowak & Roch (2007) and Iwagami &
Masuda (2010) to cases when participation is costly.
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4.3 Upstream reciprocity under assortment of

encounters

Consider a population of size n and the interaction between strategy S1 =
S(p1, q1), of relative frequency x, and strategy S2 = S(p2, q2), of relative fre-
quency 1−x. The cooperativity si of strategy Si, defined as ‘the expected number
of secondary altruistic acts induced by a single player per time-step’ (Nowak &
Roch, 2007), is given by si = qi/(1 − pi). The expected fitnesses of S1 and S2

are given by their expected accumulated payoffs π1(x) and π2(x), and the evolu-
tionary dynamics by the replicator equation, so that the frequency of S1 in an
infinite population evolves according to

ẋ = x(1− x)∆π(x), (4.2)

where ∆π(x) := π1(x)− π2(x).
We introduce assortment of strategies in a simple manner (Boyd & Richerson,

1989; Eshel & Cavalli-Sforza, 1982; Rankin & Taborsky, 2009). We suppose that,
once a player of type Si has decided to initiate or pass a random walk of gratitude,
the probability that the recipient is of type Sj is given by σij = σij(x), with

σ11 = σ + x(1− σ),

σ22 = σ + (1− x)(1− σ),

and σi1+σi2 = 1, for i = 1, 2. The parameter σ ∈ [0, 1] is the degree of assortment:
when σ = 0 interactions are random and we recover the well-mixed limit; when
σ > 0 strategies help their own type more often than what is expected by chance.

In this section we investigate the number of participations in a game by a
player, and show that this quantity depends on the cooperativity of its strategy
and on the degree of assortment. We also derive the conditions under which a
given strategy is favored by natural selection in the framework of the replicator
dynamics.

4.3.1 Number of participations

In order to calculate N in
v and N out

v for each v ∈ V , we follow closely the derivation
presented in the supplementary material of Nowak & Roch (2007). For the sake of
clarity, we also try to adopt their notation as much as possible. Notice, however,
that the following results are for the general case of upstream reciprocity under
assortment of encounters imposed by population structure, whereas Nowak &
Roch targeted the link between direct and upstream reciprocity.

By a slight abuse of notation, let us denote by N out
i (resp. N in

i ) the average
number of times that an individual of type Si acts as donor (resp. recipient) in a
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Figure 4.1: Transition graph of the Markov chain describing random walks of
upstream reciprocity in the population of players. 0 is the initial state.

Donation game. Let us also denote by Vi the set of Si players, so that V = V1∪V2.
It is possible to compute N out

2 by counting the number of donations originating in
V2 and dividing by the total number of individuals of type S2. Likewise to compute
the number of times a player of type S2 has acted as recipient. Finally, one can
get N out

1 and N in
1 from N out

2 and N in
2 by permuting the strategy parameters and

the proportions of the two strategies.
Let us first calculate N in

2 . In order to calculate this quantity we consider the
Markov chain model shown in Fig. 4.1. With a probability x the random walk
starts in a player belonging to V1; with a probability 1− x, in a player belonging
to V2. If we define Mij as the number of times the walk enters any S2 player when
the walk starts on Vi and is conditioned to move to Vj at the first step, we can
write

N in
2 =

∑
v∈V2

N in
v

n(1− x)
(4.3)

=
nx (σ11q1M11 + σ12q1M12) + n(1− x) (σ21q2M21 + σ22q2M22)

n(1− x)
(4.4)

=
q1x (σ11M11 + σ12M12) + q2(1− x) (σ21M21 + σ22M22)

1− x
. (4.5)

In order to calculate Mij, and for mathematical convenience, we expand the state
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space and consider all pairs of consecutive states, such that

U = {u1 = (V1, V1) , u2 = (V1, V2) , u3 = (V2, V1) , u4 = (V2, V2)}

is the new extended space state, where the state (Vi, Vj) denotes the transition
between the previous state Vi to the present state Vj. Thus, the substochastic
transition matrix of the Markov chain excluding the first step (i.e. describing the
transitions between the two lowest states in Fig. 4.1) is given by

P =


p1σ11 p1σ12 0 0

0 0 p2σ21 p2σ22

p1σ11 p1σ12 0 0
0 0 p2σ21 p2σ22

 .

Now, defining
m11 = m21 = 0,m12 = m22 = 1,

so that mij is 1 if the walk moves from V to V2 and 0 otherwise, we have, by the
Markov property: 

M11

M12

M21

M22

 =


m11

m12

m21

m22

+ P


M11

M12

M21

M22

 .

Solving this system of equations, we obtain the values Mij. Plugging them in
Eq. 4.5, we obtain after simplifying:

N in
2 =

x(1− σ)(q1 − q2) + q2(1− σp1)

ω
, (4.6)

with
ω = 1− [σ(1− p2) + x(1− σ)] p1 − [1− x(1− σ)] p2. (4.7)

We can use the same procedure to compute N out
2 . It suffices to reinterpret Mij

as the number of times the walk exits any S2 player when the walk starts on Vi
and is conditioned to move to Vj at the first step. In other words, Mij is now the
number of times that a single random walk initiated at Vi and that moves to Vj
at the first step exits any S2 player. Thus, we redefine

m11 = m12 = 0,m21 = m22 = 1,

i.e. mij is now 1 if the walk moves from V2 to V to and 0 otherwise. Following
the same procedure used before for N in

2 , we obtain:

N out
2 =

q2(1− σp1) + x(1− σ)(p2q1 − p1q2)

ω
(4.8)
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with ω given by Eq. 4.7.
Finally, we can get N in

1 and N out
1 from N in

2 and N out
2 by permuting the param-

eters and the proportions of the two strategies, i.e. by taking p1 ↔ p2, q1 ↔ q2,
and x↔ (1− x). Thus we obtain

N in
1 =

(1− x)(1− σ)(q2 − q1) + q1(1− σp2)

ω
, (4.9)

N out
1 =

q1(1− σp2) + (1− x)(1− σ)(p1q2 − p2q1)

ω
. (4.10)

When the degree of assortment is zero, it is easy to show that N in
1 = N in

2 and
that the inequality N out

2 > N out
1 simplifies to s2 > s1. Thus, when the population

is well mixed, all individuals interact the same number of times as recipients,
and individuals of the more cooperative strategy interact as donors more times
than individuals of the less cooperative strategy. When the degree of assortment
is greater than zero, it can be shown that both N in

2 > N in
1 and N out

2 > N out
1

simplify to s2 > s1. This means that if S2 is more cooperative than S1, S2

individuals interact in more Donation games than S1 individuals and that, by
construction, more cooperative players play more rounds of the game than less
cooperative players. In summary, for any value of σ, s1 > s2 ⇒ N1 > N2, i.e. an
individual of the more cooperative strategy takes part in more games. This fact
makes the replicator dynamics dependent on the participation cost d.

4.3.2 Difference in accumulated payoffs

The difference in accumulated payoffs between S1 and S2 is given by

∆π(x) =
[
N in

1 (b− d)−N out
1 (c+ d)

]
−
[
N in

2 (b− d)−N out
2 (c+ d)

]
= (N in

1 −N in
2 )(b− d)− (N out

1 −N out
2 )(c+ d).

Replacing Eq. 4.6, 4.8, 4.9 and 4.10 in this formula and simplifying, we obtain

∆π(x) = χψ/ω,

where

χ = (b− d)σ − (c+ d),

ψ = q1(1− p2)− q2(1− p1),

ω = 1− [σ(1− p2) + x(1− σ)] p1 − [1− x(1− σ)] p2.

Selection favors S1 over S2 if ∆π(x) > 0. As long as p1, p2 < 1, ω is always
greater than 0. Thus, the condition ∆π(x) > 0 only depends on the values of
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Figure 4.2: Critical degree of assortment σc as a function of the cost-to-benefit
ratio c/b for different values of the ratio between the participation cost and the
cost of cooperation d/c. Each curve divides the plane into two regions. If we
assume that strategy S1 is more cooperative than strategy S2 and d < (b− c)/2,
then S1 dominates S2 above the curve and S1 dominates S2 below the curve. For
a fixed cost of cooperation c, increasing the cost of participation d reduces the
region of dominance of the more cooperative strategy.

χ and ψ, which are independent of x. Furthermore, ∆π(x) adds no additional
equilibria to the replicator equation given by Eq. 4.2, so that the only equilibria
of the replicator equation are given by x = 0 and x = 1. If χψ > 0, x = 1 is
stable and S1 dominates S2. If χψ < 0, x = 0 is stable and S2 dominates S1.
Let us suppose that S1 is more cooperative than S2, i.e. s1 > s2. Then, ψ is
also always greater than 0, and the condition ∆π(x) > 0 reduces to χ > 0. If
d < (b− c)/2 selection favors the more cooperative strategy S1 if σ > σc and the
less cooperative strategy if σ < σc, where

σc =
c+ d

b− d
=

1 + d/c

(c/b)−1 − d/c
(4.11)

is the critical degree of assortment. σc is a monotonically increasing function
of the cost of participation d, as we illustrate in Fig. 4.2 with some numerical
examples. If d > (b − c)/2 selection always favors the less cooperative strategy
S2 irrespective of the degree of assortment and upstream reciprocity is doomed
to extinction.
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4.4 Upstream and network reciprocity

As a second model, we consider the evolution of upstream reciprocity when net-
work reciprocity is also at work. Individuals are embedded in a social network
of contacts represented by a simple graph. Interaction and competition are con-
strained to nearest neighbors in the network. The link between upstream and
network reciprocity has been investigated analytically by Nowak & Roch (2007)
for the case of the one-dimensional array and numerically by Iwagami & Masuda
(2010) for the cases of regular lattices, random graphs and scale-free networks.
Both studies report a synergistic interaction between upstream and network reci-
procity. In the following we show that participation costs can suppress such
synergy.

4.4.1 Analytical results

Let us first consider the analytical treatment reported by Nowak & Roch (2007).
Strategies are still denoted by S(p, q), where p is the probability of passing on
and q the probability of initiating altruistic acts. Strategists with p = 0 do
not implement upstream reciprocity, since they do not pass chains of gratitude.
In particular, S(0, 0) gives classical defectors (CDs) and S(0, 1) gives classical
cooperators (CCs). In contrast, when p > 0 we obtain strategies such S(p, 0),
passers-on (POs), that pass but not initiate and S(p, 1), generous cooperators
(GCs), that both pass and initiate. Players are arranged in a one-dimensional
array and ‘imitation updating’ (Ohtsuki et al., 2006) is used as evolutionary
dynamics. For this evolutionary dynamics, a player is randomly chosen from
the entire population. Then it will either keep its strategy or imitate one of its
neighbors’ strategies proportional to fitness.

As shown by Nowak & Roch (2007) for the case of costless participation, GCs
win against both CDs and CCs when

b/c > h(p) =
8 + 2p+ 8

√
1− p2

3 + 4p+
√

1− p2
. (4.12)

The function h is monotonically decreasing with the probability to pass p so
that the larger the probability of passing p the lower the benefit-to-cost ratio b/c
necessary for GCs to prevail in the population. With p = 1, h(p) attains its mini-
mum, h(1) = 10/7. The condition b/c > 10/7 is less stringent than the condition
b/c > 4, obtained when only network reciprocity is at work (Ohtsuki et al., 2006;
Ohtsuki & Nowak, 2006a). Thus, upstream reciprocity makes the evolution of
cooperation by network reciprocity easier when participation is costless.

Let us consider a population comprising GCs and CDs arranged in a one-
dimensional array, with players indexed with integer values, so that v ∈ {0,−1,−2, . . .}
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Figure 4.3: Classical defectors (CDs) and generous cooperators (GCs) arranged
in a one-dimensional array.

play CD and v ∈ {1, 2, . . .} play GC (Fig. 4.3). Whether the GC−CD bound-
ary will move to the left or to the right as result of the evolutionary dynamics
depends only on the fitnesses of players −1, 0, 1 and 2, which depend in turn
on the number of games played by those players. Fig. 4.4 plots the number of
participations in a game by players −1, 0, 1 and 2 as functions of the probability
p that a GC passes on a chain of gratitude (see 4.6 for the mathematical ex-
pressions). As in the model with assortment of encounters presented in Sec. 4.3,
interaction rates are non-uniform such that more cooperative players tend to play
more games than less cooperative players. The number of games played by an
individual also depends on its position in the array. Thus, GCs farther from the
GC−CD boundary interact more often than GCs closer to the boundary. Player
0 interacts exclusively as recipient, receiving but not passing random walks ar-
riving from player 1. Players −1,−2, . . . do not interact at all and can actually
be considered as loners that do not take part in any social interaction (Hauert
et al., 2002).

Since interaction rates are non-uniform, evolutionary dynamics are modified
when participation in the game has a cost d. The new results are obtained by
making the replacements b → b − d and c → c + d. The condition for the
establishment of altruism thus changes to (b− d)/(c+ d) > h(p) or, equivalently,
to

b/c > d/c+ (1 + d/c)× h(p) (4.13)

with h(p) as given in Eq. 4.12. Eq. 4.13 is harder to fulfill than Eq. 4.12 for any
d > 0. This is shown in Fig. 4.5 for some numerical examples.

4.4.2 Simulation results

We now turn to the interaction between upstream and network reciprocity in
less simple graph-structured populations. Such investigation has been recently
pioneered by Iwagami & Masuda (2010), who in addition to confirm the syner-
gistic interaction between upstream and network reciprocity, also point out the
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Figure 4.4: Number of participations in a game Nv by a player v as a function
of the probability to pass p in the one-dimensional array. The GC–CD boundary
is located between players 0 and 1, so that v ∈ {0,−1,−2, . . .} play CD and
v ∈ {1, 2, . . .} play GC (see Fig. 4.3).

importance of heterogeneous networks as amplifiers of cooperation when fitness is
given by the accumulated payoff and participation in the game is costless. Here,
we study the cases when participation has some non-negligible cost.

We use different types of networks as population structures: rings (one-
dimensional lattices), random regular networks, and Barabási-Albert scale-free
networks (Barabási & Albert, 1999) (see 4.7 for more details on the construction
of the random and scale-free networks). All the networks are of size n = 104.
We use rings of degree k = 2 and k = 8, regular random networks with k = 8,
and scale-free networks of average degree 〈k〉 = 8. For the sake of comparison,
we follow the setup considered by Iwagami & Masuda (2010) and described in
the following. A simulation step comprises two phases. During the first phase
each player in turn attempts to start an independent random walk. Players are
assigned a payoff as a result of the interactions with neighboring players along
the trajectories of the random walks. In the second phase, when all the random
walks have ended, individuals update their strategies according to the obtained
payoff. The evolutionary dynamics is the one suggested by Iwagami & Masuda
(2010): nu out of the n players are randomly selected each generation for strat-
egy updating. They synchronously adopt the strategy of the individual with the
highest payoff in their neighborhoods (including themselves). We consider the
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four strategies previously introduced: CDs, CCs, POs and GCs. For the strate-
gies based on upstream reciprocity (POs and GCs) we set p = 0.8, and nu = 200
for the evolutionary dynamics. Without loss of generality, we assume c = 1. We
set the maximum number of rounds to 50000 for the scale-free networks, regular
random graphs and the rings with k = 2, and to 150000 rounds for the rings with
k = 8.

We found no qualitative differences in the results when we run simulations for
other values of nu (20 and 2000), p (0.7 and 0.9) and 〈k〉 (6 and 14). For reasons
of space, we stick to the baseline model and show the results only for nu = 200,
p = 0.8 and 〈k〉 = 8.

4.4.2.1 Populations comprising GCs and CDs

Before considering the competition among the four strategies, we first investigate
the outcome of the evolutionary dynamics when only GCs and CDs are present
in the population, for random initial configurations of 50% GCs. We found essen-
tially the same results as those reported by Iwagami & Masuda (2010), namely,
that network reciprocity can favor GCs over CDs, that degree-heterogeneous
topologies are strong amplifiers of cooperation under both upstream and net-
work reciprocity, and that CDs prevail in random regular structures, presumably
because of the low clustering coefficient of this topology. Results are, however,
dependent on the participation cost d. Fig. 4.6 shows the final fraction of GCs for
different values of the benefit b and the participation cost d. The results for regu-
lar random graphs are not shown as defection always prevails in these structures
for the region of parameters we considered. For the other population topologies,
the higher the participation cost, the more difficult for gratitude-related altruists
to be selected against pure defectors. In particular, GCs completely vanish if
d > (b − c)/2 for all population structures. If d < (b − c)/2 the detrimental
effect of participation costs in the evolution of upstream reciprocity is far less
pronounced for scale-free networks than for the other population topologies.

The exact threshold value of the participation cost d above which CDs prevail
can be approximated by making use of Eq. 4.13. In this case, it is reasonable
to expect that h depends not only on p, but also on the network topology, the
updating rule and the population size. In the absence of theoretical results, h
can be numerically approximated by the value of the critical benefit-to-cost ratio
when d = 0, which can be found by linearly interpolating the average final fraction
of GCs resulting from the simulations. Following this procedure we obtained
h = 2.95 for the rings with k = 2, h = 4.01 for the rings with k = 8, and h = 1.17
for the scale-free networks. We show the approximated critical values of d for
each network with dashed lines in Fig. 4.6.
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Figure 4.6: Average final fraction of GCs ρ for different networks when players
initially adopt either GC or CD. We distinguish three zones: ρ ≤ 0.1, 0.1 < ρ <
0.9 and ρ ≥ 0.9. Regions with smaller ρ are shown in darker tones. The dashed
lines give the estimated critical values of d for the transition between evolutionary
dynamics favoring GCs and evolutionary dynamics favoring CDs. We set c = 1
and, for GCs, p = 0.8.
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4.4.2.2 Populations comprising CDs, CCs, POs and GCs

Fig. 4.7 shows the final fraction of the four strategies for the different networks
when fitness is given by the accumulated payoff and participation is free or when
it has a cost d = 1. The costless case is included for the sake of comparison and
completeness, since the results are essentially the same as those found by Iwagami
& Masuda (2010).

When participation is free, GCs are able to invade all population structures
for sufficiently high values of b, except for the regular random graphs, in which
CDs dominate for all the tested values of b. In the rings, the steady state makes
a transition between a population dominated by CDs or POs to a population
dominated by GCs at a given threshold value of b. Such threshold is higher for
k = 8 than for k = 2. Scale-free networks are even more favorable to cooperation
in general. In this case neither CDs nor POs go to extinction for all values of
b. There is a coexistence of CCs and GCs, with the fraction of GCs increasing
with b. With the addition of a participation cost d = 1 the point at which
GCs statistically dominate the outcome of the simulations establishes at sensibly
higher values of b. Additionally, CDs can now prevail in the scale-free networks
for very low values of b.

4.5 Discussion

The main conclusion of Nowak & Roch (2007) is that ‘upstream reciprocity alone
does not select for cooperation, but can promote cooperation if it is linked to
a mechanism for the evolution of cooperation’, that is, a mechanism providing
positive assortment of strategies. Such promotion seems to be a consequence of
specific modeling choices, particularly the sampling of donor–recipient pairs along
random walks in the population of individuals, and the fact that such sampling
leads to non-uniform interaction rates in which more cooperative strategies en-
gage in more rounds of the game per generation than less cooperative strategies.
Hence, in Nowak & Roch’s model, upstream reciprocity plays a role analogous
to that of degree-heterogeneity in network reciprocity. In this sense upstream
reciprocity does not constitute an independent mechanism for the evolution of
cooperation, but can further enhance the levels of cooperation by inducing non-
uniform interaction rates. However, while in evolutionary games on networks such
non-uniformity in interaction rates is strategy-independent (e.g. some individu-
als interact more because they are placed in the hubs of a network of contacts),
in Nowak & Roch (2007) it is strategy-dependent, which implies that more coop-
erative players end up interacting more times than less cooperative ones.

In this paper, we investigated one way of controlling such non-uniformity in
the interaction rates of the players: the introduction of participation costs. Par-
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Figure 4.7: Final fractions of CDs, CCs, POs and GCs when the four strategies
are initially present in the population. We set c = 1 and, for POs and GCs,
p = 0.8.
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ticipation costs implement the idea that there is often no free lunch when it comes
to social interaction. Even players in the role of recipients have to be available to
eager donors in order to get the benefit of altruistic acts directed towards them,
and this availability may have a cost. We found that participation costs can
have an important effect on the the evolution of upstream reciprocity. Gratitude-
related altruism can be unbeatable with respect to defection when participation is
free and there is some degree of assortment of strategies, provided for instance by
population structure. However, defection can turn out to be the dominant strat-
egy when participation is expensive. Specifically, the higher the participation
cost, the higher the degree of assortment and/or the benefit-to-cost ratio needed
for upstream reciprocity to evolve. Finally, when participation is so costly that
d > (b− c)/2, the evolution of upstream reciprocity is totally suppressed. Similar
results can be readily obtained if we consider direct reciprocity instead of net-
work reciprocity as the mechanism responsible for building up assortment (see
Section 4.8).

These results bear resemblance to those obtained by Masuda (2007), who
found that participation costs influence the outcome of evolutionary games on
degree-heterogeneous networks. In the case studied in this paper, the evolution-
ary dynamics under Nowak & Roch’s model are found to be dependent on the
participation cost not only for heterogeneous graphs, but also for any popula-
tion structure, including well-mixed populations. In the case of networked games
of upstream reciprocity, and contrastingly to the results obtained by Masuda
(2007) regarding participation costs in network reciprocity alone, heterogeneous
networks are more successful than homogeneous networks at promoting upstream
reciprocity. Furthermore, scale-free networks were found to promote gratitude-
based cooperation for practically all of the region out of the costly regime, i.e. for
d < (b − c)/2. These highly heterogeneous networks greatly amplify even small
positive payoffs resulting from passing along chains of gratitude.

A different but related way to control for the non-uniformity of interaction
rates is by using the average payoff instead of the accumulated payoff when defin-
ing fitness (Santos & Pacheco, 2006; Tomassini et al., 2007). In this case, the
fitness of player v is given by the accumulated payoff divided by the total number
of interactions, that is

πv = (N in
v b−N out

v c)/Nv. (4.14)

Selection based on the average payoff can be justified when evolutionary dynam-
ics emerge from imitation processes, where it is reasonable to think of individuals
looking not at the accumulated payoff over many interactions but at typical or
average outcomes of social interactions as the appropriate guidelines when tar-
geting cultural models for imitation. It is easy to see that upstream reciprocity
cannot evolve in Nowak & Roch’s model when selection is based on the average
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payoff. Indeed, defectors act only as recipients in this model. Their average pay-
off (when interacting with a cooperative strategy that initiates and passes chains
of gratitude) is thus always equal to b, which is the maximum possible value of
Eq. 4.14. This fact is the direct result of two additional features of Nowak &
Roch’s model. First, participation in a game as a donor (i.e. initiating or passing
chains of altruistic acts) is not compulsory but voluntary, and players can refrain
from taking part in a game. Second, once a player has entered the game as donor
it never refuses to help the recipient. Thus, defection is never actually experi-
enced by recipients and only helping acts are passed and reciprocated. Hence,
defection is interpreted as the refusal to participate in a game. All of this makes
defection the obvious outcome of selection when fitness is given by the average
payoff. A slightly different definition of the average payoff when the upstream
reciprocity game is played on networks is to normalize the accumulated payoff
by the degree of each player instead of by the total number of participations in a
game (Iwagami & Masuda, 2010). The evolution of upstream reciprocity is also
expected to be hampered when selection is based on this alternative definition of
the average payoff.

We note that interaction rates are uniform in other models of upstream or
generalized reciprocity (Boyd & Richerson, 1989; Pfeiffer et al., 2005; Hamilton
& Taborsky, 2005; Rankin & Taborsky, 2009; Sigmund, 2010, pg. 82). Thus, the
evolutionary dynamics in these models are invariant with respect to the intro-
duction of participation costs (or to the replacement of the accumulated payoff
by the average payoff). This means that the invasion conditions and the effec-
tive critical cost-to-benefit ratios derived in these papers are, in contrast to those
derived by Nowak & Roch (2007) and Iwagami & Masuda (2010), unaffected by
the replacements b → b − d, and c → c + d. Additionally, all of these models
assume that participation is compulsory and, when considering Donation games,
that participation as a donor does not equate with Donation. Donors can refrain
from giving and recipients can experience defection. Strategists implementing
upstream or generalized reciprocity can thus base their actions on whether they
have been helped or have been refused help in the past. This last scenario is miss-
ing in the model of upstream reciprocity investigated by Nowak & Roch (2007)
and Iwagami & Masuda (2010), where only altruistic acts can be passed and re-
ciprocated. We think that this is a fundamental feature that cannot be omitted in
models of reciprocity. When participation is compulsory and acts of defection are
allowed to be passed and reciprocated, upstream reciprocity seems to be harder to
explain from an evolutionary perspective, even in structured populations. This
has already been shown for a model of non-random encounters, where it was
found that generalized reciprocity is not evolutionarily stable against both un-
conditional cooperators and unconditional defectors under a Prisoner’s dilemma
equivalent to the Donation game (Rankin & Taborsky, 2009).
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4.6 Appendix. Upstream and spatial reciprocity:

number of participations for GCs and CDs

Consider a population comprising GCs and CDs, arranged in a one-dimensional
array. Players are indexed with integer values so that players v ∈ {0,−1,−2, . . .}
play CD and players v ∈ {1, 2, . . .} play GC. The number of participations in
the game can be found by making the replacements b → 1 and c → −1 in
the expression for the fitness of player v (Eq. 8 in the supplementary material
of Nowak & Roch (2007)). By plugging the values p0 = q0 = 0, p1 = p and q1 = 1
in the formulas given by Nowak & Roch (2007), we obtain the following values
for Nv:

N2 = 1 +
(1 + p) {4H + (H − p) [H(2 + p) + 2p]}

(H − p) [4H − p2(2 +H)]
,

N1 = 1 +
(1 + p) [p(H − p) + 2H]

(H − p)(2H − p2)
,

N0 =
1

2
+

p [p(H − p) + 2H]

2(H − p)(2H − p2)
,

N−1 = 0,

where
H = 1 +

√
1− p2.

4.7 Appendix. Network models

Regular random networks In these networks every node has the same degree
k, but its neighbors are randomly scattered in the graph. To build the networks
we start from a one-dimensional lattice with degree k and apply the following
algorithm, proposed by Szabó et al. (2004). A randomly selected link AB is
removed from the network. A new link is then created going from B, which has
lost one link, to a randomly selected node C, which has now one excess link. To
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maintain the same degree in C one of its edges, for example CD, is deleted. This
process of creating a random link starting from the new less-connected node and
removing an edge starting from the new more-connected node is repeated 2kn
times to assure that the neighborhood is completely random. At this point a link
between the less-connected player and the first player A, which also lacked one
link, is created.

Scale-free networks Among the several available models for constructing scale-
free networks (Newman, 2003), we use the one by Barabási & Albert (1999). Ba-
rabási–Albert networks are grown starting from a small clique of m0 nodes. At
each successive time step a new node is added such that its m ≤ m0 edges link
it to m nodes already present in the graph. It is assumed that the probability
p that a new node will be connected to node i depends on the current degree
ki of the latter. This is called the preferential attachment rule. The probability
p(ki) of node i to be chosen is given by p(ki) = ki/

∑
j kj, where the sum is over

all nodes already in the graph. The model evolves into a network with power-
law probability distribution for the vertex degree P (k) ∼ k−γ, with γ ∼ 3 and
〈k〉 = 2m. For the simulations, we used m0 = m = 〈k〉/2.

4.8 Appendix. Upstream and direct reciprocity

In addition to spatial reciprocity, Nowak & Roch (2007) also considered allowing
some level of direct reciprocity in the strategies of players as means of intro-
ducing assortment of strategies and pave the way for the evolution of upstream
reciprocity. Strategies are now given by S(p, q, r) where r is the probability that
help is immediately returned to the donor. Recipients reciprocate to the donor
with probability r and help a random player with probability (1 − r)p. The
cooperativity si of strategy Si is now given by si = qi/ [(1− ri)(1− pi)].

Consider the competition between strategies S1 = S(p1, q1, r1) and S2 =
S(p2, q2, r2). If fitness is given by the accumulated payoff with d = 0, then
the fitness difference is given by

∆π(x) := π1(x)− π2(x) = (N in
1 −N in

2 )b− (N out
1 −N out

2 )c.

According to Nowak & Roch (2007), such fitness difference is given by

∆π(x) = αβ/γ,

97



with

α = q1(1− r2)(1− p2)− q2(1− r1)(1− p1),

β = (br2 − c)(1− r1)− x(b− c)(r2 − r1),

γ = [x(1− p1)(1− r1(p2(1− r2) + r2)) + (1− x)

×(1− p2)(1− r2(p1(1− r1) + r1))]× (1− r1)(1− r2).

We can easily derive an expression for the difference in the number of times players
of the two types have interacted N(x) := N1(x) − N2(x), by making b → 1 and
c→ −1 in the expressions above. We thus obtain

N(x) = αβ̃/γ,

where
β̃ = (1 + r2)(1− r1)− 2x(r2 − r1).

As long as p1, p2 < 0, γ is always greater than zero and as long as 0 < r1, r2 < 1,
β̃ is always greater than zero. Thus, the condition N(x) > 0 reduces to α > 0.
We conclude that s1 > s2, with si = qi/ [(1− ri)(1− pi)], implies N1 > N2.

Results are similar to those obtained with the model of non-random encounters
analyzed in Sec. 4.3 of the present paper. If s1 > s2, then N1 > N2. Interaction
rates are thus non-uniform and strategy-dependent. With non-zero participation
costs the results presented by Nowak & Roch (2007) are valid up to the replace-
ments b → b − d and c → c + d. If d > (b − c)/2, selection always favors the
strategy with lower cooperativity. If d < (b − c)/2, the critical ratio rc defining
phase transitions in the evolutionary dynamics is given by Eq. 4.11. Thus, for in-
creasing values of the participation cost d, larger values of r are required for more
cooperative strategies to win over less cooperative strategies and for upstream
reciprocity to hitch-hike on direct reciprocity.
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Chapter 5

Evolutionary dynamics of
upstream reciprocity on cycles†

Abstract

Upstream reciprocity is one type of reciprocity according to which individuals
help someone if they have been helped by somebody else in the past. Here, I
study the evolutionary dynamics of upstream reciprocity on the simplest network
structure (a cycle) by solving particular instances of the discrete heat equation,
a partial difference equation used to model diffusion processes, e.g. the diffusion
of heat on a rod. I find that, even when linked to population structure, upstream
reciprocity is not evolutionarily stable against both unconditional cooperators
and unconditional defectors. The obtained results cast some doubts on the gen-
erality of results previously obtained suggesting a synergistic interaction between
upstream reciprocity and population structure.

5.1 Introduction

Why should an individual help another at a personal cost? Answers to this ques-
tion, once regarded as a major theoretical problem faced by the theory of evo-
lution by natural selection, broadly fall into two categories (Lehmann & Keller,
2006; West et al., 2007): (i) indirect fitness benefits, whereby there is a gain
in fitness by aiding relatives, and (ii) direct fitness benefits, whereby the act of
helping feeds back to the actor so that the resulting personal benefit outweighs
the cost of the cooperative act. Indirect fitness benefits basically hinges on kin
selection (Hamilton, 1964; Maynard Smith, 1964), alternatively viewed as group
selection (Hamilton, 1975; Wilson, 1975) or, in the special case of limited dis-

†J. Peña. Working paper.
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persal in graph-structured populations, as network reciprocity (Nowak, 2006b;
Ohtsuki et al., 2006). Direct fitness benefits can be brought about by a plethora
of different mechanisms (West et al., 2007). Among these, direct and downstream
indirect reciprocity have attracted much theoretical attention and are believed to
play a key role in humans. Direct reciprocity is based on repeated interactions
with the same partner (Axelrod & Hamilton, 1981; Trivers, 1971) and is said to
occur if individuals preferentially help those that have helped them in the past,
i.e. if they act as if according to the motto ‘help those who helped you’. Down-
stream indirect reciprocity (Boyd & Richerson, 1989; Nowak & Sigmund, 1998b,
2005), is based on reputation. It can be understood as ‘a consequence of direct
reciprocity occurring in the presence of interested audiences’ (Alexander, 1987),
where individuals behave as if their maxim was to ‘help those who have helped
someone in the past’.

Yet a third type of reciprocity, known alternatively as upstream (indirect)
reciprocity (Boyd & Richerson, 1989; Iwagami & Masuda, 2010; Nowak & Roch,
2007; Peña et al., 2011), generalized reciprocity (Barta et al., 2011; Hamilton &
Taborsky, 2005; Pfeiffer et al., 2005; Rankin & Taborsky, 2009; van Doorn &
Taborsky, 2011) or misguided reciprocity (Sigmund, 2010), has been also consid-
ered in theoretical models of the evolution of cooperation. Upstream reciprocity
happens if individuals help third parties after they have been helped, as if im-
plementing the heuristic ‘help someone, if you have been helped’ (see Figure 5.1
for a graphical comparison of direct, downstream and upstream reciprocity). Up-
stream reciprocity has been the focus of some attention during the last years for
two reasons. First, it does not require partner recognition, memory of previous
encounters or language and social norms (Pfeiffer et al., 2005; Rutte & Taborsky,
2007). Thus, if viable, cooperation based on upstream reciprocity should in prin-
ciple be more common in nature than that based on direct or downstream reci-
procity. Second, there is empirical evidence showing that upstream reciprocity
occurs not only in humans (Bartlett & DeSteno, 2006; Berkowitz & Daniels, 1964;
Dufwenberg et al., 2001; Güth et al., 2001; Isen, 1987; Stanca, 2009), but also
in other animals, as demonstrated by a recent study on Norwegian rats (Rutte
& Taborsky, 2007). In spite of this, and in stark contrast to what happens with
direct and downstream reciprocity, upstream reciprocity has proved to be more
difficult to explain from an evolutionary perspective (Nowak & Roch, 2007; Pfeif-
fer et al., 2005; Rankin & Taborsky, 2009; Sigmund, 2010). Indeed, it is unclear
how the act of helping could feed back again to the original donor when sup-
plied randomly, unless interactions are carried out in small groups (Hamilton &
Taborsky, 2005; Pfeiffer et al., 2005), structured populations (Iwagami & Masuda,
2010; Nowak & Roch, 2007; Rankin & Taborsky, 2009; van Doorn & Taborsky,
2011) or in the presence of other mechanisms such as direct reciprocity (Nowak
& Roch, 2007).
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A B A BC B CA

Direct reciprocity Indirect reciprocity

Downstream reciprocity
(based on reputation)

Upstream reciprocity
(based on "gratitude")

Figure 5.1: Three flavors of reciprocity. In direct reciprocity, if A helps B, B
helps A. In downstream reciprocity, if C observes that A helps B, C helps A. In
upstream reciprocity (also called generalized reciprocity) if A helps B, B helps
C.

In Nowak & Roch (2007), a way of modeling social interactions as random
walks of cooperative acts in a networked population was introduced and used to
show that upstream reciprocity could evolve if linked to limited dispersal on a
simple one-dimensional array, i.e. ‘spatial reciprocity’. This result has been re-
cently extended to other network topologies by Iwagami & Masuda (2010) and van
Doorn & Taborsky (2011), who have shown that the heterogeneity, sparseness and
modularity of interaction networks can further promote cooperation based on up-
stream reciprocity. The model by Nowak & Roch (2007), however, is based on
particular assumptions that can lead to confusion and misunderstandings (Peña
et al., 2011). First, interaction rates are heterogeneous and strategy-dependent
so that, by construction, more cooperative players end up playing more often
than less cooperative ones. This makes difficult to evaluate whether upstream
reciprocators fare well because of the merits of their strategy or just because
they interact more often than other players, hence accumulating larger payoffs.
Second, individuals never experience actual defection from donors refusing to
help. Rather, ‘defection’ is equated to opting out of playing the next round as
donor. This makes confusing the distinction between unconditional and condi-
tional strategies. For instance, classical cooperators, sensu Nowak & Roch (2007),
initiate waves of gratitude but do not reciprocate them. This is in stark contrast
to unconditional cooperators in models of direct and downstream reciprocity, who
always help.

Here, I investigate a model of upstream reciprocity where the population is
structured as a cycle, i.e. a one-dimensional array, much in the same spirit as
in Nowak & Roch (2007). Contrastingly to Nowak & Roch’s model, however,
interaction rates are homogeneous and participation in a game is compulsory,
as in other models of upstream or generalized reciprocity (Boyd & Richerson,
1989; Hamilton & Taborsky, 2005; Pfeiffer et al., 2005; Rankin & Taborsky, 2009;
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Sigmund, 2010). I consider three strategies: cooperators, defectors and upstream
reciprocators. In the model presented in this study, upstream reciprocators can
experience defection from refused donations, and guide their behavior accordingly,
whereas cooperators (defectors) always (never) help, irrespective of the actions of
their neighbors in previous time steps. In this sense, the strategies considered here
are equivalent to those used in previous models of upstream reciprocity (Rankin
& Taborsky, 2009; Sigmund, 2010). Conditions for the evolutionary replacement
of clusters of one strategy by clusters of another strategy are derived by solving
particular instances of the discrete heat equation, a partial difference equation
usually used to model diffusion processes in discrete time and space, such as heat
on a rod (Cheng, 2003; Lawler, 2010).

5.2 Model

5.2.1 Population structure and game dynamics

Imagine a population structured as a one-dimensional array or a cycle, so that in-
dividual i interacts with two neighbors: its left neighbor (i−1) and its right neigh-
bor (i + 1). Social interactions are modeled as a repeated Donation game (Sig-
mund, 2010). Each round of the game every player plays once as donor with a
randomly chosen neighbor (either the left or the right) as recipient. The donor
can opt to help the recipient or not. If the donor helps, its payoff is reduced by c
and the recipient’s payoff is increased by b, with b > c > 0. If the donor decides
not to help, the payoffs of both donor and recipient are left unchanged. Note
that, since recipients are chosen randomly, each round a given player interacts on
average once as recipient (0 times with probability 1/4, once with probability 1/2
and twice with probability 1/4). Finally, with probability 0 < w < 1, another
round of the game is played. Thus, the number of interaction rounds follows a
geometric distribution with parameter w and the average number of rounds per
generation is given by 1/(1− w).

5.2.2 Strategies and average payoffs

I consider three different strategies: cooperators (Cs) who always donate, defectors
(Ds) who never donate, and upstream reciprocators (Rs) who donate only if they
experienced a succesful donation the last time they interacted as recipients. Each
strategy can be thought of as implemented by means of an automaton with two
states: the helping state and the defecting state. If an individual is in his helping
state, he will help when acting as donor, if he is in the defecting state, he will
refuse to help. Let us denote by hn(i) the probability that player i is in the helping
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state at time step n. By definition, hn(i) = 1 ∀n if i is a C and hn(i) = 0 ∀n if i
is a D. If i is a R, the probability of being in the helping state at time step n+ 1
depends on the recursion1

hn+1(i) =
1

4
hn(i) +

3

8
[hn(i− 1) + hn(i+ 1)] , (5.1)

It will be assumed that all Rs start with the same probability ρ in the helping
state, i.e. h0(i) = ρ ∀i.

It then follows that the expected payoff of player i in the n-th round, Pn(i),
is given by

Pn(i) =
1

2
[hn(i− 1) + hn(i+ 1)] b− hn(i)c,

and the expected value of the total payoff by

Pi =
+∞∑
n=0

wnPn(i)

=
1

2

[(
+∞∑
n=0

wnhn(i− 1)

)
+

(
+∞∑
n=0

wnhn(i+ 1)

)]
b−

(
+∞∑
n=0

wnhn(i)

)
c.

Now, defining

h∗i :=
+∞∑
n=0

wnhn(i) (5.2)

as the expected value of the helping state of individual i, we can finally write

Pi =
1

2
(h∗i−1 + h∗i+1)b− h∗i c. (5.3)

Note that, if i is a D, h∗i = 0 and if i is a C, h∗i = 1/(1− w).

5.2.3 Evolutionary dynamics

As in Nowak & Roch (2007), assume that there are two contiguous infinite clusters
of related players on the line, C0 and C1, so that individuals i ∈ {0,−1,−2, . . .}
play strategy A and individuals i ∈ {1, 2, 3, . . .} play strategy B (see Fig. 5.2).
Payoffs accumulated during the rounds of the iterated Donation game translate
into fitness. More specifically, let the fitness fi of player i be given by fi = 1+sPi,
where Pi is the expected payoff of individual i (given by Eq. 5.3) and s is the
strength of selection.

1Here, I assume that if i is recipient of both i− 1 and i+ 1 at time step n, the probability
that i will be in the helping state at time step n+ 1 is 0 if neither i− 1 nor i+ 1 helped, 1/2 if
only i− 1 or i+ 1 helped and 1 if both i− 1 and i+ 1 helped.
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Figure 5.2: The simplest population structure. Players are arranged on a cycle
(one-dimensional lattice). They can interact only with their left and right neigh-
bors. Consider an infinite cluster C0 of individuals of type A next to an infinite
cluster C1 of individuals of type B. Players play the iterated donation game and
accumulate payoffs. Payoffs are translated to fitness and evolution is modeled by
means of a given stochastic process. Which cluster will expand at the expenses
of the other and win the evolutionary race?

For the evolutionary dynamics, and in order to be able to compare the results
with those by Nowak & Roch (2007), I consider ‘imitation updating’ (IM): each
time step a random individual is chosen to update its strategy so that she will
either stay with her own strategy or adopt one of her neighbors proportional to
fitness (Ohtsuki et al., 2006). In section 5.7, I derive the same results for other
two stochastic processes: ‘birth-death’ (BD) and ‘death-birth’ (DB). In any case,
it is clear that the population changes if and only if individuals at the C0 − C1

boundary are involved in the reproduction/death or imitation stages. In this
case, it is also obvious that the configuration stays the same up to a translation.
The final fate of the population thus simply depends on whether the C0 cluster
is more likely to invade the C1 cluster at the initial state, or vice versa. It is easy
to show that, in the limit of weak selection (s � 1) C1 is more likely to invade
C0 for IM updating when (Nowak & Roch, 2007)

3P1 + P2 > P−1 + 3P0. (5.4)

5.3 Results

5.3.1 Populations comprising upstream reciprocators and
defectors

Let us first consider the case where C0 is a cluster of Ds and C1 a cluster of Rs.
Replacing Eq. 5.3 into Eq. 5.4 and simplifying, we obtain that Rs invade Ds more
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easily than the converse if

b/c >
6h∗1 + 2h∗2

h∗3 + 3h∗2 − 2h∗1
. (5.5)

Hence, in order to evaluate the critical benefit-to-cost ratio above which Rs win
over Ds, one needs to compute h∗1, h∗2 and h∗3, as given by Eq. 5.2. This would in
turn require us to solve Eq. 5.1 under the initial condition

h0(i) = ρ, i ≥ 1

and the boundary condition

hn(i) = 0, i = 0.

Here, I proceed in a different but at the same time more general way. Consider
a cluster of j Rs in the middle of a population of Ds so that individuals i ∈
{1, 2, . . . j} are Rs and individuals i ≤ 0 and i ≥ j + 1 are Ds. In this case, the
initial condition becomes

h0(i) = ρ, 1 ≤ i ≤ j (5.6)

and the boundary condition,

hn(i) = 0, i = 0, i = j + 1. (5.7)

The solution for the two contiguous, infinite clusters can be recovered by taking
the limit when j →∞ of the solution of Eq. 5.1 under the initial condition given
by Eq. 5.6 and the boundary condition given by Eq. 5.7.

A trivial solution is found if ρ = 0. In this case, hn(i) = 0 ∀i: Rs start and
continue for ever in the defecting state, thus behaving effectively as Ds. As a
result, nobody helps, Rs are neutral with respect to Ds and evolution proceeds
completely by random drift. For 0 < ρ ≤ 1, the dynamics of hn(i) are a particular
case of the discrete heat equation analyzed in section 5.5 with parameters α = 1/4,
β = 3/8, a = ρ and d = 0. In this case, and in the limit when j →∞ and w → 1,
h∗i is equivalent to u∗i as calculated in section 5.6 and given by Eq. 5.34.

Let us write θ = π/(j+1). Then replacing Eq. 5.34 into Eq. 5.5 and simplifying
we can write

b/c >
6 sin θ + 2 sin 2θ

sin 3θ + 3 sin 2θ − 2 sin θ
. (5.8)

Making use of trigonometric identities we can simplify the previous expression to

b/c >
6 sin θ + 4 sin θ cos θ

3 sin θ − 4 sin3 θ + 6 sin θ cos θ − 2 sin θ

=
6 + 4 cos θ

3− 4 sin2 θ + 6 cos θ − 2
.
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In the limit when j →∞, θ → 0, we can finally write

b/c >
10

7
. (5.9)

Thus, upstream reciprocators win against defectors when b/c > 10/7. Interest-
ingly, this is the same condition found by Nowak & Roch (2007) for ‘upstream
cooperators’ S(p, 1) winning against defectors S(0, 0) when p = 1.

5.3.2 Populations comprising upstream reciprocators and
cooperators

Let us now consider the case where C0 is a cluster of Cs and C1 a cluster of Rs. It
turns out that this case is easier to analyse if we keep track, not of the probability
of being in the helping state, hn(i), but of the probability of being in the defective
state, dn(i) = 1 − hn(i). In this case, it is easy to show that the recursion we
need to solve is

dn+1(i) =
1

4
dn(i) +

3

8
[dn(i− 1) + dn(i+ 1)] , (5.10)

with the initial condition

d0(i) = 1− ρ, 1 ≤ i ≤ j (5.11)

and the boundary condition

dn(i) = 0, i = 0, i = j + 1, (5.12)

in the limit of large j.
Note the similarity between this case and the case analyzed in the previous

section. The trivial solution is now when ρ = 1: in this case we have dn(i) = 0 ∀i,
so that Rs behave effectively as Cs, everybody helps, Rs are neutral with respect
to Cs and evolution proceeds completely by random drift. For 0 < ρ ≤ 1,
the dynamics of dn(i) are again a particular case of the discrete heat equation
analyzed in section 5.5, now with parameters α = 1/4, β = 3/8, a = 1 − ρ and
d = 0.

It is also easy to show that

h∗i =
1

1− w
− d∗i , (5.13)

so that, from Eq. 5.3, Eq. 5.4 and Eq. 5.13 we obtain that Rs invade Cs more
easily than the converse if

b/c <
6d∗1 + 2d∗2

d∗3 + 3d∗2 − 2d∗1
. (5.14)
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Figure 5.3: ‘Invasion’ analysis. In the limit w → 1 and for all of the studied
evolutionary dynamics, if 1 < b/c < γ1, clusters of Ds expand against clusters
of Cs and of Rs; if γ1 < b/c < γ2, there is a rock-scissors-paper dynamics with
clusters of Ds losing against clusters of Rs, clusters of Rs losing against clusters of
Cs, and clusters of Cs losing against clusters of Ds; if b/c > γ2 then unconditional
cooperation beats both unconditional defection and upstream reciprocity. See
Table 5.1 for the values of γ1 and γ2 for the different updating rules.

Once more, and in the limit when j → ∞ and w → 1, d∗i is equivalent to u∗i as
calculated in section 5.6 and given by Eq. 5.34. Making use of this we finally
arrive at the condition b/c < 10/7. Note that from this result and that obtained
in the preceding subsection, upstream reciprocators win against Ds when they
lose against Cs and vice versa.

5.3.3 Populations comprising cooperators and defectors

Let us finally consider the case where C0 is a cluster of Ds and C1 a cluster of
Cs. In this case it is easy to show that the condition for Cs to win over Ds is the
same as that given in Eq. 5.5, only that in this case h∗i = 1/(1 − w) for i ≥ 1.
The condition becomes

b/c > 4, (5.15)

as it has been derived previously in other works (Nowak & Roch, 2007; Ohtsuki
et al., 2006).

5.3.4 Summary

In summary, the evolutionary dynamics of upstream reciprocity on cycles in the
limit of infinitely repeated interactions (w → 1) and infinitely large populations
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Table 5.1: Critical benefit-to-cost ratios.
updating rule γ1 γ2

IM 10/7 4
DB 6/5 2
BD 2 ∞

The table shows the critical benefit-to-cost ratio below which defectors dominate
(γ1) and above which cooperators dominate (γ2) for three different updating
rules: ‘imitation updating’ (IM), ‘death-birth’ (DB) and ‘birth-death’ (BD).

is governed by two benefit-to-cost ratios γ1 and γ2 so that (see Fig. 5.3)

1. For 1 < b/c < γ1 clusters of Ds expand against clusters of Cs and Rs.

2. For γ1 < b/c < γ2 there is a rocks-scissors-paper dynamics so that clusters
of Rs win against clusters of Ds, which win against clusters of Cs, which
finally win against clusters of Rs.

3. For b/c > γ2 clusters of Cs expand against clusters of Ds and Rs.

The values for γ1 and γ2 are shown in Table 5.1 for IM, DB and BD updating
(see section 5.7 for the derivation of the results for DB and BD updating). Note
that upstream reciprocators are never advantageous over Ds and Cs at the same
time. Note also that IM updating is the less disfavoring evolutionary dynamics, as
the region of the parameter space where rock-scissors-paper dynamics are present
is the largest. For BD, Cs are never advantageous.

5.4 Conclusions

In the model investigated in this study, and in contrast to the model by Nowak &
Roch (2007), upstream reciprocity does not select for cooperation when linked to
population structure in the form of a one-dimensional array. Upstream reciproca-
tors, who help if previously helped and defect otherwise, are never simultaneously
advantageous to both cooperators and defectors. For intermediate benefit-to-cost
ratios, the evolutionary dynamics displays a rock-scissors-paper cycle, in which
defectors are replaced by upstream reciprocators, upstream reciprocators by co-
operators, and cooperators by defectors. This is reminiscent of the cycles featured
by defectors, loners and cooperators in models of public good games with volun-
tary participation (Hauert et al., 2002).

The results presented in this study can be extended in several ways. First,
finite populations can be considered. Indeed, expressions for the expected total
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payoff of different strategists in different configurations are readily available from
the solutions to the heat equation presented in sections 5.5 and 5.6, which are
valid for any number j of individuals. Second, the effect of w on the evolutionary
dynamics should be investigated in detail. Finally, the model shall be extended
to take into account the possibility that individuals are prone to implementing
errors, i.e. failing to give intended donations.
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5.5 Appendix. Discrete heat equation

Consider the following discrete heat equation

un+1(i) = αun(i) + β [un(i− 1) + un(i+ 1)] , 1 ≤ i ≤ j, (5.16)

with α + 2β ≤ 1, under the initial condition

u0(i) = a, 1 ≤ i ≤ j, (5.17)

and the periodic boundary condition

un(i) = d, i = 0, i = j + 1. (5.18)

This equation can be readily solved using techniques of partial difference equa-
tions (Cheng, 2003). Defining

un := (un(1), un(2), . . . , un(j))T ,

and
q := (βd, 0, . . . , 0, βd)

we can rewrite Eq. 5.16 and 5.18 as the vector equation

un+1 = Aun + q,

where A is the tridiagonal matrix

A =



α β 0 0 . . . 0 0
β α β 0 . . . 0 0
0 β α β . . . 0 0

...
0 0 0 0 . . . α β
0 0 0 0 . . . β α


.
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Now, by induction

un+1 = An+1u0 +
n∑
k=0

Akq. (5.19)

Moreover, the eigenvalues of A can be shown to be given by

λl = α + 2β cos

(
lπ

j + 1

)
, l = 1, . . . , j, (5.20)

and the corresponding eigenvectors by

vl =
2

j + 1

[
sin

(
lπ

j + 1

)
, sin

(
2lπ

j + 1

)
, . . . , sin

(
jlπ

j + 1

)]T
(5.21)

where 2/(j + 1) is chosen as scaling factor in order for the set of eigenvectors to
form an orthonormal basis.

We can now express A as the spectral decomposition

A =

j∑
l=1

λlvlv
T
l , (5.22)

so that the general solution to the discrete heat equation can now be formulated
as

un+1 =

j∑
l=1

λn+1
l vlv

T
l u0 +

j∑
l=1

n∑
k=0

λkl vlv
T
l q (5.23)

=

j∑
l=1

λn+1
l vlv

T
l u0 +

j∑
l=1

1− λn+1
l

1− λl
vlv

T
l q. (5.24)

Writing the previous formula explicitly in non-matrix form

un+1(i) =
2

j + 1

j∑
l=1

λn+1
l sin

(
ilπ

j + 1

) j∑
m=1

sin

(
mlπ

j + 1

)
u0(m) (5.25)

+
2

j + 1

j∑
l=1

1− λn+1
l

1− λl
sin

(
ilπ

j + 1

) j∑
m=1

sin

(
mlπ

j + 1

)
q(m).(5.26)

Replacing the values of u0 and q:

un+1(i) =
2a

j + 1

j∑
l=1

λn+1
l sin

(
ilπ

j + 1

) j∑
m=1

sin

(
mlπ

j + 1

)
(5.27)

+
2βd

j + 1

j∑
l=1

1− λn+1
l

1− λl
sin

(
ilπ

j + 1

)
× (5.28)[

sin

(
lπ

j + 1

)
+ sin

(
jlπ

j + 1

)]
. (5.29)
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Now, making use of the trigonometric identities

n∑
k=1

sin kx = sin
nx

2
sin

(n+ 1)x

2
csc

x

2

and

sinx+ sin y = 2 sin
x+ y

2
cos

x− y
2

,

we obtain after simplifying

un+1(i) =
2a

j + 1

j∑
l=1

λn+1
l sin

(
ilπ

j + 1

)
sin

(
lπ

2

)
sin

(
jlπ

2(j + 1)

)
csc

(
lπ

2(j + 1)

)

+
4βd

j + 1

j∑
l=1

1− λn+1
l

1− λl
sin

(
ilπ

j + 1

)
sin

(
lπ

2

)
cos

(
(j − 1)lπ

2(j + 1)

)
.

Defining

νl :=
2a

j + 1
sin

(
lπ

2

)
sin

(
jlπ

2(j + 1)

)
csc

(
lπ

2(j + 1)

)
(5.30)

and

ξl :=
4βd

j + 1
sin

(
lπ

2

)
cos

(
(j − 1)lπ

2(j + 1)

)
, (5.31)

we can finally write

un(i) =

j∑
l=1

(
λnl νl +

1− λnl
1− λl

ξl

)
sin

(
ilπ

j + 1

)
. (5.32)

5.6 Appendix. Total discounted heat

Expressions of the form

u∗i =
+∞∑
n=0

wnun(i), (5.33)

with un(i) given by Eq. 5.32 often appear in the expressions for the total expected
payoffs of players in the model presented in this paper. In the following, I derive
a closed form formula for this expression for general j and w and find a simple
expression of it when d = 0 and in the limit of j →∞ and w → 1.
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First, note that we can write

u∗i =
+∞∑
n=0

wnun(i)

=
+∞∑
n=0

wn
j∑
l=1

(
λnl νl +

1− λnl
1− λl

ξl

)
sin

(
ilπ

j + 1

)

=

j∑
l=1

(
+∞∑
n=0

wnλnl νl +
+∞∑
n=0

wn
1− λnl
1− λl

ξl

)
sin

(
ilπ

j + 1

)

=

j∑
l=1

[
+∞∑
n=0

(wλl)
n νl +

1

1− λl

(
+∞∑
n=0

wn −
+∞∑
n=0

(wλl)
n

)
ξl

]
sin

(
ilπ

j + 1

)

=

j∑
l=1

[
1

1− wλl
νl +

1

1− λl

(
1

1− w
− 1

1− wλl

)
ξl

]
sin

(
ilπ

j + 1

)

=
1

1− w

j∑
l=1

(1− w)νl + wξl
(1− wλl)

sin

(
ilπ

j + 1

)
.

Now, if d = 0, ξl = 0 ∀l (see Eq. 5.31) and the previous expression further
simplifies to

u∗i =

j∑
l=1

νl
(1− wλl)

sin

(
ilπ

j + 1

)
.

In the limit when j → ∞ and w → 1, the term corresponding to the eigenvalue
λ1 dominates the sum, so that we can finally write

u∗i =
ν1

1− λ1

sin

(
iπ

j + 1

)
. (5.34)

5.7 Appendix. Results for ‘death-birth’ and ‘birth-

death’

5.7.1 Death-birth (DB)

For DB updating, a random individual is eliminated and the neighbors compete
for the empty site proportional to their fitness. In this case it is easy to show
that, in the limit of weak selection (s� 1), C1 is more likely to invade C0 if

P1 + P2 > P0 + P−1. (5.35)
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Let us consider the case where C1 are Rs and C0 are Ds. By replacing Eq. 5.3
into Eq. 5.38 and simplifying, it can be shown that Rs invade Ds more easily than
the converse if

b/c >
2(h∗1 + h∗2)

h∗2 + h∗3
. (5.36)

Making use of Eq. 5.34, and writing θ = π/(j + 1), the previous expression leads
to

b/c >
2(sin θ + sin 2θ)

sin 2θ + sin 3θ
,

which can be simplified to

b/c >
2(sin θ + 2 sin θ cos θ)

sin 2θ + sin 3θ

=
2 + 4 cos θ

3 + 2 cos θ − 4 sin2 θ
.

In the limit j →∞, θ → 0 and we finally obtain

b/c >
6

5
. (5.37)

Thus, clusters of Rs invade more easily clusters of Ds than the converse when
b/c > 6/5. It can be shown, similarly as it was done for IM updating, that this
is also the condition for clusters of Cs to replace clusters of Rs. Finally, Cs win
over Ds when b/c > 2 (Ohtsuki et al., 2006).

5.7.2 Birth-death (BD)

For BD updating, an individual is selected for reproduction from the whole popu-
lation proportional to fitness and the offspring replaces a randomly chosen neigh-
bor. In the limit of weak selection (s� 1), it can be shown that C1 is more likely
to invade C0 if

P1 > P0. (5.38)

Consider the case where C1 are Rs and C0 are Ds. By replacing Eq. 5.3 into
Eq. 5.38 and simplifying, we get that Rs invade Ds more easily than the converse
if

b/c >
2h∗1

h∗2 − h∗1
. (5.39)

Using Eq. 5.34 and writing θ = π/(j + 1), the previous expression becomes

b/c >
2 sin θ

sin 2θ − sin θ
,
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which can be simplified to

b/c >
2 sin θ

2 sin θ cos θ − sin θ

=
2

2 cos θ − 1
.

In the limit j →∞, θ → 0 and we finally obtain

b/c > 2. (5.40)

Hence, clusters of Rs invade more easily clusters of Ds than the converse when
b/c > 2. Again, this is also the condition for clusters of Cs to replace clusters
of Rs. Finally, it can be shown that under BD updating, Cs never win over
Ds (Ohtsuki et al., 2006).
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Part III

Social diversity
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For to everyone who has, more shall be given, and he will have an
abundance; but from the one who does not have, even what he does
have shall be taken away.

Matthew 25:29

‘The rich get richer and the poor get poorer’ is a catchphrase that often
appears in discussions on economic, political and social inequality, from Marxist
critiques of capitalism to sociology of science. American sociologist Robert K.
Merton used it to describe the fact that an eminent researcher gets more credit
than a relatively unknown one, even if their work is similar (Merton, 1968).
Merton called this phenomenon ‘the Matthew effect’, taking its name from the
line of the gospel of Matthew quoted above.

The Matthew effect and the more general ‘rich get richer’ phenomenon is
the simple idea of autocatalysis or positive feedback in a social context: those
who have (social or economic) power can use such resources to gain even more
power. Thus, often cited papers or scientists are more likely to be cited in a
new study, popular people is more likely to get new friends, and rich companies
are more likely to win telecom auctions (thus getting richer). In 1999, Barabási
& Albert made use of the concept (that they called ‘preferential attachment’)
in their famous procedure for constructing networks having highly heterogeneous
degree distributions, i.e. scale-free networks. Later on, in 2005, Santos & Pacheco
showed that the evolution of cooperation under the two-person prisoner’s dilemma
can be significantly promoted on scale-free graphs, suggesting that heterogene-
ity in population structure was ‘a new route to cooperation’ (Santos & Pacheco,
2006). Finally, in 2008, Santos et al. extended these results to the case of the
linear public goods game (a version of the N-person prisoner’s dilemma) finding
that the combination of heterogeneity and asymmetric interactions again pro-
moted cooperation. Their conclusion, summarized in the title of their paper,
is that ‘social diversity promotes the emergence of cooperation in public goods
games’.

The following chapters present three contributions to the study of the effects
of social diversity (heterogeneity) in the evolution of cooperation. Chapter 6
focuses on the effects of group diversity in both linear and non-linear public goods
games. In this chapter I make use of the standard formalism of infinite well-mixed
populations and the replicator dynamics, in order to study the effects of group-size
diversity in the absence of any kind of assortment. Chapter 7 introduces the use
of bipartite graphs as population structures, showing how they allow for a neat
separation between two different types of social diversity, indistinguishable from
one another in the model by Santos et al. (2008): individual diversity and group
diversity. Individual diversity refers to heterogeneity at the level of the number
of interactions per individual; group diversity, to heterogeneity at the level of the
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number of individuals taking part in a social interaction. Finally, in chapter 8,
the interplay between individual diversity and asymmetric interactions is studied
in more detail. Using a new model based on the sampling of interaction partners
according to different rules, it is shown how inequality can promote cooperation
and vice versa. It is also shown, however, how a supposedly ideal world where
everybody cooperates can be nothing more than a swindle from the rich to control
and exploit the poor, similar to that theorized by Rousseau in A Discourse of
Inequality.
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Chapter 6

Group-size diversity in public
goods games†

Abstract

Public goods games are models of social dilemmas where cooperators pay a cost
for the production of a public good while defectors free ride on the contributions
of cooperators. In the traditional framework of evolutionary game theory, the
payoffs of cooperators and defectors result from interactions in groups formed by
binomial sampling from an infinite population. Despite empirical evidence show-
ing that group-size distributions in nature are highly heterogeneous, most models
of social evolution assume that the group size is constant. In this paper, I remove
this assumption and explore the effects of having random group sizes on the evo-
lutionary dynamics of public goods games. By a straightforward application of
Jensen’s inequality, I show that the outcome of general nonlinear public goods
games depend not only on the average group size but also on the variance of
the group-size distribution. This general result is illustrated with two nonlinear
public goods games (the public goods game with discounting or synergy and the
N-person volunteer’s dilemma) and three different group-size distributions (Pois-
son, geometric, and Waring). The results suggest that failing to acknowledge the
natural variation of group sizes can lead to an underestimation of the actual level
of cooperation exhibited in evolving populations.

6.1 Introduction

Social dilemmas are situations in which there is a conflict between individual
and collective interests. In game theory terms, social dilemmas are defined as

†J. Peña. Evolution, 66(3), 623-636 (2012).
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games with at least one Pareto inefficient Nash equilibrium (Archetti & Scheur-
ing, 2011b; Kollock, 1998): an alternative outcome making at least one player
better off without reducing any other player’s payoff is possible, but no player has
the incentive to change their behavior. Such tension between the individual and
the collective interest is encountered at all levels of biological organization, from
the production of enzymes in microorganisms (Gore et al., 2009; Turner & Chao,
1999) to predator inspection (Pitcher, 1991), sentinel behavior (Clutton-Brock
et al., 1999) and cooperative hunting (Packer & Ruttan, 1988) in social verte-
brates. Pollution, human overpopulation, overexploitation of fisheries (Hardin,
1968), the use of public transportation (van Vugt et al., 1996), and the production
of open-source software (von Hippel & von Krogh, 2003) are typical examples of
the kind of social dilemmas faced by contemporary human societies.

Many social dilemmas are related to the production of public goods, defined
as common resources that are simultaneously non-excludable (no individual can
be excluded from its consumption) and non-rivalrous (one individual’s use of the
public good does not diminish its availability to another individual) (Pindyck
& Rubinfeld, 2001; Samuelson, 1954). Public goods games (PGGs) are simple
models of public goods dilemmas, used by both experimental economists (Kagel
& Roth, 1995) and theoreticians (Fox & Guyer, 1978; Hamburger, 1973; Sigmund,
2010). In general, a PGG can be described by a benefit function B(i, N) and a
cost function C(i, N), where i is the number of cooperators (Cs) in a group of
size N (Archetti & Scheuring, 2011b). Only Cs pay the cost C(i, N) while both
Cs and defectors (Ds) get the benefit B(i, N). This leads to payoffs for Ds and Cs
being respectively given by PD(i, N) = B(i, N) and PC(i, N) = B(i, N)−C(i, N).

By far, the most well known PGG is the N-person Prisoner’s Dilemma, here-
after NPD (Hamburger, 1973). The NPD involves a group of N individuals
where Cs contribute a cost c > 0 to the public good, whereas Ds contribute
nothing. All contributions are added together, multiplied by an enhancement
factor 1 < r < N , and then shared among all the individuals of the group. This
gives B(i, N) = rci/N for the benefit function and C(i, N) = c for the cost
function. The NPD is the archetypal example of a social dilemma because its
only Nash equilibrium (all players defect) is evidently Pareto inefficient: every-
body ends up getting nothing, but if everybody had cooperated, each individual
would have obtained c(r − 1) > 0. Moreover, defection is dominant, so that
each individual is better off defecting no matter what their co-players do, i.e.
PD(i, N) > PC(i + 1, N). The fact that defection is dominant prevents coopera-
tion from evolving when groups form randomly (Nunney, 1985). (Note, however,
that if r > N cooperation dominates defection, there is no social dilemma, and
cooperation evolves).

A great deal of effort in evolutionary biology has been devoted to the study
of mechanisms allowing for the evolution of cooperation in the NPD, such as kin
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selection (Frank, 1998; Grafen, 1985, 2009; Hamilton, 1964) and reciprocity (Ax-
elrod & Hamilton, 1981; Nowak & Sigmund, 2005; Trivers, 1971), which can all
be understood as different ways of creating and maintaining positive assortment
between Cs (Fletcher & Doebeli, 2009; Lehmann & Keller, 2006). Voluntary par-
ticipation (Hauert et al., 2002), punishment of non-contributors (Boyd & Rich-
erson, 1992) and rewards to contributors (Hauert, 2010) have also been proposed
as alternative mechanisms to promote cooperation in the NPD.

Despite its theoretical importance, it is clear that the NPD is only a very spe-
cific case of PGG, characterized by a linear benefit function and by the fact that
defection is the dominant strategy. Other social dilemmas may depart from these
assumptions, as it has been well understood in the social sciences (Hirshleifer,
1983; Kollock, 1998; Schelling, 1978; Taylor & Ward, 1982) and recognized in the-
oretical evolutionary biology (Boyd & Richerson, 1988; Charnov & Krebs, 1975;
Cohen & Eshel, 1976; Dugatkin, 1990; Matessi & Jayakar, 1976; Maynard Smith,
1965; Motro, 1991) for decades. Recently, several works in evolutionary game
theory have focused on PGGs with nonlinear payoff functions, bringing to the
fore alternatives to the NPD for modeling social dilemmas (Archetti, 2009a,b;
Archetti & Scheuring, 2011a,b; Bach et al., 2006; Hauert et al., 2006; Pacheco
et al., 2009; Souza et al., 2009; Zheng et al., 2007). The most important result
from this heterogeneous collection of works is that removing the assumptions of
dominant defection and linearity on which the NPD is based has important con-
sequences on the resulting evolutionary dynamics. Stable and unstable interior
fixed points may appear in the replicator dynamics of nonlinear PGGs, leading to
the coexistence of Cs and Ds or to bistability between cooperative and defective
equilibria. In these cases, cooperation can be maintained without the need of
invoking reciprocity, punishment, voluntary participation, rewards or any of the
mechanisms generally proposed to generate assortment in the NPD (Archetti &
Scheuring, 2011b).

For reasons of parsimony, it is common to consider the group size N as con-
stant when investigating the evolutionary dynamics of PGGs. Natural and social
systems, however, often exhibit high levels of group-size heterogeneity. Indeed,
the group-size distributions of several species, including social amoeba (Fortu-
nato & Queller, 2003), tuna fish and sardinellas (Bonabeau & Dagorn, 1995),
buffaloes (Sinclair, 1977), antelopes (Wirtz & Lörscher, 1983), bisons (Lott &
Minta, 1983), lions (Schaller, 1972), wolves (Rodman, 1981), killer whales (Baird
& Dill, 1996), and humans (James, 1953; Newman, 2001; Zipf, 1949) have been
reported to be heavily skewed, and in many cases well approximated by power-
law distributions (Bonabeau & Dagorn, 1995; Bonabeau et al., 1999; Newman,
2001; Niwa, 2003; Sjöberg et al., 2000). Heterogeneous group-size distributions
are also expected to arise from simple stochastic models of aggregation and group-
ing (Bonabeau et al., 1999; Cohen, 1971; Duerr & Dietz, 2000; Niwa, 2003; Okubo,
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1986).
In this paper I study the effects of introducing variable group sizes in the

replicator dynamics of PGGs. I do so by assuming that group size is a random
variable with a prescribed probability distribution. In contrast to other models
of social evolution featuring diverse group sizes, the model presented here does
not involve (1) changes in group size caused by changes in behavior (Lehmann
et al., 2006), (2) individual group size preferences (Avilés, 2002; Powers et al.,
2011; van Veelen et al., 2010), (3) time-varying group-size distributions with fluc-
tuating mean values (Eshel, 1977; Hauert et al., 2002, 2006, 2008; Mathew &
Boyd, 2009; Parvinen, 2010; Szathmáry, 1993) nor (4) network-structured popu-
lations (Santos & Pacheco, 2011; Santos et al., 2008). Rather, it is based on the
following assumptions: (1) group-size distributions are exogenously determined,
(2) Cs and Ds have the same tendency to aggregate (no particular preference for
a given group size), (3) group-size distributions are static, and (4) the population
is well-mixed. The motivation behind these simpler assumptions is to explore to
which extent the sole fact of having diverse but static group-size distributions
can affect the evolutionary dynamics of PGGs in the absence of assortment of
strategies resulting from differential grouping tendencies or population structure.

With the above-mentioned assumptions, the general model presented in this
paper is closely related to the models of intrademic group selection by Cohen
& Eshel (1976) and Matessi & Jayakar (1976), who also studied evolutionary
PGGs with constant and random group sizes. However, my approach contrasts
with these works in various respects. Firstly, I make explicit use of a general
result in probability theory (Jensen’s inequality) for investigating when and how
the evolutionary dynamics under random group sizes are expected to be different
from those under constant group sizes. Secondly, I consider group-size distri-
butions going beyond the Poisson distribution used by Cohen & Eshel (1976).
Finally, I illustrate the general results with different social dilemmas, namely the
public goods with discounting or synergy (Hauert et al., 2006) and the N-person
volunteer’s dilemma (NVD) (Archetti, 2009a,b; Diekmann, 1985).

My model is also related to recent work by Brännström et al. (2011), who
studied the consequences of fluctuating group sizes for the evolution of cooper-
ation in continuous PGGs. The authors analyzed general classes of PGGs with
payoff functions that do not explicitly depend on group size and derived general
conditions for group-size diversity to promote/hinder cooperation in the frame-
work of adaptive dynamics (Metz et al., 1996). In this work, I focus instead on
the effects of group-size diversity on PGGs with payoff functions that explicitly
depend on group size, in the framework of the replicator dynamics for two dis-
crete strategies: Ds that contribute c = 0 and Cs that contribute c > 0. This
choice allows direct comparison with recent works on evolutionary PGGs which
consider the same setup (replicator dynamics of Cs and Ds), but assume that the
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group size is constant (Archetti, 2009a,b; Archetti & Scheuring, 2011a; Hauert
et al., 2006; Pacheco et al., 2009; Souza et al., 2009; Zheng et al., 2007).

6.2 The model

Consider a very large and well-mixed population consisting of a fraction x of Cs
and 1−x of Ds, where groups of N individuals are formed randomly by binomial
sampling. For now, assume that the group size N is constant, so that N = n
with probability equal to one. Then, the probability that a given individual finds
itself in a group where j of the other n− 1 individuals are Cs is given by(

n− 1

j

)
xj(1− x)n−1−j.

In each group with j other Cs, Cs receive a payoff PC(j + 1, n) and Ds a payoff
PD(j, n). Therefore, the average payoff of a C and a D are given respectively by

fC(x, n) =
n−1∑
j=0

(
n− 1

j

)
xj(1− x)n−1−jPC(j + 1, n),

and

fD(x, n) =
n−1∑
j=0

(
n− 1

j

)
xj(1− x)n−1−jPD(j, n).

In the framework of evolutionary game theory, the change in frequency of coop-
erators can be described by the replicator dynamics (Hofbauer & Sigmund, 1998;
Taylor & Jonker, 1978)

ẋ = x(1− x)f(x, n), (6.1)

where ẋ = dx/dt and

f(x, n) = fC(x, n)− fD(x, n).

As mentioned above, the analysis of equation 6.1 for different PGGs has been
extensively carried out for the case of constant group sizes (Archetti, 2009a,b;
Archetti & Scheuring, 2011a; Boyd & Richerson, 1988; Dugatkin, 1990; Hauert
et al., 2006; Pacheco et al., 2009; Souza et al., 2009; Zheng et al., 2007).

In order to introduce group-size diversity, suppose now that N is no longer a
constant but a random variable with support n ∈ {nmin, nmin + 1, . . . , nmax} and
probability mass function pn = Pr(N = n), so that

∑nmax
nmin

pn = 1. The mean
value of N is given by µN = E [N ] =

∑
n pnn and its variance by σ2

N . Assume
that nmin ≥ 2 as to exclude “groups” of size one where by definition there is no
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social dilemma. Finally, denote by E [g(N)] =
∑

n png(n) the expected value of
the function g(N). Then, by the law of total probability, the average payoff of a
C and a D can be written as

FC(x,N) =
∑
n

qnfC(x, n),

and
FD(x,N) =

∑
n

qnfD(x, n),

where qn = npn/µN is the probability that an individual joins a group of size n.
The replicator dynamics becomes

ẋ = x(1− x)F (x,N), (6.2)

where

F (x,N) = FC(x,N)− FD(x,N) =
∑
n

qnf(x, n) =
1

µN
E [Nf(x,N)] . (6.3)

Notice that the standard case where group size is constant is recovered from
equation 6.2 by assuming that N is distributed according to the degenerate dis-
tribution, i.e. a distribution with probability mass function pn = δ(n, µN), where
δ(x, y) is the Kronecker delta function, so that δ(x, y) = 1 if x = y and δ(x, y) = 0
otherwise. In this case, the replicator dynamics reduces to

ẋ = x(1− x)f(x, µN). (6.4)

Let us now assume that N is distributed according to a non-degenerate dis-
tribution, so that σ2

N > 0. Then, it is clear from equations 6.2, 6.3 and 6.4
that, for a given x, group-size diversity will lead to a dynamical scenario which is
more favorable to cooperation than the one obtained if N is constant whenever
F (x,N) > f(x, µN). This last expression leads to

E [Nf(x,N)] > µNf(x, µN). (6.5)

I now make use of Jensen’s inequality (see Jensen (1906) for the original pa-
per, Gillespie (1977) for a classic application to evolutionary biology, and Ruel
& Ayres (1999) for a review and applications to ecology), a well-established
result in probability theory stating that the average of a nonlinear function
E[g(X)] is different from the function evaluated at the average g(E [X]). In
particular, E[g(X)] > g(E [X]) if g(x) is strictly convex (d2g(x)/dx2 > 0) and
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E[g(X)] < g(E [X]) if g(x) is strictly concave (d2g(x)/dx2 < 0). By a straight-
forward application of Jensen’s inequality, the condition given by equation 6.5 is
true if

h(x, n) ≡ nf(x, n)

is strictly convex in n, i.e. if ∂2h/∂n2 > 0.
From this, it is clear that the NPD is essentially unaffected by group-size

diversity. Indeed, it can be easily shown that for this game h(x, n) reduces to
c(r − n), which is a linear function of n. Thus, F (x,N) = f(x, µN) so that
the replicator dynamics of the NPD is invariant with respect to changes of the
group-size distribution preserving its average value.

A different picture emerges in the case of nonlinear PGGs, since nonlinearities
in payoff functions translate into functions h that are nonlinear in n and, by
Jensen’s inequality, into F (x,N) 6= f(x, µN). In particular, the more diverse
the group-size distribution and the more nonlinear the function h, the larger the
deviation of the gradient of selection of the replicator dynamics from its mean-
value approximation F (x,N) ≈ f(x, µN). Indeed, we can write (see Section 6.4)

F (x,N) ≈ f(x, µN)︸ ︷︷ ︸
mean-value approximation

+
1

2
× ∂2h(x, µN)

∂n2︸ ︷︷ ︸
nonlinearity

× σ2
N/µN︸ ︷︷ ︸

group-size diversity

. (6.6)

Equation 6.6 neatly shows the combined effects of nonlinearity and group-size di-
versity on the replicator dynamics and further clarifies the predictions of Jensen’s
inequality: for a given x, group-size diversity favors cooperation if and only if h
is strictly convex in n (∂2h(x, µN)/∂n2 > 0). Whenever h is nonlinear, so that
∂2h(x, µN)/∂n2 6= 0, the promotion or hindering of cooperation is more important
the larger the nonlinearity of h (as measured by |∂2h(x, µN)/∂n2|) and the larger
the diversity of the group-size distribution (as measured by the variance-to-mean
ratio σ2

N/µN).
In the following I illustrate this general result with two particular cases of

nonlinear PGGs: the PGGDS and the NVD (Archetti, 2009a,b). I explicitly
model the group-size distributions by making use of (truncated) Poisson, geo-
metric and Waring distributions, which greatly differ in their variance-to-mean
ratios (see Figure 6.1). These distributions frequently arise as the result of sim-
ple aggregation processes (Cohen, 1971; Coleman & James, 1961; Duerr & Dietz,
2000; Okubo, 1986) and are good models of animal group-size distributions. The
Waring distribution (Irwin, 1968) exhibits power-law behavior for large values
of the random variable (i.e. if N is a Waring variate, Pr(N = n) ∝ n−α for
large values of n), hence it can be used to model grouping based on preferential
attachment (Barabási & Albert, 1999), whereby larger groups are preferentially
chosen by joining individuals. A mathematical description of these probability
distributions is given in Section 6.5.
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Figure 6.1: Examples of the non-degenerate group-size distributions used in this
study: Poisson, geometric and Waring. Parameters: nmin = 2, nmax = 100, and
µN = 5. Top panel. Plots of the probability mass functions. Bottom panel.
Log-log plots of the probability mass functions. For large values of n, the Waring
distribution used in this study exhibits power-law behavior with exponent α = 3,
i.e. pn ∝ n−α with α = 3.
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6.2.1 Public goods game with discounting or synergy (PG-
GDS)

In the PGGDS (Hauert et al., 2006), the first C in the group contributes a value
b to produce a public good, the second C contributes wb and so on, to the i-th
C which contributes wi−1b. The public good is then shared equally among the
members of the group. The benefit function is thus given by

B(i, n) =
b (1 + w + w2 + . . .+ wi−1)

n
=
b (1− wi)
n (1− w)

,

while the cost function is given by C(i, n) = c (each C pays a fixed cost c). For
w = 1, the NPD is recovered as a special case when b = rc < nc. If 0 < w < 1
the benefit function is decelerating (benefits are discounted) while if w > 1 it is
accelerating (benefits are synergistically enhanced).

With these definitions we obtain after little algebra:

f(x, n) =
b

n
(1− x+ wx)n−1 − c, (6.7)

and

F (x,N) =
b

µN
E
[
(1− x+ wx)N−1

]
− c. (6.8)

Let us denote by γ = c/b the cost-to-benefit ratio, and define γ1 = 1/µN and

γ2 = E
[
wN−1

]
/µN . (6.9)

Then, as shown in the left panel of Figure 6.2, four different dynamical scenarios
can be distinguished (see Section 6.6 for the derivation):

1. If γ > γ1 and γ > γ2, the only stable fixed point is x0 = 0, and defection is
dominant.

2. If γ2 < γ < γ1, there is an interior fixed point xF , which is stable, while
both x0 = 0 and x1 = 1 are unstable. Cs and Ds coexist at a polymorphic
equilibrium with a proportion xF of Cs.

3. If γ < γ1 and γ < γ2 the only stable fixed point is x1 = 1, and cooperation
is dominant.

4. If γ1 < γ < γ2, the interior fixed point xF is unstable and both x0 = 0 and
x1 = 1 are stable. There is bistability: Cs and Ds cannot invade each other
and the population evolves either to x0 = 0 or x1 = 1 depending on the
initial conditions.
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Figure 6.2: Phase diagram and degree of cooperation in the public goods game
with discounted or synergistic benefits for the different group-size distributions.
Left panel. Phase diagram illustrating the four different dynamical regimes
(defection, co-existence, cooperation, and bistability). Right panel. Degree of
cooperation for the different group-size distributions. The degree of cooperation
is given by the fraction of Cs at equilibrium, except in the bistability region where
it is given by the size of the basin of attraction of the cooperative equilibrium.
Parameters: nmin = 2, nmax = 100, µN = 5.
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For constant group sizes, the conditions found by Hauert et al. (2006) are
recovered, namely, γ2 = wµN−1/µN , and xF = xf , with

xf =
1− (γµN)1/(µN−1)

1− w
.

For random group sizes, we have

∂2h(x, n)

∂n2
= b(1− x+ wx)n−1 ln2(1− x+ wx),

which is greater than zero for all x ∈ (0, 1), for all w 6= 1 and for all n. Hence,
by Jensen’s inequality, F (x,N) ≥ f(x, µN) for all x, with strict equality only in
the case where the group-size distribution is degenerate or when w = 1. This
means that group-size diversity systematically promotes cooperation in the PG-
GDS with respect to the case of constant group sizes for both discounted and
synergistically enhanced benefits. In particular, since wn is a convex function of
n, Jensen’s inequality gives γ2 = E

[
wN−1

]
/µN > wµN−1/µN . As a result, the

introduction of group-size diversity makes the regions of dominant cooperation
and of bistability grow at the expense of the regions of coexistence and dominant
defection, respectively. Moreover, it is clear that F (x,N) > f(x, µN) for all x
implies that xF > xf for w < 1 and xF < xf for w > 1. Hence, group-size diver-
sity translates into a larger fraction of Cs when there is coexistence (see the top
panel of Figure 6.3), and into a larger basin of attraction for the C equilibrium
when cooperation and defection are bistable (see the bottom panel of Figure 6.3).
Overall, the degree of cooperation (given by the fraction of Cs at equilibrium or
by the size of the basin of attraction of x1 = 1) in the case of random group sizes
is always greater than or equal to the respective degree of cooperation in the case
of constant group sizes, for any point in the parameter space (see the right panel
of Figure 6.2).

For an arbitrary nmax, the critical value γ2 can be directly calculated from its
defining series γ2 = 1

wµN

∑
n pnw

n, and the fixed point xF can be found by numer-

ically solving F (xF , N) = 1
µN

∑
n pnnf(xF , n) = 0. This is the approach I used

for calculating the data shown in Figure 6.2 and Figure 6.3. These calculations
can be cumbersome for large values of nmax. In such cases, it is more convenient
to have closed-form expressions for γ2 and F (x,N). These can be obtained ex-
actly in the limit nmax →∞ if the expected values converge (see Section 6.7) or
approximated using equation 6.6 to obtain

γ2 ≈
wµN−1

µN

[
1 +

ln2(w)σ2
N

2

]
,

and

F (x,N) ≈ b

µN
(1− x+ wx)µN−1

[
1 +

ln2(1− x+ wx)σ2
N

2

]
− c.
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Figure 6.3: Effects of group-size diversity in the PGGDS. Top panel. Evolu-
tionary dynamics for w = 0.5, c = 1 and b = 15 (γµN = 1/3). Coexistence:
xF > xf . Bottom panel. Evolutionary dynamics for w = 0.5 c = 1 and b = 1.5
(γµN = 10/3). Bistability: xF < xf . Parameters: nmin = 2, nmax = 100, µN = 5.
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6.2.2 N-person volunteer’s dilemma (NVD)

In the NVD (Archetti, 2009a,b; Diekmann, 1985), each individual in a group
of size n must decide whether to volunteer to provide a public good or not.
If at least k players volunteer to pay a cost c, everyone receives a benefit b.
Thus B(i, n) = bθ(i − k), where θ(x) is the Heaviside step function, such that
θ(x < 0) = 0 and θ(x ≥ 0) = 1, and C(i, n) = c. Here I explore the simple case
where k = 1. Note that this case has sometimes been called N-person snowdrift
game (van Veelen & Nowak, 2012).

With k = 1 we find

f(x, n) = b(1− x)n−1 − c,

and

F (x,N) =
b

µN
E
[
N(1− x)N−1

]
− c.

Note that f is a monotonically decreasing function of x for n ≥ 1, which implies
that F =

∑
n qnf(x, n) is also a monotonically decreasing function of x, since

qn ≥ 0 ∀n. Additionally, since F (0, N) = b − c > 0 and F (1, N) = −c < 0, the
only stable state of the replicator dynamics is the fixed point xF ∈ (0, 1), so that
Cs and Ds coexist at a polymorphic equilibrium with a proportion xF of Cs. In
the general case of random group sizes, xF can be found by numerically solving
F (xF , N) = 0. In the case of constant group sizes, xF reduces to (Archetti,
2009b)

xF = xf = 1− γ1/(µN−1), (6.10)

where γ = c/b is the cost-to-benefit ratio. Note that the proportion of Cs at
equilibrium is inversely proportional to the cost-to-benefit ratio.

For random group sizes we have

∂2h(x, n)

∂n2
= b(1− x)n−1 ln(1− x) [n ln(1− x) + 2] , (6.11)

which is less than zero if n < η(x) and greater than zero if n > η(x), with
η(x) = −2/ ln(1 − x). Figure 6.4 shows a plot of η(x). Note that η(x) → ∞
as x → 0 and η(x) → 0 as x → 1. Thus, the domain of convexity of h in n
decreases as x→ 0 and increases as x→ 1. Moreover, nmin and nmax determine
values xR = 1 − e−2/nmin and xL = 1 − e−2/nmax such that h is concave in n
for all n ∈ [nmin, nmax] if x < xL and convex in n for all n ∈ [nmin, nmax] if
x > xR. Hence, by Jensen’s inequality, F (x,N) ≤ f(x, µN) for x ≤ xL and
F (x,N) ≥ f(x, µN) for x ≥ xR. Intuitively, this should translate into more
cooperation than in the constant group size case for low cost-to-benefit ratios
(where Cs are common at equilibrium) and less cooperation than in the constant
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Figure 6.4: Plot of η(x) = −2/ ln(1 − x). Note that nmin and nmax determine
values xR = 1 − e−2/nmin and xL = 1 − e−2/nmax such that n < η(x) for all
nmin < n < nmax if x < xL and n > η(x) for all nmin < n < nmax if x > xR. Note
the logarithmic scale of the y axis. Here, nmin = 2 and nmax = 10.

group size case for high cost-to-benefit ratios (where Cs are rare at equilibrium).
This prediction is confirmed in Figure 6.5, which shows the stable equilibrium
xF for different group-size distributions with µN = 5, nmin = 2 and nmax = 100,
and the replicator dynamics for γ = 1/20 and γ = 2/5. It is clear from these
results that group-size diversity favors cooperation up to a critical cost-to-benefit
ratio γ∗, above which cooperation is disfavored. Note, however, that the effect
of group-size diversity seems to be more pronounced when promoting than when
hindering cooperation. The exact value of γ∗ depends on the particular group-size
distribution, but it can be well approximated (see Section 6.8) by

γ∗ ≈ e−2(µN−1)/µN ,

which leads to γ∗ ≈ 0.2019 for µN = 5, in good agreement with the results shown
in Figure 6.5.

Section 6.9 gives closed-form expressions for F (x,N) in the limit when nmax →
∞. In this limit, and in the particular case of the geometric distribution, an an-
alytical expression for xF can also be derived (see equation 6.18 in Section 6.9).
Finally, and for general nmax, F (x,N) can also be approximated using equa-
tion 6.6 so that

F (x,N) ≈ b(1− x)µN−1

{
1 + ln(1− x) [µN ln(1− x) + 2]

σ2
N

2µN

}
− c.
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Figure 6.5: Effects of group-size diversity in the NVD. Stable equilibria shown
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6.3 Discussion

The evolution of cooperation in sizable groups has been traditionally studied by
investigating the evolutionary dynamics of the NPD and other PGGs under the
assumption that the group size is constant. In the research presented in this
paper, I relaxed this assumption and show that although group-size diversity
leaves the linear NPD , it can lead to qualitative and quantitative changes in the
evolutionary dynamics of more general, nonlinear PGGs.

I showed that the replicator dynamics of nonlinear PGGs depend not only on
the average group size but also on the variance of the group-size distribution and
on the convexity of the function h = nf(x, n) (see equation 6.6). Indeed, the
evolution of cooperation is promoted with respect to the case of constant group
sizes when h is convex and hindered when h is concave in the group size n, the
more the larger the variance of the group-size distribution. In the PGGDS, h
is always strictly convex and, consequently, group-size diversity systematically
leads to dynamical scenarios more favorable to the evolution of cooperation than
what is obtained under the assumption of constant group sizes. Specifically, the
introduction of variable group sizes enlarges the zones of the parameter space
where the cooperative equilibrium is stable, increases the proportion of Cs at
stable polymorphic equilibria when Cs and Ds coexist, and leads to larger basins of
attraction of the cooperative equilibrium when the replicator dynamics is bistable.
In the NVD, h is convex when Cs are common and concave when Cs are rare. As a
result, group-size diversity can either promote or hinder cooperation with respect
to the case where all groups are of the same size depending on the cost-to-benefit
ratio: there is promotion for low cost-to-benefit ratios and hindering for high cost-
to-benefit ratios. Overall, I have shown that the degree of cooperation in PGGs
can be underestimated by focusing only on the average group size, especially if
the group-size distribution is highly heterogeneous.

In the model presented here, the evolutionary dynamics of the NPD is indepen-
dent of the level of group-size diversity. Consequently, cooperation cannot evolve
in the NPD for any group-size distribution. This result, which can be shown
to agree with results stemming from patch-structured models where group-size
diversity is endogenously determined (Alizon & Taylor, 2008; Lehmann et al.,
2006), contrasts with the results of other models of social evolution featuring
variable group sizes where cooperation has been shown to be viable under the
NPD (Hauert, 2006; Hauert et al., 2002; Santos et al., 2008). The reason behind
such seeming discrepancy is to be found in the additional assumptions made in
these works, which are not made in the model presented here: (1) fluctuating
average group sizes resulting from voluntary participation (Hauert et al., 2002)
or ecological feedback (Hauert, 2006) that make the PGG to alternate between
an NPD (1 < r < µN) and a game with no conflict (r > µN), and (2) assortment
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of strategies via network structure (Santos et al., 2008). Simply introducing vari-
ance in the group-size distribution does not make the average group size fluctuate
over time nor introduces assortment; as a result, cooperation can not be made
possible in the NPD by group-size diversity alone.

Contrastingly, group-size diversity can promote the evolution of cooperation
with respect to the case where the group size is constant in nonlinear PGGs. This
has been demonstrated here for the specific cases of the PGGDS (cooperation
promoted for the whole of the parameter space, except when w = 1 where the
NPD is recovered) and the NVD (promotion of cooperation for low cost-to-benefit
ratios). As mentioned above, the resulting promotion of cooperation does not
derive from any kind of assortment, but solely from the interaction between the
nonlinearity of public good functions and the variability of group sizes. Such
interaction is nicely captured by Jensen’s inequality, a somewhat counterintuitive
result in probability theory stating that the average of a nonlinear function does
not equal the function of the average. This is not the first time that a statistical
phenomenon which is apparently paradoxical is associated with models of social
evolution. Many readers will be familiar with Simpson’s paradox (Bickel et al.,
1975; Blyth, 1972; Simpson, 1951): the reversal of a correlation present in different
groups when the groups are combined which has been often invoked to explain the
evolution of cooperation (Chuang et al., 2009; Hauert, 2006; Hauert et al., 2002;
Sober & Wilson, 1998). In the model of nonlinear PGGs with variable group
sizes studied here, both Simpson’s paradox and Jensen’s inequality are at work.
Simpson’s paradox manifests itself in the fact that, for both the PGGDS and the
NVD, cooperation is disfavored in each mixed group (PC(i, n)− PD(i, n) < 0 for
all n and all 0 < i < n), but it can be favored globally (fC(x, n) > fD(x, n) for
at least some x) and hence evolutionarily viable. Jensen’s inequality is brought
about by the variation in group size and the nonlinearity of payoff functions, so
that cooperation is promoted with respect to the constant case if h = nf(x, n)
is convex in n. Considered together, Simpson’s paradox and Jensen’s inequality
help us understand mathematically the apparent paradox of the evolution of
cooperation in variable group-structured populations of individuals facing social
dilemmas.

For the sake of parsimony, I have based my analysis on the standard repli-
cator dynamics, which relies on the assumption that the evolving population is
of infinite size. Recent work on evolutionary game theory has suggested ways
of taking into account the finite nature of real populations, replacing the deter-
ministic replicator equation by frequency-dependent stochastic processes (Nowak
et al., 2004; Rousset & Billiard, 2000). Initially developed for studying two-person
games, the theory has been extended to take into account multiplayer games as
well (Gokhale & Traulsen, 2010; Kurokawa & Ihara, 2009). Preliminary results
suggest that the effects of group-size diversity on the evolutionary dynamics of
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multiplayer games in finite populations can be studied in much the same way as
it has been done here for the case of infinite populations, that is, by checking the
convexity (in the group size n) of functions of the form h = nf(n), where f is
a function ruling the dynamic behavior of the system. It is worth pointing out,
however, that the effects of group-size diversity in finite populations can be some-
times qualitatively different from those arising in infinite populations. Further
work along these lines is in progress.

In addition to studying finite populations, the work presented in this paper
can be extended in several ways. First, more general social dilemmas can be
explored. In the case of the NVD, for instance, I limited myself to the case where
one volunteer is sufficient for providing the public good. More generally, however,
one can assume that the minimal number of volunteers required for providing the
public good in a group of size n is any integer 1 ≤ k ≤ n. For the extreme case
where k = n (a weakest-link N-person stag hunt game (Hirshleifer, 1983; Skyrms,
2004; van Veelen & Nowak, 2012)) one obtains the same results as for the case
k = 1 analyzed here, up to the replacement x↔ 1−x. The resulting evolutionary
dynamics is one characterized by bistability, with one internal unstable equilib-
rium standing between the basins of attraction of the two pure stable equilibria.
As in the case k = 1, group-size diversity can be shown to promote (hinder)
cooperation with respect to what is obtained when groups are of equal sizes for
low (high) cost-to-benefit ratios. Indeed, the results for k = n can be obtained
from those shown in the top panels of Figure 6.4 for k = 1 by reinterpreting the
y-axis as showing the size of the basin of attraction of the cooperative equilib-
rium. The cases with 1 < k < n are more difficult to analyze, as they can give
rise to replicator dynamics with two internal equilibria, and should be addressed
in future work.

Yet another possibility is to explore the effects of group-size diversity in games
where cost functions are decreasing functions in the number of Cs, as when the
cost for providing the public good is assumed to be shared among Cs. Also,
augmenting the NPD with reciprocity, punishment or rewarding leads to nonlinear
payoff functions and thus to evolutionary game dynamics susceptible of being
influenced by group-size diversity. Finally, individual variation resulting from
development or ecology can be modeled by letting costs and benefits be random
variables with prescribed probability distributions. Such individual variation can
be taken into account independently of or together with group-size variation and
explored by making use of Jensen’s inequality in a similar way as the one proposed
in this paper.

Recent theoretical and empirical research has suggested that nonlinear so-
cial dilemmas and heterogeneous group-size distributions are the rule rather than
the exception in the organization of social and biological systems (Archetti &
Scheuring, 2011b; Bonabeau et al., 1999). As demonstrated here, the simultane-
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ous presence of nonlinearity and group-size variance greatly enrich the evolution-
ary dynamics of N-person games and open up unexpected opportunities for the
evolution and maintenance of cooperation in biological and social systems.
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6.4 Appendix: Second order approximation for

F (x,N)

Expanding h(x, n) = nf(x, n) as a Taylor series about n = µN we obtain

h(x, n) =
∞∑
k=0

h(k)(x, µN)

k!
(n− µN)k,

where h(k)(x, µN) is the k-th partial derivative of h in n evaluated at n = µN .
Writing this expression as a function of the random variable N , taking the ex-
pected value and dividing both sides by µN we obtain

F (x,N) =
∞∑
k=0

h(k)(x, µN)E
[
(N − µN)k

]
µNk!

= f(x, µN) +
h(2)(x, µN)E [(N − µN)2]

2µN
+
∞∑
k=3

h(k)(x, µN)E
[
(N − µN)k

]
µNk!

,

which, assuming E
[
(N − µN)k

]
/(µNk!) ≈ 0 for k ≥ 3, gives equation 6.6 in the

main text.

6.5 Appendix: Group-size distributions

I assume that the group size N is a random variable with support

n ∈ {nmin, nmin + 1, . . . , nmax} .
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φk
∑∞
k=0 φkz

k µK σ2
K σ2

K/µK parameters

Poisson λke−λ

k!
eλ(z−1) λ λ 1 λ > 0

Geometric (1− p)kp p
1−(1−p)z

1−p
p

1−p
p2

1
p
> 1 0 < p < 1

Waring
ρΓ(ρ+a)Γ(k+a)

Γ(a)Γ(k+ρ+a+1)
ρ
ρ+a 2F1(a, 1; ρ+ a+ 1; z) a

ρ−1
∞ ∞ ρ > 0, a > 0

Table 6.1: Probability mass function (φk), generating function (
∑∞

k=0 φkz
k), mean

(µK), variance (σ2
K), variance-to-mean ratio (σ2

K/µK) and parameters for the
three choices of K used in this study. For the Waring distribution, Γ(x) is the

gamma function, and 2F1(a, b; c; z) =
∑∞

k=0
(a)k(b)kz

k

(c)kk!
is the Gauss hypergeometric

function, where (a)k = a(a+1) . . . (a+k+1) = Γ(a+k)/Γ(a) is the Pochhammer
symbol.

The distribution of N is given by truncating a random variable K distributed
according to a Poisson, Geometric or Waring distribution, so that

pn = Pr(N = n) =
φn−nmin∑nmax

n=nmin
φn−nmin

,

with φk = Pr(K = k). Table 6.1 shows the formulas for the probability mass
function φk, the generating function

∑∞
k=0 φkz

k, the mean µK , the variance σ2
K ,

and the variance-to-mean ratio σ2
K/µK , for different choices of the distribution of

K. For the Waring distribution, I set ρ = 2 so that, for large k, the distribution
approximates a power-law Pr(K = k) ∝ k−α with exponent α = 3. The free
parameters (λ for the Poisson distribution, p for the geometric distribution, and
a for the Waring distribution) are calculated in order to set the value µN . For
finite nmax, this means (numerically) solving the equation

∑
n npn = µN . For

nmax → ∞ we have E [N ] = E [K] + nmin so that the free parameters can be
easily set so that µK = µN − nmin.

The functions F (x,N) resulting from the two specific cases of nonlinear PGGs
analyzed in this paper depend on expressions of the form E

[
zN
]

or E
[
NzN

]
(see

equations 6.8 and 6.2.2) When nmax →∞, pn = φn−nmin , and we can write such
expressions as functions of the generating function of the variable K. Indeed

E
[
zN
]

=
∞∑

n=nmin

pnz
n =

∞∑
k=0

pk+nminz
k+nmin = znmin

∞∑
k=0

φkz
k, (6.12)
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and

E
[
NzN

]
=

∞∑
n=nmin

pnnz
n (6.13)

=
∞∑
k=0

pk+nmin(k + nmin)zk+nmin (6.14)

= znmin

(
∞∑
k=0

φkkz
k + nmin

∞∑
k=0

φkz
k

)
(6.15)

= znmin

(
z
d

dz

∞∑
k=0

φkz
k + nmin

∞∑
k=0

φkz
k

)
. (6.16)

I shall make use of equations 6.12 and 6.16 to write closed-form expressions for
F (x,N) for the PGGDS (Section 6.7) and the NVD (Section 6.9).

6.6 Appendix: Dynamical scenarios in the PG-

GDS

For the PGGDS, f(x, n) is given by equation 6.7 and F (x,N) by equation 6.8.
Taking the derivative of f(x, n) with respect to x we obtain

∂f(x, n)

∂x
=
b(n− 1)(w − 1) [1− x+ wx]n−2

n
,

which, for n > 1, is equal to zero for w = 1, negative for w < 1 and positive
for w > 1. Then, for a fixed value of w, f(x, n) is a monotone function of x in
[0, 1]. This means that F (x,N) =

∑
n qnf(x, n) is also a monotone function of

x in [0, 1], because qn ≥ 0 ∀n. Moreover, F (0, N) = b/µN − c and F (1, N) =
bE
[
wN−1

]
/µN−c. Therefore, the replicator dynamics given by equation 6.2) can

have at most one fixed point xF in (0, 1), and this when F (0, N) and F (1, N) are
of opposite sign. We thus have the following four scenarios:

1. F (0, N) < 0 and F (1, N) < 0. Hence F (x,N) < 0 ∀x (only x0 = 0 is
stable).

2. F (0, N) > 0 and F (1, N) < 0. Hence F (x,N) > 0 for x < xF and
F (x,N) < 0 for x > xF (x0 = 0 and x1 = 1 are unstable; xF exists
and is stable).

3. F (0, N) > 0 and F (1, N) > 0. Hence F (x,N) > 0 ∀x (only x1 = 1 is
stable).
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4. F (0, N) < 0 and F (1, N) > 0. Hence F (x,N) < 0 for x < xF and
F (x,N) > 0 for x > xF (x0 = 0 and x1 = 1 are stable; xF exists and
is unstable).

Defining γ, γ1 = 1/µN and γ2 = E
[
wN−1

]
/µN the scenarios given in the main

text are recovered.

6.7 Appendix: Closed-form expressions for γ2

and F (x,N) in the limit nmax →∞ (PGGDS)

Here, I calculate closed-form expressions for γ2 and F (x,N) in the limit nmax →
∞ for the PGGDS.

6.7.1 Poisson distribution

From equations 6.8, 6.9, 6.12 and the expression for the generating function of
the Poisson distribution (see Table 6.1), we obtain after little algebra

F (x,N) =
b

µN
(1− x+ wx)nmin−1eλ(w−1)x − c,

and

γ2 =
wnmin−1

µN
eλ(w−1),

with λ = µN − nmin. The previous expressions are valid for all w, since the
generating function of the Poisson distribution converges for all z.

Solving F (xF , N) = 0 we obtain

xF =

(nmin − 1)W

(
λ(γµNeλ)

1/(nmin−1)

nmin−1

)
− λ

λ(w − 1)
, (6.17)

where W is the Lambert W -function, i.e. the inverse function of f(W ) = WeW .

6.7.2 Geometric distribution

We obtain

F (x,N) =
bp(1− x+ wx)nmin−1

µN [1− (1− p)(1− x+ wx)]
− c,

and

γ2 =
pwnmin−1

µN [1− (1− p)w]
,
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with p = 1/(µN − nmin + 1). These expressions are valid only for w < 1/(1− p),
since the generating function of the geometric distribution converges only for
z < 1/(1− p). For nmin = 2, F (xF , N) = 0 can be solved analytically, yielding

xF =
p(1− γµN)

(1− w) [p(1− γµN) + γµN ]
.

6.7.3 Waring distribution

We obtain

F (x,N) =
2b(1− x+ wx)nmin−1

µN(a+ 2)
2F1(a, 1; a+ 3; 1− x+ wx)− c,

and

γ2 =
2wnmin−1

µN(a+ 2)
2F1(a, 1; a+ 3;w),

with a = µN − nmin. 2F1(a, b; c; z) is the Gauss hypergeometric function (see
Table 6.1). The previous expressions are valid only for w < 1, since the generating
function of the geometric distribution converges only for z < 1.

6.8 Appendix: An approximation for γ∗ in the

NVD

Let us define the critical value γ∗ as the cost-to-benefit ratio such that xF =
xf . The exact value of γ∗ will depend on the particular group-size distribution.
However, a useful approximation for γ∗ can be found in the following way. From
equation 6.6 and equation 6.11, we have that F (xF (γ∗), N) ≈ f(xf (γ

∗), µN) if

∂2h(xf , µN)

∂n2
= b(1− xf )µN−1 [µN ln(1− xf ) + 2] = 0.

Solving for xf we obtain xf (γ
∗) ≈ 1 − e−2/µN . Finally, comparing this with

equation 6.10 and solving for γ∗, we obtain the approximation given in the main
text.

6.9 Appendix: Closed-form expressions for F (x,N)

in the limit nmax →∞ (NVD)

Here, I calculate closed-form expressions for F (x,N) in the limit nmax → ∞ for
the NVD.
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6.9.1 Poisson distribution

From equations 6.2.2, 6.16 and the expression for the generating function of the
Poisson distribution (see Table 6.1), we obtain after little algebra

F (x,N) =
b

µN
(1− x)nmin−1e−λx [nmin + λ(1− x)]− c,

with λ = µN − nmin.

6.9.2 Geometric distribution

We obtain

F (x,N) =
b

µN

(1− x)nmin−1p [nmin − (nmin − 1)(1− p)(1− x)]

[1− (1− p)(1− x)]2
− c,

with p = 1/(µN−nmin+1). For nmin = 2, F (xF , N) = 0 can be solved analytically,
yielding

xF =
1

1− p

(√
p

p+ γµN(1− p)
− p
)
. (6.18)

6.9.3 Waring distribution

We obtain

F (x,N) =
b(1− x)nmin−1

µN

a(1− x)

ρ+ a+ 1
2F1(a+ 1, 2; ρ+ a+ 2; 1− x)

+
b(1− x)nmin−1

µN

nminρ

ρ+ a
2F1(a, 1; ρ+ a+ 1; 1− x)− c,

with a = µN − nmin.
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Chapter 7

Bipartite graphs as models of
population structures in
evolutionary multiplayer games†

Abstract

By combining evolutionary game theory and graph theory, “games on graphs”
study the evolutionary dynamics of frequency-dependent selection in population
structures modeled as geographical or social networks. Networks are usually rep-
resented by means of unipartite graphs, and social interactions by two-person
games such as the famous prisoner’s dilemma. Unipartite graphs have also been
used for modeling interactions going beyond pairwise interactions. In this paper,
we argue that bipartite graphs are a better alternative to unipartite graphs for
describing population structures in evolutionary multiplayer games. To illustrate
this point, we make use of bipartite graphs to investigate, by means of com-
puter simulations, the evolution of cooperation under the conventional and the
distributed N-person prisoner’s dilemma. We show that several implicit assump-
tions arising from the standard approach based on unipartite graphs (such as
the definition of replacement neighborhoods, the intertwining of individual and
group diversity, and the large overlap of interaction neighborhoods) can have a
large impact on the resulting evolutionary dynamics. Our work provides a clear
example of the importance of construction procedures in games on graphs, of
the suitability of bigraphs and hypergraphs for computational modeling, and of
the importance of concepts from social network analysis such as centrality, cen-
tralization and bipartite clustering for the understanding of dynamical processes
occurring on networked population structures.

†J. Peña and Y. Rochat. PLoS ONE, 7(9): e44514 (2012).
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7.1 Introduction

Since the pioneering work of Maynard Smith & Price (1973), evolutionary game
theory (Maynard Smith, 1982) has become a valuable tool to describe and study
evolutionary dynamics when fitness is frequency-dependent. Evolutionary game
theory builds on the theory of games (Von Neumann & Morgenstern, 1944) by
considering populations of individuals whose success or fitness depends on the
outcome of social interactions. Behavioral strategies are genetically or culturally
inherited, so that the relative abundance of fitter strategies increases over time
due to natural selection or social learning. When populations are assumed to
be infinite and well-mixed, the replicator dynamics (Hofbauer & Sigmund, 1998;
Taylor & Jonker, 1978) offers a deterministic and exact account of the evolution-
ary dynamics.

In spite of the importance of the replicator dynamics as a mathematical tool
for investigating evolutionary dynamics, it is obvious that real populations are
never infinite nor perfectly well-mixed. Games on graphs (see Szabó & Fáth
(2007) and Roca et al. (2009b) for reviews) go beyond these two simplifying
assumptions by considering finite-sized populations embedded in graphs repre-
senting geographical isolation or social networks. A graph G = (V,E) consists of
a set V of vertices and a set E of edges connecting pairs of vertices. In general
models of games on graphs, individuals are placed on two graphs with the same
set of vertices (Ohtsuki et al., 2007): the interaction graph G = (V,EG) and the
replacement graph H = (V,EH). Evolutionary dynamics are specified so that,
first, individuals play two-person games with their neighbors in the interaction
graph G, and second, strategy updating takes place along the edges of the re-
placement graph H. Although the set of edges of the replacement graph may
differ from the set of edges of the interaction graph, it is usually assumed that
EH = EG so that G and H effectively coincide.

A perusal of the vast literature on games on graphs highlights the impor-
tance of network structure in the evolutionary dynamics of different games. Two
particular results are worth mentioning. First, although unconditional coopera-
tion under the one-shot prisoner’s dilemma (PD) is not evolutionarily stable in
infinite and well-mixed populations, it can be viable in sparse homogeneous net-
works (Nowak & May, 1992; Ohtsuki et al., 2006; Taylor et al., 2007). “Spatial
reciprocity” (Taylor & Nowak, 2007), “network reciprocity” (Nowak, 2006b) and
“graph selection” (Nowak & Sigmund, 2007) are different labels that have been
coined in order to contrast such effect with other cooperation-promoting mech-
anisms (see, however, Grafen (2007); Grafen & Archetti (2008); Lehmann et al.
(2007); Taylor et al. (2007) for the close connections between network reciprocity
and kin selection via limited dispersal, and between games on graphs and inclusive
fitness theory). Second, heterogeneous population structures such as scale-free
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networks (Barabási & Albert, 1999) can significantly promote cooperation under
the PD and other social dilemmas (Santos & Pacheco, 2005, 2006), although such
promotion strongly depends on several details of the network, the payoff functions
and the updating rules (Fu et al., 2009; Masuda, 2007; Peña et al., 2009; Roca
et al., 2009b; Rong et al., 2007; Szolnoki et al., 2008; Tomassini et al., 2007).

Notwithstanding the importance of pairwise social interactions, many situa-
tions in real social systems require the collective action of groups comprised by
more than two individuals. Moreover, interactions within these larger groups can
not always be represented as disjointed collections of two-person games (Hamil-
ton, 1975). Public goods games (PGGs) are paradigmatic among such non-
decomposable multiplayer games. PGGs are models of situations where individ-
uals face the dilemma of providing and/or maintaining a public good: a common
resource that is both non-excludable (no individual can be excluded from its con-
sumption) and non-rivalrous (one individual’s use of the public good does not
diminish its availability to another individual) (Samuelson, 1954). Digestive en-
zymes in yeast (Gore et al., 2009), ATP in heterotrophic microorganisms (Pfeif-
fer et al., 2001), webs in social spiders (Lubin & Bilde, 2007), alarm calls in
meerkats (Clutton-Brock et al., 1999), collective hunting in lions (Packer & Rut-
tan, 1988), and open-source software in contemporary humans (von Hippel &
von Krogh, 2003) are typical examples of public goods whose abusive exploita-
tion by non-contributing individuals may lead to the so-called tragedy of the
commons (Hardin, 1968): a situation in which nobody contributes and therefore
no public good is produced or maintained.

By far, the most well known PGG is the N-person prisoner’s dilemma (NPD) (Ham-
burger, 1973). In this game, each individual in a group of size N has to decide
whether to cooperate (by contributing to a common pot) or to defect (by refrain-
ing from contributing). The sum of the individual contributions is multiplied by
a factor r and then equally distributed among all players, including those who did
not contribute. No matter the decisions taken by the other players, it is always
better to defect if 1 < r < N . In infinite well-mixed populations and in the
absence of cooperation-promoting mechanisms, defection is evolutionarily stable
and the replicator dynamics predicts the ultimate extinction of Cs. However, as
it is also the case in the two-person PD, cooperation in the NPD can be sustained
in structured populations under particular life-cycle assumptions. Hauert et al.
(2002) studied a spatial NPD resulting from placing the individuals in the nodes
of a two-dimensional lattice and restricting interactions to nearest neighbors. In
this model and for large values of r (but still for r < N) Cs are able to survive
by minimizing interactions with Ds through cluster formation. Hauert et al.’s
model has been extended by Santos et al. (2008), who used scale-free networks
instead of regular lattices as population structures. The highly heterogeneous
degree distributions of scale-free networks introduce social diversity both at the
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individual level (players vary greatly with respect to the number of games they
take part in) and at the group level (different games are played by different num-
bers of players). Social diversity brings up a moderate promotion of cooperation
when Cs pay a fixed cost c per game, but a significant boost when Cs pay a
fixed cost c for all the games they play. In the following we use the terminology
introduced in Pacheco et al. (2009) and call conventional NPD the former case
and distributed NPD the latter.

The way networks are constructed is a common feature of Hauert et al. (2002);
Santos et al. (2008) and many other papers dealing with evolutionary multiplayer
games on networks (Brandt et al., 2003; Hauert & Szabó, 2003; Helbing et al.,
2010; Huang et al., 2008; Lei et al., 2010; Rong & Wu, 2009; Rong et al., 2010; Shi
et al., 2010; Szabó & Hauert, 2002; Szolnoki & Perc, 2010; Szolnoki et al., 2009;
Yang et al., 2009; Zhang et al., 2010). We refer to this construction procedure as
the graph approach. According to this framework, nodes of a graph G = (V,E)
define both individuals playing a game and games being played by the focal
individual plus its direct neighbors, so that an individual with z neighbors takes
part in z+1 games: the one centered on itself plus z games, each centered on one
of its neighbors. Fitness or social success is given by the sum of payoffs collected
in these z+ 1 games, and competition or imitation takes place along the edges of
the graph.

An alternative way of looking at the population structure resulting from the
graph approach is realizing that while the replacement graph is the original graph
G, the interaction graph is actually a hypergraph (or a bipartite graph) in which
hyperedges (or top vertices) correspond to closed neighborhoods of G (see Fig-
ure 7.1). A hypergraph is the generalization of a graph for the case where edges
(called in this case hyperedges) can connect arbitrarily many vertices. A bipartite
graph B = (>,⊥, E), also called a bigraph, consists of two disjoint sets of vertices,
> (top vertices) and ⊥ (bottom vertices), and a set of edges, E. The difference be-
tween bipartite graphs and standard unipartite graphs is that edges in a bigraph
only connect vertices of different kinds. Undirected hypergraphs and bigraphs
are mathematically equivalent, but bigraphs are usually easier to implement and
to work with. Many real biological and social networks display a natural bipar-
tite structure and can be represented as bigraphs in a straightforward manner.
Food webs (Saavedra et al., 2009) and metabolic networks (Jeong et al., 2000) are
well known biological examples; social examples include affiliation (Wasserman &
Faust, 1994) or collaboration networks (Newman, 2001), such as those connecting
co-owners of companies (Davis et al., 2003), film actors (Watts & Strogatz, 1998)
and scientists (Newman, 2001). In this paper, we represent groups/games as top
vertices and individuals/players as bottom vertices. Three network statistics will
be particularly important. First, the top degree distribution gives the distribution
of the number of games being played by a given individual. Second, the bottom
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Figure 7.1: Modeling population structures in evolutionary multiplayer
games. The graph approach consists in first defining the original graph G (Panel
A) and then constructing the interaction hypergraph B (Panel B) by associating
a hyperedge with each closed neighborhood in G. The interaction hypergraph
can be also represented as a bigraph (Panel C), where individuals/players are
bottom vertices and groups/games are top vertices. In the graph approach the
replacement graph H is assumed to be equal to the original graph G, so that inter-
actions take place along the hyperedges of the hypergraph, but strategy updating
occurs along the edges of the original graph. The alternative bigraph approach
consists in first defining the interaction bigraph B (Panel C) and then obtaining
the replacement graph H (Panel D) as the bottom projection of the interaction
bigraph. Weights can be attached to the links of the replacement graph according
to different heuristics (here, the “unnormalized weighted projection” method is
used; the width of the links is proportional to the links’ weights). The interaction
bigraph can be constructed from a bipartite graph model or following the graph
approach from a simple graph G (Panel A). In this last case, the replacement
graphs due to the graph approach (the original graph shown in Panel A) and to
the bigraph approach (the projection of the interaction bigraph shown in Panel
D) differ, the latter being denser.
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degree distribution gives the distribution of the number of individuals playing
a given game. Finally, the bipartite clustering coefficient captures correlations
between the neighborhoods of bottom vertices, i.e. the degree to which groups
overlap.

With the previous definitions, the graph approach can be interpreted as one
in which (1) the replacement graph is defined, and (2) the interaction bigraph is
constructed from the replacement graph. This approach has become the de facto
standard for modeling population structures in multiplayer games on graphs.
However, it has many important limitations. First, since both players and games
are identified with the same set of vertices, the numbers of games and players
are exactly the same, i.e. |>| = |⊥| in the resulting interaction bigraph. Second,
and for the same reason, the top degree distribution and the bottom degree
distribution coincide. In real systems, however, these distributions are usually
very different. In collaboration networks, for example, the number of papers per
author has been shown to follow a power-law distribution while the number of
authors per paper generally follows an exponential distribution (Newman, 2001).
Third, the graph approach automatically leads to a relatively large bipartite
clustering coefficient. Although such large coefficient seems to be an intrinsic
property of many social and biological networks (Palla et al., 2005), its presence
by default in models of games on graphs can be a drawback if the goal is to build
null models of connectivity patterns or to study the effects of bipartite clustering.
Fourth, while each individual effectively interacts with second-order neighbors in
the original graph, strategy updating is posited to occur only between first-order
neighbors. As an example of this, consider the graphs depicted in Panels A and
B of Figure 7.1. Note that individual A plays with C and D the game centered
on B, but A is not connected to C nor D in the replacement graph. Finally,
replacement graphs in the graph approach do not reflect encounter rates between
two individuals but rather assume that all neighbors in the replacement graph
are equally important. Consider again the graphs depicted in Panels A and B of
Figure 7.1. On the one hand, individualB plays thrice with C (the games centered
on B, C and D) but only twice with A (the games centered on A and B). On the
other hand, individual B plays (on average) games of smaller size with A (one
two-person game centered on A and one four-person game centered on B) and
games of larger size with C (two four-person games centered at B and D, and one
three-person game centered on C). In any case, the replacement graph posited
by the graph approach fails to take into account these heterogeneities, since the
connections between B and A and between B and C are equally (un)weighted in
this graph.

A new modeling framework for studying networked multiplayer games, re-
cently proposed by Gómez Gardeñes and co-workers (Gómez-Gardeñes et al.,
2011) and further generalized here, is free of these limitations. We call this
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framework the bigraph approach. It consists in (1) defining the interaction bigraph
B = (>,⊥, E) so that top vertices correspond to games and bottom vertices to
players, and (2) deriving the replacement graph H = (⊥, EH) as the (bottom)
projection of B (see Panels C and D of Figure 7.1). The bottom projection of
a bigraph B is a graph H = (⊥, E⊥) so that (i, j) ∈ E⊥ if and only if i ∈ ⊥
and j ∈ ⊥ are connected at least once to the same top vertex. In addition to
the “unweighted projection” (UP) considered in Gómez-Gardeñes et al. (2011),
we also consider two weighted projections: the “unnormalized weighted projec-
tion” (UWP) and the “normalized weighted projection” (NWP). With the UWP
method, the weight of the link between two players is proportional to the number
of common games played by those players; with the NWP method, the sizes of
such groups are taken into account when calculating the weights, so that inter-
actions in smaller groups contribute more to the total weight of the link than
interactions in larger groups (see section 7.4 for details).

The bigraph approach circumvents all of the limitations associated with the
graph approach we mentioned above. Since the interaction bigraph is defined at
the outset, it can have arbitrary numbers of games and players, different degree
distributions for games and players and (if required) relatively low bipartite clus-
tering coefficient. In addition, since the replacement graph is obtained as the
bottom projection of the interaction graph, individuals playing together at least
one game will be connected in the replacement graph. Hence, the neighborhood
of player A in the replacement graph shown in Panel D of Figure 7.1 comprises
all the individuals A interacts with, i.e. {B,C,D}. Finally, weighted projections
take into account differences in the interaction patterns of players and reflect
such differences in the resulting replacement graph. For instance, in the graph
shown in Panel D of Figure 7.1 the weights of the links between players B and A
and between players B and C are respectively given by 2 and 3, indicating the
number of common games between each pair of players (in Panel D of Figure 7.1,
weights are derived using the UWP method).

In this paper, we make use of the bigraph approach to explore the influence of
different topological properties of network structures on the evolutionary dynam-
ics of multiplayer games. We focus on the conventional and the distributed ver-
sions of the NPD, as these are among the most studied evolutionary multiplayer
games on graphs. Specifically, we investigate the effects of different assumptions
on the way of specifying replacement graphs, different top and bottom degree
distributions, and different amounts of bipartite clustering. We build interac-
tion bigraphs either from prescribed simple graphs using the graph approach,
or from given degree distributions using the configuration model procedure (see
section 7.4). We denote these interaction bigraphs respectively by the labels
fromgraph-X and config-Y-Z, where X stands for the simple graph from which
the bigraph is constructed, and Y and Z stand for the degree distributions of the
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Figure 7.2: Cooperation level for population structures with different
replacement graphs. Results are shown for the conventional NPD (Panels
A and B) and the distributed NPD (Panel C). In each case, interaction graphs
are constructed following the graph approach from rings (Panel A) or Barabási-
Albert scale-free networks (Panels B and C) of order Z = 512 and mean degree
〈z〉 = 4. The replacement graph is given by the original graph from which
the interaction bigraph is constructed (OG) or the unweighted, unnormalized
weighted or normalized weighted projection of the interaction graph (UP, UWP
and NWP, respectively).

bottom and the top vertices, respectively. Replacement graphs are given either
by the graph approach or by the bigraph approach.

7.2 Results

7.2.1 Replacement graphs

In the graph approach, the original graph from which the interaction bigraph is
constructed automatically determines the replacement graph. As a result, the
subset of players involved in imitation/competition with a given individual is
generally smaller than the subset of players with whom such individual interacts.
This implicit assumption is in stark contrast with most models of two-person
games on graphs, where interaction and replacement neighborhoods perfectly
overlap. In the following, we present the results of making interaction and re-
placement neighborhoods coincide in otherwise standard models of evolutionary
multiplayer games on graphs.

Figure 7.2 depicts the results of the evolution of cooperation in the conven-
tional and the distributed NPD for population structures with the same interac-
tion bigraph but different replacement graphs. We plot the cooperation level (the
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average fraction of Cs for 2000 additional generations after an initial transient
of 105 generations) as a function of the normalized enhancement factor η = r/ν,
where ν is the average degree of the top nodes of the interaction bigraphs, i.e.
ν is the mean number of players per game in the population. In each case, the
population structure is built (1) by defining a graph G of order Z (i.e. G has Z
nodes) and mean degree 〈z〉, and (2) by constructing the interaction bigraph B
from G using the graph approach. Hence, ν = µ = 〈z〉+1, where µ is the average
degree of the bottom nodes in the interaction bigraphs, i.e. the mean number
of games per player in the population. The replacement graph H is given either
by G itself (graph approach) or by the projection of B (bigraph approach). In
this last case, weights are assigned to the edges of H according to one of three
methods: UP, UWP and NWP. In any case, individuals engage in a given number
of multiplayer games (according to their connectivity in the interaction bigraph)
and accumulate payoffs. The accumulated payoff of each player is then associ-
ated with its fitness/success, and competition/imitation is implemented by using
a finite population analogue of the replicator dynamics (Hauert & Doebeli, 2004;
Santos et al., 2008): in social learning terms, each individual randomly chooses a
neighbor in the replacement graph and, if the neighbor’s success is greater than
its own success, it imitates the neighbor’s strategy with a probability proportional
to the success difference (see section 7.4 for details).

Panel A of Figure 7.2 shows the results for the case where G is a ring of degree
z = 4. We refer to the resulting bigraph B as fromgraph-ring. Referring to the
original graph G, individuals interact with both their first-order neighbors and
their second-order neighbors. If the replacement graph is given by the graph ap-
proach, only first-order neighbors in G are considered for competition/imitation.
If the replacement graph is given by the bigraph approach, both first-order and
second-order neighbors in G are considered for competition/imitation, possibly
with a probability depending on the number of common games (UWP). Note
that the larger replacement neighborhoods due to the bigraph approach favors
cooperation slightly, but systematically. A detailed analysis of the origin of such
promotion, considering the case of two contiguous clusters of Ds and Cs in a ring
of degree z = 4, can be found in section 7.5.1 and Figure 7.3.

While the larger replacement neighborhoods brought about by the bigraph ap-
proach are beneficial to cooperation in bigraphs constructed from rings, they are
detrimental to cooperation in bigraphs constructed from Barabási-Albert (BA)
scale-free networks, which we call fromgraph-ba. Indeed, as evidenced in Pan-
els B and C of Figure 7.2, in this case there is systematically less cooperation
if replacement neighborhoods coincide with interaction neighborhoods (bigraph
approach) than if the original graph is taken as the replacement graph (graph ap-
proach). Additionally, in the former case the assignment of weights to the edges
of the replacement graph plays a key role in BA networks, as it is evident from
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Figure 7.3: Evolutionary dynamics on rings. In the inset, we plot a ring of
degree z = 4: the neighborhood of each node comprises the closest two nodes to
the left and to the right. Following the graph approach, each node is the center of
a game of size five so that each individual ends up interacting with the closest four
neighbors to the left and the closest four neighbors to the right. We assume that
the initial distribution of strategies is such that nodes i > 0 are Cs and nodes i ≤ 0
are Ds. In the main panel, we plot the probabilities of switching strategies for the
individuals at the boundary (nodes 0 and 1) when the replacement graph is given
by the original graph (OG) and when it is given by the unweighted projection
(UP) of the interaction bigraph. As shown, P (s0 → C) > P (s1 → D)⇔ r > 5/7
for the graph approach, while P (s0 → C) > P (s1 → D) ⇔ r > 1/2 for the
bigraph approach. See section 7.5.1 for the calculation of these probabilities.
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the ordering of the curves, with NWP leading to more cooperation than UWP,
and UWP to more cooperation than UP.

In order to explain these results, let us briefly recall the mechanism responsible
for the promotion of cooperation in the distributed NPD when the interaction
and replacement graphs are derived from scale-free networks using the graph
approach (Santos et al., 2008). Scale-free networks are characterized by the co-
existence of few hubs (very well connected individuals) with a vast majority of
leaves (poorly connected individuals). Due to their large connectivity, hubs not
only take part in many games, consequently accumulating high payoffs, but are
also often targeted for competition/imitation by their neighbors. As a result of
these two factors, C-hubs and D-hubs easily spread their strategies to their less
connected neighbors. However, while C-hubs are favored by a positive feedback
mechanism (the more they are imitated, the more Cs in their neighborhoods,
and the more their own accumulated payoffs increase) D-hubs are penalized by
a negative feedback mechanism (the more they are imitated, the more Ds in
his neighborhood, and the more their own accumulated payoffs decrease) that
eventually leads to their own demise. Hubs’ inherent success along with the
feedback mechanisms favoring Cs in inter-hub competition have been studied
using star and double-star graphs as simple models of connectivity patterns in
scale-free networks (Pacheco et al., 2009; Santos et al., 2008).

If the replacement graph H is no longer the original graph G (graph approach)
but it is rather assumed to be the projection of the interaction bigraph B (bigraph
approach), many additional links are present in H that were not in G. Indeed,
since each top node of degree z induces a clique consisting of z(z−1)/2 edges, the
projection of B is a relatively dense graph, particularly if the top degree distri-
bution is highly heterogeneous Newman et al. (2001). This higher density of the
replacement graph is at the origin of the hindering of the evolution of cooperation
when moving from the graph approach (G taken as H) to the bigraph approach
(the projection of B taken as H). Figures 7.4 and 7.5 show this effect for bigraphs
built according to the graph approach from star and double-star graphs. In stars,
and when the replacement graph is given by the projection of the interaction
bigraph, leaves get connected to each other so that H is now a complete graph
(see Panel D of Figure 7.4). This hinders the spreading of cooperative behav-
ior from a C-center when defective leaves earn a higher payoff than cooperative
leaves. In double-star graphs, leaves of the same star get interconnected and the
center of one star gets connected to the leaves of the other star (see Panel D of
Figure 7.5). This increased interconnection hinders cooperation by partially de-
stroying both the positive feedback around C-centers and the negative feedback
around D-centers on which inter-hub competition is based in the model of San-
tos et al. (2008). Note that, in all cases, the magnitude of these unfavorable
effects depends on the weights attached to the links of the replacement graph.
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Figure 7.4: Evolutionary dynamics on stars. Consider a star graph G
(Panel A) consisting of one C-center connected to Z − 1 leaves (m of which are
Cs) and the resulting interaction hypergraph B (Panel B) constructed from G
using the graph approach. We assume that social interactions are modeled by the
distributed NPD. In the graph approach, G is taken as the replacement graph
(Panel C). In this case, competition/imitation occurs only between the center
and the leaves. The C-center invades D-leaves for values of r above a critical
value which reduces to α = 2/(1 − 2/Z) if m = 0 (the C-center is the only C).
In the bigraph approach, the replacement graph is given by the projection of
the interaction bigraph, so that leaves are now interconnected and the resulting
topology is no longer a star but a complete graph (Panel D). The creation of
these new links allows for inter-leaf competition/imitation, which is favorable to
Ds if r < 4. As a result, for α < r < 4, the time to fixation to the absorbing
state where all individuals are Cs can become arbitrarily large depending on the
weights attached to the links of the replacement graph, as it is shown in Panel E
for Z = 10, r = 2.8 and for replacement graphs given by the OG, NWP, UWP
and the UP methods. Panel F shows these replacement graphs together with
the values of the weights of the links (whl for the weight of the link between the
center and a leaf; wll for the weight of the link between two leaves) and their
centralization indices (ρX). Note that more centralized graphs correspond to
those more favorable to the spreading of cooperative behavior from the center.
See section 7.6 for the derivation of the invasion conditions shown in Panels C
and D, and sections 7.8 and 7.9 for the derivation of the centralization indices
shown in Panel F.
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Figure 7.5: Evolutionary dynamics on double stars. Consider a double-star

graph G (Panel A) consisting of a left and a right star connected by the centers, and the

resulting interaction hypergraph B (Panel B) constructed following the graph approach. In

the graph approach, G is taken as the replacement graph (Panel C). In this case, and for a

wide range of values of r, spreading occurs preferentially from the centers (or hubs) to their

respective leaves. Long-term evolution will ultimately depend on inter-hub competition, which

is favorable to C-hubs due to the positive and negative feedback mechanisms brought about by

the spreading from centers to (own) leaves. In the bigraph approach, the replacement graph

is given by the projection of the interaction bigraph (Panel D), so that the center of one start

gets connected to the leaves of the other star and leaves of the same star get connected with

each other. This not only allows successful centers to breed copies of themselves in the leaves of

the other star, but also makes inter-leaf competition possible, which is favorable to Ds if r < 4.

As a result, the feedback mechanisms on which the evolution of cooperation on heterogeneous

graphs is based are diminished and the evolutionary outcome is more favorable to Ds. This

is illustrated in Panels E and F, which show typical scenarios for the time evolution of the

fraction of Cs under the distributed NPD (r = 1.3) on the leaves of double-star graphs (Panel

E: X = 10, Y = 20; Panel F: X = 20, Y = 10), for replacement graphs given by the OG, UP,

UWP and NWP methods. In all cases we placed Cs on all nodes of the double-star, except for

the left center, where we placed a D (see configurations a and e of Panel G). If the replacement

graph is given by the original graph (OG), the dynamics are such that, typically, the D-center

invades the leaves of his star (configuration b), then the C-center invades the D-center (c) and

finally D-leaves on the left star are invaded by the C-center (d). When the replacement graph

is given by the projection of the interaction graph, Ds can now easily spread from the initial

center until they invade the whole population (e,f,g). Weights attached to the links of the

projection play a key role in this case, with NWP still favoring Cs when the connectivity of the

left star is small compared to that of the second star (e,f,h,i). See section 7.7 for the analytical

derivation of the results shown in this figure.
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Indeed, different projection methods lead to different weight distributions, which
in turn affect the topological importance of different nodes in the evolutionary
process. Such topological importance can be captured by what we call in this
paper replacement centrality, which we define as the expected number of times a
given node/individual is selected for competition/imitation by its neighbors (see
section 7.8). Other things being equal, nodes with a higher replacement central-
ity play a more influential role in the evolutionary dynamics. We find that the
level of centralization of the replacement graph (defined as the degree to which
a single node is more central than others in the network; see section 7.8) corre-
lates with the amount of cooperation exhibited in these topologies, as measured
by the inverse fixation time of a single C-center in a star graph (see Panel E of
Figure 7.4) or by the cooperation level in BA scale-free networks (Panels B and C
of Figure 7.2). Figure 7.6 shows that the relationship between projection method
and centralization of the network found in star graphs (OG > NWP > WP >
UP) is maintained in BA scale-free networks. As evidenced by Figure 7.6 and
Panels B and C of Figure 7.2, weight distributions leading to more centralized
replacement graphs are also responsible for higher cooperation levels.

7.2.2 Degree distributions

In bigraphs constructed using the graph approach, group diversity (heterogeneity
in the number of players per game) is inextricably intertwined with individual
diversity (heterogeneity in the number of games per player). Indeed, the top de-
gree distribution (determining group diversity) is exactly the same as the bottom
degree distribution (determining individual diversity) in bigraphs built using the
graph approach. In order to analyze group diversity and individual diversity in-
dependently of each other, we made use of random configuration model bigraphs
(for which the degree sequences of top and bottom vertices can be specified in-
dependently of each other) as interaction bigraphs. We used two different degree
sequences for top and bottom vertices: a constant sequence (all degrees are the
same) and the degree sequence of a BA scale-free graph, which approximately
follows a power-law. Combinations of these two degree sequences resulted in
four bigraphs: config-reg-reg (with homogeneous top and bottom degree distri-
butions), config-ba-reg (with heterogeneous bottom and homogeneous top degree
distributions), config-reg-ba (with homogeneous bottom and heterogeneous top
degree distributions), and config-ba-ba (with heterogeneous bottom and top de-
gree distributions). The reason for using the degree sequence of a BA graph
instead of determining the degree sequence by another method (for instance, by
sampling the sequence from a random variable distributed according to a power-
law distribution) is to be able to compare the results obtained for config-ba-ba
with those obtained for fromgraph-ba in section 7.2.1. Indeed, config-ba-ba has
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Figure 7.6: Centralization of the replacement graphs for interaction
bigraphs built from Barabási-Albert scale-free networks. Each boxplot
shows the distribution of the centralization for a random sample of 104 replace-
ment graphs given by the original graph (OG), the normalized weighted projec-
tion (NWP), the unnormalized weighted projection (UWP) and the unweighted
projection (UP). In all cases, the original graph is a Barabási-Albert scale-free
network of order Z = 512 and mean degree 〈z〉 = 4. The projections are taken
from bipartite graphs constructed from the original graph using the graph ap-
proach. Notice that more centralized networks lead to higher cooperation levels
in Panels B and C of Figure 2 in the main text. See section 7.8 for the definition
of the centralization indices used in this figure.
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Figure 7.7: Cooperation level for population structures with different
degree distributions. Panel A shows results for the conventional NPD; Panel
B for the distributed NPD. config-X-Y stands for a configuration model bigraph
with a degree sequence of type X for the bottom vertices (players) and of type Y
for the top vertices (games). For the degree sequences themselves, reg is a regu-
lar sequence and ba is the degree sequence of a Barabási-Albert network. A bi-
graph constructed from a Barabási-Albert network following the graph approach
(fromgraph-ba) is shown for comparison purposes. Parameters: µ = ν = 5,
Z = 512, replacement graph given by the NWP method.

the same top and bottom degree sequences as fromgraph-ba, and can be effec-
tively thought of as a randomization of such network.

Figure 7.7 shows the results for the evolution of cooperation in the conven-
tional and the distributed NPD for the four configuration model bigraphs and
for the fromgraph-ba. Let us consider first the results for config-reg-reg, i.e. the
homogeneous population structure lacking social diversity of any kind. As shown
in the figure, this network is able to sustain cooperation for values of η above
ηc ≈ 0.7. Furthermore, cooperation is fully established for η > ηd, with ηd close
to its value for infinite well-mixed populations (ηd = 1). For ηc < η < ηd, Cs and
Ds co-exist in dynamical equilibrium. If group diversity is introduced (config-
reg-ba), the co-existence zone grows so that ηc ≈ 0.6, and ηd > 1.2. This shows
that group diversity has mixed effects in the evolutionary dynamics, promoting
cooperation (with respect to config-reg-reg) up to a critical value η∗ ≈ 0.85, and
hindering cooperation above this value. If diversity is instead introduced at the
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individual level (config-ba-reg), cooperation is evolutionarily viable for η > 0.55 in
the conventional NPD and for η > 0.45 in the distributed NPD. Note, nonethe-
less, that defective behavior is not completely eradicated, not even for η > 1.
From these results, it is evident that individual diversity leads to higher coop-
eration levels than group diversity (compare the curves for config-ba-reg with
those for config-reg-ba) for all values of η. We also note that the levels of coop-
eration slightly improve when both kinds of social diversity are simultaneously
present (compare config-ba-ba to config-ba-reg and config-reg-ba). Finally, the
results obtained with config-ba-ba are almost the same as those obtained with
fromgraph-ba, which suggests that the higher topological correlations present in
fromgraph-ba and absent in config-ba-ba play a rather small role in the evolu-
tionary dynamics.

The results for networks with homogeneous bottom degree distributions (config-
reg-reg and config-reg-ba) and for networks with heterogeneous bottom degree
distributions (config-ba-reg, config-ba-ba and fromgraph-ba-ba) differ not only
quantitatively in their cooperation levels, but also qualitatively in their dynamics.
Indeed, intermediate cooperation levels for bigraphs with homogeneous bottom
degree distributions are mostly due to the co-existence of Cs and Ds. Contrast-
ingly, in the case of bigraphs with heterogeneous bottom degree distributions
intermediate cooperation levels are due to bi-stability, so that the vast major-
ity of times the dynamics reaches the absorbing states of full defection or full
cooperation. In this last case, intermediate cooperation levels are almost en-
tirely determined by the proportion of times the dynamics ended up in the full
cooperation absorbing state.

Figure 7.8 provides some insight on the different results obtained when di-
versity is introduced at the individual level (config-ba-reg) or at the group level
(config-reg-ba). First, note that the degree distribution of the replacement graph
for config-ba-reg is highly heterogeneous (see top panels of Figure 7.8). Indeed,
it is well known that the degree distribution of the projection of a bigraph with
a power law bottom degree distribution also follows a power law (Birmelé, 2009;
Guillaume & Latapy, 2006; Nacher & Akutsu, 2011). Contrastingly, the degree
distribution of the replacement graph for config-ba-reg is less heterogeneous. A
second important difference between config-ba-reg and config-reg-ba is the way
received benefits are distributed on these networks. When the population consists
of 50% Cs randomly placed on the bottom vertices of the bigraph, the distribution
of received benefits closely follows a power-law in the case of config-ba-reg, but it
approximately follows a normal distribution in the case of config-reg-ba (see mid-
dle panels of Figure 7.8). The reason behind these different distributions is that
on config-ba-reg both the per-capita per-game contribution and the number of
games per individual are highly variable while on config-reg-ba they are constant.
This leads to a highly heterogeneous distribution of received benefits on config-
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Figure 7.8: Statistics for config-ba-reg and config-reg-ba. The figure shows
some statistics for config-ba-reg (left panels) and config-reg-ba (right panels). Top
panels: degree distribution of the replacement graph. Middle panels: histograms
for the received benefit. The received benefit is calculated as the payoff for
Ds when approximately half of the population are Cs (randomly distributed)
under the distributed NPD. Bottom panels: smooth scatter plots, regression lines
and Pearson’s correlation coefficients for the received benefit vs. degree in the
replacement graph. Parameters: Z = 512, µ = ν = 5 and η = 0.7. The figures
show statistics for 100 randomly generated networks of each type.
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reg-ba and to a relatively homogeneous distribution on config-reg-ba. Finally,
while there is a strong correlation between connectivity in the replacement graph
and received benefit in config-ba-reg, such correlation is practically inexistent in
config-reg-ba (see bottom panels of Figure 7.8). Indeed, for config-ba-reg hubs
in the replacement graph are individuals participating in many games and hence
accumulating large payoffs. Contrastingly, for config-reg-ba highly connected in-
dividuals in the replacement graphs are those participating in large groups, which
have on average the same proportion of Cs and hence produce the same amount
of public good than smaller groups. As a result, the evolutionary dynamics on
config-ba-reg is dominated by a small number of very well connected and powerful
individuals, while config-reg-ba is far more homogeneous, both concerning con-
nectivity in the replacement graph and accumulated payoffs. These differences
translate into two different modes of evolution. In config-ba-reg (see Figure 7.9)
the influence of hubs is decisive to the evolutionary outcome, so that a majority of
C-hubs leads the whole population to the all-Cs absorbing state, while a majority
of D-hubs leads the population to the all-Ds absorbing state. Additionally, the
proportion of Cs is also higher in high-degree classes (very well connected individ-
uals) than in low-degree classes (poorly connected individuals). Contrastingly, in
config-reg-ba (see Figure 7.10) the evolutionary dynamics is largely independent
of what happens with well-connected individuals, and evolution unfolds as a pro-
cess of dynamical self-organization in which Cs tend to cluster in small groups
which are more favorable to cooperation while Ds tend to do so in large groups
which are more favorable to defection.

7.2.3 Bipartite clustering coefficient

The bipartite clustering coefficient captures the degree to which bottom vertices’
neighborhoods overlap (see section 7.10 for details). As pointed out in section 7.1,
interaction bigraphs built using the graph approach lead, by construction, to rela-
tively high bipartite clustering coefficients. In order to assess the real importance
of clustering in the evolutionary dynamics, we considered four interaction bi-
graphs with the same top and bottom degree distributions (regular sequences
in all cases) but different bipartite clustering coefficients: fromgraph-ring (con-
structed from a ring network of degree z = 4), fromgraph-reg (constructed from
a random regular network of degree z = 4), fromgraph-vn (constructed from a
square lattice with a von Neumann neighborhood), and config-reg-reg (random
configuration model with regular top and bottom degree sequences).

Figure 7.11 shows the cooperation levels under the conventional NPD and
Figure 7.12 the bipartite clustering coefficient and the mean degree of the replace-
ment graph for these different bigraphs. Interestingly, bigraphs with more bipar-
tite clustering (and consequently lower mean degree in the replacement graph)
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Figure 7.9: Time-dependence of the fraction of cooperators for different
connectivity classes in the config-ba-reg network. The figure shows the
fraction of Cs among low-degree (zi < µ), medium-degree (µ ≤ zi < zmax/3) and
high-degree (zmax/3 ≤ zi ≤ zmax) individuals, for two different simulation runs.
In Panel A, initially more than the 60% of the highly-connected individuals are
Cs. C-hubs lead the evolutionary process and diffuse cooperative behavior among
their less connected neighbors. In Panel B, initially less than 40% of the hubs are
Cs. Less connected individuals quickly turn to defection, with medium-degree
and high-degree individuals eventually following the trend. Parameters: η = 0.7,
µ = ν = 5 and Z = 512.
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Figure 7.10: Time-dependence of the average experienced group size and
of the fraction of cooperators in groups of different size for config-reg-
ba. The figure shows the mean experienced group size for Cs and Ds (top panels)
and the fraction of Cs in small (Ni < ν), medium-sized (ν ≤ Ni < Nmax/3) and
large (Nmax/3 ≤ Ni ≤ Nmax) groups (bottom panels) for η = 0.7 (left panels) and
η = 1.2 (right panels). The evolutionary dynamics on this population structure
is such that Cs preferentially cluster together in small groups and Ds cluster
together in large groups. Parameters: µ = ν = 5 and Z = 512.
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Figure 7.11: Cooperation level for bigraphs with different bipartite
clustering coefficients. The interaction bigraphs are constructed following the
graph approach with a ring (fromgraph-ring), a square lattice with von Neumann
neighborhoods (fromgraph-vn), or a regular random network (fromgraph-reg) of
degree z = 4 as original graphs, or given by a configuration model bigraph with
regular degree sequences for both top and bottom vertices (config-reg-reg). In
all four cases the degree distributions of top and bottom vertices is a regular
sequence with µ = ν = 5, the replacement graph is given by the normalized
weighted projection (NWP) of the interaction bigraph, and Z = 1024.
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Figure 7.12: Graphical representation and bipartite clustering coeffi-
cients of different interaction bigraphs. The figure shows typical interac-
tion neighborhoods for a focal individual (red node) as well as the degree of
the replacement graph (z′) and the bipartite clustering coefficient (cc•(⊥)) for
fromgraph-ring (Panel A), fromgraph-vn (Panel B), fromgraph-reg (Panel C) and
config-reg-reg (Panel D). For all networks, µ = ν = 5. Values of z′ and cc•(⊥)
are exact for fromgraph-ring and fromgraph-vn and analytical approximations
(assuming networks are Bethe lattices) for fromgraph-reg and config-reg-reg.
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Figure 7.13: Time evolution of the degree of assortment in the replace-
ment graphs of interaction bigraphs with different bipartite clustering
coefficients. The figure shows the time evolution of the degree of assortment in
the replacement graph. See section 7.11 for the definition of degree of assortment
we used in this figure.

lead in general to equal or higher cooperation levels for all the considered values of
the normalized enhancement parameter η. These results make sense in the light
of well established results on the effects of local interactions on the evolutionary
dynamics of the pairwise and multiplayer versions of the NPD. It is well known
that spatial structure enables Cs to form clusters within which they preferen-
tially interact with other Cs, thus reducing the exploitation by surrounding Ds.
Cluster formation is brought about by a feedback mechanism resulting from im-
itation/competition with direct neighbors that amplifies initial inhomogeneities
in the distribution of strategies. As it is shown in Figure 7.13, large values of
bipartite clustering coefficient favor cluster formation by allowing Cs to find each
other more easily and to reduce the number of connections with surrounding Ds.
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7.3 Discussion

Since the seminal works by Axelrod (1984) and Nowak & May (1992) on the evo-
lution of cooperation on lattices, games on graphs have traditionally made use
of unipartite graphs in order to model population structures. Despite its useful-
ness for exploring the effects of local interactions on the evolutionary dynamics
of two-player games, the use of unipartite graphs as population structures entails
a certain number of construction limitations when applied to general multiplayer
games, leading not only to a lack of flexibility but also to unrealistic assumptions
about the topological properties of networked populations. In this paper, we have
shown how the use of bipartite graphs and of constructing procedures that fully
take into account the bipartite nature of social and biological populations can
circumvent the limitations of the standard graph approach, opening up new op-
portunities for studying the role of different properties of network topologies on
the evolution of strategic interactions. In particular, it is important to emphasize
the need of explicitly defining two graphs: the interaction bigraph, determining
who plays with whom, and the replacement graph, determining who competes
with whom. As demonstrated in this paper, different ways of constructing any
of these two graphs or of deriving one from the other can have important conse-
quences in the evolutionary dynamics of multiplayer games.

First, the implicit assumption that the replacement graph coincides with the
original graph in the graph approach is crucial for the success of BA scale-free
networks as cooperation-promoting topologies reported in Santos et al. (2008).
When the replacement graph is derived in a more natural way, so that interac-
tion and replacement neighborhoods perfectly overlap (the usual assumption in
evolutionary two-person games on networks) cooperation is hindered in BA scale-
free networks to a point that any advantage of social heterogeneity is effectively
canceled by the resulting larger replacement neighborhoods (see Figure 7.2). The
introduction of weights in the replacement graph somewhat alleviates this prob-
lem, as weighted links partly restore the high centralization characteristic of BA
scale-free networks.

Second, while individual diversity (heterogeneous bottom degree distribu-
tions) systematically fosters cooperation, group diversity (heterogeneous top de-
gree distributions) promotes cooperation up to a critical value of the enhancement
factor, but hinders cooperation above such value (see Figure 7.7). We also showed
that networks with both kinds of social diversity foster more cooperation than
networks with only one kind of diversity, but that the difference between the
cooperation levels of networks with both individual and group diversity and the
cooperation levels of networks with only individual diversity are relatively small.
Finally, intermediate cooperation levels in networks without individual diversity
are mostly due to co-existence of Ds and Cs, while intermediate cooperation levels
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in networks with individual diversity are characterized by bi-stable evolutionary
dynamics. In other words, the results for config-reg-reg and config-reg-ba shown
in Figure 7.7 can be better understood as representing the final proportion of Cs
in a population where both Cs and Ds are present. Contrastingly, the results for
config-ba-ba, config-ba-reg and fromgraph-ba can be better interpreted as a prob-
ability of ending up in a fully cooperative state when starting from a condition
where 50% Cs are randomly placed on the network.

Third, bipartite clustering, i.e. group overlap, plays an important role in the
evolution of cooperation under the conventional NPD. We provided clear evidence
of the beneficial role of bipartite clustering on cluster formation and, consequently,
on the evolution of cooperation on regular structures. In this respect, our results
mirror similar conclusions on the beneficial effects of unipartite clustering on the
evolution of cooperation under the standard evolutionary two-player PD (Assenza
et al., 2008; Pusch et al., 2008; Roca et al., 2009a).

Apart from the present paper and to the best of our knowledge, only two stud-
ies have made use of the bigraph approach for studying evolutionary multiplayer
games: Gómez-Gardeñes et al. (2011), where the use of bigraphs as population
structures for evolutionary games on networks was first introduced, and Gómez-
Gardeñes et al. (2011), a subsequent study on the effects of social diversity on
the evolution of cooperation under the NPD. In the first of these studies, the
evolution of cooperation under the NPD on a real bipartite collaboration net-
work is compared to the dynamics on its bottom projection. Higher cooperation
levels are found for the bipartite network than for its projection. These results
have been interpreted as hinting that “the intrinsic group structure (described
by means of the bipartite graph) promotes cooperation in PGGs, this being a
new mechanism for this phenomenon beyond the scale-free character and other
features of the one-mode (projected) complex network” (Gómez-Gardeñes et al.,
2011). We would like to point out that a simpler explanation is that, by con-
struction, the mean group size in the bigraph built from a projected network is
always larger than the mean group size in the original bipartite network, and that
larger group sizes hinder the evolution of cooperation under the NPD. In order
to assess the influence of group structure and other mesoscopic properties on the
evolutionary dynamics, a comparison of real bipartite networks with their “ran-
domized” versions should be carried out, as it has been done for real unipartite
networks and two-person games (Lozano et al., 2008).

In the second study (Gómez-Gardeñes et al., 2011) the evolutionary dynam-
ics of the conventional and distributed versions of the NPD were investigated on
interaction bigraphs with tunable individual diversity but no group diversity at
all. The main finding of this study is that bigraphs with low individual diversity
(Poisson-like bottom degree distributions) can actually allow for more coopera-
tion than bigraphs with high individual diversity (bottom degree distributions
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following a power law) in the case of the conventional NPD. This result contrasts
sharply with our own results, which suggest that individual diversity generally
promotes cooperation. Note, however, that we used both a different network
model (configuration random networks) and different degree distributions (with
zero instead of moderate individual diversity). These different setups could ac-
count for the divergent results. We also note that Gómez-Gardeñes et al. (2011)
suggest that the ability of BA scale-free networks to outperform homogeneous
networks reported in Santos et al. (2008) is “intrinsically due to the entangle-
ment of social and group heterogeneities”. Although our own results partially
support this view, given the (moderate) synergy between individual and group
diversity, we have provided evidence that the promotion of cooperation reported
in Santos et al. (2008) is mainly due to the implicit assumption that the replace-
ment graph is equal to the original graph from which the interaction topology is
constructed.

The choice of the NPD as case of study in this paper was based on the fact
that most of the theoretical work on evolutionary multiplayer games has focused
on this particular game. However, recent empirical Gore et al. (2009) and the-
oretical Archetti & Scheuring (2011a) work testifies a growing discomfort with
the NPD as model of realistic social dilemmas, in particular because of its lin-
earity and because of the fact that cooperation is a strictly dominated strategy
in this game. Several of the conclusions drawn in the present study will neces-
sarily change if strategic interactions are modeled after PGGs different from the
NPD. For instance, it has been recently shown that, even in the absence of a
fixed topology, group diversity can importantly affect the evolutionary dynamics
of non-linear PGGs (Peña, 2012). In the light of these results, we would expect
group diversity to play a more prominent role in the evolutionary dynamics of
non-linear games played on bigraphs with highly heterogeneous top degree dis-
tributions. Also, bipartite clustering could be partially detrimental, instead of
largely beneficial, for the evolution of cooperation if the social dilemma is mod-
eled after a multiplayer game with a structure similar to the snowdrift game, as
it is already the case for two-person games (Hauert & Doebeli, 2004).

7.4 Methods

7.4.1 Population structures

Population structures are modeled by means of two graphs: the interaction bi-
graph B = (>,⊥, EB) and the replacement graph H = (⊥, EH). The two sets of
vertices of the interaction bigraph (> and ⊥) represent, respectively, the set of
groups/games and the set of individuals/players.
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7.4.1.1 Graph approach

In what we call the graph approach (Hauert et al., 2002; Santos et al., 2008),
first the replacement graph H = (⊥, EH) is defined, then the interaction bigraph
B = (>,⊥, EB) is constructed from the replacement graph as follows. Denote by
v1, v2, . . . , vZ the vertices of the graph H and by NH [vi] the closed neighborhood
of vertex vi, defined as the set of vertices adjacent to vi plus vi itself. Further,
denote by b1, b2, . . . , bZ the bottom (⊥) vertices of B and by t1, t2, . . . , tZ the top
(>) vertices of B. Then, EB is defined as the set of all pairs (bi, tj) ∈ ⊥×> such
that vi ∈ NH [vj].

7.4.1.2 Bigraph approach

In what we call the bigraph approach (Gómez-Gardeñes et al., 2011), first the
interaction bigraph B = (>,⊥, EB) is defined, then the replacement graph H =
(V,EH) is constructed by projecting the interaction bigraph into its set of bottom
vertices. In addition, weights can be attached or not to the edges of H according
to one of the following three methods:

1. Unweighted projection (UP). As done in Gómez-Gardeñes et al. (2011),
no weights are attached to the edges or, equivalently, the weights of all edges
have a value of one.

2. Unnormalized weighted projection (UWP). The weight wij of the
link (i, j) ∈ EH is given by the number of games i and j are connected
to in the interaction bigraph (Wasserman & Faust, 1994). From a social
learning perspective, the reason behind this heuristic is that the more often
i interacts with j, the better i is supposed to be acquainted with j and
therefore the more often i should consider j as target for imitation.

3. Normalized weighted projection (NWP). The weight wij is given
by (Newman, 2001)

wij =
∑
k

δki δ
k
j

nk − 1
,

where δki = 1 if i participates in game k, δki = 0 otherwise, and nk is the
number of players of game k. From a social learning perspective, the reason
behind this heuristic is the assumption that individuals get acquainted with
others more easily in smaller than in larger groups.

7.4.1.3 Bigraphs built from simple graphs using the graph approach

For fromgraph-X interaction bigraphs, we considered four different kinds of graphs:
rings, scale-free networks, square lattices with von Neumann neighborhoods and

171



regular random networks. Rings are one-dimensional lattices with degree z. Reg-
ular random networks (maximally random graphs where each node has the same
degree z) were constructed using the igraph (Csárdi & Nepusz, 2006) imple-
mentation of the algorithm by Viger & Latapy (2005). Scale-free networks were
obtained by means of the Barabási-Albert (BA) model (Barabási & Albert, 1999),
i.e. growing networks using a preferential attachment rule. In order to get graphs
with average degrees exactly equal to 〈z〉, we started the growing procedure from
a fully connected graph of m0 = 〈z〉+ 1 nodes, and added m = 〈z〉/2 new edges
per new node.

7.4.1.4 Configuration model bigraphs

Config-X-Y bigraphs were constructed using the configuration model (Guillaume
& Latapy, 2006; Molloy & Reed, 1995; Newman et al., 2001) with a top degree
distribution of type X and a bottom degree distribution of type Y. For the degree
distributions, we used regular sequences (reg) and degree sequences from BA
scale-free networks (ba), constructed following the procedure mentioned before.

7.4.2 Multiplayer games

Each individual i participates in all games k such that (i, k) ∈ EB. The social
success of an individual is given by the sum of the payoffs obtained in all games
it takes part in. We considered two versions of the NPD: the conventional NPD
and the distributed NPD (Pacheco et al., 2009; Santos et al., 2008). In the con-
ventional NPD, the payoffs of a D and a C in a group k of size Nk are respectively
given by ΠD = rmkc/Nk and ΠC = ΠD − c, where mk is the number of Cs in
group k, c is the cost of cooperation and r is the enhancement factor. In the
distributed NPD, each C of degree zi (i.e. taking part in zi games) contributes
c/zi to each game, so that the overall contribution of any C is equal to c. In this
case, the payoff of individual i with strategy si (1 if C, 0 if D) is given by (Santos
et al., 2008)

Πi =
∑

k∈NB(i)

 r

zk

∑
j∈NB(k)

c

zj
sj

− csi,
where NB(i) is the open neighborhood of player i in B (i.e. the set of games
played by i), NB(j) is the open neighborhood of game k in B (i.e. the set of
players participating in game j), and sj and zj stand respectively for the strategy
and the degree of the j-th player in the k-th group.

172



7.4.3 Evolutionary dynamics

The success/fitness of each individual was calculated as the sum of the payoffs
obtained in all the games it participates in. Strategies are updated synchronously
using a finite population analogue of the replicator dynamics commonly used in
the literature of games on networks (Hauert & Doebeli, 2004; Santos et al., 2008).
When updating the strategy of individual i, a neighbor j of i in the replacement
graph is randomly chosen with a probability pij given by

pij =
wij∑

k∈NH(i) wik
,

where wij is the weight of the link (i, j) ∈ EH . Denote by Πi the accumulated
payoff of individual i. Then, if Πi ≥ Πj, i stays with its current strategy; otherwise
it changes its strategy to j’s with a probability given by (Πj −Πi)/M , where M
is a normalization factor given by the highest possible difference between the
accumulated payoffs of i and j.

7.4.4 Simulations

Simulations were started with 50% of Cs randomly placed on the graph. We
measured the average fraction of Cs for 2000 additional generations after an initial
transient of 105 generations, and called this value the cooperation level. Data
points in Figures 7.2 and 7.7 correspond to the mean cooperation level over 1000
simulations; data points in Figure 7.11 correspond to the mean cooperation level
over 100 simulations. A new realization of the graph is done for each simulation.

7.5 Supporting Information

7.5.1 Promotion of cooperation in the ring due to ex-
tended replacement neighborhoods

In order to understand the origin of the promotion of cooperation in rings shown
in Panel A of Figure 7.2, consider the case of two contiguous clusters of Ds and
Cs in a ring of degree z = 4. As shown in Figure 7.3, the probability that
the D-player at the C-D boundary (player 0) becomes C is always higher with
the larger replacement neighborhood due to the bigraph approach than with the
smaller replacement neighborhood due to the graph approach. This is because
in the network given by the graph approach player 0 compares its success with
C-players close to the boundary (players 1 and 2), but in the network given by
the bigraph approach player 0 can also compare its success with C-players away

173



from the boundary (players 3 and 4), who interact with more Cs than players 1
and 2 and thus obtain larger payoffs. Likewise, the probability that the C-player
at the boundary (player 1) changes its strategy to D is always smaller with the
larger replacement neighborhood. Defining ηc as the critical value above which
the probability that player 0 becomes C is higher than the probability that player
1 becomes D, it is clear that ηc is lower for the bigraph approach (ηc = 1/2) than
for the graph approach (ηc = 5/7 ≈ 0.71). Notice also that, at least for latter
case, ηc is a good approximation of the critical value of η for which the cooperation
level becomes larger than zero in Panel A of Figure 2.

The calculations of the probabilities of strategy switching leading to Figure 7.3
are detailed in the following.

Let us denote by si = {0, 1} the strategy of individual i, with si = 0 if i is a
D and si = 1 if i is a C. Consider the distribution of strategies in the population
shown in the inset of Figure 7.3. We are interested in the probabilities of strategy
switching after one time step for players 0 and 1, i.e. Pr(si → 1 − si) for i = 0
and i = 1. From the definition of the evolutionary dynamics used in this study,
it can be easily shown that, in the case of unweighted replacement graphs, such
probability is given by

Pr(si → 1− si) =
1

|NH(i)|M
∑

j∈NH(i)

|sj − si| (Pj − Pi)θ(Pj − Pi), (7.1)

where NH(i) is the open neighborhood of i in the replacement graph H, |x| is
the cardinality of x if x is a set or the absolute value of x if x is a number, θ(x)
is the Heaviside step function, such that θ(x < 0) = 0 and θ(x ≥ 0) = 1, and
M = Pmax − Pmin, with Pmax and Pmin the maximum and minimum possible
payoffs. For a ring of degree z = 4, and whenever r < 5, the maximum possible
payoff for a player is that of a D surrounded by Cs and the minimum possible
payoff that of a C surrounded by Ds. When r > 5 the maximum possible payoff
is that of a C surrounded by Cs and the minimum possible payoff that of a D
surrounded by Ds. This leads to

M =

{
c(3r + 5) if r < 5
5c(r − 1) if r ≥ 5

. (7.2)

By calculating the payoffs Pi for i ∈ {−3,−2, . . . , 3, 4} and using Eq. 7.1 and
Eq. 7.2 we obtain, in the case the replacement graph is given by the graph ap-
proach (|NH(i)| = 4 ∀i),

Pr(s0 → C) =


0 if r < 25/9

9r−25
20(3r+5)

if 25/9 ≤ r < 5
7r−25

50(r−1)
if r ≥ 5

, (7.3)
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and

Pr(s1 → D) =


25−7r

10(3r+5)
if r < 25/9

5−r
4(3r+5)

if 25/9 ≤ r < 5

0 if r ≥ 5

. (7.4)

Likewise, in the case the replacement graph is the unweighted projection of the
interaction bigraph (|NH(i)| = 8 ∀i):

Pr(s0 → C) =



0 if r < 25/14
14r−25

40(3r+5)
if 25/14 ≤ r < 25/12

13r−25
20(3r+5)

if 25/12 ≤ r < 25/9
7r−15

8(3r+5)
if 25/9 ≤ r < 5

2r−5
10(r−1)

if r ≥ 5

, (7.5)

and

Pr(s1 → D) =



5−2r
2(3r+5)

if r < 25/14
75−26r

40(3r+5)
if 25/14 ≤ r < 25/12

25−7r
20(3r+5)

if 25/12 ≤ r < 25/9
5−r

8(3r+5)
if 25/9 ≤ r < 5

0 if r ≥ 5

. (7.6)

Equations 7.3, 7.4, 7.5 and 7.6 are graphically summarized in Figure 7.3.

7.6 Evolutionary dynamics on the star graph

Consider a star graph G of order Z comprising one center (h) and Z−1 leaves (l)
as that shown in Panel A of Figure 3 in the main text. Suppose that the center
and m out of the Z−1 leaves are Cs. From this graph G, the interaction bigraph
B is constructed using the graph approach. The accumulated payoff of the C-
center, of D-leaves and of C-leaves under the distributed NPD are respectively
given by

Π(h) =
rc [(m+ 2)Z2 + 2(m− 1)Z + 4]

4Z2
− c,

Π(lD) =
rc [(m+ 1)Z + 2]

2Z2
,

Π(lC) =
rc [Z2 + 2Z(m+ 1) + 4]

4Z2
− c.

The accumulated payoff of the C-center will be higher than that of a D-leaf if

Π(h) > Π(lD)⇔ r >
4

(m+ 2)− 4/Z
,
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which, for m = 0 (the center is the only C) reduces to (Santos et al., 2008)

r >
2

1− 2/Z
≡ α(Z).

Note that α is a monotone decreasing function of Z and that α = 2 in the limit of
large Z. Consider first the standard case where G (the star graph itself) is taken
as the replacement graph H. In this case, and starting with m = 0 Cs in the
leaves, the C-center invades the whole population for r > α, while a D-leaf takes
over the C-center if r < α (see Panel C of Figure 3 in the main text). Consider
now the case where the replacement graph H is built from the projection of B:
H is no longer a star, but a complete graph with different weights attached to
the links according to the type of projection used (see Panel D of Figure 3 in
the main text). In this case, it can be shown that a D-leaf can invade a C-leaf
if r < 4. From this, the fate of a single C located on the center depends on r as
follows:

1. r < α: the C-center is invaded by a defective leaf.

2. α ≤ r < 4: the C-center invades D-leaves, but C-leaves can be invaded by
D-leaves. In any case the system will eventually evolve to a state where
all individuals are Cs (this is the only absorbing state), but the time of
convergence will depend on the weights of the replacement graph.

3. r ≥ 4: the C-center and the C-leaves invade D-leaves. The system quickly
converges to the all-C state.

7.7 Evolutionary dynamics on the double-star

graph

Following previous related work (Pacheco et al., 2009; Santos et al., 2008), we
consider the evolutionary dynamics on the double-star graph, as it gives hints
about the evolutionary dynamics on networks largely dominated by the presence
of few hubs, such as scale-free networks. We have two centers, each with X − 2
and Y − 2 leaves respectively, plus one edge connecting the two centers. We
denote by h1 and h2 the two centers and by li a leaf connected to center hi, with
i = 1, 2 (see Panel A of Figure 4 in the main text). Let us assume that h1 is a
D, h2 a C, m out of the X − 2 leaves l1 are Cs and n out of the Y − 2 leaves l2
are Cs. We denote by lCi (lDi ) a leaf li with strategy C (D). Their accumulated
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payoffs under the distributed NPD can be shown to be given by

P (h1) =
rc(mY + 2)

2XY
+
rc(nY + 2)

2Y 2
+
mrc

4
,

P (lC1 ) =
rc(mY + 2)

2XY
+
rc

4
− c,

P (lD1 ) =
rc(mY + 2)

2XY
,

P (h2) =
rc(mY + 2)

2XY
+
rc(nY + 2)

2Y 2
+
nrc(Y + 2)

4Y
+
rc(Y − 2− n)

2Y
− c,

P (lC2 ) =
rc(nY + 2)

2Y 2
+
rc(Y + 2)

4Y
− c,

P (lD2 ) =
rc(nY + 2)

2Y 2
+

rc

2Y
.

Let us consider the case where m = X − 2 and n = Y − 2, so that all the
individuals in the population are Cs except for the center h2. If the replacement
graph is given by the double star itself (graph approach) leaves compete only with
their respective centers, and each center with its leaves and the other center. In
this case, it has been shown (Santos et al., 2008) that the time evolution of the
system is such that, typically, the D-strategy spreads preferentially to the leaves
of the second star, thus contributing to reducing the fitness of the D-center and to
facilitating an invasion from the C-center, after which cooperation easily spreads
to the remaining leaves. When the replacement graph is given by the bottom
projection of the interaction bigraph (bigraph approach), leaves compete also
with other leaves of the same star and with the center of the other star. In this
case, the D-center easily invades not only its own leaves but also the leaves of the
second star. If r < 4, inter-leave competition or social learning eventually leads
to the majority of leaves to be Ds and to the D-center to invade the C-center.

7.8 Replacement centrality

Centrality is a key concept that has been studied in social network analysis since
its origins (Bavelas, 1950), and has since been adopted in other network-related
disciplines (Newman, 2010). Measures of centrality, such as degree, closeness,
betweenness and eigenvector centrality, describe individuals’ positions in a net-
work relative to others and provide an efficient way of identifying influential
actors (Bonacich, 1987; Freeman, 1978; Wasserman & Faust, 1994). Likewise,
measures of the centralization of a network index the tendency of a single node
to be more central than other nodes in the network (Freeman, 1978).

177



Here, we generalize the definition of the power index recently proposed by Neal
& Neal (2011) to weighted networks and define the replacement centrality of node
i as

ρi =
∑

j∈NH(i)

wij∑
k∈NH(j) wjk

, (7.7)

where NH(i) is the open neighborhood of node i in the replacement graph and
wij denotes the weight of the link between i and j. According to the evolutionary
dynamics considered in this study, ρi is equal to the expected number of times
individual i is chosen for competition/imitation by other individuals per genera-
tion. Other things being equal, replacement centrality measures the importance
of an individual in the evolutionary process.

In order to measure the degree of centralization of the network, we make use
of the measure used in Freeman (1978):

ρX =

∑Z
i=1 [ρ∗ − ρi]

max
∑Z

i=1 [ρ∗ − ρi]
,

where ρ∗ is the largest value of ρ for any node in the network and the maximum
operator in the denominator is taken over all possible realizations of a network
with Z nodes, so that ρX is normalized between 0 and 1. In our case, such
maximum is obtained for an unweighted star graph of size Z so that we can write

ρX =

∑Z
i=1 [ρ∗ − ρi]
Z(Z − 2)

. (7.8)

This is the measure of centralization used for deriving the results shown in Panel
F of Figure 7.4 and in Figure 7.6.

7.9 Replacement centrality on the star graph

Consider a star graph G of order Z with 1 center and Z − 1 leaves, and the
bigraph B built from G via the graph approach. Let the replacement graph H
be equal to G (graph approach) or to the projection of the bigraph B (bigraph
approach). Then, using Eq. 7.7 the replacement centrality ρh of the center node
and the replacement centrality ρl of a leaf are respectively given by

ρh =
(Z − 1)whl

whl + (Z − 2)wll
, (7.9)

and

ρl =
1

Z − 1
+

(Z − 2)wll
whl + (Z − 2)wll

, (7.10)
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where whl is the weight of the edge between the center and a leaf and wll is the
weight of the edge between any two leaves. Using Eq. 7.9, 7.10 and the values of
whl and wll given in Panel F of Figure 7.4, we derive the centralization indices
shown in Panel F of Figure 7.4.

7.10 Bipartite clustering coefficient

The bipartite clustering coefficient captures correlations between neighborhoods
in a bigraph. In this study, we make use of the definition of bipartite clustering
coefficient proposed in Latapy et al. (2008). In order to calculate the bipartite
clustering coefficient of the bottom vertices of a bipartite graph, the bipartite
clustering coefficient cc•(u, v) for a pair (u, v) of bottom nodes is defined as their
Jaccard similarity coefficient (Jaccard, 1901)

cc•(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

,

where N(u) denotes the neighborhood of node u. The bipartite clustering coeffi-
cient of a single node is then defined as the sum of Jaccard indices implying this
node, divided by the number of nodes at distance 2

cc•(u) =

∑
v∈N(N(u)) cc•(u, v)

|N(N(u)|
.

Finally, the bipartite clustering coefficient of the set of bottom nodes is the aver-
age of the bottom vertices’ bipartite clustering coefficient,

cc•(⊥) =

∑
u∈⊥ cc•(u)

|⊥|
.

7.11 Degree of assortment

The degree of assortment r can be defined as the difference between the probabil-
ity that a random neighbor is a C, given that the focal individual is a C, and the
probability that the neighbor is a C, given that the focal individual is a D (?)

r = Pr(C|C)− Pr(C|D),

which can be calculated each time step as

r =
2nCC

2nCC + nCD
− nCD

2nDD + nCD
,

where nxy denotes the number of edges whose extreme points’ strategies are x
and y.
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Chapter 8

Via inequality to cooperation and
vice versa: the asymmetric
donation game on networks†

Abstract

The evolution of cooperation on complex networks has been the focus of much
research in recent years, where most of the available results have been derived
describing interactions in terms of simple two-person symmetric games such as
the well-known Prisoner’s Dilemma. It can be argued, however, that interactions
in the real world can be better described by asymmetric games in which different
individuals assume some roles more often than others. Here I study the effects
of taking into account such asymmetries in the evolution of cooperation under
the Donation game. Instead of considering the conventional setup whereby an
individual interacts with all of its neighbors both as donor and as recipient, I pro-
pose to repeatedly sample pairs of interaction partners according to one of three
different interaction rules: ‘link’ (L), ‘donor-recipient’ (DR) and ‘recipient-donor’
(RD). While the L rule recovers (in the mean sense) the case of standard symmet-
ric interactions, the DR (RD) rule gives rise to a situation in which well-connected
individuals interact predominantly as recipients (donors), inducing a promotion
(hindering) of the evolution of cooperation. In particular, DR interactions lead
to a very unequal wealth distribution favoring well connected individuals, who
become pivotal for the establishment of a state in which everybody cooperates.
Such fully cooperative state is however not the Pareto optimal outcome associated
with the solution of a social dilemma, since a considerable proportion of the pop-
ulation ends up earning less than what they would have gained in a fully defective

†J. Peña. Working paper.
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state. This work provides a simple example of how asymmetrical interactions on
heterogeneous social networks can lead to high levels of both cooperation and
inequality, characteristic of many human socioeconomic systems. Moreover, it
shows how cooperation can often lead to inequality and vice versa.

8.1 Introduction

Understanding the evolution of cooperative behavior has fascinated theoretical
biologists, social scientists and mathematicians ever since Darwin (Axelrod &
Hamilton, 1981; Darwin, 1859; Hamilton, 1964; Kropotkin, 1908; Skyrms, 2004;
Trivers, 1971; Wilson, 1975). At first sight, it would seem that cooperation should
be favored by natural selection since it increases the fitness of groups of individ-
uals. However, in a population of cooperators (Cs), defectors (Ds) who do not
invest in helping and rather opt to free-ride on the cooperative acts of others
will receive the benefits of cooperation while avoiding to pay the associated costs.
Consequently, the relative fitness of Ds will be larger than that of Cs and defective
behavior will spread and go to fixation in the population.

The tension between collective and individual interests lying at the core of
the problem of the evolution of cooperation can be captured in a simple way by
the well-known Prisoner’s Dilemma (PD). This is a symmetric two-person game
described by the generic payoff matrix

(C D

C R S
D T P

)
, (8.1)

where T > R > P > S. Each player has two possible moves: to cooperate (C) or
to defect (D). The ordering of the payoff entries guarantees that the two players
gain more if they opt for mutual cooperation than if they opt for mutual defection
(R > P ) but also that a D will earn more than a C if the two players choose to
play opposite moves (T > S). Hence, C is the optimal strategy at the collective
level while D is optimal individually. Moreover, if both players agree to play C
there is always a temptation to unilaterally switch to D (T > R), but if both
players agree to play D there is no parallel incentive to unilaterally switch to C
(S < P ). In technical terms, (D,D) is not only the unique Nash Equilibrium
of the PD, but also a Pareto inefficient outcome: mutual cooperation would be
collectively preferable (R > P ) but the fact that C is strongly dominated by D
(T > R and P > S) makes it irrational to play (C,C). Such dilemma is still
present if we consider large evolving populations rather than pairs of individuals
making rational decisions. Indeed, D is the only Evolutionarily Stable Strategy
in the PD, so that standard ways of modeling the action of natural selection or
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social learning will ultimately lead the population to the Pareto inefficient state
in which everybody defects.

The grim prediction that cooperation can not evolve under the PD is however
the result of one standard assumption made by classical models of evolutionary
game theory (Hofbauer & Sigmund, 1998; Maynard Smith, 1982; Weibull, 1995):
that players meet randomly. Contrastingly, cooperation can be shown to be evo-
lutionarily viable if the patterns of interaction are non-random, so that phenotyp-
ically similar individuals interact with each other more often than they interact
with individuals drawn uniformly at random from the entire population (Eshel &
Cavalli-Sforza, 1982; Fletcher & Doebeli, 2009; Lehmann & Keller, 2006; Skyrms,
2004). The problem of how such correlated interactions are created in different
situations is at the heart of many of the models aiming to explain the evolution of
cooperation, including those based on kin selection (Frank, 1998; Grafen, 1985,
2009; Hamilton, 1964), direct reciprocity (Axelrod & Hamilton, 1981; Trivers,
1971), indirect reciprocity (Alexander, 1987; Boyd & Richerson, 1989; Nowak &
Sigmund, 2005), group or multilevel selection (Traulsen & Nowak, 2006; Wilson,
1975) and network reciprocity (Nowak & May, 1992; Ohtsuki et al., 2006).

Models of network reciprocity are based on local interactions and local com-
petition (see Grafen (2007); Grafen & Archetti (2008); Lehmann et al. (2007);
Taylor et al. (2007) for the close connections between network reciprocity and
kin selection via limited dispersal, and between games on networks and inclusive
fitness theory). The population of players is no longer infinite and well-mixed,
as in standard evolutionary game theory, but finite and placed on the nodes of
a graph representing geographical isolation or social ties. Both interaction and
competition or imitation are limited to nearest neighbors in the graph. Since
the seminal works of Axelrod (1984) and Nowak & May (1992), several studies
have addressed the effect of networked population structures on the evolutionary
dynamics of the PD [see Szabó & Fáth (2007) for a comprehensive review]. It has
been well established that several network topologies can support unconditional
cooperation, making it evolutionarily viable (Nowak & May, 1992; Ohtsuki et al.,
2006). Most notably, topologies with highly heterogeneous degree distributions
such as scale-free networks (Barabási & Albert, 1999) can significantly promote
the evolution of cooperation under the PD (Santos & Pacheco, 2005), although it
has also been shown that the extent of this effect strongly depends on several ad-
ditional assumptions [see e.g. Fu et al. (2009); Masuda (2007); Peña et al. (2009);
Roca et al. (2009b); Rong et al. (2007); Szolnoki et al. (2008); Tomassini et al.
(2007)].

The vast majority of studies dealing with such games on networks has fo-
cused on the evolutionary dynamics of the PD and other related symmetric two-
person games, such as the Snowdrift game (Hauert & Doebeli, 2004) and the
Stag Hunt (Skyrms, 2004), on static networks. However, symmetrical pairwise
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interactions on rigid network topologies are obviously only first-order approxima-
tions to real-life interactions, which often involve individuals assuming different
roles, taking part in many-person games, and interacting in coevolving or self-
organizing social networks. Recently, several works have introduced some of these
more realistic assumptions in models dealing with two-person games on adaptive
networks [see Perc & Szolnoki (2010) and chapter 5 of Gross & Blasius (2008) for
reviews] and with many-person games on static networks [e.g. Gómez-Gardeñes
et al. (2011); Hauert et al. (2002); Santos & Pacheco (2011); Santos et al. (2008);
see also chapter 7]. Asymmetric games in which players have different roles have
been considered less often, or studied only in their symmetrized versions, so that
individuals are assumed to enact one of the two roles half of the time. An exam-
ple of the use of such symmetrized asymmetric games is the standard treatment
of the Ultimatum game (UG) on complex networks. The UG is a simple bar-
gaining game often considered to investigate egalitarian motives and punitive
behavior (Güth et al., 1982; Henrich et al., 2006). In this game, two players,
one assuming the role of the proposer and the other the role of the responder,
have to decide how to distribute a reward. The proposer makes an offer and
the responder decides whether to accept it or not. If the responder accepts, the
reward is split accordingly to the proposer’s offer, otherwise both the proposer
and the responder receive nothing. When the UG is studied on complex networks
[e.g. Egúıluz & Tessone (2009); Iranzo et al. (2011); Kuperman & Risau-Gusman
(2008); Sinatra et al. (2009)] it is usually assumed that individuals play twice
with each neighbor, once as proposer and once as responder, hence transforming
the originally asymmetric game into a symmetric one.

Perhaps a better known example of an asymmetric game often used in its
symmetrized form is the so-called Donation game (DG) (Sigmund, 2010). In
this game, player I (the donor) has to decide whether to give help to player II
(the recipient) or not. To give help (i.e. to cooperate) means for the donor to
pay a cost c in order for the recipient to get a benefit b, with b > c > 0. To
defect means refusing to help and leaving the payoffs of both players unchanged.
The DG has been often used as a metaphor of social interactions in studies
of the evolution of cooperation by indirect reciprocity [see Nowak & Sigmund
(2005) for a review]. In these models, reciprocators acting as donors decide to
give help if they have experienced cooperation from third parties in the past
[‘upstream’ indirect reciprocity (Boyd & Richerson, 1989; Nowak & Sigmund,
2005), also called generalized reciprocity (Pfeiffer et al., 2005)] or if the recipient
has a good reputation, for instance because it is known that she has previously
helped others when acting as a donor [‘downstream’ indirect reciprocity (Nowak
& Sigmund, 1998b, 2005)]. Either in the well-mixed populations assumed on
most of the studies or on the networks used as population structures in some
recent models of upstream indirect reciprocity (Iwagami & Masuda, 2010; Nowak
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& Roch, 2007; Peña et al., 2011; van Doorn & Taborsky, 2011), each individual
interacts on average half of the time as donor and half of the time as recipient.
As a consequence, the existence of different roles in the DG (donor and recipient)
is somewhat blurred, and the final game can be thought of as being effectively
symmetric.

The DG has also been occasionally used for investigating the evolution of
unconditional cooperation on graphs. In this case, as with the UG on networks,
individuals play twice with each neighbor, once as donor and once as recipient.
Hence, the interaction with each neighbor can be represented by a symmetric
two-person game with payoff matrix

( C D

C b− c −c
D b 0

)
, (8.2)

so that the resulting accumulated payoff of player i over all the interactions with
its neighbors is then given by

Πi =
∑
j∈Ni

(sjb− sic) = kib− sizic, (8.3)

where Ni is the open neighborhood of i, i.e. the subset of nodes connected to i,
zi = |Ni| is i’s degree, si is i’s strategy (si = 1 if C, 0 if D) and ki =

∑
j∈Ni sj

is the number of Cs in Ni. Note that the payoff matrix given by Eq. 8.2 is a
special case of the PD, since the ordering of the payoff entries always satisfies
b > b− c > 0 > −c. However, aside from special cases such as the mathematical
analyses of the evolution of unconditional cooperation on homogeneous graphs
[e.g. Ohtsuki & Nowak (2006a,b)], the bulk of simulation studies of games on
heterogeneous networks has been carried out using different parameterizations of
the PD, in particular the setting

(C D

C 1 0
D b 0

)
(8.4)

with b > 1, introduced in Nowak & May (1992) [see Szabó & Fáth (2007) for a
review]. Due to the fact that the accumulated payoff is not invariant with respect
to linear transformations of payoff values when applied locally in heterogeneous
networks (Luthi et al., 2009; Masuda, 2007), results using one parameterization
(e.g. Eq 8.4) may not hold when using a different one (e.g. Eq. 8.2).

Here I study the evolution of unconditional cooperation under the DG on
graphs using a novel approach. Instead of considering the conventional setup of
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Figure 8.1: Interaction rules. A. Link (L). One link is drawn uniformly at
random from the set of links. One of its endpoints is randomly chosen as donor,
the other as recipient. B. Donor-recipient (DR). One donor is drawn uniformly
at random from the set of nodes; one of its neighbors is chosen as recipient, again
randomly. C. Recipient-donor (RD). One recipient is drawn uniformly at random
from the entire population; one of its neighbors is chosen as donor.
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games on networks, in which an individual plays with all of its neighbors once as
donor and once as recipient, I propose to repeatedly sample pairs of interaction
partners according to one of three different interaction rules, which I call ‘link’
(L), ‘donor-recipient’ (DR) and ‘recipient-donor’ (RD) (see Figure 8.1). For L
interactions, first a link is drawn uniformly at random from the set of links, then
one of its endpoints is randomly chosen as donor, the other as recipient. For DR
(RD) interactions, first a random individual from the entire population is cho-
sen as donor (recipient), then one of its neighbors is chosen as recipient (donor).
On homogeneous graphs, these three interaction rules define equivalent stochastic
processes in which each individual in the population interacts the same number of
times as donor and as recipient. On heterogeneous graphs, however, DR and RD
interactions are characterized by some individuals playing more often as donors
or as recipients, depending on their connectivity and on the connectivity of their
neighbors. Such asymmetry in the assumption of different roles changes the evo-
lutionary dynamics of the DG, resulting either in a promotion or a hindering of
the evolution of unconditional cooperation with respect to what is obtained in
the standard symmetric case. In particular, DR interactions lead to very unequal
wealth distributions favoring well connected individuals, who thus become piv-
otal for the establishment of a state in which everybody cooperates. Such state
is, however, not the Pareto superior outcome usually associated with full cooper-
ation, since a non-negligible proportion of the individuals ends up gaining even
less than what they would gain in a population entirely comprised of defectors.
In this sense, inequality is shown to lead to cooperation and vice versa.

8.2 Results

Figure 8.2 shows the final fraction of Cs for different network topologies and
different interaction rules. The three network topologies investigated (see sec-
tion 8.4.1 for details) are a (homogeneous) regular network (REG), a (moderately
heterogeneous) Erdős-Rényi random network (ER), and a (highly heterogeneous)
Barabási-Albert scale-free network (SF). Each generation, T pairs of individuals
(one donor and one recipient) are drawn at random from the population of play-
ers according to one of the proposed interaction rules to engage in a one-shot
DG. The accumulated payoff resulting from the T interactions is equated with
reproductive fitness or social success, which determine the composition of the
population in the next generation. To model the action of natural selection or
social learning, I made use of the pairwise comparison rule (Szabó & Tőke, 1998;
Traulsen et al., 2006) in the limit of strong selection, so that individuals copy
the strategy of a randomly chosen neighbor if and only if the neighbor’s payoff is
greater than the self’s (see section 8.4.2 for details).
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Figure 8.2: Fraction of cooperators as a function of the cost-to-benefit ratio c/b.
On regular structures (REG), cooperation can only be sustained at extremely
low cost-to-benefit ratios and at very low frequencies. For L interactions (A),
cooperation can be established on random networks (ER) up to c/b ≈ 0.05 and on
scale-free networks (SF) up to c/b ≈ 0.23. For DR interactions (B) the advantage
of Cs is greatly enhanced in heterogeneous structures, particularly in SF networks.
For RD interactions (C) heterogeneous networks fail to make cooperation evolve,
and the results for SF networks become practically indistinguishable from those
of REG networks. Parameters: n = 1024, 〈z〉 = 4, T = 16n.

Figure 8.2A shows the evolutionary outcome of the DG when interaction part-
ners are sampled according to the L rule. While cooperation is practically im-
possible on regular structures, Cs stand a chance on heterogeneous networks,
albeit for low cost-to-benefit ratios. For L interactions, it is clear that an indi-
vidual takes part in a game with a probability that is proportional to its degree
in the network, so that well connected individuals play on average more often
than poorly connected individuals. All individuals interact, however, on average
half of the time as donors and half of the time as recipients. Hence, the standard
symmetric DG characterized by Eq. 8.2 is recovered in the mean sense for L in-
teractions. Indeed, although the accumulated payoff is now a random variable,
its expected value can be shown to be equal (up to a multiplicative factor) to the
expression given by Eq. 8.3 (see section 8.4.4 for the derivation of this result).
The mechanism underlying the promotion of cooperation introduced by hetero-
geneous population structures in Figure 8.2A is thus similar to the one identified
in previous studies of the symmetric PD (Santos & Pacheco, 2005, 2006). Highly
connected individuals (for which zi � 1, i.e. hubs) play a crucial role in pro-
moting cooperative behavior, as they are able to influence a large part of the
population, both because of their intrinsic large connectivity and because of the
high accumulated payoffs they obtain. As long as hubs are preferentially occu-
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Table 8.1: Statistics for the different interaction rules.
interaction rule n̄i q̄i Π̄i

L 2Tzi
n〈z〉 1/2 kib− zisic

DR T (1+ρi)
n

ρi
1+ρi

〈z〉
(∑

j∈Vi
sj
zj

)
b− 〈z〉sic

RD T (1+ρi)
n

1
1+ρi

〈z〉ki
zi
b− 〈z〉ρisic

The table shows the expected total number of interactions (n̄i), the expected
proportion of times interacting as recipient (q̄i) and the expected accumulated
payoff (Π̄i) for an individual i after T interaction steps. The expected
accumulated payoffs have been normalized by the factor T/(2m). See the main
text for the meanings of the different symbols.

pied by Cs, cooperative behavior can easily spread and get to fixation in the
population. Obviously, such mechanism is more important on SF networks than
on ER networks, given the higher heterogeneity of the former (power-law degree
distributions) with respect to the latter (Poisson-like degree distributions).

The results shown in Figure 8.2A are obtained for L interactions, which lead
to a symmetrized DG equivalent on average to standard formulations of the DG
on networks. Figures 8.2B and 8.2C show the results for DR and RD interac-
tions, respectively. The fact that the three interaction rules reduce to the same
stochastic process on homogeneous networks makes the final fraction of Cs to
be the same for L, DR and RD interactions on these topologies. Results are
however strikingly different for heterogeneous networks. Indeed, in this case DR
interactions impressively promote the evolution of cooperation, particularly on
SF networks, while RD interactions completely suppress the advantage of coop-
eration, with the fraction of Cs at equilibrium dwindling to zero over the whole
range of the cost-to-benefit ratio c/b.

In order to understand the reason behind these results, let us examine, for a
given individual i, the expected number of times it takes part on a game (n̄i),
the expected proportion of times it interacts as recipient (q̄i), and the resulting
expected accumulated payoff (Π̄i). These different expected values are shown
in Table 8.1 for the three different interaction rules considered in this paper.
Obviously, the expected proportion of times individual i interacts as donor is
simply given by p̄i = 1 − q̄i. Note that for DR or RD interactions, n̄i and q̄i
depend on

ρi ≡
∑
j∈Vi

1

zj
, (8.5)

i.e. the sum of i’s neighbors’ inverse degrees. The quantity ρi has been recently
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Figure 8.3: Power in ER and SF networks. Left and middle panels show the
correlation between the power ρi and the degree zi of a node i in ER and SF
networks, respectively. R is Pearson’s correlation coefficient for power vs. degree.
The right panel shows the proportion of ‘powerful’ individuals, for which ρi > 1,
and ‘powerless’ individuals, for which ρi ≤ 1. Statistics are calculated for one
typical realization of each graph, with n = 1024 and 〈z〉 = 4.

proposed as a measure of ‘power’ in social network analysis (Neal & Neal, 2011;
Neal, 2011), powerful individuals being those with significant bargaining and ne-
gotiating influence over its neighbors, and of ‘replacement centrality’ in games
on networks (see chapter 7). In this paper, ρi is referred to as i’s power. Two
properties of this measure are worth mentioning at this point. First, as it is al-
ready evident from Eq. 8.5, power is positively correlated with degree so that, in
general, the larger the connectivity of a node the larger its power. This correla-
tion, almost perfect in the case of SF networks, is shown in the left and middle
panels of Figure 8.3 for both ER and SF networks. Second, it is easy to show
that the average power over all nodes of a connected graph is always equal to one,
i.e. 〈ρ〉 = 1. This allows us to define nodes with ρi > 1 as ‘powerful’ and nodes
with ρi ≤ 1 as ‘powerless’. The right panel of Figure 8.3 shows the proportion of
powerful and powerless individuals on ER and SF networks. Note that the more
heterogeneous SF networks lead to a smaller proportion of powerful individuals
than the less heterogeneous ER networks.

For DR and RD interactions, n̄i = T (1 + ρi)/n, so that the more powerful
an individual, the more often it will interact in a game. Also, since the average
number of interactions over the population of players is equal to 〈n̄〉 = 2T/n, we
have that ρi ≷ 1 ⇒ n̄i ≷ 〈n̄〉, i.e. on average, powerful (powerless) individuals
take part in more (less) games than the average individual. Moreover, ρi deter-
mines not only how often i takes part in a game, but also how often it does so in
the role of the recipient. For DR interactions ρi ≷ 1⇒ q̄i ≷ 1/2, so that powerful
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Table 8.2: Statistics and invasion conditions on the star graph.
interaction rule q̄h / p̄l Π̄C

h > Π̄D
l

L 1/2 c/b < k−1
z

DR z
z+1

c/b < k − 1
z

RD 1
z+1

c/b < 1
z

(
k
z
− 1
)

The table shows the expected proportion of times the hub plays as recipient (q̄h)
or a leaf plays as donor (p̄l) as well as the condition for the expected payoff of a
C-hub (Π̄C

h ) to be greater than the expected payoff of a D-leaf (Π̄D
l ) for L, DR

and RD interactions. In all cases n̄h = T and n̄l = T/z. See the main text for
the meanings of the different symbols.

individuals interact more often as recipients and powerless individuals more often
as donors. For RD interactions the converse happens, so that ρi ≷ 1⇒ q̄i ≶ 1/2:
powerful individuals interact more often as donors and powerless individuals more
often as recipients. All in all, the DG played on heterogeneous networks is no
longer symmetric for DR and RD interactions, not even in the mean sense as for
L interactions. Instead, individuals assume more often one role than another,
depending on the interaction rule and on their social context. Thus, hubs play
more often as recipients for DR interactions and more often as donors for RD in-
teractions. Such asymmetry in the proportion of time different roles are assumed
is reflected in the hubs’ payoff advantage, which is amplified for DR interactions
and suppressed for RD interactions with respect to the payoffs resulting from the
L rule (see section 8.4.4). In turn, such favoring/disfavoring of well connected
individuals plays an important role on the evolutionary dynamics of the whole
population, and is the reason behind the different results obtained for each of the
interaction rules investigated here.

In order to better illustrate this idea, and similarly to what has been done in
previous studies of the PD on networks (Pacheco et al., 2009; Santos et al., 2008)
(see also chapter 7), let us consider star and generalized double-star graphs as
stylized examples of the prototypical connectivity patterns found in heterogeneous
networks, and study locally the process of evolutionary competition on these
topologies. More specifically, let us investigate the mathematical conditions under
which the accumulated payoff of a cooperative hub becomes higher than that of
any of the surrounding players, so that it is able to resist invasion from neighboring
Ds and to spread cooperative behavior in its neighborhood. For the star graph
depicted in Figure 8.4A, these conditions are given in Table 8.2 together with the
values of q̄i for the hub and p̄i for the leaves. Note that, for a fixed number k of
Cs on the leaves, the critical cost-to-benefit ratio below which the C-hub invades
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Cooperators (Cs)

Defectors (Ds)
neighbors
Cs

neighbors
Cs

1 hub (C)
               leaves

Cs

1 hub (D)
               leaves

Cs

1 hub (C)
    leaves

Cs

A B

Figure 8.4: Star and generalized double-star graphs. A. The star graph consists
of one hub, connected to z leaves. In addition the the hub, k leaves are assumed
to play C. B. The generalized double-star graph consists of two stars with a link
connecting the left hub (h1) and the right hub (h2). The left hub (assumed to be
a C) is connected to zh1 − 1 leaves, kh1 out of which are Cs. The right hub (a
D) is connected to zh2 leaves, kh2− 1 out of which are Cs, so that it is connected
to kh2 Cs in total. Left leaves (l1) have each zl1 neighbors (kl1 of which are Cs,
including the C-hub) and right leaves (l2) have each zl2 neighbors (kl2 of which
are Cs). The rest of the nodes (not shown here) are supposed to have a degree
z0.
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Table 8.3: Invasion conditions on the generalized double-star graph.
interaction rule Π̄Ch1 > Π̄Dl1 Π̄Ch1 > Π̄Dh2 Π̄Cl2 > Π̄Dh2

L c/b < kh1−kl1
zh1

c/b < kh1−kh2
zh1

c/b < kl2−kh2
zl2

DR c/b < kh1
zl1
− 1
zh1
− kl1−1

z0
c/b < kh1

zl1
− 1
zh1
− kh2−1

zl2
c/b < kl2

z0
− 1
zh1
− kh2−1

zl2

RD c/b <

kh1
zh1
− kl1
zl1

zh1−1

zl1
+ 1
zh2

c/b <

kh1
zh1
− kh2
zh2

zh1−1

zl1
+ 1
zh2

c/b <

kl2
zl2
− kh2
zh2

zl2−1

z0
+ 1
zh2

The superscript refers to the individual’s strategy, the subscript to the
individual’s position in the generalized double-star graph. See Figure 8.4B and
the main text for the meanings of the different symbols.

D-leaves is inversely proportional to the hub’s connectivity z under the L rule but
directly proportional to z under the DR rule. Indeed, while for L interactions the
critical cost-to-benefit ratio is approximately equal to the proportion of Cs on the
leaves, for DR interactions the C-hub is always advantageous if k > 2 for any c/b
and any z. In the limit of large z, even a single C-leaf is enough for the C-hub to
invade the rest of the D-leaves and turn them to cooperation. Contrastingly, for
RD interactions the C-hub is never advantageous under any condition. D-leaves
are always able to invade the hub and, from there, the rest of the population.
Such striking difference between the invasion pattern for DR and RD interactions
is brought about by the roles preferentially assumed by the hub and the leaves
under each of the interaction rules. In the star, ρh = z � 1 leads to the C-hub
to act preferentially as recipient for DR interactions and preferentially as donor
for RD interactions. In the limit of large z the C-hub interacts exclusively as
recipient under DR and exclusively as donor under RD.

While the conditions of invasion on star graphs help understand the process
by which hubs in heterogeneous networks are able to disseminate their strategies,
the conditions of invasion on generalized double-star graphs shed light on the
process of inter-hub competition. Consider now the generalized double-star graph
depicted in Figure 8.4B and the invasion conditions given in Table 8.3. For
L and DR interactions, the conditions for one hub taking over the other hub
are in general more stringent than the conditions for hubs invading neighboring
leaves. As a result, hubs invade many of their own leaves before entering in
competition with each other, effectively turning many of their neighbors to their
own strategies. However, while the C-hub benefits from such invasion by having
more willing donors in its neighborhood and hence increasing its own fitness, the
D-hub suffers from spreading its own behavior by having less neighboring Cs,
which leads to a decrease in its own fitness. Other things being equal, once the
number of Cs surrounding the C-hub is greater than the number of Cs surrounding
the D-hub, the C-hub can invade the D-hub. Once both hubs have turned to
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cooperation, invasion of the remaining nodes is easily accomplished.
The previous scenario holds both for L and DR interactions. However, for

DR interactions, and similarly to what happens on simple star graphs, invasion
conditions become less stringent the larger the connectivity of the C-hub. This
is in contrast to what happens under the L rule, for which the C-hub is less
advantageous the higher its connectivity. Furthermore, the DR rule leads to less
stringent conditions for the spreading of cooperative behavior from the C-hub to
both neighboring D-leaves and to the D-hub, as it roughly depends inversely on
the connectivity of the leaves (and leaves’ neighbors) rather than inversely on its
own connectivity, as it is the case for L interactions. Concerning RD interactions,
the resulting invasion pattern is again in stark contrast to the invasion patterns
for L and DR interactions. In this case, the critical cost-to-benefit ratio below
which a C wins over a D is proportional to the difference in proportions of Cs
around each node and inversely proportional to the C’s power. This makes the
C-hub disadvantageous to a point that it becomes easier to invade the D-hub from
a C-leaf than from the C-hub itself. As it was already the case for the simpler
star graph, the evolutionary dynamics on the generalized double-star graph under
RD interactions are such that leaves more easily invade hubs than the converse,
with Ds almost invariably winning the evolutionary race.

The analysis of invasion conditions on star and double-generalized star graphs
summarized in Tables 8.2 and 8.3, together with the dependence of n̄i and q̄i on
the individual power ρi summarized in Table 8.1, provides a clear explanation for
the different evolutionary dynamics resulting from the application of the different
interaction rules on heterogenous networks. Cooperation is more easily estab-
lished when the interplay between interaction rule and population structure ends
up favoring hubs by allowing them to increase their fitness. This is particularly
the case for DR interactions on SF networks, which results in the introduction
of an asymmetry in the way the DG is played at the population level, with hubs
preferentially acting as recipients and leaves as donors. When the asymmetry is
introduced in the opposite direction, so that it is hubs which act more often as
donors and leaves as recipients, cooperation plummets and defection prevails.

The final fraction of Cs for different networks and interaction rules shown in
Figure 8.2 were obtained for T = 16n, which is a relatively large value of T .
Figure 8.5 shows what happens for L and DR interactions on SF and ER net-
works with smaller values of T (results on REG networks and for RD interactions
are not shown as they always lead to negligible levels of cooperation for all the
tested values of the cost-to-benefit ratio). Figure 8.5 also shows the results for
a deterministic approximation in which the stochastic payoff resulting from the
T interactions is replaced by its normalized expected value. Note that the qual-
itative results of the model do not change with different values of T . Moreover,
the differences between L and DR interactions and between SF and ER networks
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Figure 8.5: Dependence on the number T of interactions per generation. The
figure shows the fraction of cooperators as a function of the cost-to-benefit ratio
c/b for different values of T . Results are shown for SF (panels A and B) and ER
(panels C and D) networks and for L (panels A and C) and DR (panels B and D)
interactions. Filled black dots stand for a deterministic approximation, in which
the stochastic payoff is replaced by its expected value. Parameters: n = 1024,
〈z〉 = 4.
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Figure 8.6: Emergence of inequality in cooperative populations. The left panel
shows the Gini coefficient (G) of degree and power on ER and SF networks. In
populations comprised entirely of cooperators, the received benefit per individ-
ual is proportional to the degree for L interactions and to the power for DR
interactions. Inequality in the received benefit is thus greater for DR than for
L interactions and more important on SF than on ER networks. Statistics are
calculated for one typical realization of each graph, with n = 1024 and 〈z〉 = 4.
The right panel shows the proportion of individuals with negative accumulated
payoff in full cooperative populations interacting according to the DR model.
These extremely poor individuals would be faring better in full defective soci-
eties. Statistics are calculated by averaging 100 different realizations of each kind
of graph, with n = 1024 and 〈z〉 = 4.

are often accentuated for smaller values of T . The difference between different
values of T obviously stem from the increasing noiseness of accumulated payoffs
with decreasing values of T .

Let us now shift the focus of the analysis from an evolutionary to an econom-
ical perspective and investigate the accumulation of wealth (accumulated payoff)
in populations of 100% Cs playing the DG under the L and the DR interac-
tion rules. Similar analyses have been done in other studies of games on graphs
(see e.g. Du et al. (2009); Santos et al. (2008); Vukov et al. (2011)). In fully
cooperative populations, the expected payoff for individual i is given by

Π̄L
i = zib︸︷︷︸

received benefit

− czi︸︷︷︸
payed cost

(8.6)
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for L interactions, and by

Π̄DR
i = 〈z〉ρib︸ ︷︷ ︸

received benefit

− 〈z〉c︸︷︷︸
payed cost

(8.7)

for DR interactions. Note that for L interactions an individual’s received benefit
is proportional to its degree in the social network, while for DR interactions
it is proportional to its power. Hence, unequal degree and power distributions
automatically lead to unequal received benefits. The left panel of Figure 8.6
shows the Gini coefficient G for the degree and power distributions of a typical
realization of ER and SF networks. G is a measure of statistical dispersion,
often used to quantify the amount of inequality within a population (Cowell,
2011; Gini, 1912). For a non-negative characteristic x distributed according to
a given probability distribution, G varies from a minimum value of zero, when
the distribution is uniform, to a maximum of one in an infinite population in
which every individual but one has x = 0. In the model studied in this paper,
more heterogeneous networks lead to more unequal distributions of both degree
and power. Moreover, power and hence received benefit for DR interactions
is distributed in a more unequal way than degree and hence received benefit
for L interactions (note that G is invariant with respect to multiplication by a
constant). For instance, the value of G for the distribution of received benefits
under L interactions on ER networks is comparable to the value of G for the
distribution of family income of relatively egalitarian European countries such
as Finland (G = 0.268) or Germany (G = 0.27), respectively the 11th and 12th
most egalitarian countries in the world. Contrastingly, the value of G for the
distribution of benefits for DR interactions on SF networks is similar to that
of the most inegalitarian Latin American countries, such as Hait́ı (G = 0.592)
and Colombia (G = 0.585), ranking respectively 8th and 9th in the list of most
inegalitarian countries in the world1.

Considering the total expected accumulated payoff (both received benefits and
payed costs) a more striking difference between L and DR interactions emerges.
For L interactions the expected accumulated payoff of a given individual Π̄L

i is al-
ways positive, since b−c > 0 always hold. Thus, even if well connected individuals
end up earning more and poorly connected individuals less, in a population with
100% Cs everybody is better off than in the state where all play D, where Π̄L

i = 0
∀i. Contrastingly, for DR interactions the wealth of an individual i in a fully
cooperative population can become negative if ρi < c/b. In this case, even if the
average wealth of the society is given by 〈Π̄DR〉 = 〈z〉(b− c), hence positive and
better than the average wealth in a fully defective population where 〈Π̄DR〉 = 0,

1Data from the CIA’s The World Factbook. https://www.cia.gov/library/publications/the-
world-factbook/rankorder/2172rank.html. February 2, 2012.
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individuals for which ρi < c/b are individually worse off than in a state where no-
body cooperates. As it is shown in the right panel of Figure 8.6, the proportion of
such extremely poor individuals can be considerably important, and growing with
the heterogeneity of the network and with the cost-to-benefit ratio. For instance,
on SF networks and for a cost-to-benefit ratio of 0.4 (for which the evolutionary
dynamics leads to a fully cooperative state, see Figure 8.2) approximately the
40% of the population has a negative accumulated payoff. This situation is even
more dramatic on simple star graphs consisting of one center and z leaves such
as the one shown in Figure 8.4A. In this case, for fully cooperative populations
under DR interactions and whenever c/b > 1/z, all individuals in the population
but the center earn a negative payoff and are thus worse off than in if they were
‘living’ in a fully defective state.

8.3 Discussion

The present study demonstrates the effects of taking into account the asymmet-
ric nature of social interactions in the evolutionary dynamics of cooperation on
networks. As it is evident from Figure 8.2, the evolution of unconditional co-
operation under the DG on heterogeneous networks can be greatly enhanced or
dramatically suppressed depending on whether or not asymmetric interactions
favor hubs. If the sampling of interaction pairs is made in such a way that hubs
play prominently as donors, cooperation plummets and its evolution becomes
impossible. Contrastingly, if hubs play more often as recipients and hence ac-
cumulate large payoffs, cooperation can flourish even if the act of cooperation
is relatively costly. However, in this last case the global nature of the game is
radically different from its local counterpart, not only for the good (cooperation
is more easily established) but also for the bad: the wealth distribution becomes
so unequal that a considerable proportion of individuals fare worse in a fully co-
operative population than in a state where everybody defects (see Figure 8.6).
Indeed, although the transition from a full defective state to a full cooperative
state can be said to solve the social dilemma in the mean sense as the average
wealth of the population shifts from 〈ΠDR〉 = 0 to 〈ΠDR〉 = 〈z〉(b− c), the state
where everybody willingly helps each other is not Pareto superior with respect
to the state where nobody helps, since not everybody is better off. Overall, the
model studied in this work provides a simple example of how asymmetrical inter-
actions on heterogeneous networks can lead to both the high levels of cooperation
and the highly inegalitarian wealth distributions characteristic of many human
socioeconomic systems.

In this paper, asymmetric interactions on heterogeneous networks were intro-
duced by defining three interaction rules specifying the way players are sampled
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from the population: L, DR and RD. The reader may be familiar with some-
what related updating rules describing stochastic processes on networks, such as
the ‘link-update’ and ‘node-update’ rules used in voter models on complex net-
works (Suchecki et al., 2005) or the ‘birth-death’ (BD) and ‘death-birth’ (DB)
rules used in some studies of games on graphs [see e.g. Ohtsuki et al. (2006)]. The
rationales behind the interaction rules proposed in this paper and those behind
the above-mentioned updating rules are similar. Both updating and interaction
rules are about sampling pairs of individuals in a population and assigning roles
to them either with regard to social interaction (donor or recipient) or to evolu-
tionary competition (reproducing/model individual or dying/copying individual).
Often, the choice of one rule over another can lead to impressive differences in the
resulting evolutionary dynamics. An example of this is the already classical result
according to which, in the limit of weak selection, evolution never favors uncon-
ditional cooperation under the symmetric DG on homogeneous networks for BD
updating, while Cs are favored over Ds for DB updating if c/b < 1/〈z〉 (Ohtsuki
et al., 2006; Taylor et al., 2007). The present study shows that similarly contrast-
ing results can be the consequence of a change in the interaction rather than in
the updating rule when the population structure is heterogeneous. Although ab-
stract in nature, the different interaction rules used in this paper can be thought
of as simple models of different situations that can be encountered in real life. DR
interactions, for which all inviduals have the same and independent probability of
assuming the role of donor, may be more typical of times of economic prosperity,
where everybody is able to give help to anybody else at approximately the same
rate. Contrastingly, RD interactions in which individuals play as recipients at
the same rate, may be more characteristic of times of economic regression, where
everybody is in need of help to the same extent. Finally, L interactions recover
in the mean sense the traditional assumption of the DG on networks, in which
everybody plays as donor or recipient the same number of times. Somewhat para-
doxically, cooperation in the asymmetric DG flourishes during bonanza times but
plummets during periods of crisis.

The present study is not the first one having explored the consequences of
asymmetric interactions in the evolution of unconditional cooperation on net-
works. In a recent paper, Pacheco et al. (2009) explored the consequences of
making cooperative investments variable and dependent on the focal player’s
connectivity. More specifically, they studied a two-person public goods game in
which each of two players has to decide whether to contribute a cost to a common
pool (to cooperate) or not (to defect). The total contribution is multiplied by
an enhancement factor F and then equally shared between the two players. For
1 < F < 2 the game is a particular instance of the PD. Each player plays once
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with each neighbor in the network, accumulating a payoff

Πi =
∑
j∈Ni

[
F (γisi + γjsj)

2
− siγi

]
,

where γx is the contribution of player x. Pacheco and co-workers studied two vari-
ants of this game. In the first, dubbed conventional prisoner’s dilemma (CPD),
all individual contributions per game are the same, irrespective of the node’s
connectivity, i.e. γi = γ for all i. In the second variant or distributed prisoner’s
dilemma (DPD), the overall contribution of each player is equal to γ, so that the
contribution per game is given by γi = γ/zi, where zi denotes as before the degree
of individual i. Although motivated from different microscopic mechanisms, the
CPD and the DPD of Pacheco et al. are closely related to, respectively, the DG
under L and DR interaction rules explored in this paper. Indeed, it is straightfor-
ward to show that the replacements Fγ/2 → b and (F/2 − 1)γ → −c make the
CPD equivalent to the DG with L interactions, in the sense that the expected
accumulated payoff due to the latter is equal to the deterministic accumulated
payoff of the former up to a scaling factor. Likewise, the DPD can be shown to
be equivalent (again in the mean sense and up to a scaling factor) to the DG with
DR interactions. Hence, it is not coincidental that the final fraction of Cs for the
DG under L and DR interactions shown in Figure 8.2 of this paper are similar
to those shown in Figure 1 of Pacheco et al. (2009) for the CPD and the DPD,
after the transformation c/b↔ 2/F − 1.

A more important consequence of the equivalence between the DG with DR
interactions and Pacheco et al. (2009)’s DPD is that the results derived here con-
cerning the emergence of extreme social inequality summarized in Figure 8.6 also
hold true for the DPD. This fact calls for some caution when drawing conclusions
about the effects of social diversity in the evolution of cooperation. Pacheco et al.
(2009) write, for instance, that ‘changing the contributive scheme from CPD to
DPD in SF population structures acts to change a prisoner’s dilemma effectively
into a Harmony game where Cs become advantageous irrespectively of the frac-
tion of Cs’. In its two-player incarnation, the Harmony game is a two-person
symmetric game with payoff matrix given by Eq. 8.1 and payoffs ordered so that
R > T > S > P . The ordering of the payoff entries guarantees that cooperation
is both dominant (R > T , S > P ) and Pareto superior (R > P ) with respect
to defection. Note that the last condition is necessary to characterize a given
social interaction as a Harmony game. However, in the case of the DPD it is
in general not true that the state where everybody cooperates is Pareto superior
with respect to the state where everybody defects, because at least some indi-
viduals will get a negative payoff, whereas they would have obtained a payoff of
zero if nobody had cooperated. The evolutionary dynamics can lead to a state
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where everybody cooperates but this state not necessarily means a solution of
the social dilemma, at least strictly in terms of Pareto superiority. The results
regarding the DG with RD interactions presented in this paper also warn against
the generality of supposedly beneficial effects of social diversity on the evolution
of cooperation (Pacheco et al., 2009; Santos et al., 2011, 2008). Note that social
diversity is large for RD interactions, not necessarily in received benefits but in
payed costs, which are proportional to individuals’ power. The contrasting re-
sults between the final fraction of Cs for DR interactions and for RD interactions
underlines the fact that diversity per se does not promote cooperation. Rather,
social diversity can promote cooperation if it benefits already powerful individuals
in the social network. In this case, however, and because of the above-mentioned
considerations, ‘cooperation’ is a label which is at best optimistic and at worst
hypocritical, since not everybody ends up winning more than in a state of full
defection.

In addition to Pacheco et al. (2009), other papers have studied the evolu-
tionary dynamics of asymmetric or distributed two-person and N-person games
on networks (see e.g. Du et al. (2009); Gómez-Gardeñes et al. (2011); Santos &
Pacheco (2011); Santos et al. (2008); see also chapter 7). In these and other
related models, asymmetric interactions are usually introduced by making co-
operative investments dependent on the connectivity of the focal player in an
originally symmetric game, such as the two-person or the N-person PD. Con-
trastingly, in the present paper asymmetries are introduced by sampling players
according to different interaction rules and letting them play asymmetric games,
such as the DG. Note that the same methodology can be used with other asym-
metric games, such as the already introduced UG, the Dictator game (Eckel &
Grossman, 1996), and the Asynchronous Snowdrift game (Kun et al., 2006), to
mention only a few. It will be of particular interest to explore the consequences
of a diverse distribution of player roles in these and other asymmetric games on
networks.

In summary, inequality can lead to cooperation and vice versa. More specifi-
cally, the interplay between heterogeneity in the number of social ties and asym-
metric interactions in the DG can lead to highly unequal wealth distributions
which, when favoring those already powerful and rich, further promote the es-
tablishment of cooperation. Likewise, heterogeneity and asymmetry make the
full cooperative state one in which a significant proportion of the population is
worse off than if everybody defected. It is interesting to note that similar causal
links going from cooperation to inequality and from inequality back again to co-
operation can be traced back to early texts of political philosophy, particularly
Rousseau’s A Discourse on Inequality. In this book, famous among game theorists
for providing the story after which the Stag Hunt game is named (Skyrms, 2004),
Rousseau suggests that social inequality among men is the direct consequence
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of division of labor and cooperation amplifying existing natural differences. In
Rousseau’s words, ‘from the instant one man needed the help of another, and it
was found to be useful for one man to have provisions enough for two, equality
disappeared’ (Rousseau, 1984). Moreover, Rousseau also advances that the re-
sulting emergence of social classes is at the origin of the social contract, which
he portrays as almost nothing more than a swindle used by the rich to control
the poor and maintain the status quo. Much like Rousseau’s rich men, who say
to the poor ‘[l]et us unite, [...] let us institute rules of justice and peace to which
all shall be obliged to conform, without exception, rules which compensate in a
way for the caprice of fortune by subjecting equally the powerful and the weak to
reciprocal duties’ (Rousseau, 1984) cooperative hubs in the DG with DR inter-
actions presented here preach cooperation to their poor neighbors, while keeping
most of the benefits for themselves.

8.4 Methods

8.4.1 Networks

Three different network topologies were considered in this study: REG, ER and
SF networks, all with a mean degree 〈z〉 = 4. REG networks are rings (one-
dimensional lattices with periodic boundary conditions). ER networks are Erdős-
Rényi random networks of the G(n, p) type (Erdős & Rényi, 1959, 1960), i.e. a
graph with n nodes where the probability that each possible edge is present is
equal to p = 〈z〉/n. SF networks are Barabási-Albert scale-free networks based
on growth and preferential attachment (Barabási & Albert, 1999). The growing
procedure was started from a ring of m0 = 〈z〉/2 nodes, adding m = 〈z〉/2 new
edges per new node.

8.4.2 Evolutionary dynamics

At the end of each generation, most successful individuals tend to reproduce more
or to be imitated more often by their neighbors. Among the different updating
rules that have been proposed in the literature to emulate such behavioral evo-
lution, I made use of the pairwise comparison rule. According to this rule, each
individual i adopts the strategy of a randomly chosen neighbor j with a prob-
ability given by p = 1/

(
1 + e−β(Πj−Πi)

)
, where Πx is the accumulated payoff of

individual x and β is a parameter associated with decision-making noise (cultural
evolution) or controlling the relative forces of natural selection and random drift
(biological evolution). When β = 0 strategy adoption is completely random and
natural selection is not at work. When β = ∞, strategy adoption is completely
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deterministic and the pairwise comparison rule becomes identical to the heuristic
‘imitate if better’. Results were obtained in all cases in the limit case of strong
selection (β =∞).

8.4.3 Simulations

Simulations were carried out in populations of n = 1024 individuals with an
initial proportion of 50% Cs randomly placed in the network. A value of c = 1
for the cost of cooperation was used for all simulations. The reported equilibrium
fractions of Cs was calculated by averaging over 2000 generations after an initial
transient period of 105 generations. Each point in Figure 8.2 corresponds to an
average over 1000 runs and 100 different realizations of the same type of network.

8.4.4 Expected payoffs for L, DR and RD interactions

Here, I derive the expressions for the expected payoff of an individual i with
strategy si (si = 1 if C, si = 0 if D) and degree zi which has ki C-neighbors. I
denote by n the number of nodes (individuals) and by m the number of edges of
the graph describing the population structure.

8.4.4.1 Link (L) interactions

For L interactions, a link is randomly chosen from the population graph and their
endpoints are randomly assigned the roles of donor and recipient. The probability
that player i is chosen as donor or recipient is thus given by

Pr(i→ donor|L) = Pr(i→ recipient|L) =
zi

2m
,

so that its expected payoff can be written as

Π̄L
i = T

(
zi

2m

ki
zi
b− zi

2m
sic

)
,

where ki/zi gives the probability that a neighbor of i plays C. Normalizing by the
factor T/(2m) and simplifying, the previous equation reads

Π̄L
i = kib− sizic. (8.8)

Note that this expression is equal to the accumulated payoff for an individual due
to the standard way of playing the DG on networks, given by Eq. 8.3.

204



8.4.4.2 Donor-recipient (DR) interactions.

For DR interactions, a node is first randomly chosen as the donor and then one of
its neighbors is chosen as recipient. Hence, the probability that player i is chosen
as donor is given by

Pr(i→ donor|DR) =
1

n
,

and as recipient by

Pr(i→ recipient|RD) =
n− 1

n

∑
j∈Vi

1

n− 1

1

zj
=

1

n

∑
j∈Vi

1

zj
=
ρi
n
.

The conditional probability that i plays as recipient given that it has been chosen
to interact (either as donor or recipient) is thus given by

q̄i =
ρi/n

1/n+ ρi/n
=

ρi
1 + ρi

,

and its expected payoff by

Π̄DR
i = T

(
1

n

∑
j∈Vi

sj
zj
b− 1

n
sic

)
.

Normalizing again by T/(2m) and simplifying we obtain

Π̄DR
i = 〈z〉

(∑
j∈Vi

sj
zj

)
b− 〈z〉sic, (8.9)

where 〈z〉 = 2m/n is the mean degree of the graph. Comparing Eq. 8.9 and
Eq. 8.8 it can be easily shown that Π̄DR

i > Π̄L
i whenever

b

[∑
j∈Vi

(
〈z〉
zj
− 1

)
sj

]
> (〈z〉 − zi) sic.

Note that if i is a hub the previous condition often holds, as in this case it is
generally true that zj < 〈z〉 < zi. DR interactions amplify the payoff advan-
tage of hubs in heterogeneous networks with respect to what is obtained for L
interactions.
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8.4.4.3 Recipient-donor (RD) interactions.

For the RD rule, first a node is randomly chosen as the recipient and then one
of its neighbors is chosen as donor. The probability that player i is chosen as
recipient is thus given by

Pr(i→ recipient|RD) =
1

n
,

and as donor by

Pr(i→ donor|RD) =
n− 1

n

∑
j∈Vi

1

n− 1

1

zj
=

1

n

∑
j∈Vi

1

zj
=
ρi
n
.

Hence, the conditional probability that i plays as recipient given that it has been
chosen to interact (either as donor or recipient) is given by

q̄i =
1/n

1/n+ ρi/n
=

1

1 + ρi
,

and its expected payoff by

Π̄RD
i = T

(
1

n

ki
zi
b− 1

n
ρisic

)
.

Normalizing again by T/(2m) we obtain

Π̄RD
i = 〈z〉ki

zi
b− 〈z〉ρisic. (8.10)

Comparing Eq. 8.10 and Eq. 8.8 it can be easily shown that Π̄RD
i > Π̄L

i whenever

ki

(
1− 〈z〉

zi

)
b >

[∑
j∈Vi

(
1− 〈z〉

zj

)]
sic.

In this case a hub i (for which in general zj < 〈z〉 < zi) will systematically obtain
a smaller payoff under the RD rule than under the L rule.
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Chapter 9

Conclusions

9.1 Discussion

Human behaviour reveals uniformities which constitute natural laws.
If these uniformities did not exist, then there would be neither social
science nor political economy, and even the study of history would
largely be useless. In effect, if the future actions of men having
nothing in common with their past actions, our knowledge of them,
although possibly satisfying our curiosity by way of an interesting
story, would be entirely useless to us as a guide in life.

Vilfredo Pareto, Cours d’économie politique professé à l’Université
de Lausanne

Vilfredo Pareto was an Italian engineer-turned-economist of the Lausanne
school of economics, who made important contributions to the social sciences
and economics. He is most famous for two concepts named after him. The first
one is Pareto efficiency, which is key for the definition of a social dilemma in
game theory terms: a game with at least one Pareto inefficient Nash equilib-
rium (Archetti & Scheuring, 2011b; Kollock, 1998). The second concept is that
of a Pareto distribution, a power-law probability distribution as the one resulting
from the degree distribution of the scale-free networks used as population struc-
tures in chapters 3, 4, 7 and 8, and similar to the discrete Waring distribution
used in chapter 6 for modeling variable group sizes. Pareto invented the Pareto
distribution when studying income distribution, after finding that data on eco-
nomic wealth of different countries over different centuries followed highly skewed
distributions. For instance, he found that the 80% of the land in Italy belonged
to only 20% of the population (which led to the so-called 80-20 rule or the Pareto
principle). The results presented in the Part III of this thesis make interesting
connections between the concepts of Pareto efficiency and Pareto distribution.
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They show that heterogeneity in the social contexts of the individuals, i.e. social
diversity, can greatly influence the evolutionary dynamics of social dilemmas. In
particular, chapter 8 makes some interesting connections between cooperation,
heterogeneity and economic inequality.

Recently, a review paper by Santos et al. (2011) advanced the view of social
diversity as ‘a fundamental mechanism in promoting the emergence and main-
tenance of cooperation’. This conclusion is supported by the results obtained
by Santos and co-workers showing how heterogeneous networks can promote the
evolution of cooperation in (i) models of different two-person symmetric social
dilemmas (Santos & Pacheco, 2005, 2006; Santos et al., 2006), and (ii) models
of N-person and two-person publics goods games with context-dependent invest-
ment (Pacheco et al., 2009; Santos et al., 2008). Social diversity has been por-
trayed as providing ‘a unifying framework for the emergence of cooperation’ (San-
tos & Pacheco, 2005), ‘a new route to the evolution of cooperation’ (Santos &
Pacheco, 2006) and as ‘[promoting] the evolution of cooperation in public goods
games’ (Santos et al., 2008). The results presented in this thesis show that,
although social diversity can be an important factor on the evolutionary dynam-
ics of different social dilemmas, the beneficial effects and the robustness of such
mechanism have to be taken with a grain of salt. First, social diversity can both
promote and hinder the evolution of cooperation. This is particularly clear in
the model presented in chapter 8, regarding the asymmetric donation game on
heterogeneous networks under different interaction rules. The obtained results
make clear that social diversity can promote the evolution of cooperation as long
as such diversity translates into a fitness advantage of well connected individu-
als. Contrastingly, when social diversity makes such well connected individuals
to be worse off than less connected ones, the evolution of cooperation plummets.
Second, as evidenced also in this model, social diversity, even when promoting
cooperation, can generate such a high wealth inequality that the full coopera-
tive state is not the Pareto efficient outcome usually associated to the solution
of a social dilemma. This conclusion is also applicable to the model by Pacheco
et al. (2009), due to the similarities between this model and one of the models
presented in chapter 8. Third, the results of models of games on heterogeneous
networks seem to be highly dependent on particular assumptions of the evolu-
tionary dynamics. For instance, results presented in chapter 7 reveal that the
beneficial effects of social diversity reported by Santos et al. (2008) are highly de-
pendent on how replacement graphs (determining who imitates whom in cultural
evolution or who competes with whom in biological evolution) are defined. An in-
crease in the size of replacement neighborhoods systematically lead to a decrease
in the cooperation levels obtained on heterogeneous networks, while they lead to
an increase in the cooperation levels obtained on regular networks, so that the
results on one kind of topology or the other become comparable. As it is shown
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in chapter 3, a similar effect is obtained if individuals partially imitate accord-
ing to a conformist bias: conformity promotes cooperation on regular structures
and hinder it on heterogeneous networks to a point that, again, results with and
without social diversity become comparable.

In addition to social diversity at the individual level, concerning heterogeneity
in the number of interactions per individual, this thesis has also explored the
consequences of social diversity at the group level, or group-size diversity, on the
evolutionary dynamics of multiplayer social dilemmas. The results presented in
chapter 7, using a methodology allowing for disentangling group diversity from
individual diversity, show that group-size diversity in the N-person linear public
goods game does not importantly affect the evolutionary dynamics. Group-size
diversity was studied in more detail in chapter 6, for the case of infinite well-
mixed populations. In this chapter it is formally shown that the evolutionary
dynamics of linear multiplayer games are not affected by group-size diversity.
Contrastingly, the outcome of nonlinear public goods games depend on the level
of heterogeneity of the group-size distribution. Depending on the game and the
game parameters, this can lead to more cooperation (e.g. a higher fraction of
cooperators at a polymorphic equilibrium or a higher basin of attraction for the
cooperative equilibrium) or to less cooperation. This shows again that although
social diversity can be sometimes important in affecting social evolution, its final
effects can be either positive or negative, depending on further assumptions of
the model.

Part II of this thesis has provided some new insights into models of upstream
reciprocity as a secondary mechanism for the evolution of cooperation. Results
presented in chapters 4 and 5 suggest that the view of upstream reciprocity acting
in synergy with population structure for promoting cooperation in the prisoner’s
dilemma advanced by Nowak & Roch (2007) can be an artifact of specific mod-
eling choices. Indeed, chapter 4 shows that the assumption that donor-recipient
pairs are sampled along random walks in the population of individuals leads to
interaction rates which are both non-uniform and strategy-dependent. When
controlling for such heterogeneity by introducing participation costs, upstream
reciprocity can fail to evolve in structured populations. Moreover, the use of
random walks makes that only altruistic acts (and not defective acts) can be
passed and reciprocated, making unclear the distinction between reciprocators
and unconditional cooperators. All of these assumptions are removed from the
model presented in chapter 5, which explores the evolution of upstream reciprocity
when the population structure is given by a cycle. Interestingly, some mathemat-
ical conditions of the original model by Nowak & Roch (2007) are recovered,
although the general conclusion is strikingly different: upstream reciprocity is
found to be never evolutionarily stable against both unconditional defection and
unconditional cooperation. These results are in line with less optimistic models
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of upstream reciprocity, such as the one by Rankin & Taborsky (2009).
Finally, Part I of this thesis has explored the consequences of allowing for par-

tially conformist cultural transmission in models of two-person social dilemmas in
network-structured populations. As evidenced by the results shown in chapters 2
and 3, conformity reinforces positive assortment in regular structures, leading to
an easier formation of clusters of individuals of the same strategy. Within such
clusters, cooperators not only benefit from the cooperation of other cooperators,
but they are also protected from the exploitation of surrounding defectors. On
heterogeneous networks, however, conformity can hinder the evolution of coop-
eration under both the prisoner’s dilemma and the snowdrift game. The reason
of such a striking difference in the results is that the evolutionary dynamics on
heterogenous networks are not governed by a mechanism of cluster formation,
but by a biased flow of information making lesss connected individuals preferen-
tially adopt the strategies of their well connected neighbors. Conformity partially
reverses such flow of information, making imitation of a defective neighbor by a
cooperative hub more likely. This phenomenon accounts for the relatively neg-
ative results obtained for the partially conformist evolution of cooperation on
heterogeneous networks.

In addition to the exploration of specific models of the effects of conformity,
upstream reciprocity and social diversity on the evolution of cooperation, this
thesis has made three particular methodological contributions to the multidisci-
plinary field of games on graphs. First, chapter 7 has made a case for the use of
bigraphs for modeling population structures in multiplayer games, showing how
it overcomes a series of difficulties endemic of the standard approach based on
unipartite graphs. In particular, the importance of properly defining a replace-
ment graph as a possibly weighted projection of the interaction bigraph has been
underlined. Second, chapters 7 and 8 have shown the relevance of centrality mea-
sures in gauging the role of influential players in heterogeneous netowrks. Finally,
chapter 8 has introduced the notion of ‘interaction rules’ in order to model asym-
metric interactions on heterogenous networks. Although the model presented
in chapter 8 explored only the simple Donation game, the methodology can be
readily applied to study the effects of global asymmetric interactions in other
asymmetric games, such as the Ultimatum and the Dictator games, to name a
few.
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9.2 Future research

The end is the beginning is the end.

Smashing Pumpkins

Understanding the mechanisms leading to or promoting the evolution of co-
operation is an old problem, first dealt with by Darwin in The Descent of Man,
yet of contemporary interest. Indeed, the question ‘how did cooperative behavior
evolve?’ has been recently suggested as one of the top 25 scientific questions in
the 125th anniversary issue of Science magazine (Pennisi, 2005).

Most theoretical answers to this question make use of one of two methodolo-
gies: inclusive fitness theory and evolutionary game theory, which have developed
for decades adopting different approaches, almost without influencing each other.
On the one hand, inclusive fitness, first advanced by Hamilton (1964), usually
makes simplifying assumptions such as weak selection and additivity of various
effects, but pays particular attention to the evolutionary consequences of popu-
lation structures (Frank, 1998; Rousset, 2004). On the other hand, evolutionary
game theory, invented by Maynard Smith & Price (1973) explores the properties
of nonlinear dynamical systems arising from populations of players interacting
in games without paying much attention to the population structure Hofbauer
& Sigmund (1998). Evolutionary graph theory (Lieberman et al., 2005; Nowak
& May, 1992; Szabó & Fáth, 2007) is a recent attempt to remedy this problem,
but the resulting spatially or network explicit models add substantial complexity,
making mathematical analysis virtually impossible, except for extremely simple
cases [e.g. regular isothermal graphs (Ohtsuki et al., 2006; Ohtsuki & Nowak,
2006a)].

In my view, a closer connection between the two approaches is required in or-
der to obtain a general and unifying understanding of the conditions promoting
or inhibiting the evolution of helping behaviors. Recent papers testify to grow-
ing interest in making connections between game theoretic and inclusive fitness
models and showing how different models relate to each other (Hauert & Imhof,
2011; Lehmann & Keller, 2006; Lehmann et al., 2007; Ohtsuki, 2010; Rousset,
2004). I think that it is necessary to devote more attention to developing hybrid
models that incorporate both the precise description of interactions characteristic
of evolutionary game theory and the rigorous descriptions of population structure
championed by population genetics in general and inclusive fitness in particular.
The effective use of both approaches will be key to continuing the investigation
not only of conformity, upstream reciprocity and social diversity, but also of other
factors affecting the evolution of cooperative behavior.
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3. Montes de Oca, M. A., Peña, J., Stützle, T., Pinciroli, C., & Dorigo, M.
(2009). Heterogeneous particle swarm optimizers. In Proceedings of the
IEEE Congress on Evolutionary Computation, 2009. CEC ’09., (pp. 698 –
705).

4. Peña, J. C., Peña, J., & Upegui, A. (2008). Evolutionary graph models
with dynamic topologies on the ubichip. In G. Hornby, L. Sekanina, &
P. Haddow (Eds.), Evolvable Systems: From Biology to Hardware. Lecture
Notes in Computer Science, volume 5216 (pp. 59–70). Springer Berlin /
Heidelberg.

5. Peña, J. (2008). Simple dynamic particle swarms without velocity. In
M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Sttzle, & A. Winfield (Eds.),
Ant Colony Optimization and Swarm Intelligence. Lecture Notes in Com-
puter Science, volume 5217 (pp. 144–154). Springer Berlin / Heidelberg.

6. Peña, J. (2008). Theoretical and empirical study of particle swarms with
additive stochasticity and different recombination operators. In Proceedings
of the 10th annual conference on Genetic and evolutionary computation,
GECCO ’08, (pp. 95–102)., New York, NY, USA. ACM.

215



References

Albert, R. & Barabási, A.-L. (2002). Statistical mechanics of complex networks.
Rev. Mod. Phys., 74 (1), 47–97. 54

Alexander, R. D. (1987). The biology of moral systems. New York, NY: Aldine
de Gruyter. 8, 10, 74, 77, 101, 184

Alizon, S. & Taylor, P. (2008). Empty sites can promote altruistic behavior.
Evolution, 62 (6), 1335–1344. 135

Archetti, M. (2009a). Cooperation as a volunteer’s dilemma and the strategy
of conflict in public goods games. Journal of Evolutionary Biology, 22 (11),
2192–2200. 122, 123, 124, 126, 132

Archetti, M. (2009b). The volunteer’s dilemma and the optimal size of a social
group. Journal of Theoretical Biology, 261 (3), 475–480. 122, 123, 124, 126,
132

Archetti, M. & Scheuring, I. (2011a). Coexistence of cooperation and defection
in public goods games. Evolution, 65 (4), 1140–1148. 122, 124, 170

Archetti, M. & Scheuring, I. (2011b). Review: Game theory of public goods in
one-shot social dilemmas without assortment. Journal of Theoretical Biology.
121, 122, 137, 208

Asch, S. E. (1951). Effects of group pressure upon the modification and distortion
of judgment. In H. Guetzkow (Ed.), Groups, leadership and men (pp. 177–190).
Pittsburgh, PA: Carnegie Press. 32
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Erdős, P. & Rényi, A. (1959). On random graphs. Publicationes Mathematicae
Debrecen, 6, 290–297. 22, 203
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Gómez-Gardeñes, J., Romance, M., Criado, R., Vilone, D., & Sánchez, A. (2011).
Evolutionary games defined at the network mesoscale: The public goods game.
Chaos, 21 (1), 016113. 149, 150, 169, 171, 185, 202
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Szolnoki, A., Perc, M. c. v., & Szabó, G. (2009). Topology-independent impact
of noise on cooperation in spatial public goods games. Phys. Rev. E, 80 (5),
056109. 147

Tanimoto, J. & Yamauchi, A. (2010). Does game participation cost affect the
advantage of heterogeneous networks for evolving cooperation? Physica A:
Statistical Mechanics and its Applications, 389 (11), 2284 – 2289. 78, 79

Taylor, C. & Nowak, M. A. (2006). Evolutionary game dynamics with non-
uniform interaction rates. Theoretical Population Biology, 69 (3), 243 – 252.
79

235



REFERENCES

Taylor, C. & Nowak, M. A. (2007). Transforming the dilemma. Evolution, 61 (10),
2281–2292. 11, 145

Taylor, M. & Ward, H. (1982). Chickens, whales, and lumpy goods: alternative
models of public-goods provision. Political Studies, 30 (3), 350–370. 122

Taylor, P. D., Day, T., & Wild, G. (2007). Evolution of cooperation in a finite
homogeneous graph. Nature, 447 (7143), 469–472. 145, 184, 200

Taylor, P. D. & Jonker, L. B. (1978). Evolutionary stable strategies and game
dynamics. Mathematical Biosciences, 40, 145–156. 19, 31, 36, 80, 124, 145

Tomassini, M., Luthi, L., & Giacobini, M. (2006). Hawks and doves on small-
world networks. Phys. Rev. E, 73 (1), 016132–. 48, 56

Tomassini, M., Pestelacci, E., & Luthi, L. (2007). Social dilemmas and coopera-
tion in complex networks. Int. J. Mod. Phys. C, 18 (7), 1173–1185. 49, 67, 79,
94, 146, 184

Traulsen, A. & Nowak, M. A. (2006). Evolution of cooperation by multilevel
selection. Proceedings of the National Academy of Sciences, 103 (29), 10952–
10955. 184

Traulsen, A., Nowak, M. A., & Pacheco, J. M. (2006). Stochastic dynamics of
invasion and fixation. Phys. Rev. E, 74 (1), 011909. 188

Trivers, R. L. (1971). The evolution of reciprocal altruism. The Quarterly Review
of Biology, 46 (1), 35–57. 8, 9, 77, 101, 122, 183, 184

Turner, P. E. & Chao, L. (1999). Prisoner’s dilemma in an rna virus. Nature,
398 (6726), 441–443. 121

Uchida, S. & Sigmund, K. (2010). The competition of assessment rules for indirect
reciprocity. Journal of Theoretical Biology, 263 (1), 13–19. 77

van Baalen, M. & Rand, D. A. (1998). The unit of selection in viscous populations
and the evolution of altruism. Journal of Theoretical Biology, 193 (4), 631–648.
52, 68

van Doorn, G. S. & Taborsky, M. (2011). The evolution of generalized reciprocity
on social interaction networks. Evolution. 15, 16, 75, 101, 102, 186
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