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As many developed countries face the challenges of an aging population, the need to efficiently plan and finance 
long-term care (LTC) becomes increasingly important. Understanding the dynamics of care requirements and 
their associated costs is essential for sustainable healthcare systems. In this study, we employ a multi-state Markov 
model to analyze the transitions between care states of elderly individuals within institutional LTC in the canton 
of Geneva, Switzerland. Utilizing a comprehensive dataset of 21 494 elderly residents, we grouped care levels into 
four broader categories reflecting the range from quasi-autonomy to severe dependency. Our model considers 
fixed covariates at admission, such as demographic details, medical diagnoses, and levels of dependence, to 
forecast transitions and associated costs. The main results illustrate significant variations in care trajectories and 
LTC costs across different health profiles, notably influenced by gender and initial care state. Females generally 
require longer periods with less intensive care, while conditions like severe and nervous diseases show quicker 
progression to more intensive care and higher initial costs. These transitions and expected length of stay in each 
state directly impact LTC costs, highlighting the necessity of advanced strategies to manage the financial burden. 
Our findings offer insights that can be utilized to optimize LTC services in response to the specific needs of 
institutionalized elderly people. These findings can be applied to enhance healthcare planning, the preparedness 
of infrastructure, and the design of insurance products.
1. Introduction

The demographic shift toward an aging population poses signifi-
cant challenges to long-term care (LTC) systems worldwide. As life 
expectancy increases, so does the prevalence of age-related health prob-
lems, necessitating expanded services and resources to support the el-
derly, particularly in their activities of daily living (ADL). Studies like 
those by OECD (2017) and Kempen et al. (1995) have highlighted the 
growing demand for healthcare services as more individuals live into 
their later years, often accompanied by complex health conditions such 
as multiple diseases (van den Akker et al., 1998) which amplify the need 
for continuous care (Stark et al., 1995).

In this context, institutional LTC emerges as a critical component 
of elder care, designed to support those who require substantial assis-
tance. Unlike home or family-based care, institutional settings provide 
organized, comprehensive care that integrates medical, personal, and 
social services in a single facility. However, this system also involves sig-
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nificant challenges in terms of financing (Brown and Finkelstein, 2009), 
availability of care facilities (Katz, 2011), and the recruitment and train-
ing of professional caregivers (Nichols et al., 2010). The integration of 
effective management strategies and sustainable financing solutions is 
essential to prepare for the coming increase in demand, underscoring 
the importance of detailed analysis and strategic planning in LTC pro-
vision (Colombo et al., 2011; Cosandey, 2016).

Research on LTC costs highlights the significance of modeling in un-
derstanding and predicting the financial implications associated with 
varying durations of care and intensities of service provision. The eco-
nomic burden on LTC facilities is primarily determined by the length of 
stay of residents, which varies based on demographic factors, medical 
conditions, and the severity of physical and psychological impairments 
(Mathers, 1996; Deeg et al., 2002; Germain et al., 2016). Works by Bladt 
et al. (2023) and Shemendyuk and Wagner (2024) have shown how age, 
gender, and specific health profiles influence the demand for care and, 
consequently, the costs incurred. Particularly, individuals with complex 
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health conditions such as musculoskeletal and osteoarticular disorders 
often have extended stays due to lower mortality rates (Makam et al., 
2019). Moreover, the intensity of care, measured by the daily time 
nurses spend with patients, directly impacts the cost structure within 
LTC settings (Dorr et al., 2005). Studies such as Guccione et al. (1994)
and Fong (2019) have shown how the level of dependency due to multi-
ple morbidities increases the need for more intensive and frequent care 
interventions, thereby escalating the overall costs. This correlation is 
further complicated by impairments in psychological and sensory func-
tions, which necessitate higher levels of assistance and lead to greater 
dependency (Marengoni et al., 2011; Barnett et al., 2012).

In LTC cost analysis, multi-state modeling plays a critical role in 
mapping the complex relationships between health conditions and care 
trajectories. The development of semi-Markov models, as explored by 
Fuino and Wagner (2018), enhances understanding of the care paths 
essential for elderly care management and the design of tailored insur-
ance products. These models effectively track the transitions between 
different states of health, which are directly influenced by the severity 
of conditions and determine the duration of stay and intensity of care 
required (Fong et al., 2015; Sherris and Wei, 2021). The actuarial assess-
ment of LTC products often relies on such models, as they allow for the 
estimation of transition probabilities that are not only dependent on the 
current health state but also on the duration within that state, providing 
a more nuanced view of care dynamics (Pritchard, 2006; Christiansen, 
2012; Haberman and Pitacco, 2018). Historically, these models have 
been used to determine insurance premiums and manage risk by con-
sidering both the progression of the health status and its implications on 
care needs (Govorun et al., 2015; Ai et al., 2017). Studies like those by 
Czado and Rudolph (2002) and Helms et al. (2005) have extended tra-
ditional Markov models to incorporate time-dependent variables, which 
significantly impact the calculation of costs in LTC settings. This semi-
Markov approach, recognized for its ability to integrate time-dependent 
transitions, offers a sophisticated framework for predicting LTC costs by 
accounting for the complexity of health trajectories and the direct im-
pact of functional disabilities on life expectancy and subsequent care 
requirements (Janssen and Manca, 2001; Foucher et al., 2010).

Using a multi-state model, our study aims to analyze the evolution 
of individual health and its implications on institutional LTC needs and 
their financing in the context of Switzerland. By leveraging the Swiss so-
cial health insurance system’s categorization of LTC needs into twelve 
levels, our model captures transitions between different states of care, 
including the absorbing state of death. We utilize a comprehensive panel 
dataset from the LTC institutions of the Canton of Geneva covering the 
years from 1996 to 2018, which includes detailed records of 21 494 in-
dividuals collected using the Canadian “PLAISIR” method (Roussel and 
Tilquin, 1993). We estimate transition probabilities and associated costs 
linking them to the individual characteristics known at admission in 
the institution. This methodology aids nursing staff by predicting care 
requirements from initial health assessments, supports infrastructure 
planning by forecasting occupancy, and informs both public and pri-
vate insurers about expected costs. The latter is essential not only for 
designing social health insurance policies but also for developing novel 
private insurance products.

By analyzing various health profiles, our study suggests that the base-
line health profile, most commonly observed among institutionalized 
elderly people, incurs higher LTC costs due to extended care needs stem-
ming from prolonged survival times. Conversely, profiles characterized 
by severe conditions and nervous diseases demonstrate swift progres-
sion to higher dependency states, accumulating significant costs early 
on, especially among females. Another notable finding is that individ-
uals with cerebrovascular conditions experience a slower progression 
to severe states yet eventually accumulate substantial costs. Moreover, 
the tumor disease profile uniquely displays rapid transitions to death, 
yielding the lowest overall costs due to the shortened duration of care.

The remainder of this paper is structured as follows. Section 2 de-
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velops a multi-state model for panel data to assess the changes in the 
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health status of institutionalized elderly and the impact on LTC costs 
within the Swiss social health insurance framework. Section 3 presents 
our dataset and statistical analysis, emphasizing the advantages of us-
ing medical evaluations over traditional survey-based data. Section 4
applies the developed multi-state model, discussing the transformation 
of variables, model fitting, and examining transition probabilities and 
associated costs across various health profiles. Finally, Section 5 pro-
vides conclusions, summarizing the insights obtained from our analysis 
and suggesting directions for future research.

2. Modeling insured LTC costs: framework and methodology

In this section, we develop a model to assess the changes in the health 
status of institutionalized elderly and the effect on LTC costs within the 
Swiss social health insurance framework. We start with an overview 
of the care classification and the reimbursement levels in Switzerland. 
Next, we introduce the individual’s evolution of care and formulate a 
time-homogeneous multi-state Markov model that describes the under-
lying process. Then, we detail the likelihood function and the role of 
initial covariates in determining transition intensities. Finally, we de-
scribe the calculation of key metrics, such as transition probabilities and 
expected length of stay in the care states, that are essential for estimat-
ing the costs of care.

Swiss social health insurance reimbursement scheme. The cost 
of institutional LTC is significant and, in Switzerland, directly related to 
the daily care needs of the elderly. While housing costs are borne out-
of-pocket by the individuals, Swiss social health insurance reimburses 
care costs along a twelve-level classification, each level of care needs 
correlating to specific reimbursement amounts as described by the Fed-
eral Department of Home Affairs (2016, Section 3, Art. 7 and 7a). This 
approach ensures that the financial compensation for LTC is systemati-
cally organized, making it directly proportional to the intensity of care 
required.

In Switzerland, reimbursement for LTC is determined by twelve or-
dered levels based on daily care requirements. Under this system, social 
health insurance pays out daily amounts based on the required level of 
care:

Payout(𝑟) = 9.60 × 𝑟, (in CHF), (1)

where 𝑟 = 1, 2, … , 12 denotes one of the twelve categories derived from 
the minutes of required care per day. These categories start with up to 20 
minutes per day, represented by the index 𝑟 = 1 and coming with costs 
of CHF 9.60. The categories increase by 20 minutes per day for the next 
states 𝑟 = 2, … , 11. For example, an elderly person requiring 21 to 40 
minutes of care per day is represented by category 𝑟 = 2 and the costs 
yield CHF 19.20. This pattern continues until the final category, 𝑟 = 12, 
which represents 220 or more minutes of care per day and yields costs 
of CHF 115.20.

Comparable cash-for-care schemes exist in other European countries, 
where LTC insurance benefits are structured in several tiers, similar to 
the Swiss model’s categorization of dependency levels. Countries such 
as Austria, France, and Germany have developed systems that reflect 
different levels of dependency, similar to the Swiss categorization of 
care needs. Da Roit and Le Bihan (2010, see Table 1) provide a com-
prehensive analysis of the European landscape, highlighting the differ-
ences in schemes and the funding systems in countries such as Sweden, 
Netherlands, France, Germany, Austria, and Italy, and their respective fi-
nancial implications. Furthermore, Yang et al. (2016) examined China’s 
approach to LTC financing, revealing diverse strategies such as Shang-
hai’s social health insurance, Qingdao’s LTC insurance, and Nanjing’s 
means testing. Despite differences in healthcare integration and govern-
ment funding reliance, these models share a core objective with their 
European counterparts, namely, to provide an adequate reimbursement 
scheme for the institutional LTC.

Multi-state model framework. In the following, we consider an in-

surance reimbursement scheme that pays for provided care based on 
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Note: The dotted curve in graph (a) represents the continuous evolution of 
care provided at the institution, while the dashed and solid lines represent the 
underlying and observed processes corresponding to discrete states of care re-
imbursements.

Fig. 1. Illustration of the care intensity path over time.

Fig. 2. Transitions of the underlying process in the LTC multi-state model.
𝑅 categories. Assuming continuous evolution of the provided care, the 
payout levels are evolving as a discrete-space continuous-time jump pro-
cess. In Fig. 1, we illustrate a sample path of care intensity over time, 
i.e., the evolution of a person’s care needs since admission to the insti-
tution. The provided care is denoted by the dotted curve and represents 
the continuous evolution of care provided to the elderly. The underly-

ing and observed processes represented by the dashed and solid lines, 
respectively, correspond to the 𝑅 reimbursement levels that follow the 
multi-state process. The underlying process is directly related to the pro-
vided care so that the corresponding multi-state process evolves from 
one neighboring state to another. Also, it is possible to transition to the 
absorbing state denoted as “Death” at any point. Fig. 2 shows the di-
agram with the possible transitions between the model’s states. Unlike 
the underlying process, the observed process represents the administra-
tive data collection procedure that starts at the date of admission 𝑡0 = 0
and, in general, is carried out periodically at undetermined times 𝑡1 , 𝑡2, 
and so on. The last observation in time 𝑡3 illustrated in Fig. 1 can indi-
cate the person’s moment of death or correspond to the current length of 
stay in the institution (e.g., related to the end of the observation period 
due to data extraction). In the latter case, the duration until the next 
state transition (time-to-event) remains undetermined, and the health 
state at the date of data extraction is therefore unknown (see the mis-
match between the underlying and observed processes in time 𝑡3).

In our analysis, we aim to apply a multi-state Markov model on panel 
data. For doing so, we consider a framework consisting of (𝑅 +1) states, 
where each state 𝑟 = 1, 2, … , 𝑅 indicates different care needs, and the 
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state (𝑅 + 1) denotes the terminal state of death. The transition intensi-
ties 𝑞𝑟𝑠(𝐳) measure the instantaneous probability of transitioning from 
state 𝑟 to state 𝑠, for 𝑟, 𝑠 = 1, … , 𝑅 +1, 𝑟 ≠ 𝑠, and are independent of the 
process history under the Markov assumption (Cox and Miller, 1965). 
These transition intensities are contained in a matrix 𝑄 of dimension 
(𝑅 + 1) × (𝑅 + 1) with the rows summing up to zero, i.e., the diagonal 
elements are defined as 𝑞𝑟𝑟(𝐳) = − 

∑
𝑠≠𝑟 𝑞𝑟𝑠(𝐳). The model allows only 

for transitions between neighboring states and to the absorbing state so 
that the matrix 𝑄 has the following form:

𝑄 =

⎛⎜⎜⎜⎜⎝

−𝑞12−𝑞1,𝑅+1 𝑞12 0 ⋯ 0 𝑞1,𝑅+1
𝑞21 −𝑞21−𝑞23−𝑞2,𝑅+1 𝑞23 ⋯ 0 𝑞2,𝑅+1
0 𝑞32 −𝑞32−𝑞34−𝑞3,𝑅+1 ⋯ 0 𝑞3,𝑅+1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ −𝑞𝑅,𝑅−1−𝑞𝑅,𝑅+1 𝑞𝑅,𝑅+1
0 0 0 ⋯ 0 0

⎞⎟⎟⎟⎟⎠
(2)

In a transition probability matrix 𝑃 (𝑡), the element 𝑝𝑟𝑠(𝑡) represents 
the probability of an individual transitioning from state 𝑟 to state 𝑠 over 
time 𝑡, assuming a time-homogeneous Markov process. The matrix 𝑃 (𝑡)
is defined by the matrix exponential of 𝑄 scaled by the time interval 𝑡, 
i.e.,

𝑃 (𝑡) = Exp(𝑡𝑄). (3)

This matrix is crucial for our analysis of care trajectories as it helps to 
assess the expected length of stay in each care state and thus facilitates 

the cost evaluations.
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Likelihood for panel data. To calculate the maximum likelihood 
estimate of the transition intensity matrix 𝑄, Kalbfleisch and Lawless 
(1985) and Kay (1986) established a method for a general multi-state 
model in continuous time with an arbitrary transition matrix 𝑃 (𝑡). In 
this context, 𝑖 = 1, … , 𝑀 indexes unique trajectories of 𝑀 individuals 
through various care states over time. The indices 𝑖 and 𝑗 of the func-
tion  represent the likelihood contribution from the 𝑗-th transition of 
the 𝑖-th individual in terms of the transition probability matrix. Here, 𝑗
represents a specific transition event for that individual, moving from 
one observed state to another over a discrete interval. For intermittently 
observed processes, the likelihood contribution for individual 𝑖 from a 
pair of successive observed states 𝑆(𝑡𝑗 ) and 𝑆(𝑡𝑗+1) is given by:

𝑖,𝑗 = 𝑝𝑆(𝑡𝑗 )𝑆(𝑡𝑗+1)(𝑡𝑗+1 − 𝑡𝑗 ),

where 𝑝𝑟𝑠(𝑡) denotes the probability of transitioning from state 𝑟 to state 
𝑠 over time 𝑡, derived from the transition probability matrix 𝑃 (𝑡).

In cases where the times of death are exactly known, the contribution 
to the likelihood accounts for the uncertainty in the state just before 
death by summing over all potential states 𝑠 preceding the terminal state 
of death:

𝑖,𝑗 =
𝑅∑
𝑠=1

𝑝𝑆(𝑡𝑗 ),𝑠(𝑡𝑗+1 − 𝑡𝑗 ) ⋅ 𝑞𝑠,(𝑅+1).

In panel data that is limited in time, some individuals are observed 
to reach the absorbing state, while others are still alive at the end of 
the observation period, with their most recent health state recorded. 
The subsequent transition for the surviving individuals, whether to an-
other care state or death, is not observed, leading to right-censoring. For 
the likelihood calculation, this scenario requires accounting for both the 
certainty of the last known state and the potential for any future state 
transitions. In this context, 𝑛𝑖 denotes the index of the last observation 
for individual 𝑖. The likelihood for transitions from this last observed 
state includes all possible subsequent states excluding death and is rep-
resented as:

𝑖,𝑛𝑖
=

𝑅∑
𝑠=1

𝑝𝑆(𝑡𝑛𝑖 ),𝑠
(𝑡𝑛𝑖+1 − 𝑡𝑛𝑖

).

The total likelihood (𝑄) of the multi-state model is constructed by mul-
tiplying all individual likelihood contributions 𝑖,𝑗 across every transi-
tion and for each individual in the study:

(𝑄) =
∏
𝑖,𝑗

𝑖,𝑗 . (4)

Effect of covariates. In our analysis, we aim to consider the effect 
of covariates 𝐳 that are valued at the time of entry into institutional LTC 
and do not evolve over time. Incorporating fixed covariates simplifies 
the estimation of future care costs, even under uncertainty about future 
health outcomes. This is also consistent with practical needs for predict-
ing care trajectories at the time of entry for new patients. According to 
Marshall and Jones (1995), the transition intensities 𝑞𝑟𝑠 can be modeled 
as functions of these covariates using a proportional hazards method:

𝑞𝑟𝑠(𝐳) = 𝑞(0)
𝑟𝑠

exp(𝜷𝑇
𝑟𝑠
𝐳), (5)

where 𝐳 represents the vector of covariates fixed at entry, 𝜷𝑟𝑠 is the vec-
tor of coefficients associated with the covariates 𝐳 for the transition from 
state 𝑟 to state 𝑠, and 𝑞(0)𝑟𝑠 is the baseline transition intensity as defined in 
the matrix 𝑄 above. Consequently, incorporating these covariates into 
the transition intensities influences the total likelihood function. The 
process of finding optimal values involves maximizing the likelihood 
function (𝑄) in Equation (4) with respect to 𝑞(0)𝑟𝑠 and 𝜷𝑟𝑠.

Model output. Once the model parameters are estimated from the 
data, we compute the key metrics of interest. Specifically, we want to 
evaluate the probability of transitioning to a state by a given time 𝑡, 
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denoted in Equation (3), and the average time an individual starting in 
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state 𝑟 is expected to spend in each state 𝑠 = 1, 2, … , 𝑅, 𝑅 +1, including 
death, up to time 𝑡:

𝐸𝑟𝑠(𝑡, 𝐳) =
𝑡

∫
0

𝑝𝑟𝑠(𝑢, 𝐳) d𝑢. (6)

The latter allows for estimating the average care costs over a specified 
period. Given the payout amounts from Equation (1), the average cost of 
an institutionalized individual starting in state 𝑟 with initial covariates 
𝐳 over time 𝑡 can be described as:

𝐶𝑟(𝑡, 𝐳) =
𝑅∑
𝑠=1

𝐸𝑟𝑠(𝑡, 𝐳) ⋅ Payout(𝑠). (7)

Here, we consider the average costs as the average number of days spent 
in a particular state by the time 𝑡 multiplied by the daily cost of the 
states. In the (𝑅 + 1)-th state, representing death, no cost arises. How-
ever, in the case of modeling a mixed insurance product, a lump-sum 
term representing a one-time death benefit could be added.

3. Dataset and descriptive statistics

In this section, we present the main characteristics of our dataset 
and statistical analysis. Section 3.1 provides an overview of our dataset, 
which offers several advantages over typical survey-based datasets com-
monly used in LTC research.1 These advantages are based on the medical 
evaluations of an individual’s health compared to self-reported data, 
and consistent follow-up during the study. This enables a more pre-
cise examination of the health transitions and care requirements within 
the institutionalized elderly population, overcoming the common lim-
itations of uncertain times of transitions between states and imprecise 
health reports. Next, in Section 3.2, we analyze the health evaluations 
recorded in our dataset and the observed transitions among different 
care states. After consolidating the twelve available care levels into four 
broader categories, we utilize the Aalen-Johansen estimator to calculate 
state occupancy over time, enhancing our understanding of care dynam-
ics. Additionally, we stratify these estimates by key covariates such as 
gender, medical diagnoses, and levels of dependence and provide an 
analysis of the associated LTC costs.

3.1. Description of the data

This study is based on the private dataset from nursing homes in the 
Canton of Geneva, Switzerland, provided by the Republic and Canton 
of Geneva, General Directorate for Health (2019), which was previously 
studied by Bladt et al. (2023) and later by Shemendyuk and Wagner 
(2024). The dataset includes 𝑀 = 21 494 individuals aged 65 or older,2

consisting of 17 832 complete observations of individuals who died dur-
ing the study period and 3 662 right-censored observations of those 
still alive at the time of data extraction.3 This study covers the period 

1 See for example, the Health and Retirement Study in the United States (HRS), 
originally reviewed by Juster and Suzman (1995) and later by Sonnega et al. 
(2014) and Fisher and Ryan (2017), available at https://hrs .isr .umich .edu/; 
the Survey of Health, Ageing and Retirement in Europe (SHARE), see https://
share -eric .eu/ and its introduction by Börsch-Supan et al. (2013); and the China 
Health, Aging, and Retirement Longitudinal Study (CHARLS) from https://
charls .pku .edu .cn /en/ explained by Zhao et al. (2012).

2 The reduction in the number of observations from Shemendyuk and Wag-
ner (2024) is due to additional quality checks that were implemented when 
incorporating subsequent health evaluations for each individual. Specifically, 
we excluded 8 individuals due to discrepancies between the recorded number 
of health evaluations and the value registered in the personal summary data 
field. Additionally, 27 and 20 individuals were excluded due to incorrect or in-
consistent entry or exit dates, respectively.

3 Right-censored observations refer to those individuals whose health state 

is recorded from their entry into the institution until the last observed health 

https://hrs.isr.umich.edu/
https://share-eric.eu/
https://share-eric.eu/
https://charls.pku.edu.cn/en/
https://charls.pku.edu.cn/en/
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Table 1

Description of the variables.

Variable Description Values

Basic information on the pathways

𝑀 Number of individuals in the dataset 21494
𝑖 Index of an individual 1,2,3,… ,𝑀

𝑛𝑖 Number of health evaluations for individual 𝑖 1,2,3,…
during the study period

𝑗 Index of the health evaluation for individual 𝑖 0,1,2,… , 𝑛𝑖
𝑡𝑖𝑗 Time of the health evaluation 𝑗 1,2,3,… (in days after admission)

for individual 𝑖
𝑇𝑡𝑖𝑗 Intensity of care provided per week number of minutes

observed at time 𝑡𝑖𝑗 for individual 𝑖 (between 0 and 10 080)
at their health evaluation 𝑗

𝑟𝑡𝑖𝑗 Care level derived from daily care 1,2,3,… ,12
observed at time 𝑡𝑖𝑗 for individual 𝑖 (categorical)
at their health evaluation 𝑗

Demographic variables

𝐴𝐺 Age at entry in the institution 65,66,67,… (in years)
𝐺𝐸 Gender female, male (binary)
Medical diagnoses

𝑁𝐷 Number of diagnoses 1,2,3,… ,9
𝐷1 Diagnosis of first importance mental, cerebrovascular, respiratory,

blood, nervous, osteoarticular,
endocrine, heart, tumors, other
(categorical)

𝐷𝑖 Diagnosis of 𝑘-th importance, see 𝐷1, plus “none”
𝑘 = 2,3,… ,9

Levels of dependence

𝐷𝑃 Dependence in ADL 1,2,3,… ,9 (categorical)
𝑃𝑀 Physical mobility limitations ”
𝑂𝑅 Orientation problems ”
𝑂𝐶 Occupational limitations ”
𝑆𝐼 Social integration limitations ”
Impairments of psychological and sensory functions

𝑉 𝑆 Vision adequate, mild, moderate, severe
𝐻𝑅 Hearing ”

Note: ∗Only two of the 16 available impairments of psychological and sensory functions ap-
pear in our model after the variable selection procedure (see Section 4.1).
from 1996 to 2018 and is collected using the EROS assessment tool, a 
methodology developed by Roussel and Tilquin (1993). In our dataset, 
all institutionalized individuals have no instances of leaving and reen-
tering the institution, thus, providing consistent tracking of their LTC 
pathways.

Our data captures several categories of variables: demographic in-
formation, medical diagnoses, levels of dependence, impairments of 
psychological and sensory functions, and the intensity of care. The lat-
ter quantifies the care provided to an individual over a one-week health 
evaluation period and is measured in minutes of care per week. Based 
on this variable and within the Swiss reimbursement scheme, we derive 
one of the twelve cost levels according to the daily care requirement, 
see Federal Department of Home Affairs (2016) and Section 2. Table 1
highlights the variables related to the pathway of elderly people receiv-
ing institutional LTC. Further, we borrow parts of the explanation of the 
other available variables from Bladt et al. (2023, Section 3.1) and She-
mendyuk and Wagner (2024, Section 2.1) and provide specific details 
where needed. Since we account for multiple health evaluations per in-
dividual, we provide more details on the intensity of care variable and 
its related reimbursement level. Furthermore, we introduce the observed 
time spent in a state.

Pathway variables. For each individual 𝑖 = 1, 2, … , 𝑀 , our data 
records their stay in institutional LTC from admission until death, if ap-
plicable, or the date of the data extraction, August 21st, 2018. Upon en-
try into the facility, every individual undergoes a detailed initial health 

evaluation but where the recording is interrupted by the end of the observation 
period. Thus, the duration until the next transition (time-to-event) remains un-
determined, and similarly, the health state at the time of data extraction is not 
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recorded.
screening lasting for one week, initializing the start of their care path. 
This initial screening, indexed as 𝑗 = 0 and time 𝑡 = 0, forms a baseline of 
health information, including medical diagnoses, levels of dependence, 
and impairments of psychological and sensory functions, alongside the 
intensity of care.

The subsequent health evaluations 𝑗 = 1, 2, … , 𝑛𝑖 of an individual 𝑖
are periodically conducted at random intervals, typically ranging from 
one to two years. These evaluations update each individual’s health in-
formation, reflecting changes in their care needs. Each health evaluation 
is indexed by 𝑗, denoting the evaluation sequence for an individual, and 
the specific time 𝑡𝑖𝑗 when the evaluation was conducted, recorded in 
days from the initial entry into the institution. The intensity of care 𝑇𝑡𝑖𝑗 , 
observed during these evaluations, is measured in minutes of care pro-
vided per week at each time point 𝑡𝑖𝑗 . Dividing 𝑇𝑡𝑖𝑗 by seven gives the 
daily intensity of care and indicates the level of care 𝑟𝑡𝑖𝑗 , correspond-
ing to one of the 12 ordered levels of the Swiss reimbursement scheme. 
These categories reflect the range of care needs from minimal assistance 
to extensive care requirements, with higher numbers indicating a greater 
need for daily care. By the end of the study, each individual’s care path 
is characterized by the number of health evaluations 𝑛𝑖 , including the 
initial screening at entry.

We update the intensity of care and the corresponding level of care 
throughout subsequent health evaluations while keeping the values 
from the initial assessment for the other covariates (see below). This 
approach limits the model’s complexity and enables a straightforward 
prediction of LTC costs based on the initial values of the covariates.

Demographic variables. The demographic characteristics of the in-
dividuals in our study are primarily defined by the age at entry into the 
institution (𝐴𝐺) and the gender (𝐺𝐸). The age at entry is computed 
based on the date of birth and the date of admission, reflecting the full 

years that have passed until the entry into institutional LTC. Our dataset 
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consists of a broad age range at entry, from 65 years, ensuring that all 
individuals are of retirement age or older, to the oldest recorded en-
try at 106 years. Gender is identified as a binary factor, distinguishing 
between “male” and “female” categories.

Medical diagnoses. Our dataset includes up to nine medical diag-
noses (𝐷1, 𝐷2, … , 𝐷9) for each individual, with 𝐷1 representing the 
primary condition and the others ranked by decreasing importance. If 
an individual has fewer than nine diagnoses, subsequent values are as-
signed as “none.” Diagnoses are encoded following the International 
Classification of Diseases (ICD) standards detailed by the World and Or-
ganization (2016), and aggregated further into general groups: mental, 
cerebrovascular, respiratory, blood, nervous, osteoarticular, endocrine, 
heart, tumors, and an “other” category for remaining conditions.4

Levels of dependence. Dependence levels are evaluated based on 
five dimensions to measure individuals’ varying degrees of physical and 
social limitations. These dimensions include limitations in ADL (de-
noted as 𝐷𝑃 ), physical mobility (𝑃𝑀), orientation (𝑂𝑅), occupational 
activities (𝑂𝐶), and social integration (𝑆𝐼). Following the guidelines 
established by the World and Organization (1980), these variables are 
recorded on a nine-point scale as ordered factors that categorize the 
severity of limitations from minimal to severe with levels 1 to 9, respec-
tively (also see Bladt et al., 2023, Sect. 3.1 and Table 2). Specifically, 
𝐷𝑃 evaluates the individuals’ independence in performing both basic 
ADL, such as personal hygiene, eating, and dressing, and instrumental 
ADL, like housekeeping and cooking. 𝑃𝑀 assesses the ability to move 
effectively within the environment, considering the use of mechanical 
aids but excluding assistance from others. 𝑂𝑅 measures cognitive func-
tions related to understanding and interacting with the environment. 
𝑂𝐶 assesses the capacity to engage in customary activities reflecting 
the individual’s age and gender within the institutional setting. Lastly, 
𝑆𝐼 looks at the individuals’ ability to participate in social activities and 
maintain social relationships, which are essential for life in an institu-
tional context.

Impairments of psychological and sensory functions. Health 
records from this group are detailed across 16 variables, each measured 
on an ordered four-point scale ranging from adequate to severe. These 
scales assess the severity of psychological and sensory function impair-
ments, incorporating any compensatory mechanisms the individual may 
use, such as glasses or medication for psychological impairments, and 
comparing performance against the normative standards of a healthy 
person of the same age and gender. The impairments evaluated in-
clude recent memory (𝑅𝑀), long-term memory (𝐿𝑀), thinking (𝑇𝐻), 
perception and attention (𝑃𝐴), consciousness and wakefulness (𝐶𝑊 ), 
orientation related to time, person, and space (𝑇𝑃 ), decision-making 
(𝐷𝑀), impulses (𝐼𝑀), will and motivation (𝑊𝑀), emotions includ-
ing feelings and mood (𝐸𝑀), behavior (𝐵𝐻), language (𝐿𝐺), sight 
(𝑉 𝑆), hearing (𝐻𝑅), making oneself understood (𝑆𝑈 ), and understand-
ing others (𝑂𝑈 ). A comprehensive overview of the original definitions 
in Roussel and Tilquin (1993), the descriptions of the levels associated 
with these variables and their impact on an individual’s health profile, 
is available in (Bladt et al., 2023, Sect. 3.1).

Heath profiles. This dataset was explored in Shemendyuk and Wag-
ner (2024), revealing that institutionalized elderly can be categorized 
into eight distinct health profiles. In Sections 4.3 and 4.4, we utilize 
them to examine the impact of covariates on LTC costs. The following 
qualitative summary presents the dominant characteristics of each pro-
file ordered from the largest to the smallest group:

1. Baseline health profile: This is the largest group, mainly comprising 
older women, characterized by minimal care needs and the longest 

4 For details on the definition of the disease groups and adaptations from 
ICD-9 to ICD-10, see Bladt et al. (2023, Footnotes 7 and 8) and Shemendyuk 
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median length of stay, suggesting relatively better health compared 
to other groups.

2. General severe conditions: Includes individuals with significant men-
tal health challenges and high levels of dependence, requiring con-
siderably more care and exhibiting shorter stays than the baseline 
profile.

3. Moderate-severe conditions with nervous diseases: Features the
youngest average age at entry and is distinguished by predominant 
nervous system pathologies, requiring care levels similar to the pre-
vious profile.

4. Moderate conditions with endocrine diseases: Unique for its high preva-
lence of endocrine disorders, this group displays moderate levels of 
dependence and healthcare needs, positioned between the baseline 
and more severe profiles.

5. Moderate conditions with cerebrovascular diseases: Characterized by 
notable cerebrovascular issues, this profile exhibits slightly higher 
dependence and healthcare needs than the endocrine profile.

6. Moderate conditions with respiratory diseases: Marked by significant 
respiratory issues, individuals in this group have moderate care 
needs and one of the shorter median stays.

7. Moderate conditions with blood diseases: This profile includes a no-
table presence of blood disorders associated with moderate care 
needs and a relatively short median length of stay.

8. Moderate conditions with tumor diseases: This is the smallest group 
characterized by a high prevalence of tumor-related diseases and 
the shortest median length of stay.

3.2. Descriptive statistics

In the following, we present descriptive statistics that detail the 
health pathways of individuals receiving institutional LTC. We identify 
the transitions between care states and note significant observations, 
such as the absence of individuals in the lowest care state and the preva-
lence of high levels of care before death. To manage the model’s com-
plexity and allow for robust estimates, we consolidate the various care 
states into broader categories. These categories range from care levels 
that indicate autonomy to those that indicate severe dependency. This 
classification allows us to apply the Aalen-Johansen estimator to evalu-
ate occupancy probabilities and associated costs over time. We stratify 
further by gender, medical diagnoses, and levels of dependence, and ex-
plore the implications of these factors on care progression and costs.

While the dataset contains the observations of 21 494 individ-
ual care paths (3 662, 17.0%, of which are right-censored), it counts 
54 386 health evaluations, including the initial health evaluation at 
entry. The complete observations contribute to 45 180 evaluations 
(83.1%), whereas the right-censored paths contribute to 9 206 eval-
uations (16.9%). Using successive health assessments, we establish 
transitions considering two consecutive known states 𝑆(𝑡𝑗 ) and 𝑆(𝑡𝑗+1)
for all individuals and their paths. For individuals still alive at the end 
of the study, the last observed state does not lead to another within 
the study period, so the last transition is marked as “RC,” indicating 
right-censored time-to-event. Table 2 reports the number of observed 
transitions between the care levels.

From Table 2, we observe that none of the individuals were in the 
lowest care state (𝑟 = 1), receiving less than 20 minutes of care per day. 
This suggests that individuals requiring minimal care either do not enter 
institutional LTC or their needs are evaluated beyond the lowest care 
level. Furthermore, state 𝑟 = 12 is the most prevalent final state before 
death, indicating significant care needs for individuals in the final stages 
of life.

Furthermore, the statistics in Table 2 reveal a trend in which indi-
viduals primarily transition to higher levels of care. For instance, from 
state 𝑟 = 3, part of the individuals remain on the same care level (891 
transitions), and a significant number progress to care states 𝑟 = 4 (722 
transitions) and 𝑟 = 5 (363 transitions). When focusing on state 𝑟 = 7, a 

significant number of people transition to states 𝑟 = 8 (448 transitions) 
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Table 2

Number of observed transitions between care levels and right-censoring counts.

. . . to
From . . . 1 2 3 4 5 6 7 8 9 10 11 12 Death RC

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 175 226 104 35 19 23 19 7 13 5 5 69 6
3 0 40 891 722 363 193 163 139 119 108 69 99 355 169
4 0 10 244 838 682 436 284 282 252 233 142 185 601 250
5 0 0 43 258 486 444 345 337 349 274 183 249 632 273
6 0 0 14 76 203 357 390 352 379 291 202 284 648 270
7 0 0 7 33 82 160 333 448 465 363 256 354 755 307
8 0 0 6 29 44 53 159 429 731 500 368 574 1 138 315
9 0 1 5 29 29 48 72 215 732 823 613 1 096 1 816 429
10 0 0 3 13 22 30 35 88 321 937 817 1 389 2 360 451
11 0 0 4 6 14 19 17 46 129 395 838 1 550 2 389 389
12 0 0 1 5 11 12 19 27 75 174 501 3 696 7 069 803

Note: The categories from 1 to 12 correspond to the care levels. The abbreviation “RC” stands for right-censored 
observations corresponding to individuals whose last observed state does not lead to another transition.
and 𝑟 = 9 (465 transitions), while only 282 individuals move to lower 
levels of care (𝑟 = 3, 4, 5 or 6). This observation is consistent with find-
ings from the extant literature, such as those by Liddle (1992), which 
suggest that the health conditions of individuals in LTC settings tend 
to deteriorate due to factors like inadequate resources and underesti-
mation of disabilities. Therefore, it is generally observed that the care 
needs of elderly individuals in institutional LTC increase over time, with 
few improvements resulting in mostly only a one-level decrease in care 
needs. However, worsening conditions can lead to a significant increase 
in care needs, up to two or three levels higher from one evaluation to 
another.

Absolute counts of right-censoring become more important in higher 
care levels, notably for transitions from states 𝑟 = 9, 10, 11 and 12, 
reaching 803 right-censored transitions for 𝑟 = 12. This observation un-
derscores the critical need for careful planning of LTC services, as a 
significant number of individuals continue to require intensive care (see, 
e.g., Burt et al., 2014). This also underlines the relevance of accounting 
for right-censoring in our model.

To simplify the analysis, avoid computational challenges, and obtain 
robust results when constructing a multi-state model with many states 
and limited data, we group the care levels. This is particularly impor-
tant in scenarios where the dataset may not support a highly detailed 
model without risking overfitting, especially when assessing the impact 
of covariates. Accordingly, we aggregate the care categories into four 
broader groups as depicted in Fig. 3: state A includes levels 𝑟 = 1, 2, 3, 
state B encompasses 𝑟 = 4, 5, 6, state C comprises 𝑟 = 7, 8, 9, and state D 
spans levels 𝑟 = 10, 11, 12. This approach aligns and is comparable with 
the categorization used in prior studies that assess dependency based on 
limitations in activities of daily living; see, e.g., Rickayzen and Walsh 
(2002); Biessy (2015); Fuino and Wagner (2018); Esquível et al. (2021). 
Here, state A is indicative of quasi-autonomy with less than one hour of 
care per day, B reflects mild dependency or 1-2 hours per day, and C 
and D mirror moderate and severe dependency levels, corresponding to 
2-3 and 3+ hours per day, respectively. The number of observed tran-
sitions for the aggregated groups and their respective proportions are 
presented in Table 3. Using the care costs defined in Equation (1), we 
consider the following average care costs in the four groups: CHF 19.20 
for state A, CHF 48 for state B, CHF 76.80 for state C, and CHF 105.60 
for state D.

To analyze transitions between aggregated care levels, we use the 
Aalen-Johansen estimator from the survival package in R, see Th-
erneau (2024). It allows us to assess the probability of occupying each 
care state over time and calculate the corresponding care costs, also ac-
counting for covariates. For an initial overview of the dataset, Fig. 4a 
presents Aalen-Johansen estimates across the four aggregated states. 
The occupancy probabilities demonstrate a tendency for individuals to 
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transition from lower states to more intensive care levels over time. The 
initial state distribution indicates that approximately 11.5% of the indi-
viduals entered institutional LTC in state A, while 32.9% began in state 
D. The rise in occupancy for state D at times around 26-28 months is 
probably due to the combined effect of people starting in lower states 
and developing higher dependency levels over time, and of those start-
ing in state D tending to have a higher death rate, indicating a pivotal 
moment for care provision in institutional LTC. Further, we present 
Aalen-Johansen estimates stratified by gender, first medical diagnosis, 
and levels of dependence. Table 5 in the Appendix presents the details 
in numbers as well as the results stratified by age at entry.

Gender. As shown by the Aalen-Johansen estimates stratified by 
gender in Fig. 4b, the probability of males in all care states generally 
decreases over time. For females, while the overall declining trend in 
state occupancy is similar, we observe a more pronounced bump in the 
probability of being in state D at durations of 26 to 28 months since 
admission. Upon admission, 39.3% of men are in the highest care state 
D compared to 26.2% in state C, denoting a 13.1% difference between 
these two states. In contrast, the distribution among females shows a 
more balanced initial allocation, with states B, C, and D each account-
ing for around 28-30%, indicating a relatively uniform spread in care 
requirements at the time of admission.

Fig. 5 presents the cumulative LTC costs for institutionalized elderly 
by gender. These costs are derived from the Aalen-Johansen estimates 
of state occupancy, applied in conjunction with Equation (7) to evalu-
ate the average cost. Here, for a female starting in states A, B, C, and 
D, with initial probabilities of 12.2%, 28.5%, 28.8%, and 30.5%, re-
spectively (see also Fig. 4b), the mean duration in each state is inferred 
from the Aalen-Johansen estimates. These durations are then multiplied 
by each state’s average daily costs. The cumulative costs for males are 
calculated in the same way, taking into account their initial state prob-
abilities of 9.5%, 25.0%, 26.2%, and 39.3% in the states from A to D, 
respectively. After one year, the cumulative costs are comparable for 
both genders, with CHF 22 841 for women and CHF 21 960 for men. 
However, as time progresses, we observe a steeper increase in costs for 
females than males; by the fifth year, a woman reaches cumulative costs 
of CHF 86 367 on average compared to CHF 67 635 for a man, and by 
the tenth year, the costs for females average at CHF 115 350 while males 
cost CHF 77 543. The majority of these expenses are accumulated from 
state D, which is the most resource-intensive state. This finding is con-
sistent with the trends observed in the Aalen-Johansen estimates from 
Fig. 4b, which indicated a quicker progression to higher dependency 
states and higher mortality among males. Indeed, the higher mortality 
in men significantly limits the costs when compared to women.

Medical diagnoses. Fig. 11 in the Appendix presents the Aalen-
Johansen estimates and the corresponding cumulative costs for individ-
uals with a particular primary diagnosis 𝐷1 at admission. Individuals 

with cerebrovascular and nervous conditions predominantly begin in 
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Fig. 3. Transitions of the underlying process in the model with aggregated care levels.

Table 3

Number of transitions between the aggregated care levels and right-censoring counts.

. . . to
From . . . A % B % C % D % Death % RC %

A 1 332 32.2 1 436 34.7 470 11.4 299 7.2 424 10.3 175 4.2
B 311 2.6 3 780 32.1 2 970 25.2 2 043 17.3 1 881 16.0 793 6.7
C 19 0.1 507 3.7 3 584 25.9 4 947 35.8 3 709 26.8 1 051 7.6
D 8 0.0 132 0.5 757 3.1 10 297 41.8 11 818 47.9 1 643 6.7

Note: States A, B, C, and D represent less than 1, 1-2, 2-3 and 3+ hours of daily care, respectively. The abbre-
viation “RC” stands for right-censoring. The shares sum up to 100% in each row.

Fig. 4. Aalen-Johansen estimates with 95% confidence intervals of state occupancy probabilities. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)
higher care states, with approximately 45% and 50% being allocated 
at admission in states C and D, respectively, reflecting the substantial 
care needs associated with these diagnoses. In contrast, patients with a 
mental diagnosis exhibit a more uniform distribution, with around 30% 
entering states B, C, and D, respectively, which indicates varied care 
needs at the admission. Patients with osteoarticular, heart, and other 
conditions show a tendency to start predominantly in state B, suggesting 
that these conditions are initially present with a relatively mild level of 
dependency. Notably, those with osteoarticular conditions display lower 
mortality rates, and the probability of being in state D remains relatively 
constant at about 20% for up to 56 months after admission. In contrast, 
individuals diagnosed with tumors have the highest mortality rate, with 
the median survival time being approximately 8 months.

In terms of cumulative costs, the highest average costs stem from pa-
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tients with mental and nervous diagnoses, which correlates with their 
higher needs for care and longer occupation times in state D. Costs for 
heart disease are more evenly spread across states B, C, and D, sug-
gesting a more balanced progression through the care levels. A similar 
pattern is observed in patients with osteoarticular diagnoses, who tend 
to reside in less demanding care states despite longer average lifespans, 
resulting in lower cumulative costs.

Levels of dependence. Figs. 12–16 in the Appendix present the 
stratified Aalen-Johansen estimates and cumulative costs across differ-
ent levels of dependence: dependence from others (𝐷𝑃 ), physical mo-
bility (𝑃𝑀), orientation (𝑂𝑅), occupation (𝑂𝐶), and social integration 
(𝑆𝐼). Lower levels in these dependence measures upon admission are re-
lated to lower levels of initial care. However, as time progresses, a shift 
occurs with individuals increasingly transitioning to higher care states 
C and D. Conversely, those entering LTC with high levels of dependence 

in any of the five variables predominantly occupy state D, displaying a 
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Note: The vertical dashed line indicates the median survival time.

Fig. 5. Cumulative 10-year LTC costs by gender based on Aalen-Johansen estimates.
generally consistent decline in survival curves, with notable exceptions. 
For instance, individuals with a physical mobility (𝑃𝑀) score of 7 and 
8 exhibit a significant increase in the probability of being in state D at 
approximately 26 months after admission. This pattern is also observ-
able in the levels 6 and 7 of the orientation (𝑂𝑅) and social integration 
(𝑆𝐼) variables. Financially, significant contributions to cumulative costs 
from state A are primarily seen in those with lower initial levels of de-
pendency. In contrast, for individuals with higher dependency levels, 
the costs are mainly concentrated in state D, with a lower but still no-
table portion stemming from state C.

4. Model application and results

When applying the multi-state model described in Section 2, we use 
the aggregated care levels denoted as states A, B, C, D, and Death as in-
troduced in Section 3.2. For model fitting, we use the msm package in 
R. It is specifically designed for handling panel data (Jackson, 2011). 
This package supports both numerical and categorical covariates; how-
ever, the inclusion of categorical variables significantly increases com-
putational demands due to a sharp rise in the number of parameters 
that need optimization as seen in Equation (5). Our dataset encom-
passes a large number of individuals, each with a comprehensive set 
of health evaluations and numerous variables previously identified as 
significant in determining care needs and duration of stay in institu-
tional LTC (Bladt et al., 2023; Shemendyuk and Wagner, 2024).5 To 
simplify the model fitting, we transform categorical covariates into nu-
merical formats where feasible. We then refine the model by selecting 
the most relevant variables in our multi-state context. Following these 
adjustments, the model is analyzed to examine the transition probabil-
ity matrices for both genders across different ages at entry. This allows 
us to estimate the average length of stay in each state and calculate the 
associated costs.

5 Demographic factors such as age and gender are known to affect the length 
of stay (Mathers, 1996; Deeg et al., 2002; Germain et al., 2016; Fong et al., 2017; 
Fuino and Wagner, 2020), while the pathologies, including conditions like mus-
culoskeletal and osteoarticular disorders, influence both stay duration and care 
intensity (Davidson et al., 1988; Pack, 2009; Makam et al., 2019). Additionally, 
levels of dependence and impairments in psychological and sensory functions 
are critical in determining care needs, with multimorbidity leading to increased 
care burdens (Guccione et al., 1994; Arrighi et al., 2010; Marengoni et al., 2011; 
Barnett et al., 2012; Koroukian et al., 2016; Albarrán et al., 2019; Fong, 2019; 
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Jennings et al., 2020).
4.1. Data transformation and variable selection

Data transformation. In this paper, we use the methodology de-
tailed in the study by Shemendyuk and Wagner (2024) for calculating 
pathology scores based on medical diagnoses. It was shown that these 
scores are critical for assessing the health profiles of the elderly within 
institutional LTC, which are indicative of the amount of care received 
and the length of stay. Similarly, the model uses age at entry, levels of 
dependence, and impairments of psychological and sensory functions 
as numerics. The exception is the gender variable, which remains bi-
nary.

In order to apply the multi-state model to the available data, it is 
necessary to transform the categorical medical diagnoses, ordered ac-
cording to importance, into a numerical format. In order to account 
for the full pathology profile and to maintain the importance ranking 
of each diagnosis, a score must be calculated for the set of aggregated 
disease groups: mental, cerebrovascular, nervous, osteoarticular, heart, 
tumors, and other. The scoring system is adapted as follows:

Score(𝑑) =
9∑
𝑖=1

(10 − 𝑖) ⋅ 𝕀(𝐷𝑖 = 𝑑).

Here, 𝑑 is one of the disease groups, 𝐷𝑖 is the medical diagnosis at 𝑖-th 
importance rank, and 𝕀(⋅) is the indicator function. This score is weighted 
by the rank of the diagnosis, with the first-ranked diagnosis contributing 
most significantly to the score, and the contribution decreases as the 
rank lowers.

Variable selection. In order to identify the most influential covari-
ates for our multi-state model, we begin with a null model constructed 
from the full panel data, which consists of observed transitions among 
the states without including any covariates. We then apply a stepwise 
forward procedure based on the Akaike Information Criterion (AIC, see 
Akaike 1974). In this iterative procedure, one covariate is introduced at 
a time to the existing model, with the AIC score calculated for each ad-
dition. The covariate that yields the greatest reduction in the AIC score 
is integrated into the model and built upon in the next iteration. This 
procedure is repeated until the inclusion of new covariates does not re-
sult in an improvement in the AIC score. The final model incorporates 
selected covariates, including age at entry 𝐴𝐺, gender 𝐺𝐸, number of 
diagnoses 𝑁𝐷, pathology scores for cerebrovascular, nervous, osteoar-
ticular, heart, and tumor diseases, as well as dependency in ADL 𝐷𝑃 , 
physical mobility 𝑃𝑀 , orientation 𝑂𝑅, and visual 𝑉 𝑆 and hearing im-

pairments 𝐻𝑅.
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Note: The solid and dashed lines correspond to the observed prevalence from the data and the expected prevalence from the model, 
respectively.

Fig. 6. Goodness of fit of the multi-state model for the reference profile.
4.2. Goodness of fit

In this section, we analyze the quality of the multi-state model fit, 
determining whether the model under- or overestimates the transition 
probabilities. This ensures that our interpretations of the results are ac-
curate. We introduce a reference profile representing the person with the 
most common values of the covariates in the dataset. That is, regarding 
the variables selected for the modeling, the reference profile is char-
acterized by an 87-year-old woman with nine medical diagnoses, the 
most important of which is in the mental category (𝐷1 = mental), fol-
lowed by eight pathologies 𝐷2, … , 𝐷9 from the “other” group. She is 
in quasi-permanent need of assistance (𝐷𝑃 = 7), with mobility limited 
to the institution (𝑃𝑀 = 6), and has moderate disorientation (𝑂𝑅 = 5). 
Her visual and hearing impairments are classified as “mild”. As a result, 
her score of mental diagnoses is 9, the “other” group leads to a score of 
36, while the scores of the remaining pathology groups are zero.

A first indication of the goodness of fit of a multi-state model can be 
obtained by estimating the observed numbers of individuals occupying 
a state over a series of times and plotting these against forecasts from the 
fitted model for each state. Fig. 6 shows the observed share of individu-
als and the forecasted prevalence rates across all states for an individual 
corresponding to the reference health profile. The initial probability of 
being at each state is determined from the data (see Section 3.2).

Across all states, the prevalence estimated with the model generally 
follows the trends of the observed data, indicating a reasonably good 
model fit. The discrepancies between observed and expected preva-
lences appear minimal in states B and C for all times, suggesting a good 
performance in predicting medium-level care states. However, there are 
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deviations in states A, D, and Death, which could indicate that the effects 
of certain variables are not fully captured by the model for these states. 
In particular, the model tends to strongly underestimate the prevalence 
of individuals in state A in the first five years after admission. This 
suggests that the model prematurely transitions individuals with the 
reference health profile to higher dependency states, whereas observa-
tions in the data tell that they continue to receive minimal care for much 
longer periods. This persistent underestimation implies an external fac-
tor not captured by the model, influencing the low demand for care. 
Conversely, in state D, the fit improves significantly after approximately 
26 months. However, in the first 26 months after admission, the model 
overestimates the number of people in this highly care-intensive state. 
This overestimation seems correlated with a slight underestimation in 
state C during the same period, suggesting a misclassification of individ-
uals into a higher care state. Additionally, the underestimation in state A 
could contribute to this early discrepancy in state D. Finally, the model 
slightly overestimates the probability of death, hinting at additional fac-
tors prolonging survival not accounted for in the current model.

It is important to consider that the aggregation of the twelve care 
levels into four broader categories may contribute to the observed dis-
crepancies between the model’s predictions and the observed data. Our 
decision to group the care levels into states A, B, C, and D was based 
on practical and clinical considerations, aggregating groups to intuitive 
and meaningful ranges of care hours per day. This categorization sim-
plifies the analysis and enhances the interpretability of the results for 
practitioners and policymakers. However, by grouping multiple care 
levels into broader states, we might be oversimplifying the underlying 
transition dynamics, potentially masking subtle differences in transition 
probabilities between individual care levels. This simplification could 

contribute to the underestimation of prevalence in state A and overesti-
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mation in state D, as the model may not fully capture the nuanced pro-
gression through the finer-grained care levels. To mitigate this potential 
misspecification, one could consider increasing the number of states to 
reflect the original twelve care levels. However, this approach presents 
significant challenges. Despite our dataset comprising 21 494 individ-
ual paths, expanding the number of states would substantially increase 
the number of parameters to estimate. This approach would require a 
much larger dataset to avoid overfitting and ensure statistical reliabil-
ity. Alternatively, advanced modeling techniques could be employed 
to better capture variability within the aggregated states without in-
creasing the number of states. Methods such as hidden Markov models 
(Rabiner, 1989), semi-Markov models with time-varying covariates (Tit-
man, 2011), and mixed-effects models (Pinheiro and Bates, 2000) can 
provide more flexible frameworks to reflect the underlying transition 
dynamics more accurately.

4.3. Results for the baseline health profile

To better understand the impact of covariates on care trajectories 
within institutional LTC settings, we analyze the transition probability 
matrices derived from Equation (3). These matrices reveal how the prob-
abilities of transitioning from one care state to another evolve over time. 
For categorical covariates, such as gender 𝐺𝐸, it is straightforward to 
visualize differences by comparing side-by-side plots of transition proba-
bilities for females and males. However, this direct comparison approach 
becomes more complex with numerical covariates, as it would require 
generating and comparing numerous plots across a spectrum of val-
ues for each variable. To avoid this complication and still capture the 
effects of covariates on care trajectories, we consider the health pro-
files of elderly individuals in institutional LTC described in Section 3.1. 
These profiles allow us to illustrate and analyze the expected progres-
sion through care states over time, offering insights into how specific 
covariates influence these transitions.

Baseline health profile. Individuals in this group represent the most 
common health profile among institutionalized elderly, typically requir-
ing minimal daily care and exhibiting the longest survival times (see the 
introduction of the health profiles in Section 3.1 and Shemendyuk and 
Wagner, 2024, Table 3). This group predominantly consists of females 
(77.5%). It is characterized by a median age at entry of 87 years, with 
six medical diagnoses in the median, and resulting median diagnosis 
scores of 5, 7, and 14 for osteoarticular, heart, and other groups, re-
spectively, while scores for other diseases are zero. The median levels 
of dependence are 𝐷𝑃 = 7, 𝑃𝑀 = 6, and 𝑂𝑅 = 5, with median visual 
and hearing impairments classified as “mild”.

Fig. 7a illustrates the fitted transition probabilities 𝑃𝑟𝑠(𝑡, 𝐳) over time 
𝑡 for females with covariates 𝐳 of the baseline health profile across the 
entry ages of 70, 80, and 90 years, stratified by the starting state 𝑟 (see 
the label on the right axis indicating the starting state A, B, C, or D in 
each row of graphs). Females entering the institution at age 70 are more 
likely to remain in a state with lower care longer than their older coun-
terparts. Notably, at age 90, females demonstrate a higher probability 
of transitioning directly from state A to state D, indicating a potentially 
rapid escalation in care needs. These patterns align with Freedman et 
al. (2016), who found that women accumulate more years in disabled 
states compared to men, further validating our results.

In contrast, Fig. 7b illustrates the transition probabilities for males. 
As the age at entry increases, males show a noticeable decline in the like-
lihood of either remaining in state A or transitioning to it. Conversely, 
their probability of moving to state D or experiencing death increases, 
particularly for those entering at higher ages. This finding aligns with 
research by Sherris and Wei (2021), who used multi-state models to re-
veal that men typically spend less time in dependent states than women, 
thus accruing lower long-term care costs overall.

The gender differential in disability transitions is particularly note-
worthy. Studies have shown that older women, while living longer than 
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men, spend a greater proportion of these additional years in disabled 
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states. For instance, Chan et al. (2011) demonstrated that females are 
more likely to remain in disabled states, supporting our findings from 
this model where females display longer durations in low-care states 
before transitioning to higher dependency levels. Similarly, Kingston et 
al. (2014) explored the male-female disability-survival paradox, where 
women, despite longer life expectancy, tend to experience higher rates 
of disability transitions due to diseases like cerebrovascular and respi-
ratory conditions.

Fig. 8a displays the average cumulative costs 𝐶𝑟(𝑡, 𝐳) by time 𝑡 for 
females with covariates 𝐳, stratified by age at entry for the four starting 
states 𝑟. In this case, the baseline health profile defines the covariates. 
Across all age groups, women demonstrate higher cumulative costs than 
their male counterparts (cf. Fig. 8b). The vertical dashed lines on the 
graphs represent the median survival times, denoted by 𝛿, that depend 
on the individual’s starting state 𝑟 and covariates 𝐳. This time marks the 
duration until the death probability for an individual reaches 50%. In 
these graphs, the lines are consistently positioned further to the right 
for females than for males, suggesting that women remain in the LTC 
system longer. This extended duration contributes to the overall higher 
costs, as women are more likely to be alive and hence accumulate higher 
expenses over time. The length of stay is consistently longer for younger 
individuals and for those admitted to an institution in a state with lower 
care needs. The prolonged period in state D for females significantly 
increases the cumulative costs, highlighting the impact of longevity on 
LTC costs.

Similarly, Fig. 8b displays the costs for males. The costs exhibit the 
greatest increase in the initial period following admission, with a pro-
nounced increase for those entering at age 70, indicating that younger 
males accumulate higher costs at a more rapid pace. The median sur-
vival times show that younger entrants reach the transition to death 
later, corresponding to their higher cumulative costs. Over time, costs 
associated with state D become more significant for all age groups, em-
phasizing the financial impact of higher dependency care. However, the 
costs for state A remain negligible, reflecting its minimal contribution 
to overall LTC costs for this profile.

4.4. Results for other health profiles

To study the effects of levels of dependence and medical diagnoses, 
we select four other health profiles (see Section 3.1) that offer the most 
significant insights or present unique characteristics. In the presentation 
of the results, we focus on the transition probabilities and associated 
costs for an 80-year-old individual, as shown in Figs. 9 and 10. Specif-
ically, we analyze the second and third most common profiles: general 
severe conditions (short: severe) and moderate-severe conditions with 
nervous diseases (short: nervous); the fifth most common profile: mod-
erate conditions with cerebrovascular diseases (short: cerebrovascular); 
and the eighth profile, noted for the shortest duration of stay: moderate 
conditions with tumor diseases (short: tumor). We omit the remaining 
three profiles, characterized by moderate conditions with endocrine, 
respiratory, and blood diseases from the detailed discussion. Indeed, 
these pathology groups are not explicitly included in our multi-state 
model, which limits the extent to which their specific impacts can be 
assessed.

General severe conditions. This profile is characterized by having 
six diagnoses (𝑁𝐷 = 6), with median values of 9, 6, and 13 for the 
mental, heart, and other pathology scores, respectively. The levels of 
dependence are the highest among all eight groups with 𝐷𝑃 = 8, 𝑃𝑀 =
8, and 𝑂𝑅 = 6. Finally, the visual and hearing impairments are classified 
as “mild”.

The transition probabilities for the severe profile in Fig. 9 (see the 
short-hand notation “severe”) present distinct patterns compared to the 
baseline health profile (see Fig. 7). Individuals transition to state D 
more rapidly and maintain a higher probability of staying in state D 
throughout the observed period. Both male and female individuals in the 

severe profile exhibit a higher and earlier transition to death, reflecting 
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Fig. 7. Transition probabilities for females and males in the baseline health profile.
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Note: Vertical dashed lines indicate the median survival times.
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Fig. 8. Average cumulative costs for females and males in the baseline health profile.
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Fig. 9. Transition probabilities for an 80-year-old elderly person in selected health profiles.

Note: See Fig. 8.

Fig. 10. Average costs for an 80-year-old elderly person in selected health profiles.
the greater health burden and higher levels of dependence. Moreover, 
the transition from states A and B to higher states occurs quicker in 
the severe profile than in the baseline. This reflects the significant im-
pact of more severe medical conditions and higher dependence levels 
compared to the generally healthier baseline group. From Fig. 10, we 
observe that females’ costs rise more steeply initially, especially from 
states C and D, reflecting higher early dependency, while males’ costs 
increase more gradually. This pattern indicates that in severe conditions, 
while females rapidly transition to high-dependency states, implying 
higher costs, males progress into these states at a slower rate. How-
ever, both genders eventually accumulate comparable costs by the end 
of the observed period compared to the baseline profile, highlighting 
the significant financial impact of high-dependency care over time.

Studies provide support for the connections described here related to 
severe conditions in LTC, transition probabilities, and associated costs. 
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Esquível et al. (2021) introduce a non-homogeneous continuous-time 
Markov chain model for LTC, considering different dependence levels 
and states of care, including severe conditions. The study shows how 
individuals with higher dependence levels transition more rapidly to se-
vere states, increasing the overall cost burden in LTC, which matches our 
observations. Similarly, Deshmukh (2012) focus on the financial impact 
of transitioning between care states in LTC settings, exploring how se-
vere conditions lead to higher costs over time due to extended stays in 
higher dependency states. Finally, Hill et al. (2021) emphasize the im-
portance of accounting for varying transition rates in multi-state models, 
highlighting that severe conditions can drastically alter transition prob-
abilities and cost projections.

Moderate-severe conditions with nervous diseases. This health 
profile is the third most prevalent and similar to the severe profile, yet 
it is distinguished by a notable prevalence of medical diagnoses from the 
nervous group. In particular, the median number of diagnoses is smaller 

by one (𝑁𝐷 = 5), followed by a redistribution among the pathology 
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scores (mental 8, heart 4, and other = 10), complemented by the median 
score of 9 in “nervous” pathologies. The levels of dependence and visual 
and hearing impairments are identical to those observed in the severe 
profile, with the exception of physical mobility, which is reduced by one 
unit (𝑃𝑀 = 7).

The nervous profile (short “nervous” in Figs. 9 and 10) exhibits 
longer median survival times across all states in comparison to the se-
vere profile. Upon initial admission in state D, transition probabilities to 
the lower state C are notably less frequent in the nervous profile, which 
contributes to prolonged stays in state D. This indicates a sustained 
higher level of dependency and increased care costs. Furthermore, the 
similar levels of dependence and impairment to those observed in the 
severe profile highlight the nuanced differences in care needs driven 
by nervous pathologies. The cumulative cost curves for the nervous 
and severe profiles demonstrate comparable behaviors during the ini-
tial months, indicating comparable initial care costs across the profiles. 
However, as time progresses, the nervous profile incurs higher cumula-
tive costs, especially in state D, where prolonged high-level care leads to 
increased expenditure. This sustained higher cost in state D aligns with 
the longer stay observed in the transition probability analysis, emphasiz-
ing the financial implications of managing chronic nervous conditions 
in LTC settings. In summary, while the initial cost impact is similar 
between the profiles, the long-term financial burden is greater for the 
nervous profile due to extended periods of high-dependency care.

These findings align with the literature indicating that nervous con-
ditions contribute to prolonged dependency and increased costs in LTC 
settings. Nihtilä et al. (2007) discuss the increased risk of institutional-
ization and higher costs for nervous system conditions. Turner-Stokes 
et al. (2008) emphasize the complexity of managing long-term neuro-
logical conditions and their associated costs, while Brandis and Stacom 
(2009) provide insights into the high levels of dependency and care costs 
in patients with multiple sclerosis, reflecting the observed patterns for 
the nervous health profile.

Moderate conditions with cerebrovascular diseases. Ranking as 
the fifth most prevalent, this profile typically encompasses individuals 
diagnosed with six medical conditions (𝑁𝐷 = 6). The median pathol-
ogy scores for these patients are 7, 6, and 9 for the mental, heart, and 
other scores, respectively, and notably 8 for the cerebrovascular score. 
The levels of dependence and visual and hearing impairments are one 
unit higher than those observed in the baseline group and mirror those 
observed in the nervous profile. In comparison, the cerebrovascular pro-
file has a lower median score for other pathologies at 9 against 13 in the 
severe profile, similar levels of mental and heart conditions, and a one-
unit lower score in physical mobility.

The transition probability graphs for the cerebrovascular profile 
(short: cerebrovascular) in Fig. 9 show a longer survival time compared 
to the severe profile, with individuals tending to remain longer in their 
initial state, particularly in states A and B. For both females and males 
in the cerebrovascular profile, transitions to higher dependency states 
and death take place later in time (broader curves), suggesting a slower 
progression of care needs. For females diagnosed with cerebrovascu-
lar conditions, the cost trajectories consistently accumulate higher costs 
over time compared to those with severe profiles. Notably, when starting 
from states B, C, or D, the costs align more closely with those observed 
in the nervous profile, indicating a substantial financial burden. Con-
versely, for males diagnosed with cerebrovascular conditions, the cost 
trajectories for those starting in states A and B reach slightly higher lev-
els after 10 years compared to those with severe profiles, suggesting a 
slight increase in LTC costs. However, males starting in states C and D 
exhibit almost identical cost trajectories across both profiles, indicating 
that severe conditions and cerebrovascular diseases impose a compa-
rable financial burden in these states. Overall, while cerebrovascular 
diseases tend to increase the cumulative costs of LTC, particularly for 
females, the impact on males is less pronounced and varies significantly 
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based on the initial state of care.
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These observations align with studies on cerebrovascular diseases in 
LTC settings. Tamiya et al. (2001) show that cerebrovascular diseases 
lead to increased care needs over time, supporting the pattern of pro-
longed stays and higher care costs observed in our analysis. Similarly, 
Xu et al. (2018) demonstrate that the burden of cerebrovascular disease 
predicts functional deterioration and increased LTC costs, consistent 
with the significant financial burden identified for the cerebrovascular 
profile. Additionally, Kalaria (2012) highlight the link between cere-
brovascular disease and cognitive impairment, contributing to greater 
care needs and longer stays in institutional settings, which reflects our 
findings for this profile.

Moderate conditions with tumor diseases. This group, identified 
as the least prevalent, is distinguished by a higher number of medical di-
agnoses (𝑁𝐷 = 8). Individuals in this category show median pathology 
scores of 4, 9, and 17 for heart, other, and tumor, respectively. Relative 
to the baseline profile, this group shares similar levels of dependence 
and sensory impairments but has slightly increased physical mobility 
by one level.

The tumor profile (short: tumor) demonstrates a remarkably higher 
mortality rate compared to other profiles. Particularly for those start-
ing in state C, there is a prolonged period of stability before an eventual 
shift to the death state, indicating sustained intensive care needs. An 
unusual pattern emerges in states A and B, where individuals are more 
likely to remain in state A or revert to it within the first year of admis-
sion, unlike other profiles, which typically show a progression to higher 
states. This evolution is specific to individuals with tumor diseases. The 
cost graphs for the tumor profile show relatively smaller costs, as me-
dian survival times do not surpass twelve months, particularly in states 
C and D. Compared to other health profiles, the tumor profile distinctly 
features rapid transitions to death and a higher likelihood of remaining 
in or returning to the lowest care states. These observations underscore 
the tumor profile’s distinct impact on LTC costs, where high initial care 
needs are offset by significantly reduced life expectancy.

These findings align with the literature on cancer care in LTC set-
tings. Burke et al. (2023) discuss the challenges of managing advanced 
cancer within LTC facilities, highlighting the rapid progression of dis-
ease and intensive care coordination needs, which reflect the rapid tran-
sitions observed in our tumor profile. Similarly, Lin (2017) discusses 
how cancer patients often require intensive initial care, but reduced life 
expectancy leads to distinct cost patterns, consistent with our findings. 
Lastly, Jacobs (2012) describe the long-term and late effects of cancer 
treatments, which often result in complex care needs and aggressive 
progression, corroborating the unique care trajectories observed for the 
tumor profile in LTC.

4.5. Summary and discussion of the results

Overview of results. Our study of institutionalized elderly across 
various health profiles has yielded detailed insights into the transitions 
and associated LTC costs. Notably, the model demonstrated a robust fit 
for the majority of conditions. However, it also indicated a potential 
poor estimation in states A, D, and death, which could affect the accu-
racy of transition and survival predictions.

Key findings emerged from analyzing different profiles: the baseline 
health profile, most prevalent among the elderly, indicated that females 
generally incur higher LTC costs due to their prolonged care needs. 
The two profiles with general severe conditions and moderate-severe 
conditions with nervous diseases highlighted rapid progression to high-
dependency states with considerable initial costs, particularly promi-
nent among females who transitioned quicker to these states. Females 
with cerebrovascular conditions often experience slower progression to 
higher dependency states but eventually accumulate higher costs, sug-
gesting that strategies specific to medical conditions might be necessary 
to manage care effectively. The profile characterized by tumor diseases 

profile was particularly notable for its rapid transitions to death, result-



A. Shemendyuk and J. Wagner

ing in lower overall costs due to shorter survival times, presenting a 
unique economic dynamic compared to other conditions.

These insights highlight the critical need for precise model fitting and 
the development of care strategies that account for age, gender, and spe-
cific health conditions. This understanding is crucial for policymakers 
and healthcare providers to optimize resource allocation and improve 
care outcomes for the aging population. It also underscores the neces-
sity of strategic interventions in managing severe conditions to alleviate 
their financial impacts.

Table 4 provides a breakdown of the average time 𝐸𝑟𝑠(𝛿, 𝐳) (see 
Equation (6)) an individual starting in state 𝑟 is expected to spend in 
the care state 𝑠, stratified by health profile determined by 𝐳 including 
gender and age, up to their median survival time 𝛿, excluding any dura-
tion spent in the state of death. Specifically, we present results showing 
the average time spent in each care state 𝐸𝑟𝐴, 𝐸𝑟𝐵, 𝐸𝑟𝐶 and 𝐸𝑟𝐷 and the 
total expected costs 𝐶𝑟 (see Equation (7)) up to the point where 50% of 
individuals are expected to have passed away. Aligning with previous 
analysis, we detail the results for individuals admitted at the age of 80. 
Summary data for 70 and 90-year-old admitted individuals are included 
as complementary age groups to offer insights into how care needs and 
associated costs vary with age. The “Prevalence” column reflects the 
distribution of individuals within each profile and gender in the over-
all dataset, providing information on the typicality of each scenario. 
This table is pivotal for understanding the care needs and financial im-
plications associated with different health profiles in institutional LTC, 
aiding in strategic planning and resource allocation to efficiently meet 
the needs.

Nursing resources. The columns 𝐸𝑟𝑠(𝛿) with 𝑠 = A, B, C, D in Ta-
ble 4 provide relevant metrics that directly impact nursing requirements 
in LTC settings. The numbers provide the average duration elderly in-
dividuals spend in the four care states before transitioning to death. 
Analyzing the length of stay for various health profiles reveals distinct 
patterns in managing care needs across both genders and the initial care 
states. For instance, in the baseline health profile, females admitted to 
the institution in state A experience longer durations across all states 
compared to males (e.g., 14.9 months for females and 14 for males in 
state A), which indicates a prolonged need for lighter care levels. In con-
trast, in the severe and nervous profiles, both genders exhibit shorter 
stays in lower states like A and B but consistently spend more time in 
the highest dependency state when starting in state D. For example, fe-
males in the nervous profile, on average, spend 𝐸DD(𝛿) = 17 months 
in state D, while males spend 11 months. In comparison, females and 
males in the healthy profile spend 15.5 and 10.2 months, respectively, 
in state D. Notably, individuals with cerebrovascular conditions exhibit 
a similar pattern to the baseline health profile. In particular, they have 
slightly lower lengths of stay in the lower care states and slightly longer 
durations in the higher-intensity states. Finally, the tumor-afflicted in-
dividuals, regardless of gender, exhibit significantly reduced 𝐸𝑟𝑠 across 
all states due to accelerated deterioration of health, with a distinctive 
tendency to spend the majority of their time in the state they entered 
the institutional LTC.

This complex nature of LTC demands a nuanced approach to nursing, 
especially in managing prolonged care in higher dependency states. The 
data highlights the extended periods in states C and D for conditions like 
cerebrovascular and nervous diseases, where patients often require in-
tense and sustained care. This situation is particularly critical for females 
who demonstrate a need for prolonged high-level care, underscoring the 
importance of gender-specific care strategies and resource allocation. 
To effectively address these diverse and complex care requirements, a 
well-trained nursing workforce is essential. Continuous education and 
specialized training are crucial to equip caregivers with the skills neces-
sary for managing these complex health profiles. Furthermore, the Swiss 
healthcare system is constrained by a deficit of qualified local caregivers 
(Zúñiga et al., 2010; Haller et al., 2015), which reflects the necessity for 
supportive immigration policies that facilitate the influx of competent 
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care providers (Nichols et al., 2010). These strategies are essential for 
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maintaining high standards of care, improving patient outcomes, and 
adequately responding to the evolving needs of an aging population in 
institutional LTC settings. By investing in educational advancement and 
incorporating a strategy that includes gender and profile-specific care 
planning, LTC facilities can optimize staffing and resource use, ensuring 
that the aging population’s dynamic demands are met effectively.

Infrastructure. The median survival times offer a good perspective 
on infrastructure needs in LTC settings, revealing how long individuals 
are expected to utilize care facilities. This data is essential for planning 
future care infrastructure and resource allocation within these institu-
tions. Across all health profiles and genders, the median survival times 
decrease significantly with increasing age at entry. For example, females 
in the baseline health profile starting in state A exhibit a median sur-
vival time of 93 months at age 70, which drops to 44 months at age 90. 
This illustrates a marked decline in longevity as age increases, reflecting 
greater immediacy in care needs and infrastructure planning for older 
entrants. Focusing on 𝐴𝐺 = 80, females typically demonstrate longer 
survival times across all profiles and starting states, which is particu-
larly pronounced in the baseline health, nervous, and cerebrovascular 
profiles. For instance, baseline health females starting in state A have 
a median survival time of 𝛿 = 64 months, compared to 49 months for 
their male counterparts. Similarly, females in the cerebrovascular pro-
file starting in state A have a median survival time of 60 months versus 
46 months for males, indicating a substantial gender disparity in care 
duration that could impact resource planning. This trend persists in the 
severe profile, showing smaller 𝛿, while maintaining the gender dispar-
ity. For example, females in the severe health profile starting in state 
D have a median survival time of 24 months, compared to 15 months 
for males. Tumor profiles present the most drastic differences, with ex-
tremely short durations, highlighting a distinct infrastructure challenge. 
Tumor-affected females starting in state D have a survival time of only 5 
months at age 80, significantly lower than other profiles. This disparity 
underscores the necessity for LTC facilities to adapt their infrastructure 
to accommodate not only the varying lengths of stay associated with 
different medical conditions, coming with a distinct prevalence but also 
the specific needs that arise from gender differences in survival rates.

The observed variations in median survival times have direct impli-
cations for LTC infrastructure planning. Facilities must ensure they have 
sufficient beds and appropriately configured rooms to accommodate the 
different types and durations of stay that can be anticipated for each 
health profile. For instance, the significantly shorter median survival 
times for older entrants across all profiles, such as tumor patients at age 
90 having median times as low as 2 months, suggest a need for flexible 
room allocations that can adapt to high turnover rates. Conversely, pro-
files with longer survival times, such as baseline health females entering 
at age 70 with survival times up to 93 months, require stable, long-term 
accommodations. Additionally, the data indicates a potential shift in 
care strategy, where individuals with longer predicted survival times 
and less intensive care needs, such as those in the baseline health pro-
file, could benefit from expanded home-care services. This shift could 
alleviate pressure on LTC institutions by reducing the demand for in-
facility resources, allowing these institutions to focus on patients with 
more severe conditions who require intensive, specialized care. These 
strategic infrastructure adjustments are crucial for optimizing care de-
livery, infrastructure, and resource allocation in response to the aging 
population’s diverse needs.

Basic health insurance. The analysis of expected costs at the me-
dian survival times provides insights into the financial implications of 
different health profiles on nursing costs covered by basic health in-
surance in Switzerland. Notably, females incur higher costs compared 
to males, reflecting longer survival times and potentially more inten-
sive care needs. For instance, nervous conditions in females aged 80 
show an average cost of 𝐶A(𝛿) = 91.2 thousand Swiss francs, signifi-
cantly higher than their male counterparts at 62.7 thousand. This trend 

persists across profiles and ages, with younger individuals (𝐴𝐺 = 70)
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Table 4

Time spent in care and care costs up to the median survival time by health profile, gender, and age.

𝐴𝐺 = 80 𝐴𝐺 = 70 𝐴𝐺 = 90

Initial Preva-
Gender state 𝑟 lence 𝐸𝑟A(𝛿) 𝐸𝑟B(𝛿) 𝐸𝑟C(𝛿) 𝐸𝑟D(𝛿) 𝛿 𝐶𝑟(𝛿) 𝛿 𝐶𝑟(𝛿) 𝛿𝑟 𝐶𝑟(𝛿)

Baseline health profile (26.3% of the data)
Female A (29.7) 14.9 16.6 9.9 8.8 64 84.3 93 120.3 44 58.7

B (46.0) 1.7 17.9 10.8 9.5 52 82.9 76 119.2 36 57.8
C (18.0) 0.3 4.1 12.9 11.5 39 73.2 57 107.4 26 48.9
D (6.4) 0.0 0.4 2.0 15.5 25 55.1 39 84.1 17 37.6

Male A (25.9) 14.0 12.9 6.6 4.7 49 57.3 69 79.3 34 40.3
B (47.6) 1.1 14.5 7.4 5.1 37 55.7 53 78.8 25 38.1
C (18.5) 0.1 2.9 9.6 6.6 26 47.7 38 70.2 18 32.6
D (8.1) 0.0 0.2 1.0 10.2 16 35.5 24 52.8 11 24.3

Profile: severe (19.0% of the data)
Female A (0.5) 9.1 12.5 10.4 8.5 52 75.3 75 107.6 36 52.3

B (13.7) 0.4 13.4 11.4 9.4 45 76.8 66 112.1 31 52.8
C (37.3) 0.0 1.3 13.4 11.2 35 69.3 50 100.8 24 46.9
D (48.5) 0.0 0.1 1.2 16.0 24 54.2 36 80.8 16 36.4

Male A (0.2) 8.8 10.0 7.0 4.4 39 50.0 55 69.8 27 34.9
B (10.4) 0.3 11.2 8.0 5.0 32 51.2 46 73.5 22 35.2
C (34.5) 0.0 0.9 10.0 6.1 23 44.5 34 66.5 16 30.2
D (54.9) 0.0 0.0 0.6 10.2 15 34.2 23 51.8 10 23.0

Profile: nervous (18.2% of the data)
Female A (3.2) 10.3 13.4 12.4 11.4 60 91.2 86 129.6 42 64.1

B (18.9) 0.3 14.1 13.2 12.1 51 90.8 74 131.2 36 63.8
C (37.1) 0.0 0.9 14.9 13.7 39 80.2 56 116.3 27 54.9
D (40.8) 0.0 0.0 0.9 17.0 25 57.0 38 85.8 17 38.7

Male A (1.8) 10.1 11.1 8.8 6.2 46 62.7 65 87.6 32 43.9
B (14.8) 0.2 12.1 9.7 6.8 37 62.2 53 88.8 26 43.7
C (29.8) 0.0 0.7 11.7 8.0 27 54.1 39 78.9 19 37.4
D (53.6) 0.0 0.0 0.4 11.0 16 36.6 24 54.5 11 25.0

Profile: cerebrovascular (12.8% of the data)
Female A (6.8) 14.3 13.4 10.5 8.9 60 81.2 86 115.4 42 57.0

B (20.8) 0.5 14.8 11.8 9.8 48 81.1 70 117.9 33 55.6
C (27.5) 0.0 1.0 14.0 11.6 36 71.7 52 105.3 24 47.4
D (44.9) 0.0 0.1 1.2 17.4 26 58.6 38 85.7 17 38.8

Male A (5.3) 13.7 10.6 7.0 4.6 46 54.5 65 76.2 32 38.1
B (17.1) 0.3 12.3 8.2 5.1 34 53.8 49 77.4 23 36.5
C (23.9) 0.0 0.7 10.6 6.4 24 46.4 35 68.8 16 30.5
D (53.7) 0.0 0.0 0.5 11.0 16 36.6 24 54.5 11 25.1

Profile: tumor (1.1% of the data)
Female A (8.2) 3.6 3.5 4.1 1.2 16 20.7 23 28.8 11 14.7

B (30.3) 0.6 3.5 4.2 1.2 13 19.2 18 25.9 9 13.7
C (26.2) 0.2 1.2 5.9 1.9 12 21.5 17 30.5 9 15.8
D (35.2) 0.0 0.0 0.4 3.1 5 11.0 8 17.0 3 6.9

Male A (3.6) 3.3 2.6 2.6 0.6 12 13.8 16 17.9 8 9.5
B (30.4) 0.4 2.7 2.7 0.6 9 12.4 12 16.2 6 8.6
C (27.7) 0.1 0.8 4.2 1.0 8 14.3 12 21.0 6 10.5
D (38.4) 0.0 0.0 0.2 2.0 3 6.8 5 10.8 2 4.5

Notes: The column “Prevalence” indicates the distribution in % per profile and per gender. The median survival 
time 𝛿 indicates the time in months where the probability of death reaches 50%. The average times of stay 𝐸𝑟𝑠

and the total costs 𝐶 are calculated with regard to the time 𝛿 and expressed in months and kCHF, respectively.
𝑟

incurring higher costs due to longer survival periods. Comparatively, tu-
mor profiles exhibit much lower costs across all ages due to significantly 
shorter survival times, emphasizing the rapid progression to death. For 
example, tumor-affected females aged 80 have costs of 𝐶A(𝛿) = 20.7
thousand, which is considerably lower than those with cerebrovascular 
conditions at 81.2 thousand. Across various health profiles, a clear pat-
tern emerges where the costs associated with initial higher care states 
(such as states C and D) tend to be lower compared to those starting 
from lower states like A and B, particularly for those entering at older 
ages (𝐴𝐺 = 90). This trend is largely attributed to increased mortality 
rates in higher initial states, shortening the duration of care and thus re-
ducing cumulative costs. However, for individuals entering at a younger 
age (𝐴𝐺 = 70), this pattern shifts notably for severe, nervous, and cere-
brovascular profiles, where the highest costs are often recorded for those 
starting in state B, suggesting prolonged care durations before reaching 
higher mortality states. In contrast, the tumor profile uniquely shows the 
highest costs from state C, indicating specific care dynamics associated 
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with this condition.
Our results provide insights for basic health insurers and policymak-
ers in efficiently planning and allocating resources to meet the diverse 
needs of the aging population. By understanding the expected costs 
linked to various health profiles and entry states, policies and pricing 
models can be refined to reflect the true financial risk associated with 
different levels of care. Additionally, this data allows policymakers to 
better forecast LTC funding requirements and develop strategies to en-
sure that essential care services are sustainable and accessible. Such 
detailed cost analysis aids in the financial planning of public health ser-
vices, ensuring that funds are utilized effectively. Furthermore, it can 
support the optimization of private insurance packages.

Private insurance. Private insurance plays a pivotal role in sup-
plementing the shortcomings of basic health insurance, particularly in 
the coverage of out-of-pocket expenses, including lodging, meals, and 
specialized medications that are not reimbursed under social insurance 
policies. The median survival times, 𝛿, derived from our model, pro-
vide crucial insights for private insurers, as they can use these durations 
to estimate costs associated with per diems, lodging, and meals over 

the expected period an individual will require LTC. This approach al-
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lows insurers to assess the premiums required upfront to cover these 
ongoing costs effectively. Additionally, the average lengths of stay in 
each care state, 𝐸𝑟𝑠, facilitate the development of personalized insur-
ance products tailored to the intensity of care an individual is likely to 
require. This personalized approach not only ensures that individuals 
receive the appropriate level of support and care but also helps insurers 
manage risks and resources more effectively. In the case of LTC insur-
ance products with a savings component proposed to individuals before 
they require any care, the prevalence of different health profiles by gen-
der highlighted in Table 4 provides insurers basic insight for weighting 
different levels of care demand. In addition, our results enable, for ex-
ample, the pricing of insurance products that can be made available 
to elderly individuals at the moment they are admitted to an institu-
tion. Using the age, gender, and health care profile of a person at entry, 
the insurer could offer to cover the expected out-of-pocket expenses un-
til death against a lump-sum payment. We believe that our approach 
enhances the base of knowledge for private insurers to provide robust fi-
nancial solutions that support individuals throughout their time in LTC, 
ensuring that all necessary expenses are covered comprehensively.

5. Conclusions

In this study, we conducted a comprehensive analysis of a private 
dataset from nursing homes in the Canton of Geneva, Switzerland, 
encompassing 21 494 elderly individuals aged 65 or older. Our re-
search utilized a multi-state Markov model to assess transitions between 
grouped care states – ranging from quasi-autonomy to severe depen-
dency – within the Swiss social health insurance framework. By system-
atically grouping the care levels and focusing on significant variables 
at admission, such as demographic information, medical diagnoses, and 
levels of dependence, we have identified key patterns and trends in the 
evolution of care needs over time. This approach not only facilitated 
a clearer understanding of the longitudinal care dynamics, but also al-
lowed us to model the long-term costs associated with different levels 
of care required by the elderly in institutional LTC settings.

We aggregated the twelve care levels of the Swiss system into four 
broader categories, ranging from minimal assistance to severe depen-
dency. This classification enables comparison with other studies and 
provides a clear framework for assessing the impact of various health 
conditions on LTC trajectories. Utilizing common health profiles among 
institutionalized elderly allowed us to analyze the influence of demo-
graphic and medical covariates on transition probabilities and associ-
ated costs. The baseline health profile, which is the most prevalent, 
incurs higher LTC costs due to extended care durations. In contrast, 
profiles characterized by severe conditions and nervous diseases show 
a rapid progression to higher dependency states, resulting in consider-
able initial costs. Particularly, females in these profiles transition more 
quickly to high-dependency states, highlighting the need for targeted 
care strategies that consider both medical and demographic factors. 
Individuals with cerebrovascular conditions tend to have a slower pro-
gression to higher care states but eventually accumulate higher costs, 
suggesting that prolonged care interventions are necessary. Conversely, 
the tumor profile is marked by rapid transitions to death, resulting in 
lower overall costs due to shorter survival times. These distinct patterns 
emphasize the importance of adapting care and financial planning to 
the specific health profiles of elderly individuals in institutional LTC 
settings.

The integration of demographic information, medical diagnoses, and 
levels of dependence at the point of admission enables the model to pro-
vide insights for the planning of care and infrastructure, as well as the 
design of insurance products, addressing both public and private sectors. 
Analysis of health profiles revealed a nuanced variation in care needs, 
depending on the initial state of both genders at different ages. This vari-
ation in care duration underscores the necessity for advanced nursing 
strategies and gender-specific care planning. Additionally, the data on 
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median survival times is crucial for predicting infrastructure needs, in-
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dicating a requirement for facilities to adapt to varying lengths of stay 
and high turnover rates, particularly for older entrants and patients with 
rapidly progressing conditions like tumors. The analysis relevant to basic 
health insurance demonstrates that costs are influenced by the patient’s 
health profile and age at entry, with women generally incurring higher 
costs due to longer survival times. Conversely, those in more intensive 
initial care states accumulate lower costs due to decreased care dura-
tions. Private insurers can utilize the insights into projected median 
survival times and expected care state durations to develop insurance 
products that accurately reflect the costs and care needs of LTC patients. 
This enables the provision of comprehensive solutions that meet all nec-
essary expenses not covered by the basic insurance scheme.

While our study offers valuable insights through the use of a multi-
state Markov model, it lacks a comparison between the estimated costs 
derived from the model and the actual costs documented in real data. 
Such a comparison could enhance the validity of our findings by align-
ing the obtained predictions with practical outcomes. Additionally, our 
analysis is constrained by the nature of our panel data, which captures 
the health states only at discrete intervals. This limitation prevents us 
from precisely determining the exact times of transitions between care 
states, leading to potential discrepancies in the fit of our model. Further-
more, our decision to aggregate the twelve care levels into four broader 
categories, though based on practical and clinical considerations to sim-
plify the analysis and enhance interpretability, may contribute to these 
discrepancies. While each category corresponds to intuitive ranges of 
care hours per day, this grouping might oversimplify the underlying 
transition dynamics, potentially masking subtle differences in transition 
probabilities between individual care levels. Moreover, the study’s re-
liance on fixed covariates at the point of admission restricts our ability 
to account for changes in an individual’s condition over time, poten-
tially skewing the assessment of transition probabilities and cost im-
plications. Assuming the transitions occur at the time of observations, 
a semi-Markov approach that allows the transition probabilities to de-
pend not only on the current state but also on the duration of stay in 
that state and changing covariates could potentially address this issue.

Future research could significantly benefit from incorporating time-
varying covariates into the models used to predict transitions and costs 
in institutional LTC. Allowing variables such as health status, level of de-
pendence, and medical conditions to change over time, would offer more 
accurate predictions. Additionally, exploring joint modeling approaches 
where the evolution of care intensity directly influences survival proba-
bilities could provide a more dynamic understanding of the development 
of LTC needs. Such models could uncover the interdependencies be-
tween care requirements and survival, leading to more effective care 
planning and potentially improving patient outcomes by allowing for 
more personalized and timely interventions in care strategies.
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Appendix A

Table 5

Prevalence of states at different times across selected covariates derived from Aalen-Johansen estimator.

Entry After 1 year After 5 years After 10 years
Variable State 𝑀 % �̂� 𝑀 % �̂� 𝑀 % �̂� 𝑀 % �̂�

Age at entry 𝐴𝐺

65-69 A 80 0.4 12.7 73 0.3 11.6 32 0.1 6.0 15 0.1 3.5
B 203 0.9 32.3 174 0.8 28.6 70 0.3 13.9 30 0.1 8.3
C 144 0.7 22.9 139 0.6 22.9 63 0.3 13.7 23 0.1 5.9
D 201 0.9 32.0 152 0.7 25.1 105 0.5 21.2 38 0.2 11.0

70-79 A 457 2.1 11.9 394 1.8 10.6 143 0.7 4.2 42 0.2 1.3
B 989 4.6 25.8 793 3.7 21.6 228 1.1 7.2 59 0.3 2.1
C 1022 4.8 26.7 865 4.0 23.6 280 1.3 9.3 77 0.4 3.0
D 1358 6.3 35.5 1115 5.2 30.2 667 3.1 22.0 206 1.0 8.7

80-89 A 1399 6.5 12.5 1196 5.6 10.9 287 1.3 2.9 39 0.2 0.4
B 3112 14.5 27.8 2438 11.3 22.6 497 2.3 5.5 70 0.3 0.9
C 3184 14.8 28.4 2604 12.1 24.5 675 3.1 7.6 88 0.4 1.2
D 3505 16.3 31.3 2668 12.4 25.0 1416 6.6 16.3 266 1.2 3.8

90-99 A 527 2.5 9.3 413 1.9 7.5 38 0.2 0.8 2 0.0 0.0
B 1602 7.5 28.2 1162 5.4 21.6 127 0.6 2.9 9 0.0 0.2
C 1640 7.6 28.9 1179 5.5 22.1 188 0.9 4.4 6 0.0 0.2
D 1915 8.9 33.7 1310 6.1 24.4 402 1.9 9.5 25 0.1 0.8

100+ A 3 0.0 1.9 2 0.0 1.9 0 0.0 0.0 0 0.0 0.0
B 17 0.1 10.9 14 0.1 9.0 1 0.0 0.7 0 0.0 0.0
C 46 0.2 29.5 23 0.1 15.7 0 0.0 0.0 0 0.0 0.0
D 90 0.4 57.7 50 0.2 33.3 4 0.0 3.1 0 0.0 0.0

Gender 𝐺𝐸

Female A 1905 8.9 12.2 1623 7.6 10.6 394 1.8 2.8 76 0.4 0.6
B 4446 20.7 28.5 3478 16.2 23.3 737 3.4 5.8 140 0.7 1.3
C 4490 20.9 28.8 3676 17.1 24.8 1014 4.7 8.3 167 0.8 1.6
D 4747 22.1 30.5 3798 17.7 25.4 2163 10.1 17.8 465 2.2 4.9

Male A 561 2.6 9.5 455 2.1 7.9 106 0.5 2.1 22 0.1 0.5
B 1477 6.9 25.0 1103 5.1 19.5 186 0.9 4.0 28 0.1 0.8
C 1546 7.2 26.2 1134 5.3 20.5 192 0.9 4.4 27 0.1 0.8
D 2322 10.8 39.3 1497 7.0 26.8 431 2.0 9.9 70 0.3 2.2

Primary diagnosis 𝐷1
Mental A 763 3.5 10.3 632 2.9 8.7 149 0.7 2.3 29 0.1 0.5

B 2104 9.8 28.4 1669 7.8 23.6 341 1.6 5.8 71 0.3 1.4
C 2212 10.3 29.9 1822 8.5 25.9 483 2.2 8.6 77 0.4 1.8
D 2324 10.8 31.4 1843 8.6 26.1 968 4.5 17.4 220 1.0 5.2

Cerebro- A 75 0.3 6.0 61 0.3 5.0 24 0.1 2.2 2 0.0 0.2
vascular B 221 1.0 17.8 171 0.8 14.6 26 0.1 3.0 8 0.0 0.9

C 305 1.4 24.5 246 1.1 20.5 58 0.3 5.8 14 0.1 1.6
D 644 3.0 51.7 470 2.2 39.6 184 0.9 18.9 42 0.2 5.6

Respi- A 49 0.2 14.4 35 0.2 10.6 7 0.0 2.3 0 0.0 0.0
ratory B 103 0.5 30.2 77 0.4 23.8 11 0.1 3.7 1 0.0 0.4

C 81 0.4 23.8 54 0.3 16.6 13 0.1 4.9 1 0.0 0.4
D 108 0.5 31.7 63 0.3 19.0 15 0.1 5.4 4 0.0 1.6

Blood A 12 0.1 14.5 10 0.0 12.0 3 0.0 4.4 0 0.0 0.0
B 27 0.1 32.5 18 0.1 21.7 0 0.0 1.6 0 0.0 0.0
C 21 0.1 25.3 15 0.1 18.9 1 0.0 1.6 0 0.0 0.0
D 23 0.1 27.7 14 0.1 17.0 6 0.0 9.4 1 0.0 1.7

Nervous A 152 0.7 3.9 112 0.5 2.9 20 0.1 0.5 8 0.0 0.3
B 694 3.2 17.7 550 2.6 14.7 67 0.3 2.1 8 0.0 0.4
C 1370 6.4 34.9 1100 5.1 30.2 174 0.8 5.8 19 0.1 0.7
D 1706 7.9 43.5 1320 6.1 35.6 652 3.0 21.9 97 0.5 4.1

Osteo- A 333 1.5 21.5 297 1.4 19.4 88 0.4 6.2 16 0.1 1.2
articular B 506 2.4 32.7 398 1.9 26.9 101 0.5 7.7 21 0.1 1.7

C 349 1.6 22.5 299 1.4 19.8 112 0.5 8.7 28 0.1 2.4
D 360 1.7 23.3 312 1.5 20.7 189 0.9 14.7 39 0.2 3.5

Endo- A 78 0.4 12.1 62 0.3 9.9 15 0.1 2.8 3 0.0 0.6
crine B 221 1.0 34.4 178 0.8 28.8 35 0.2 6.3 6 0.0 1.4

C 160 0.7 24.9 134 0.6 21.4 41 0.2 7.7 7 0.0 1.8
D 184 0.9 28.6 137 0.6 22.1 66 0.3 12.0 15 0.1 3.8

Heart A 438 2.0 23.8 377 1.8 21.1 85 0.4 5.2 17 0.1 1.1
B 647 3.0 35.2 478 2.2 27.1 126 0.6 8.3 14 0.1 1.0
C 418 1.9 22.8 318 1.5 17.8 99 0.5 6.5 15 0.1 1.1
D 334 1.6 18.2 231 1.1 13.1 134 0.6 9.0 42 0.2 3.3

Tumors A 34 0.2 8.9 26 0.1 7.0 4 0.0 1.3 0 0.0 0.3
B 116 0.5 30.3 55 0.3 16.0 3 0.0 1.5 0 0.0 0.0
C 82 0.4 21.4 38 0.2 10.4 5 0.0 1.7 0 0.0 0.0
D 151 0.7 39.4 35 0.2 9.5 6 0.0 1.9 2 0.0 0.7

(continued on next page)
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Table 5 (continued)

Entry After 1 year After 5 years After 10 years
Variable State 𝑀 % �̂� 𝑀 % �̂� 𝑀 % �̂� 𝑀 % �̂�

Other A 532 2.5 13.0 466 2.2 11.7 105 0.5 2.9 23 0.1 0.7
B 1284 6.0 31.4 987 4.6 25.1 213 1.0 6.5 39 0.2 1.4
C 1038 4.8 25.4 784 3.6 20.3 220 1.0 6.9 33 0.2 1.2
D 1235 5.7 30.2 870 4.0 22.2 374 1.7 12.0 73 0.3 3.1

Dependence in ADL 𝐷𝑃

1-6 A 1873 8.7 52.1 1570 7.3 44.9 356 1.7 11.6 70 0.3 2.6
B 1661 7.7 46.2 1341 6.2 39.6 410 1.9 15.2 93 0.4 4.0
C 56 0.3 1.6 165 0.8 4.9 245 1.1 9.3 63 0.3 2.9
D 2 0.0 0.1 97 0.5 2.8 270 1.3 10.3 106 0.5 5.3

7 A 593 2.8 6.8 507 2.4 5.8 144 0.7 1.7 28 0.1 0.4
B 4165 19.4 47.7 3146 14.6 37.3 488 2.3 6.5 74 0.3 1.1
C 3319 15.4 38.0 2684 12.5 32.4 730 3.4 10.4 101 0.5 1.7
D 661 3.1 7.6 877 4.1 10.5 1020 4.7 15.0 218 1.0 3.9

8 A 0 0.0 0.0 1 0.0 0.0 0 0.0 0.0 0 0.0 0.0
B 97 0.5 1.3 93 0.4 1.3 25 0.1 0.4 1 0.0 0.0
C 2651 12.3 35.1 1953 9.1 27.2 228 1.1 3.9 29 0.1 0.6
D 4814 22.4 63.7 3398 15.8 47.2 1025 4.8 17.8 155 0.7 3.7

9 A 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
B 0 0.0 0.0 1 0.0 0.1 0 0.0 0.1 0 0.0 0.1
C 10 0.0 0.6 8 0.0 0.5 3 0.0 0.2 1 0.0 0.1
D 1592 7.4 99.4 923 4.3 59.7 279 1.3 20.1 56 0.3 4.3

Physical mobility limitations 𝑃𝑀

1-5 A 1266 5.9 57.0 1107 5.2 50.6 309 1.4 15.3 62 0.3 3.4
B 852 4.0 38.4 744 3.5 34.6 326 1.5 17.2 87 0.4 5.4
C 87 0.4 3.9 133 0.6 6.2 175 0.8 9.4 55 0.3 3.6
D 15 0.1 0.7 56 0.3 2.6 187 0.9 10.0 95 0.4 5.9

6 A 1110 5.2 17.7 894 4.2 14.8 171 0.8 3.2 32 0.1 0.7
B 3119 14.5 49.8 2393 11.1 39.7 442 2.1 8.6 64 0.3 1.4
C 1591 7.4 25.4 1395 6.5 23.6 495 2.3 10.0 69 0.3 1.7
D 442 2.1 7.1 587 2.7 10.0 731 3.4 15.1 146 0.7 4.3

7 A 79 0.4 1.4 67 0.3 1.2 16 0.1 0.3 0 0.0 0.0
B 1572 7.3 28.8 1190 5.5 22.9 122 0.6 3.0 16 0.1 0.5
C 2586 12.0 47.4 2017 9.4 38.7 330 1.5 8.0 39 0.2 1.2
D 1217 5.7 22.3 1066 5.0 20.5 660 3.1 16.5 104 0.5 3.4

8 A 11 0.1 0.5 9 0.0 0.4 4 0.0 0.2 3 0.0 0.2
B 377 1.8 17.3 243 1.1 12.3 27 0.1 1.8 1 0.0 0.1
C 1121 5.2 51.5 770 3.6 38.2 99 0.5 6.8 10 0.0 0.8
D 667 3.1 30.7 519 2.4 25.3 196 0.9 13.4 28 0.1 2.5

9 A 0 0.0 0.0 1 0.0 0.0 0 0.0 0.0 1 0.0 0.0
B 3 0.0 0.1 11 0.1 0.2 6 0.0 0.1 0 0.0 0.0
C 651 3.0 12.1 495 2.3 9.6 107 0.5 2.4 21 0.1 0.5
D 4728 22.0 87.8 3067 14.3 59.4 820 3.8 18.7 162 0.8 4.3

Orientation problems 𝑂𝑅

1-4 A 1574 7.3 45.1 1379 6.4 40.4 378 1.8 11.9 79 0.4 2.7
B 1338 6.2 38.4 1080 5.0 32.1 407 1.9 13.5 98 0.5 3.6
C 377 1.8 10.8 394 1.8 11.8 266 1.2 8.9 78 0.4 2.9
D 199 0.9 5.7 225 1.0 6.7 306 1.4 10.4 119 0.6 4.6

5 A 876 4.1 11.7 684 3.2 9.4 117 0.5 1.9 18 0.1 0.3
B 3417 15.9 45.8 2588 12.0 36.4 428 2.0 7.4 57 0.3 1.2
C 1818 8.5 24.4 1483 6.9 20.8 509 2.4 9.1 74 0.3 1.8
D 1345 6.3 18.0 1147 5.3 16.1 767 3.6 13.6 154 0.7 3.8

6 A 16 0.1 0.3 15 0.1 0.3 5 0.0 0.1 1 0.0 0.0
B 1059 4.9 18.3 818 3.8 14.8 72 0.3 1.6 12 0.1 0.4
C 2508 11.7 43.3 1894 8.8 34.9 280 1.3 6.6 21 0.1 0.6
D 2212 10.3 38.2 1605 7.5 29.4 671 3.1 16.3 115 0.5 4.0

7 A 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
B 103 0.5 4.3 88 0.4 3.7 16 0.1 0.7 1 0.0 0.0
C 912 4.2 38.4 712 3.3 31.1 118 0.5 5.9 14 0.1 0.8
D 1359 6.3 57.2 977 4.5 42.5 376 1.7 19.4 68 0.3 4.2

8-9 A 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
B 6 0.0 0.3 7 0.0 0.3 0 0.0 0.0 0 0.0 0.0
C 421 2.0 17.7 327 1.5 14.4 33 0.2 1.7 7 0.0 0.4
D 1954 9.1 82.1 1341 6.2 58.6 474 2.2 24.6 79 0.4 4.7

Occupational limitations 𝑂𝐶

1-5 A 1139 5.3 56.6 1004 4.7 50.6 286 1.3 15.3 65 0.3 3.7
B 743 3.5 36.9 648 3.0 33.0 272 1.3 15.2 79 0.4 4.8
C 100 0.5 5.0 139 0.6 7.1 171 0.8 9.6 55 0.3 3.3
D 31 0.1 1.5 60 0.3 3.0 191 0.9 10.8 84 0.4 5.4

6 A 1042 4.8 17.7 833 3.9 14.6 157 0.7 3.2 22 0.1 0.6
B 2883 13.4 49.0 2225 10.4 39.6 408 1.9 8.9 57 0.3 1.5
C 1334 6.2 22.7 1167 5.4 20.7 423 2.0 9.4 63 0.3 1.9
D 630 2.9 10.7 683 3.2 12.1 602 2.8 13.4 127 0.6 4.0
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Table 5 (continued)

Entry After 1 year After 5 years After 10 years
Variable State 𝑀 % �̂� 𝑀 % �̂� 𝑀 % �̂� 𝑀 % �̂�

7 A 255 1.2 2.5 215 1.0 2.2 47 0.2 0.5 10 0.0 0.1
B 2137 9.9 21.1 1570 7.3 16.3 207 1.0 2.7 29 0.1 0.5
C 3853 17.9 38.1 2912 13.5 30.7 481 2.2 6.5 52 0.2 0.9
D 3875 18.0 38.3 2854 13.3 30.0 1158 5.4 16.0 190 0.9 3.7

8-9 A 30 0.1 0.9 26 0.1 0.7 10 0.0 0.3 1 0.0 0.0
B 160 0.7 4.6 138 0.6 4.0 36 0.2 1.1 3 0.0 0.1
C 749 3.5 21.6 592 2.8 17.5 131 0.6 4.1 24 0.1 0.8
D 2533 11.8 73.0 1698 7.9 50.2 643 3.0 20.9 134 0.6 4.7

Social integration limitations 𝑆𝐼

1-4 A 921 4.3 48.8 818 3.8 44.2 220 1.0 12.8 45 0.2 2.9
B 667 3.1 35.4 566 2.6 30.7 215 1.0 13.1 55 0.3 3.7
C 197 0.9 10.4 202 0.9 11.0 164 0.8 10.1 42 0.2 2.9
D 101 0.5 5.4 109 0.5 6.0 158 0.7 9.9 69 0.3 5.1

5 A 1172 5.5 22.7 948 4.4 18.9 202 0.9 4.5 42 0.2 1.0
B 2379 11.1 46.1 1842 8.6 37.3 412 1.9 9.8 70 0.3 2.0
C 964 4.5 18.7 887 4.1 18.1 353 1.6 8.6 70 0.3 2.2
D 642 3.0 12.4 620 2.9 12.4 539 2.5 13.0 121 0.6 3.8

6 A 361 1.7 4.8 301 1.4 4.0 75 0.3 1.2 10 0.0 0.2
B 2423 11.3 31.9 1828 8.5 25.3 247 1.1 4.3 35 0.2 0.7
C 2675 12.4 35.2 2066 9.6 28.6 438 2.0 7.8 52 0.2 1.1
D 2140 10.0 28.2 1617 7.5 22.4 827 3.8 14.8 155 0.7 3.8

7 A 12 0.1 0.2 11 0.1 0.2 3 0.0 0.1 1 0.0 0.0
B 452 2.1 8.5 343 1.6 6.7 49 0.2 1.2 8 0.0 0.3
C 2025 9.4 38.0 1517 7.1 30.4 232 1.1 5.8 24 0.1 0.7
D 2838 13.2 53.3 2028 9.4 40.3 718 3.3 18.4 117 0.5 4.0

8-9 A 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
B 2 0.0 0.1 2 0.0 0.1 0 0.0 0.1 0 0.0 0.1
C 175 0.8 11.5 138 0.6 9.2 19 0.1 1.3 6 0.0 0.4
D 1348 6.3 88.4 921 4.3 62.0 352 1.6 26.2 73 0.3 5.9

Note: Column “𝑀” represents the number of individuals at risk, and “%” indicates the share calculated on the original 21494 individuals. The Aalen-Johansen 
estimate of the occupation probability is presented in “�̂�”.

Note: See Fig. 5.

Fig. 11. Aalen-Johansen estimates with 95% confidence intervals of state occupancy probabilities and cumulative 10-year LTC costs stratified by the primary medical 
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diagnosis (𝐷1).
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Note: See Fig. 5.

Fig. 12. Aalen-Johansen estimates with 95% confidence interval of state occupancy probabilities and cumulative 10-year LTC costs stratified by the dependency 
from others (𝐷𝑃 ).

Note: See Fig. 5.

Fig. 13. Aalen-Johansen estimates with 95% confidence interval of state occupancy probabilities and cumulative 10-year LTC costs stratified by the physical mobility 
(𝑃𝑀).

Note: See Fig. 5.

Fig. 14. Aalen-Johansen estimates with 95% confidence interval of state occupancy probabilities and cumulative 10-year LTC costs stratified by the orientation in 
128

space (𝑂𝑅).
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Note: See Fig. 5.

Fig. 15. Aalen-Johansen estimates with 95% confidence interval of state occupancy probabilities and cumulative 10-year LTC costs stratified by the occupation (𝑂𝐶).

Note: See Fig. 5.

Fig. 16. Aalen-Johansen estimates with 95% confidence interval of state occupancy probabilities and cumulative 10-year LTC costs stratified by the social integration 

(𝑆𝐼).

Data availability

The authors do not have permission to share data.
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