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Abstract Flood hazard assessment and mapping is challenging in semi-arid ungauged

basins because of the lack of data, the rapid runoff response, climatic variability, and the

difficulties of modelling hydraulic processes, such as on piedmont alluvial fans. This study

combines hydrological and hydraulic modelling with hydro-geomorphic knowledge

gathered during post-flood campaigns in order to determine realistic flood hazard scenarios

for a piedmont urban area in Morocco. Partial calibration of the hydrological and hydraulic

models is performed using field-estimated peak discharge values and mapped flood extents

for known flood events. The calibrated models are then applied to lower frequency–higher

magnitude flood scenarios. Finally, a flood hazard map is designed using the Swiss hazard

assessment and mapping procedures.

Keywords Semi-arid catchments � Hydro-geomorphic mapping � Post-flood
investigations � Hydrological–hydraulic modelling � Flood hazard assessment � Flood
hazard mapping

1 Introduction

Climatic scenarios suggest that Mediterranean climates are tending towards increased

aridity and higher inter- and intra-annual rainfall variability, resulting in more frequent

extreme events (Giorgi and Lionello 2008; IPCC 2012). Moreover, risks related to flooding

have been increased in Mediterranean countries, such as Morocco, because of rapid urban

and economic development in flood-prone areas, increasing people’s exposure to flood

hazards (UNDP 2006). In Morocco, recent urbanization on alluvial fans at the margins of

mountainous regions is particularly affected by flash floods resulting from topographically
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induced rainfall events (UNDP 2006; Saı̈di et al. 2010). Actions are required both to avoid

urban development in flood-prone areas and to adapt existing and planned development to

future climate change. One way of doing this is through better assessment of flood hazard.

Hydrological and hydraulic models are essential when assessing flood hazard for

planning-relevant scenarios. However, flood hazard assessment may be challenging in

semi-arid piedmont areas requiring the use of methodologies and techniques uncommon to

most hazard assessment studies (Vincent et al. 2004; House 2005). The main difficulty for

modelling arises from the lack of rainfall and discharge data (Gaume et al. 2009), as many

mountainous catchments are ungauged. Moreover, semi-arid catchments commonly have a

very rapid hydrological response (Hooke 2006; Latron et al. 2009) reflected in the

occurrence of flash-flood events that are difficult to monitor with conventional gauging

stations (Borga et al. 2010). Finally, flood hazard scenarios that are relevant for land use

management and planning relate to flood events with a relatively high return period (e.g. 20

to 100 years). Predicting such infrequent events in conditions of scarce data and high

rainfall variability can result in high model uncertainty.

Despite the need for hydrological modelling, two particular challenges arise. First, there

is a difficulty in extrapolating methods developed in temperate conditions to semi-arid

environments (Pilgrim et al. 1988). Certain lithologies, notably those that are calcareous

and that are characteristic of some Mediterranean catchments, are often associated with

shallow soils (Yaalon 1997) that can limit the use of hydrological models conceived for

deep soil conditions (e.g. Liu et al. 2011). Second, more specifically, in piedmont zones

such as alluvial fans and aprons, flood hazard scenarios are required to represent complex,

unconfined flows and highly uncertain flow paths (Pelletier et al. 2005).

Given these difficulties, assessment of flood hazard in ungauged catchments requires the

use of alternative data sources such as remotely sensed data and field-collected hydro-

geomorphic flood evidence. Moreover, monitoring and modelling of more frequent flood

events may provide useful knowledge on catchment behaviour that can be transferred to

higher return period floods. Thorough field knowledge can compensate the uncertainties

related to data scarcity and thus permits more realistic flood prediction.

Satellite and radar-borne rainfall data are increasingly used in regions where gauging

networks are insufficient (Hong et al. 2007; Nikolopoulos et al. 2010). Remotely sensed

data may provide spatially distributed rainfall estimates for often inaccessible catchment

areas (Nikolopoulos et al. 2010) that can prove more effective in capturing the spatial and

temporal variability in rainfall than point gauges. Rainfall data obtained from airborne

sources need to be implemented in a rainfall–runoff model in order to simulate a given

flood and assess the hazard associated with it. At this stage, knowledge about catchment

properties, and hence possible hydrological behaviour, and the choice of an appropriate

rainfall–runoff relationship are essential in order to realistically model the flood event.

When no discharge data are available for model calibration, alternative flood hydro-

graph estimates are needed. Post-flood investigation campaigns for hydro-geomorphic data

collection and flood timing investigation may provide valuable data that can be used for

reconstructing flood hydrographs (Gaume and Borga 2008; Borga et al. 2010). Post-flood

investigations can provide information about (a) maximum flood discharge, (b) flood

timing, and (c) sediment transfer processes (Gaume and Borga 2008). Several studies

conducted in areas with a lack of measured data have combined hydro-geomorphic

mapping and hydraulic flood discharge estimates in order to assess flood hazard (e.g.

Gaume et al. 2004; Chave and Ballais 2006; Fernandez-Lavado et al. 2007). High water

marks as well as specific monitored cross sections provide the basis for a hydraulic esti-

mation of the maximum flood discharge (Vincent et al. 2004).
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Likewise, post-flood mapping of maximum inundation extent using high water marks

can provide calibration means for hydraulic flood modelling when measured discharge or

stage data are missing (Tayefi et al. 2007). Hydro-geomorphic mapping of past flood

markers may provide information on system dynamics (erosional-depositional patterns,

flow intensity) and thus enhance hydraulic modelling of complex flow patterns specific to

alluvial fans (Vincent et al. 2004). Mapping infrastructure that contributes to flood hazard

(e.g. undersized culverts that trigger flood overspills) may also better inform the modelling

process.

This study’s aim is to assess and to map flood hazard in the semi-arid piedmont area of

Beni Mellal, in Morocco, drained by four small Mediterranean streams. In this context, this

research combines the use of the TRMM (Tropical Rain Measuring Mission) satellite

rainfall estimates (Huffman et al. 2009), hydro-geomorphic mapping, and post-flood

campaigns to model known flood events. The simulated flood hydrographs are used as an

input for assessing flood hazard in terms of flood extent and magnitude within the adjacent

urbanized piedmont area (Fig. 1). Field knowledge derived from hydro-geomorphic

mapping campaigns is integrated into the hydrological and hydraulic models. The

enhanced models are used to predict lower frequency–higher magnitude flood events

necessary to the process of flood hazard assessment and mapping as a risk mitigation

strategy. Finally, a flood hazard map is designed, following the Swiss guidelines for hazard

assessment and mapping.
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Fig. 1 This study’s approach to
flood hazard assessment in Beni
Mellal, Morocco
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2 Case study: Beni Mellal, Morocco

Beni Mellal is the capital city of the Tadla-Azilal region in Morocco and is set on the

northern Atlas piedmont, at the outlet of four small-scale semi-arid catchments (Fig. 2) that

seasonally trigger short and intense flash floods. These catchments are, from E to W: Sabek

(20.8 km2), Aı̈n el Ghazi (15.8 km2), Handak (29.7 km2), and Kikou (54 km2).

The catchments are located predominantly on Early Jurassic limestones, except for the

southern Tasmit ridge, which is formed of marls. The four catchments present typical

Mediterranean oak forests and secondary matorral formations (degraded soils and vege-

tation) at different degrees of degradation. On the marls, badland surfaces have developed

where the vegetation cover is depleted. On limestones, the soils are often shallow and

skeletal, especially on slopes. A relatively well-developed karst regulates the catchments’

hydrology during the dry season, providing irrigation water at the piedmont base through

several karstic springs (Bouchaou 1997; El Khalki and Hafid 2002). During the wet season,

often marked by convective storms, the shallow soils and sparse vegetation most likely

induce Hortonian flows as the infiltration capacity is rapidly exceeded, triggering overland

flow (Pilgrim et al. 1988; Osterkampl and Friedman 2000). Due to the onset of rapid

runoff, hydrographs are likely to be steep, specific of flash-flood events (Pilgrim et al.

1988). The streams that drain the catchments terminate on a series of large gently sloping

fossil alluvial fans. At this point, floodwaters develop in sheet floods that threaten the urban

perimeter of Beni Mellal.

Beni Mellal is an example of relatively recent and uncontrolled urban development in

Morocco (El Khalki and Benyoucef 2005; El Khalki et al. 2005). The occurrence of a long

drought period since 1970 has caused a major rural depopulation from the mountainous

areas towards their economically attractive urban outskirts (El Khalki and Benyoucef 2005).

Fig. 2 Beni Mellal, located at the outlet of four small semi-arid catchments. From E to W: Sabek, Aı̈n el
Ghazi, Handak, and Kikou
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Meanwhile, the drought period also triggered important land use changes in the upper

catchments such as increased deforestation, cropland abandonment, and deterioration of

slope terraces, with possible consequences for catchment hydrological response. There

was a marked change in precipitation characteristics since 1995, with much greater

interannual variability than had been the case (Fig. 3). Significant urbanization coupled to

unregulated and low-quality building in hazard-prone areas has increased the exposure of

people and infrastructures to flood hazards, requiring risk mitigation actions to be

undertaken (El Khalki et al. 2005; UNDP 2006). The local authorities have adopted a

series of structural mitigation measures, including the construction of flood reduction

dams at the catchment outlets and recalibration of the streambed within the urbanized area

(ABHOER 2004; ADI 2004).

As part of a hazard assessment and mapping project (Werren 2013), the assessment of

flood hazard was required. In the absence of precipitation and discharge data, a thorough

understanding of the catchment hydrological behaviour was needed. Mapping of hydro-

geomorphic elements and infrastructure involved in flood development was undertaken.

During the study period, two flood events were considered and studied through post-flood

investigations in Morocco in 2010. The 14 February 2010 flood event occurred during a

relatively wet period related to winter low-pressure zones accentuated by High Atlas

orographic forcing. The 11 October 2010 event occurred in an early autumn situation

marked by convective activity.

3 Hydro-geomorphic mapping and post-flood campaigns

Thorough knowledge of the hydro-geomorphological system from geomorphic mapping

campaigns may improve decision-making within the flood modelling process. Such

campaigns may allow: (1) identification of the area prone to flood hazard; (2) development

of important knowledge regarding catchment properties and flood dynamics; and (3)

provide the means of model verification in ungauged catchments. Two field campaigns
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were carried out during the spring and autumn 2010. The objective was to obtain a map of

hydro-geomorphological information to help hazard assessment.

3.1 Hydro-geomorphic mapping

The mapping campaign focussed on hydro-geomorphic elements relevant for the develop-

ment of floods (Reynard et al. 2013). Erosional and depositional forms (active and inherited)

were mapped along the four streams and on the fan surface. For instance, according to the

NRC method for flood hazard mapping on alluvial fans (NRC 1996), and several studies

carried out on arid alluvial fans, active fan areas (containing recent deposits) are more likely

to be flooded (House 2005; House et al. 2007). At the same time, palaeochannels on fans may

guide floodwaters into inactive fan areas. Using such information may help inform the

modelling process. The maximum flood extent for the two reference events that occurred in

February and October 2010 was likewise delimited in the field. Flood extent data provided

means for verifying the results of hydraulic modelling undertaken in the subsequent hazard

assessment phase. Finally, infrastructure that interacted with the flooding process during

these events was also mapped (undersized bridges and culverts, road embankments with an

obstructing effect). These data were collected in order to support the hydraulic modelling

process by identifying infrastructure-related overflow points.

3.2 Post-flood discharge estimates

Discharge estimates were undertaken mainly to support the hydrological modelling pro-

cess. High water marks in reference cross sections, flow velocity estimates using splash

marks on flow obstacles, and eyewitnesses’ testimonies on the flood timing were collected

following both events. We surveyed cross sections located at the outlet of the four

catchments, on channelized reaches situated upstream of the fan hydrological apex where

flow turned into sheet flood.

Hydraulic estimation of the peak discharge was undertaken using field-collected ele-

ments. Field-based hydraulic calculations are subject to a series of simplifying assump-

tions, especially when estimating peak discharge for flash floods. In the absence of better

data, an extremely simple discharge reconstruction was undertaken using the simplification

of one-dimensional, steady flow. The peak discharge was approximated in the following

way. The peak discharge (Qp) is defined as:

Qp ¼ ApVp ð1Þ

where: Qp = discharge at the flood peak (m3/s); Ap = the cross section at the flood peak

(m2); and Vp = the section-averaged flood peak velocity (m/s). By choosing relatively

stable cross sections that contained all of the flood water, it was possible to estimate Ap

with reasonable reliability using the field mapping. Cross section stability is certainly

subject to caution due to bed scour and back-fill effects that could occur during the flood

event (Vincent et al. 2004). An estimate of flood peak velocity was also required. This

applied the Manning relationship:

Vp ¼ n�1R
2=3
h � S1=2 ð2Þ

where: n = Manning roughness coefficient; A = wetted cross section area (m2);

Rh = hydraulic radius; S = water surface slope. The hydraulic radius Rh is given by the

ratio of the wetted area A (m2) and the wetted perimeter H\0:5 (m) in a cross section.
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High water marks were used to estimate the wetted cross section and perimeter at the

reference cross sections. The roughness coefficient and the relative water surface slope

were estimated in the field. Information about flow velocity nearby surveyed sections was

obtained from splash marks on flow obstacles such as bridge piers, according to a method

described by Gaume and Borga (2008).

Flood timing as estimated from comments from eyewitnesses may enhance under-

standing of the studied flood and provide useful insight in shaping the flood hydrograph

(Gaume et al. 2004; Fernandez-Lavado et al. 2007; Gaume and Borga 2008). Where

possible, information on the flood timing was collected from local people.

4 Hydrological modelling

Knowledge of the hydrological behaviour within the studied catchments was built by

simulating known flood events. The model so obtained was used to simulate flood sce-

narios for given reference events. In the absence of measured data, TRMM rainfall satellite

estimates were used as an input for the hydrological modelling. After the storm design step,

simple conceptual hydrological modelling was undertaken using the transfer function

concept through the Snyder hydrograph unit model. The effective rainfall was computed

using as production function three different infiltration models. These models were tested

in order to optimally represent the catchment hydrological behaviour. Calibration of the

model was partially undertaken using peak discharge values estimated in the field.

4.1 Rainfall data and spatial modelling

The TRMM 3B42 rainfall product has provided, since 1998, multi-satellite rainfall esti-

mates with a spatial–temporal resolution of 0.25� and 3 h, in grids with quasi-global

coverage (Hong et al. 2007; Huffman et al. 2009). This dataset is freely available on the

NASA webpage at trmm.gsfc.nasa.gov. Several studies have demonstrated the utility of

TRMM datasets in estimating rainfall for hydrological modelling of medium-sized and

large catchments (e.g. Hong et al. 2007; Su et al. 2008; Nikolopoulos et al. 2013; Yong

et al. 2012). Less testing has been undertaken in smaller catchments (less than 100 km2).

Nikolopoulos et al. (2010) showed that the error propagation from satellite rainfall esti-

mates to a hydrological model is dependent on the catchment scale: in small-scale

applications, product resolution becomes a critical issue. Even though the spatial resolution

is relatively coarse compared to the scale of the studied catchments, this open-source

dataset provided the most precise available rainfall representation in terms of temporal

resolution. Rainfall estimates for the two 2010 events were treated as point rain gauges

located at the centre of the grid cells covering the area of the four catchments in this study

(Fig. 4).

A meteorological model was then established using the US Corps of Engineers software

HEC-HMS (http://www.hec.usace.army.mil/software/hec-hms/). The meteorological

model undertakes rainfall data interpolation and temporal disaggregation. For given nodes

on the catchments surface, average precipitation was calculated using the inverse-distance-

squared scheme (USACE 2000). This method assumes that precipitation is evenly dis-

tributed over a given area (catchment or sub-basin) and a given time period. A time step of

20 min was chosen to discretize the 3-h rainfall estimates (Fig. 5).
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4.2 Preparation of topographic data

Digital elevation models were interpolated for each catchment using contour lines from the

1:50,000 topographic map at a 10-m resolution. Streams were burned in during the process

using the Topo to Raster tool in ArcMap. Catchment pre-processing for use in HEC-HMS

was undertaken using the ArcHydro Tools and HEC-GeoHMS extensions in ESRI Arc-

Map. Land use data were digitized from a 2009 GeoEye image provided by Google Maps.

As no soil map was available for the study catchments, soil characteristics were deduced

from alternative datasets (lithology, slope, vegetation cover) using a functional factorial

approach as defined by Jenny (1941). This approach states that pedogenetic factors can

predict soil classes or specific soil characteristics on the basis of environmental correlation

(McKenzie and Ryan 1999; McBratney et al. 2003). Soil characteristics were predicted

using a decision tree containing three criteria: parent material (P), slope (Sl), and vege-

tation type (O) (Fig. 6). Soils were classified according to their expected hydrological

characteristics using the National Resources Conservation Service (NRCS) runoff potential

groups (NRCS 2007). Catchment characteristics were considered globally in a lumped

model in agreement with the relatively small basin area and the poor rainfall input data

resolution.

4.3 Effective rainfall production and rainfall–runoff transfer functions

In the studied area, hydrological processes are most likely to involve an infiltration excess

mechanism. Thus, infiltration is the main control of direct runoff generation. In a lumped,

N

gauge (cell center)

TRMM rainfall cell catchment limit

0 25 5012.5
Km

Fig. 4 TRMM rainfall cells covering the study area. Data retrieved from the TRMM platform at
trmm.gsfc.nasa.gov
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event-based approach, three infiltration models available within the HEC-HMS modelling

system were tested: the Green–Ampt physically based model (Green and Ampt 1911), the

SCS Curve Number methodology, and the initial and constant infiltration model (USACE

2000), in order to select the model most appropriate to the catchments’ semi-arid
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Fig. 5 Rainfall estimates for the events of 14 February and 11 October 2010. Data retrieved from the
TRMM platform at trmm.gsfc.nasa.gov
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conditions. The rainfall–runoff relationship was expressed using the Snyder unit hydro-

graph method, a parsimonious model that relates the rainfall duration to the catchment lag

(Snyder 1938; USACE 2000).

4.4 Calibration using post-flood investigations

In ungauged catchments where classical calibration approaches are impossible, geomor-

phic evidence can provide the means for partial verification of the used hydrological

model. Post-flood campaigns provided flood peak discharge estimates for the two events,

even if these estimates remain uncertain given the methodology used and described above.

These estimates were first compared with the modelled peak hydrographs (Fig. 7) in order

to choose the best-fitting infiltration method for the given catchments. Then, the data were

used to partially calibrate the model output in terms of peak discharge. Flood timing was

also verified based on local people’s testimonies.

4.5 Extrapolation to hypothetical events

The model tested on known events was then applied to simulate lower frequency–higher

intensity flood events. We used rectangular design storms with duration = 1Tc (catchment

time of concentration) derived from IFD (intensity–frequency–duration) curves calculated

at the Beni Mellal meteorological station. We simulated floods for the 20-, 50-, and

100-year rainfall events. The model accounted for the role of existing or planned flood

reduction dams (according to ADI 2004).

4.6 Results

The comparison of flood hydrographs resulting from the three production models and field

estimations suggests that the initial and constant loss method could best predict flood

hydrographs in terms of peak discharge (Fig. 7). The Green–Ampt model predicted lower

runoff volumes and peak discharges. For all four catchments, the SCS-CN infiltration

model significantly underestimated flood peak and volume. A possible explanation might

be related to the event intensity and short duration, correlated to the SCS assumption that

infiltration rate depends on rainfall rate (Smith et al. 1978; Hjelmfelt 1980). The TRMM

rainfall estimates 3-h resolution, and this is probably not sufficiently fine for these short

and intense storms, such that the infiltration rate estimated by the SCS–CN method was too

high. Thus, the SCS–CN method was not further considered in this study.
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Fig. 6 Decision tree for predicting soil characteristics. P parent material, Sl slope, O organismus (here
vegetation), S resulting soil type
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A one-factor-at-the-time (OFAT) sensitivity analysis (Morris 1991) was performed on

the initial and constant loss and Green–Ampt method parameters. The analysis showed that

the Green–Ampt model could produce better results in terms of the flood hydrograph peak

and volume, provided that its most sensitive parameter, i.e. the saturated conductivity, was

assigned very small values (10 % of the expected value for each soil type, Fig. 8). The

Green–Ampt method models soil as an infinite, homogeneous column where the limit

between wet and dry soil is marked by a sharp wetting front. With shallow soils, such as

the ones in the studied catchments, the model may fail to predict realistic flood hydro-

graphs, unless saturated conductivity is assigned small values. This finding is corroborated

by a study by Liu et al. (2011) that assessed the Green–Ampt model’s applicability in

shallow soil conditions and proposed lowering the saturated conductivity parameter values

for better prediction.

Sensitivity analysis showed that the initial and constant loss method parameters were

less sensitive (Fig. 8). The method was therefore considered as more appropriate for the

studied catchments (Werren 2013). Sensitivity analysis was equally used to calibrate the

model for the two known events (Fig. 9).

Despite the uncertainty related to rainfall data, model parameters and calibration

methodology (Werren 2013), no uncertainty quantification was possible with such scarce

calibration data. Nevertheless, peak discharge value ranges based on variation in field

estimates rather than unique validation criteria were used (Fig. 10).

The obtained flood hydrographs display steep curves reflecting the flash-flood behaviour

of the studied catchments (Fig. 9). The Aı̈n el Ghazi hydrograph is flat-topped: we suggest

that this situation arises as the Snyder unit hydrograph convolution might have been

hindered by a very short time of concentration (50 min) and the 3-h rainfall structure of

TRMM. Finer rainfall estimates would be necessary for this small-scale catchment. The
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Fig. 7 Comparison of output flood hydrographs for the three tested methods and field-collected peak
discharge estimates. Example of the 14 February 2010 event. The peak discharge estimates for Handak
catchment were collected upstream of the flood reduction dam
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flood control role of the dam set at the Handak outlet was accounted for, using the

elevation-storage rating function provided by HEC-HMS (USACE 2000).

The final output of the hydrological modelling step consists of flood hydrographs for

reference hypothetical events necessary to the hazard assessment procedure. The results

suggest that the planned or existing flood reduction dams have little flood control effects

for larger events and catchments. Moreover, by producing steeper flood hydrographs these

structures seem to induce a flash-flood character to the simulated events (Fig. 11).

5 Hydraulic modelling

According to the approach outlined in Sect. 2 (Fig. 1), one known flood event (11 October

2011) was considered as providing a realistic hydraulic model for extrapolation to floods

associated with 20-, 50-, and 100-year rainfall events.

Initially, the open-source, one-dimensional HEC-RAS steady flow model (USACE

2010) was tested as it responded to cost-effectiveness criteria related to this project

(Werren 2013). However, it failed to represent flow processes specific to the alluvial fan

morphology of the Beni Mellal study site (Werren 2013). 2D models, as compared to 1D

models (Fig. 12), are thought to deliver better process representation of floods occurring on

areas of complex topography such as alluvial plains and fans (Bates and De Roo 2000;

Pelletier et al. 2005; Tayefi et al. 2007). Thus, the two-dimensional, unsteady flow

TUFLOW model (Syme and Apelt 1990; Syme 2001) was used.
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5.1 Model presentation

The 2D TUFLOW software is a hydrodynamic model that solves the full shallow water

equations (SWE) (Balzano 1998; Bates and De Roo 2000) under the form:

oC

ot
þ o Huð Þ

ox
þ o Hvð Þ

oy
¼ 0 ð3Þ

ou

ot
þ u

ou

ox
þ v

ou

oy
�Lv þ g

oC

ox
þ gu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

C2H
� v

o2u

ox2
þ o2v

oy2
¼ Fx

ou

ot
þ u

ov

ox
þ v

ov

oy
� Lu þ g

oC

oy
þ gv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

C2H
� v

o2u

ox2
þ o2v

oy2
¼ Fy

ð4Þ

where: C = water surface level; ox = depth-averaged velocity in the x direction;

oy = depth-averaged velocity in the y direction; h = depth of water relative to a datum;

H = h ? C = total depth; l = Coriolis parameter; C = Chezy friction coefficient; and

F = external forces (wind, pressure) (Syme and Apelt 1990).

Initially developed for tidal process modelling, this model has been shown to provide

very good solutions for riverine flooding, mainly because of its stability and robustness.
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The model computes depth-averaged velocity, water depth, and flood extent as basic

elements for flood hazard assessment. TUFLOW can be accessed within the AquaveoTM

SMS (Surface-water Modelling Solution) interface that provides a GIS environment for

hydraulic models.

5.2 Topographic and land use data preparation

A digital elevation model (DEM) was derived from contour lines and elevation points of

the Beni Mellal urban plan (scale = 1:2000, contour line equidistance = 1 m). As the

elevation model could not provide a good representation of stream geometry, a manual

channel cross section assignment was undertaken using field and remotely sensed infor-

mation (aerial photographs, oblique photographs, field-collected cross section data). The

obtained cross section information was then integrated into the DEM. Elevation data were

imported into the AquaveoTM SMS interface where all the TUFLOW input files were

created. Land use information necessary for determining surface roughness was retrieved

from a 2009 GeoEye image provided by Google Maps (Werren 2013). According to the

geographical setting of the four streams that needed assessment, two simulation projects

were generated. One project, codenamed BM, consisted of the urban reaches of the Sabek,

Aı̈n el Ghazi, and Handak streams, as well as their junction with the Day stream. The

second project, codenamed KIK, consisted of the Kikou stream.

Fig. 12 Comparison between the one- and two-dimensional models results on an alluvial fan reach in Beni
Mellal
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5.3 Model setup

The choice of parameter values was expected to achieve a compromise between model

results accuracy, computational effort, and model stability (Table 1).

An elevation grid of cell size 3 m was generated (Table 1). This resolution was thought

to balance model accuracy and computational effort for the practical purpose of this study.

The model time step Dt needed to be linked to the spatial resolution Dx in order to achieve

model stability (French 1985; Syme 2001). According to practice, in TUFLOW the

required relationship is Dt B Dx/2 (WBM Oceanics Australia 2007). TUFLOW uses a

wetting and drying algorithm to manage the wetting front definition by providing criteria to

declare one cell wet or dry (Balzano 1998; Yu and Lane 2006, WBM Oceanics Australia

2007). The wetting and drying parameters were selected as to achieve model stability; we

considered therefore this parameter as an effective function (Lane 2005). Likewise, the

Smagorinski coefficient for eddy viscosity (Smagorinsky 1963), used to describe flow

turbulence when solving the shallow water equations, was set as an effective function.

Land use data were used as a base for assigning the Manning roughness coefficient

n. Roughness coefficients were estimated according to Chow (1959) for several land use

classes (Table 2). Buildings were assigned n = 3 in order to account for their flow-ob-

structing role. This approach is widely used in hydraulics modelling to represent structures

when resolution of the elevation data cannot account for them properly (Yu and Lane

2006).

Boundary conditions were set at the two ends of the modelled domain. The upstream

boundary condition consisted of flood hydrographs for the 11 October 2010 monitored

flood event and, after model optimization, for the flood hazard assessment reference events

as obtained during the previous stage. Downstream boundary condition consisted of a

control water level as computed from channel slope.

Table 1 Assignment of the model parameters for the two simulation projects (BM and KIK), and the
objective to be attained

Parameter BM KIK Objective

Cell size (m) 3 3 Output accuracy, computational effort

Time step (s) 1.5 1.5 Model stability, accuracy, computational effort

Wet/dry depth (m) 0.025 0.025 Model stability, accuracy

Cell side wet/dry depth (m) 0.05 0.05 Model stability, accuracy

Eddy viscosity (Smagorinsky) 0.4 0.2 Model stability, accuracy

Table 2 Manning coefficient
(n) according to Chow (1959) for
7 land use classes

Land use class N

Concrete channel 0.01

‘‘Clean’’ channel 0.03

‘‘Rough channel’’ 0.04

Urban surface (streets) 0.02

Grassy surface 0.06

Trees, olive plantation 0.08

Buildings 3.00
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5.4 Calibration by field investigations

The maximum flood extent for the 11 October 2010 event was mapped in the field in order

to calibrate the model. This approach could only provide partial calibration, as no stage

data could be retrieved during the mapping process. The mapped flood extent allowed us to

optimize the model by exploring the impact of model parameter values on output accuracy.

Moreover, hydro-geomorphic mapping of the active processes provided verification cri-

teria for the model’s ability to represent flow processes correctly on the complex alluvial

fan surfaces.

5.5 Model sensitivity analysis and extrapolation

A basic OFAT analysis (Morris 1991) was undertaken in order to identify the model

parameters impacting most upon model predictions and to inform the choice of eventual

parameter values used. This was undertaken by multiplying each initial parameter value by

0.5 and 2. Accuracy was estimated with measures of agreement utilized by similar studies:

kappa (Cohen 1960; Yu and Lane 2006), F (Bates and de Roo 2000; Yu and Lane 2006),

and overall accuracy (Yu and Lane 2006). Flow process representation was also judged on

a visual basis, by comparing the model results with the hydro-geomorphic map. This

analysis was used to adjust model parameter values. The calibrated model was applied to

simulate floods related to rainfall events of 20-, 50-, and 100-year return-time period.

5.6 Results

The model sensitivity analysis focussed on four parameters: grid resolution, Manning

roughness coefficient n, wetting and drying algorithm coefficients, and Smagorinsky

coefficient for eddy viscosity (Tables 3, 4).

Sensitivity analysis did not identify parameters that were clearly impacting upon model

performance. It is not necessary to increase spatial resolution for the two models: the initial

3-m resolution performed well in accuracy and process representation; lowering the res-

olution (6 m) would induce poorer channel representation, while higher resolution (2 m)

induces the over interpretation of topographic lows (Fig. 13). Lowering roughness values

induced lower accuracy and the overestimation of flood extents, while greater friction

values did not affect accuracy. However, they resulted in water ponding on flat surfaces on

Table 3 Value of several accuracy estimators according to changes in parameter values

Parameter Variation K K1 F O

Resolution 3 m 32.45 30.51 46.22 66.45

6 m 30.62 28.81 45.18 65.54

Roughness n/2a 21.87 19.58 39.2 61.31

n*2 31.42 30.91 46.51 65.85

Eddy viscosity 0.4 32.45 30.51 46.22 66.45

0.8 31.76 29.51 45.57 66.13

BM project. K kappa index, K1 kappa index for wet cells, F F accuracy measure, O overall accuracy
measure. Values for all indexes range from 0 to 100
a n varies according to land use classes (see Table 2)
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distal fan regions (Fig. 14). Therefore, the initial values offer a good compromise for the

two models. Third, eddy viscosity does not significantly influence accuracy or process

representation (Fig. 15). Nevertheless, this parameter represents an effective function for

the model, i.e. its values directly impact model stability. Finally, wetting and drying

parameter values seem to regulate flood extent and local water depth estimations (Fig. 16).

However, this is mainly when the wetting and drying parameter is doubled to largely

implausible values.

As we performed simulations with half and double the initial parameter values, we note

that this analysis is dependent on the chosen range of values for each parameter. Therefore,

not exploring larger parameter ranges might have an effect on the model performance.

Nevertheless, the initial parameter choice was justified by the need to achieve the neces-

sary model precision with reasonable computation costs. With the default parameter val-

ues, flood intensity maps, in terms of flood maximum water depth and velocity, were

produced for the reference events of 20-, 30-, and 100-year return periods (Fig. 17).

6 Flood hazard map of Beni Mellal

6.1 Hazard assessment procedure

The design of the flood hazard map is based on Swiss guidelines (Loat and Petrascheck

1997, ARE, OFEG, OFEFP 2005). Hazard assessment was performed by adapting the

Swiss hazard matrix that convolutes hazard magnitude and probability of occurrence

(Fig. 18). The Swiss hazard matrix contains information on hazard intensity and relates to

a series of land use prescriptions through the matrix colour code. Within the Swiss hazard

assessment guidelines, red zones are prohibited for further urban development, in particular

building of new houses, blue zones allow building under specific safety conditions, while

the yellow zones are hazard awareness-making areas (Loat and Petrascheck 1997; Lüthi

2004; Penelas et al. 2008). The Swiss guidelines provide homogeneous thresholds for

delimiting classes of magnitude and probability, as shown in Tables 5 and 6. In this study,

we applied different probability thresholds, according to the Moroccan practice of flood

risk mitigation (Table 6).

Table 4 Value of several accuracy estimators according to changes in parameter values

Parameter Variation K K1 F O

Resolution 2 m 25.25 26.16 35.98 65.12

3 m 22.9 38.98 40.11 59.8

6 m 30.34 29.79 38.76 67.65

Roughness n/2 15.41 22.37 34.70 57.24

n*2 25.17 35.02 39.56 62.52

Eddy viscosity 0.2 22.9 38.98 40.11 59.8

0.4 28.72 30.19 38.25 66.62

W–D (depth, cell side in meters) 0.0125, 0.025 30.04 31.22 38.88 67.34

0.05, 0.1 25.17 35.02 39.56 62.52

Kikou project. K kappa index, K1 kappa index for wet cells, F F accuracy measure, and O overall accuracy
measure. Values for all indexes range from 0 to 100
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6.2 Results

A flood hazard magnitude map (example in Fig. 19) was produced, by combining flood

magnitude maps of the three reference scenarios. The three maps were merged using the

Fig. 13 Effect of grid resolution on flow process representation. Example of the Kikou reach (KIK project)

Fig. 14 Effect of grid resolution on flow process representation. Example of A the Handak reach, B the
Day confluence zone, and C the Sabek alluvial fan reach (BM project)
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Union tool in ESRI ArcMap. Highest intensity value was assigned for each map cell. Maps

of the maximum flood extent for the reference scenarios were merged to determine a flood

probability map (Fig. 19) Then, the intensity and probability maps were intersected,

according to the hazard convolution matrix, resulting in a 9-class map which was finally

classified into three hazard zones to obtain a flood hazard map (Fig. 20).

The hazard map is a decision-making tool useful for hazard-aware urban development

in the studied area. It has an indicative character due to uncertainties related to input data

scarcity and imprecisions, and to inherent uncertainties related to the modelling process.

7 Discussion

This study’s objective was to assess and map flood hazard concerning an urban area in

conditions of scarce data, by combining hydro-geomorphic knowledge and hydrological–

hydraulic modelling. In this context, hydrological and hydraulic modelling of the stream

behaviour proved to be essential for the hazard assessment process.

We suggest that good knowledge of catchment soil and land cover conditions and better

flood understanding through post-flood campaigns and flood deposit mapping and char-

acterization is mandatory so as to compensate for the lack of data and therefore reducing

model uncertainty. Hydro-geomorphic information is likely to enhance hazard assessment

in several ways. First, hazard-prone areas are delimited, and thus hazard assessment

Fig. 15 Effect of changing the n roughness coefficient on flow processes representation. Example of the
BM project
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through modelling can focus on the areas of interest. Then, knowledge of erosion–depo-

sition patterns, as well as preliminary assessment of process intensity, is useful during the

modelling stage, in order to compare the modelled process representation to field data.

Finally, mapped flood extent and field-estimated peak discharge provide calibration means

for the models. As a shortcoming, mapping and imprecision in estimates add uncertainty to

the final modelled result.

Through hydrological modelling of two known events, this study’s goal was to real-

istically depict flood behaviour in the four catchments that drain Beni Mellal. Their flash-

flood-prone character was well represented in the resulting hydrographs. The use of several

infiltration methods allowed choice of the most appropriate model for the studied catch-

ments. For instance, the SCS-CN method, although used in hydrological studies in Mor-

occo (e.g. Tramblay et al. 2012), significantly underestimated peak discharges even though

CN values were relatively high in the four catchments (74.5–85.1). Moreover, it was

demonstrated that the Green–Ampt model needs exhaustive calibration of its most sensi-

tive parameter, i.e. the saturated conductivity, in order to achieve good performance in

shallow soil conditions (Liu et al. 2011). Finally, the chosen method, i.e. the initial and

constant loss rate method, is widely used in semi-arid catchments in Australia (Mahbub

and Monzur 2009) and was found to perform better than the Green–Ampt method in semi-

arid conditions in Iran (Arekhi et al. 2011). Further studies in similar locations should

consider the use of this method in order to assess its applicability in a larger extent.

Peak discharge estimates obtained during post-flood measure campaigns provide means

for partial calibration of the model. However, peak discharge value ranges were used rather

than unique values, in order to account for uncertainties related to field measurements and

model performance.

Fig. 16 Effect of changing the wetting and drying (wd) and eddy viscosity (l) parameters on flow
processes representation. Example of the KIK project
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Results obtained by the combination of hydrological and hydro-geomorphological

methodologies better depict catchment hydrological behaviour than separate use of these

techniques. Knowledge of the natural processes is essential at every modelling stage in

order to legitimate the choices made within a model. However, this approach requires

interdisciplinary skills and a better involvement of geomorphologists in hazard assessment

procedures, especially in regions where scarce data hinder hydrological modelling.

The second important assessment stage, i.e. hydraulic flood modelling within the urban

area of Beni Mellal, aimed at predicting flood hazard in terms of flood magnitude for three

scenarios representing events of low, medium, and high recurrence probability. One known

event was simulated using field-collected calibration data and hydro-geomorphic infor-

mation of possible flood intensity. The model was then optimized for use in hypothetical

flood scenarios by tuning its main parameters. We suggest that the choice of a 3-m grid is

fairly precise and satisfactory for flood process representation in urban areas as was also

demonstrated by Hunter et al. (2008). As demonstrated by this study, this resolution is also

pertinent for the representation of flood processes on fan surfaces and we therefore rec-

ommend the use of minimum 3-m grid resolution in further similar studies. The roughness

parameter choice is based on land use classes in order to depict the variation in surface

friction. It has been shown in the literature (Lane 2005; Yu and Lane 2006) that the

roughness coefficient is often used as an effective parameter for model calibration as its

actual relationship to real surfaces is difficult to assess. Indeed, this empirical parameter

stems from steady flow assumptions applied to unsteady flows (French 1985). The relative

sensitivity of this parameter suggests that exploring a larger value range could enhance the

calibration results, as it was demonstrated for instance by Yu and Lane (2006).

Nonetheless, we consider that in a context of relatively high uncertainty related mainly to

the available topographic data, using too large roughness coefficients in the calibration

process risks over-parameterizing the model.

The final output of the hydraulic modelling stage, i.e. flood extent, maximum water

depth, and maximum velocity maps for three reference scenarios, provided essential

measurable data for hazard mapping that could not be obtained using solely geomorphic or

descriptive methods. Nonetheless, field-collected flood extent and hydro-geomorphic data

provided an essential means for validating the model and allowed us to better understand

internal model uncertainties. We suggest that in areas similar to our study site, modelling

methodologies should integrate geomorphic and eventually geological mapping to their

protocols in order to achieve process understanding and finally to reduce uncertainties.

The Beni Mellal flood hazard map, obtained by intersecting cartographic representa-

tions of flood magnitude and probability of occurrence, is a pioneering document, being the

first such map published in Morocco. A sound decision-making tool, the hazard map, can

provide planners with a comprehensive set of information related to the spatial imprint and

consequences of floods within the study site. One must notice, however, that the hazard

map reflects uncertainties accumulated during the successive assessment stages. As such,

this hazard map is more likely to play a decision-making role for subsequent planning

rather than being used directly within specific building procedures.

bFig. 17 Flood hazard intensity: A maximum velocity and B water depth for the 100-year scenario. Example
of the Kikou stream. Intensity classes were assigned according to the Swiss guidelines (Loat and
Petrascheck 1997)
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Fig. 17 continued
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8 Conclusion

Predicting flood hazards in semi-arid, ungauged regions is challenging. In this context,

using alternative data sources such as remotely sensed data and building a knowledge

based on catchment properties and related hydrodynamic behaviour are essential steps in

order to provide more realistic hazard scenarios for planning purposes and ultimately

enhance flood risk mitigation. This study endeavoured to produce such realistic scenarios

by intensive use of field-monitored data as a means of validating model performance. Field

data enhanced the modelling process and the final result by providing arguments for the use

of models that better depict actual processes as compared to the techniques classically in

use in the study area. A series of uncertainties were identified, and the models were

optimized according to the gathered field knowledge. Finally, a flood hazard map was

designed for the study site in Beni Mellal. A pioneering document, this map provides a

sound basis for decision-making in the sense of a more hazard-aware urban development.

Uncertainty in hazard assessment requires special attention as hazard maps are meant to

have important spatial consequences when integrated in urban planning. In this project,

uncertainty quantification was impossible, however uncertainty sources were identified.

Thus, uncertainties can be reduced by the use of better datasets (e.g. digital terrain models)
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Fig. 18 Swiss hazard matrix.
Source: ARE, OFEG, OFEFP
(2005)

Table 5 Flood hazard intensity thresholds according to Swiss guidelines

Magnitude threshold Low Medium High

Static flood: water depth H\0:5m 0:5\H\2m H[ 2m

Dynamic flood: water depth * velocity Hv\0:5m2=s 0:5\Hv\2m2=s Hv[ 2m2=s

From ARE, OFEG, OFEFP (2005)

Table 6 Flood hazard probability thresholds according to Swiss guidelines (ARE, OFEG, OFEFP 2005)
and adaptation to this case study

Probability threshold Low (year) Medium (year) High (year)

Recurrence period (this study) 100 50 20

Recurrence period (Swiss method) 300 100 30
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Fig. 19 Flood hazard probability (A) and magnitude (B) maps. Example of the Kikou stream. Buildings are
designed in purple on the map
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Fig. 19 continued
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Fig. 20 Flood hazard map. Example of the Kikou stream. Buildings are designed in purple on the map
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or by better access to data (as it was experienced in this project, data scarcity can be

relative, i.e. data exist but are difficult to access). Moreover, field investigations such as

those presented above need to be run on a systematic basis for longer periods of time in

order to build flood databases for model calibration.

In order to make hazard maps widely available, homogeneous guidelines for map design

should be implemented within in the studied context. That is, adaptations to the local needs

and realities are necessary (e.g. rethinking the threshold scale to adapt it to specific

building regulations, adapting the colour code to local perceptions, negotiating the desired

map precision in order to consider inherent uncertainties).
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UNDP (2006) Programme de réduction des risques de catastrophes au Maroc. United Nations Development
Program, New York

USACE (2000) Hydrologic modeling system HEC-HMS. Technical reference manual. US Army Corps of
Engineers, Hydrologic Engineering Center, Davis

USACE (2010) HEC-RAS river analysis system. Hydraulic reference manual. U.S. Army Corps of Engi-
neers, www.hec.usace.army/mil. Accessed 10 June 2010

Vincent KR, Pearthree PA, House PK, Demsey KA (2004) Inundation mapping and hydraulic recon-
structions of an extreme alluvial fan flood, Wild Burro Wash, Pima County, southern Arizona. Arizona
Geological Survey

WBM Oceanics Australia (2007) TUFLOW (and ESTRY) user manual. GIS-based 1D/2D hydrodynamic
modelling. www.tuflow.com/downloads. Accessed 20 June 2012

Werren G (2013) Maps as risk mitigation tools. Adaptation of the Swiss hazard assessment and mapping
methodology to a Moroccan site: Beni Mellal. Dissertation, University of Lausanne. http://my.unil.ch/
serval/document/BIB_28316A5BCD24.pdf

Yaalon DH (1997) Soils in the Mediterranean region: what makes them different? Catena 28:157–169
Yong B, Hong Y, Ren LL, Gourley JJ, Huffman GJ, Chen X, Wang W, Khan SI (2012) Assessment of

evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on
hydrologic prediction in a high latitude basin. J Geophys Res. doi:10.1029/2011JD017069

Yu D, Lane SN (2006) Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment,
part 1: mesh resolution effects. Hydrol Process 20:1541–1565

Nat Hazards

123

http://www.tuflow.com/download/publications
http://www.hec.usace.army/mil
http://www.tuflow.com/downloads
http://my.unil.ch/serval/document/BIB_28316A5BCD24.pdf
http://my.unil.ch/serval/document/BIB_28316A5BCD24.pdf
http://dx.doi.org/10.1029/2011JD017069

	Flood hazard assessment and mapping in semi-arid piedmont areas: a case study in Beni Mellal, Morocco
	Abstract
	Introduction
	Case study: Beni Mellal, Morocco
	Hydro-geomorphic mapping and post-flood campaigns
	Hydro-geomorphic mapping
	Post-flood discharge estimates

	Hydrological modelling
	Rainfall data and spatial modelling
	Preparation of topographic data
	Effective rainfall production and rainfall--runoff transfer functions
	Calibration using post-flood investigations
	Extrapolation to hypothetical events
	Results

	Hydraulic modelling
	Model presentation
	Topographic and land use data preparation
	Model setup
	Calibration by field investigations
	Model sensitivity analysis and extrapolation
	Results

	Flood hazard map of Beni Mellal
	Hazard assessment procedure
	Results

	Discussion
	Conclusion
	Acknowledgments
	References




