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Summary 

Proteins containing a SPX domain are involved in phosphate (Pi) homeostasis, including Pi 

transport and adaptation to Pi deficiency. The SPX domain harbors a basic surface binding Pi 

at low affinity and inositol pyrophosphates (PP-InsPs) at high affinity. Genetic and 

biochemical studies revealed that PP-InsPs serve as ligands for the SPX domain. Residues in 

the PHO1 SPX domain involved in PP-InsPs binding are critical for its Pi export activity, and 

the interaction between SPX proteins and the PHR1 transcription factor, which results in 

PHR1 inactivation, is promoted by PP-InsPs. Changes in PP-InsPs levels in response to Pi 

deficiency may thus contribute to the adaptation of plants to stress via the modulation of the 

activity of SPX-containing proteins and their interactors. Modulating PP-InsP levels or the 

affinity/specificity of the SPX domain for PP-InsP could potentially be used to engineer crops 

to maintain high yield under reduced Pi fertilizer input.
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Introduction

The availability of phosphorus (P) limits plant growth in natural and agricultural ecosystems. 

Plants essentially acquire P as water-soluble inorganic orthophosphate (Pi, H2PO4
-). While P 

may be quite abundant in most soils, the level of Pi accessible to plants is very low, 

principally because it readily forms insoluble complexes with calcium as well as with oxides 

and hydroxides of aluminum and iron. While application of Pi fertilizers to optimize crop 

yield is an essential practice in modern agriculture, its sustainability has been put into 

question [1]. P is essentially mined from a limited number of rock phosphate deposits and 

high quality rock phosphate is a finite resource [1,2]. This fact, combined with the expected 

increased demand for Pi fertilizers to sustain not only crops but also grassland productivity, 

raised concerns about its availability for future generations [3]. Furthermore, over-use of 

fertilizers leads to P run-off in streams and lakes, resulting in eutrophication. In this 

perspective, one important goal of plant biotechnology is to develop plants that can maintain 

maximal productivity under reduced fertilizer input. This will require new approaches, as past 

breeding programs typically focused on improving yield and pest resistance of plants grown 

under well-fertilized conditions [4].

Plants have evolved complex adaptation mechanisms to grow and survive in Pi-poor soils. 

Root development is profoundly modified under Pi deficiency: root hair length and density 

are increased, primary root length is reduced and root branching is enhanced [5]. Pi-deficient 

roots also secrete more protons, citrate as well as various esterases, and enhance association 

with mycorrhizae [6]. Collectively, these modifications are aimed at increasing the solubility 

of soil P, and enhancing the ability of the root system to explore and mine the soil for this 

precious resource. Plants also adjust their metabolic pathways to optimize internal Pi use, 

such as shifting phospholipids toward galacto-, glucurono-, and sulfo-lipids [7,8]. At the 

genetic level, these adaptations are accompanied by the coordinated up-regulation of hundreds 

of genes (named Phosphate Starvation Induced, PSI) [9,10]. In the last decade, several 

components have been identified that are involved in sensing and coordinating the complex 

Pi-deficiency response. One key player is PHR1, a member of the MYB transcription factor 

family [11]. PHR1 and its closest homologue PHL1 control the expression of the majority of 

PSI genes and influence numerous metabolic and developmental adaptations to Pi deficiency 

[10-13]. PHR1 has also recently been shown to integrate the PSI response with the plant 

immune response and to influence the root microbiota [14]. Since the PHR1 mRNA level is 
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not modulated by Pi deficiency, questions as to how PHR1 activity is regulated by Pi 

deficiency remained unanswered. Recently, a role for inositol pyrophosphates and SPX-

containing proteins has been uncovered in the PHR1-mediated Pi-deficiency response [15].

SPX-containing proteins in Pi homeostasis

The hydrophilic SPX domain (Pfam PF03105, named after the Saccharomyces cerevisiae 

Syg1 and Pho81proteins, and the mammalian Xpr1) comprises 160-350 amino acids and 

contains a set of invariant lysine residues forming a conserved sequence fingerprint (Figure 

1). SPX-containing proteins are found throughout the eukaryotic tree of life, including fungi, 

plants, and metazoans. Plant SPX-containing proteins are divided into four sub-families, SPX-

EXS (Pfam PF03124, named after the S. cerevisiae Erd1, mammalian Xpr1 and S. cerevisiae 

Syg1), SPX-MFS (Pfam Clan CL0015, Major Facilitator Superfamily), SPX-RING (Pfam 

13920, Really Interesting New Gene), and SPX, depending on the presence of additional 

domains, which are always fused to the C-terminus of the SPX domain (Figure 1) [16]. PHO1 

is the prototypical member of the SPX-EXS sub-family and encodes a Pi exporter involved in 

loading Pi into the root vascular cylinder [17]. The EXS domain contains two trans-membrane 

helices and is implicated in proper localization and activity of PHO1 as a Pi exporter and in 

participating in the Pi-deficiency responses [18]. The diversity of PHO1-related genes has 

expanded in dicots compared to monocots. The Arabidopsis thaliana genome contains ten 

PHO1 homologues (PHO1;H1-H10), of which only PHO1;H1 has been directly associated 

with Pi homeostasis [19-21]. Proteins belonging to the SPX-MFS sub-family contain 

numerous transmembrane helices and encode the long sought-after tonoplast Pi transporters, 

named PHT5 or VPT, moving Pi in and out of the vacuole [22-24]. The sub-family SPX-

RING  includes NLA, an E3 ubiquitin ligase that targets the Pi transporter PHT1 for 

ubiquitination and degradation [25-27]. The fourth sub-family consists of stand-alone SPX 

proteins (SPX1 to SPX4), all of which are differentially regulated under Pi deficiency [28].  

Modulation of the expression of some members of the SPX sub-family is associated with 

changes in the expression of PSI genes and influences the adaptation of plants to Pi deficiency 

[28-30].

The common element of plant SPX-containing proteins is their implication in Pi homeostasis, 

which also extends to the ten Saccharomyces cerevisiae proteins containing a SPX domain, 

including Pi transporters (Pho87, Pho90, Pho91), a PHO1-homologue (Syg1), a Pi-recycling 
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enzyme (Gde) and components of the Pi-signaling cascade (Pho81) or subunits of the 

inorganic polyphosphate polymerase (Vtc2 to Vtc5) [31]. The connection between SPX and 

Pi homeostasis raised the possibility that this domain may be involved in the direct binding of 

Pi or some metabolite derived from it. In this context, it is important to know the 

concentrations of Pi and related metabolites that are available in the plant cytosol for potential 

interaction with the SPX domain. Measurements of cytoplasmic (e.g. cytosol and organelles 

except for the vacuole) Pi concentration by in vivo 31P-NMR typically gives estimates of 5-10 

mM [32]. However, by using a NMR method allowing the separation of the organellar 

(primarily mitochondria and plastids) and cytosolic signals, Pi concentrations of 60-80 µM for 

the cytosol and 4-7 mM for the organelles were obtained [33]. Such a cytosolic Pi 

concentration would be in the Km range of Pi of several Pi-dependent enzymes but not of 

others, including SPX proteins ([15] see below).  Dynamic changes of cytosolic Pi content in 

root cells grown on Pi-deficient or Pi-sufficient media have recently been monitored in vitro 

with a Pi-biosensor having a Kd for Pi of 6.4 mM, thus putting the cytosolic Pi concentration 

potentially in that range [34].

SPX domains are sensors for inositol pyrophosphate signaling molecules

Crystal structures of fungal and human SPX domains revealed a novel protein fold, with a 

central three-helix bundle preceded by a conserved N-terminal α-hairpin motif (Figure 1) 

[15]. In different SPX domain structures, the conserved lysine cluster forms a highly basic 

binding surface at the N-terminus of the protein. This surface can interact with Pi itself, albeit 

with low millimolar affinity (Kd ≈ 5-20 mM) [15]. Furthermore, SPX domains cannot 

discriminate between Pi and other inorganic anions, such as sulfate (Figure 2A). A combined 

genetic, biochemical and structural screen identified inositol pyrophosphates (PP-InsPs) as 

bona fide ligands for the SPX domain, which specifically interact with the basic binding 

surface with nano- to micromolar affintiy (Kd ≈ 50 nM- 100 µM) [15,35] (Fig. 2B). PP-InsPs 

consist of a fully phosphorylated inositol ring that carries additional pyrophosphate groups in 

one or several positions [36]. In yeast, the concentrations of PP-InsPs change in response to Pi 

starvation and their biosynthesis route has been well-characterized [15,36,37]. Deletion of the 

PP-InsP kinase Kcs1 leads to an inhibition of the inorganic polyphosphate polymerase activity 

of the yeast VTC complex via its SPX domain. In this mutant, Pi is only stored as free 

inorganic phosphate under Pi sufficient growth conditions [15,38,39]. In plants, homologs of 

diphosphoinositol pentakisphosphate kinase (PPIP5K/Vip1-like) have been identified [40,41]. 

However, PP-InsP biosynthesis is generally poorly understood and PP-InsPs have thus far not 
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been implicated in the response of plants to Pi deficiency [41,42]. This may, in part, be due to 

the challenges in detecting and quantifying different PP-InsP isomers from plant tissues. 

Inositol pyrophosphate binding renders SPX domains competent to interact with other 

proteins

Previous work has established that SPX proteins can associate with the Arabidopsis PHR1 or 

its rice homologue PHR2 both in vitro and in vivo [43-45]. Formation of the SPX-PHR1/2 

complex in Pi-sufficient plants prevents the binding of PHR1/2 to its target promoters. In 

contrast, under Pi-deficient conditions, PHR1/2 is free and can act as a transcriptional 

activator of PSI genes. Initially, Pi itself was proposed as a ligand enabling SPX proteins to 

interact with PHR1/2 . The dissociation constants for Pi in such a complex range from 10 to 

20 mM [43-45]. In contrast, PP-InsPs promote the high-affinity interaction between the rice 

SPX4 and PHR2, with Kds in the low micromolar range (7-50 µM) [15]. Thus, PP-InsPs may 

regulate the activity of PHR1/2 via SPX proteins. Consistently, plants unable to synthesize the 

PP-InsPs precursor inositol hexakisphosphate (InsP6) show constitutive Pi starvation 

responses, despite having higher cellular Pi levels compared to wild-type [36,46,47]. Couso 

and colleagues report levels for different PP-InsPs, but it remains an open question which 

isomer(s) are involved in the PSI response [48]. It is likely that, besides Pi starvation, PP-

InsPs control other signaling pathways such as hormone perception, as purification of plant 

hormone receptors heterologously expressed in insect cells resulted in co-purification of 

endogenous InsP6 with the auxin receptor complex TIR1-ASK1 and of inositol 

pentaphosphate (InsP5) with the jasmonate receptor complex COI1-ASK1 [49,50]. In 

addition, jasmonate specifically induced the production of the PP-InsP InsP8, and in silico 

docking experiments together with site-directed mutagenesis of COI1 hint at InsP8 being 

essential for COI1-JAZ1 complex formation [41]. Finally, PP-InsPs have also been implicated 

in COI1-mediated plant wounding responses [51,52]. Interestingly, modulation of TIR1 

activity was implicated in the developmental adaptation of roots to Pi deficiency and low Pi 

induces increased resistance to herbivory via the JA-COI1 pathway [53,54]. It is thus possible 

that PP-InsPs coordinate multiple aspects of the Pi-deficiency response via their interaction 

with proteins involved in different signal transduction pathways. 
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Future perspective

While research on the yeast VTC and the plant PHO1, PHR1 and SPX-containing proteins 

clearly demonstrated the implication of PP-InsPs in Pi homeostasis and signaling, one may 

wonder if there is still room for a direct role of Pi as a signal molecule. One of the strongest 

evidence for this comes from classical studies using phosphite (Phi, H2PO3
-), a reduced form 

of Pi. Application of Phi to Pi-deficient plants suppresses a wide range of typical Pi-

deficiency responses, including local responses, such as root hair elongation, and systemic 

responses, such as lipid remodeling and the expression of numerous PSI genes [55,56]. Since 

plants cannot convert Phi into Pi and Phi itself is non-metabolizable, it can be concluded that 

Phi likely mimics Pi as a signal molecule. Like Pi, Phi was also shown to promote the 

interaction between SPX proteins and PHR1/2 [43-45], but it remains to be investigated if and 

how SPX can sense Phi. Furthermore, 31P-NMR experiments have shown that cytosolic Pi 

concentration can rapidly fluctuate in response to shifts in external Pi supply, indicating that 

cytosolic Pi levels are more dynamic than previously thought, a characteristic that would also 

fulfill an important criterion for a signaling molecule [33]. However, as discussed previously, 

it is currently uncertain whether the concentration of Pi in the cytosol is sufficient to warrant 

any significant signaling function via SPX considering the relatively high Kd of Pi for this 

domain. In this context, it will be important to measure plant cytosolic PP-InsP concentrations 

under different plant growth conditions. With this information it will be possible to discuss 

the Kd of PP-InsPs for SPX domains in respect to physiological conditions on the one hand, 

and to correlate changes in Pi nutrition and cytosolic Pi concentrations with those of PP-InsPs 

on the other hand.  

There is growing evidence for PP-InsPs being master regulators of Pi signaling in plants. 

Point mutations in the SPX domain of PHO1 in amino acids involved in coordinating with 

PP-InsPs but not Pi showed that these residues were essential for the complementation of the 

pho1 mutant, thus highlighting the role of PP-InsPs versus Pi for PHO1 as a Pi exporter [15]. 

Similar genetic dissection experiments on different SPX-containing proteins are key 

experiments enabling to discern the role of Pi and PP-InsPs in their function. It will be also 

important to determine if the binding of PP-InsPs to the SPX domain of other SPX-containing 

proteins, such as PHT5/VPT and NLA, regulate their activity through the promotion of 

interaction with other effector/regulatory proteins, or via distinct mechanisms, such as protein 

pyrophosphorylation [57]. 
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The high affinity of the SPX domain for PP-InsPs raises the possibility of using this domain 

as biosensors for the detection of PP-InsPs in vivo [58]. However, distinguishing between 

different PP-InsPs isomers may be a limiting factor of such a biosensor. In this respect, it is 

noteworthy that the SPX domain may require protein-protein interaction partners to 

discriminate PP-InsP isomers [15].

One major goal of future research will be the dissection and characterization of plant PP-InsPs 

biosynthestic and catabolic pathways as targets for the efficient manipulation of plant Pi 

homeostasis and the Pi-deficiency signal transduction pathway. Previous studies with PHO1 

have shown that it is possible to uncouple shoot phosphate deficiency from its negative effects 

on growth [59]. Optimization of the PSI response, e.g. enhancement or attenuation, via the 

engineering of the SPX domain or the modulation of PP-InsPs content may thus be associated 

with improved growth under low Pi supply.  The transfer of such knowledge to agronomically 

important plant species, such as rice, would contribute to the engineering of crops that have a 

reduced demand for valuable Pi-fertilizers but maintain maximum yield. 

Acknowledgments

Research projects on SPX-containing proteins, the Pi-deficiency signaling pathway and PP-

InsPs are funded in the YP lab by the Swiss National Foundation (grant 31003A-159998) and 

the Herbette Foundation, and in the MH lab by the European Research Council under the 

European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement 

310856 and the European Molecular Biology Organisation (EMBO) Young Investigator 

Programme.



9

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as: 

 of special interest

 of outstanding interest 

1. Gilbert N: Environment: The disappearing nutrient. Nature 2009, 461:716-718.

2. Herrera-Estrella L, Lopez-Arredondo D: Phosphorus: the underrated element for 

feeding the world. Trends Plant Sci 2016, 21:461-463.

3. Sattari SZ, Bouwman AF, Rodriguez RM, Beusen AHW, van Ittersum MK: Negative 

global phosphorus budgets challenge sustainable intensification of grasslands. 

Nature Comm 2016, 7:10696.

 Reports the future needs of P-based fertilizers to maintain the high productivity of 

agricultural systems relying on grasslands. It is estimated that mineral P fertilizer use must 

double by 2050 to sustain future crop and grassland production.

4. Lopez-Arredondo DL, Leyva-Gonzalez MA, Gonzalez-Morales SI, Lopez-Bucio J, 

Herrera-Estrella L: Phosphate nutrition: improving low-phosphate tolerance in 

crops. Ann Plant Rev 2014, 65:95-123.

5. Peret B, Clement M, Nussaume L, Desnos T: Root developmental adaptation to 

phosphate starvation: better safe than sorry. Trends Plant Sci 2011, 16:442-450.

6. Poirier Y, Bucher M: Phosphate transport and homeostasis in Arabidopsis. In The 

Arabidopsis Book. Edited by Somerville CR, Meyerowitz EM: American Society of 

Plant Biologists; 2002. 

7. Okazaki Y, Otsuki H, Narisawa T, Kobayashi M, Sawai S, Kamide Y, Kusano M, Aoki T, 

Hirai MY, Saito K: A new class of plant lipid is essential for protection against 

phosphorus depletion. Nature Comm 2013, 4:1510.



10

8. Shimojima M, Ohta H: Critical regulation of galactolipid synthesis controls membrane 

differentiation and remodeling in distinct plant organs and following 

environmental changes. Prog Lipid Res 2011, 50:258-266.

9. Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, 

Somerville S, Rolland N, et al.: A genome-wide transcriptional analysis using 

Arabidopsis thaliana Affymetrix gene chips determined plant responses to 

phosphate deprivation. Proc Natl Acad Sci USA 2005, 102:11934-11939.

10. Morcuende R, Bari RP, Gibon Y, KZheng W, Datt Pant B, Bläsing O, Usadel B, 

Czechowski T, Udvardi MK, Stitt M, et al.: Genome-wide reprogramming of 

metabolism and regulatory networks of Arabidopsis in response to phosphorus. 

Plant Cell Environ 2007, 30:85-112.

11. Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J: A conserved 

MYB transcription factor involved in phosphate starvation signaling both in 

vascular plants and in unicellular algae. Genes Dev 2001, 15:2122-2133.

12. Bustos R, G. C, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-

Ares J: A central regulatory system largely controls transcriptional activation and 

repression responses to phosphate starvation in Arabidopsis. PLoS Genet 2010, 6: 

e1001102.

13. Pant BD, Pant P, Erban A, Huhman D, Kopka J, Scheible WR: Identification of primary 

and secondary metabolites with phosphorus status-dependent abundance in 

Arabidopsis, and of the transcription factor PHR1 as a major regulator of 

metabolic changes during phosphorus limitation. Plant Cell Environ 2015, 38:172-

187.

14. Castrillo G, Teixeira P, Paredes SH, Law TF, de Lorenzo L, Feltcher ME, Finkel OM, 

Breakfield NW, Mieczkowski P, Jones CD, et al.: Root microbiota drive direct 

integration of phosphate stress and immunity. Nature 2017, 543:513-518.

 This work examined the interplay between the phosphate starvation response and the root 



11

microbiome. It demonstrates a key role for the PHR1 transcription factor in integrating the 

phosphate starvation response with the plant immune output.

15. Wild R, Gerasimaite R, Jung J-Y, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen 

HJ, Poirier Y, Hothorn M, et al.: Control of eukaryotic phosphate homeostasis by 

inositol polyphosphate sensor domains. Science 2016, 352:986-990.

  This work identified SPX domains as bona fide sensors for PP-InsPs that act as signaling 

molecules for cytosolic Pi levels. Under Pi-deficiency, PP-InsPs bind to SPX domains, 

enabling interaction with several proteins involved in the regulation of Pi signaling and the 

phosphate starvation response.

16. Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, Tyerman SD, Wu P, Shou H, Whelan J: 

The emerging importance of the SPX domain-containing proteins in phosphate 

homeostasis. New Phytol 2012, 193:852-841.

17. Hamburger D, Rezzonico E, MacDonald-Comber Petétot J, Somerville C, Poirier Y: 

Identification and characterization of the Arabidopsis PHO1 gene involved in 

phosphate loading to the xylem. Plant Cell 2002, 14:889-902.

18. Wege S, Khan GA, Jung J-Y, Vogiatzaki E, Pradervand S, Aller I, Meyer AJ, Poirier Y: 

The EXS domain of PHO1 participates in the response of shoots to phosphate 

deficiency via a root-to-shoot signal. Plant Physiol 2016, 170:385-400.

19. Secco D, Baumann A, Poirier Y: Charcaterization of the rice PHO1 gene family 

reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a 

distinct clade in dicotyledons. Plant Physiol 2010, 152:1693-1704.

20. Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier 

Y: Members of the PHO1 gene family show limited functional redundancy in 

phosphate transfer to the shoot, and are regulated by phosphate deficiency via 

distinct pathways. Plant J 2007, 50:982-994.



12

21. Wang Y, Secco D, Poirier Y: Characterization of the PHO1 gene family and the 

responses to phosphate deficiency of Physcomitrella patens. Plant Physiol 2008, 

146:646-656.

22. Liu JL, Yang L, Luan MD, Wang Y, Zhang C, Zhang B, Shi JS, Zhao FG, Lan WZ, Luan 

S: A vacuolar phosphate transporter essential for phosphate homeostasis in 

Arabidopsis. Proc Natl Acad Sci USA 2015, 112:E6571-E6578.

 Transport of Pi in and out of the vacuole plays a major role in maintaining cellular Pi 

homeostasis, but the transporters involved in this process remained unknown for decades. 

This work at last identified a major vacuolar Pi transporter that belongs to the SPX-MFS 

family.

23. Liu TY, Huang TK, Yang SY, Hong YT, Huang SM, Wang FN, Chiang SF, Tsai SY, Lu 

WC, Chiou TJ: Identification of plant vacuolar transporters mediating phosphate 

storage. Nature Comm 2016, 7:11095.

 A second independent group reports the role of SPX-MFS members as vacuolar Pi 

transporters.

24. Wang C, Yue WH, Ying YH, Wang SD, Secco D, Liu Y, Whelan J, Tyerman SD, Shou 

HX: Rice SPX-Major Facility Superfamily3, a vacuolar phosphate efflux 

transporter, is involved in maintaining phosphate homeostasis in rice. Plant 

Physiol 2015, 169:2822-2831.

 A third independent group reports the role of SPX-MFS members as vacuolar Pi 

transporters.

25. Kant S, Peng M, Rothstein SJ: Genetic regulation by NLA and microRNA827 for 

maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS 

Genet 2011, 7:e1002021.

26. Lin W-Y, Huang T-K, Chiou T-J: NITROGEN LIMITATION ADAPTATION, a 

target of microRNA827, mediates degradation of plasma membrane-localized 



13

phosphate transporters to maintain phosphate homeostasis in arabidopsis. Plant 

Cell 2013, 25:4061-4074.

27. Park BS, Seo JS, Chua N-H: NITROGEN LIMITATION ADAPTATION recruits 

PHOSPHATE2 to target the phosphate transporter PT2 for degradation during 

the regulation of Arabidopsis phosphate homeostasis. Plant Cell 2014, 26:454-464.

28. Duan K, Yi KK, Dang L, Huang HJ, Wu W, Wu P: Characterization of a sub-family of 

Arabidopsis genes with the SPX domain reveals their diverse functions in plant 

tolerance to phosphorus starvation. Plant J 2008, 54:965-975.

29. Liu F, Wang Z, Ren H, Shen C, Li Y, Q. LH, Wu C-C, Lian X, Wu P: OsSPX1 supresses 

the function of osPHR2 in the regulation of expression of OsPT2 and phosphate 

homeostasis in shoots or rice. Plant J 2010, 62:508-517.

30. Wang C, Ying S, Huang HJ, Li K, Wu P, Shou HX: Involvement of OsSPX1 in 

phosphate homeostasis in rice. Plant J 2009, 57:895-904.

31. Secco D, Wang C, Shou H, Whelan J: Phosphate homeostasis in the yeast 

Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins. 

FEBS Lett 2012, 586:289-295.

32. Lee RB, Ratcliffe RG, Southon TE: P-31 NMR measurements of the cytoplasmic and 

vacuolar pi content of mature maize roots - relationships with phosphorus status 

and phosphate fluxes. J Exp Bot 1990, 41:1063-1078.

33. Pratt J, Boisson A-M, Gout E, Bligny R, Douce R, Aubert S: Phosphate (Pi) starvation 

effect on the cytosolic pi concentration and pi exchanges across the tonoplast in 

plant cells: an in vivo P-31-nuclear magnetic resonance study using 

methylphosphonate as a pi analog. Plant Physiol 2009, 151:1646-1657.

34. Mukherjee P, Banerjee S, Wheeler A, Ratliff LA, Irigoyen S, Garcia LR, Lockless SW, 

Versaw WK: Live imaging of inorganic phosphate in plants with cellular and 

subcellular resolution. Plant Physiol 2015, 167:628-638.



14

 Reports the use of a fluorescence-based biosensor that detect changes in the concentration of 

Pi in the root cytosol. First such tool developed to detect Pi availability in living cells at the 

sub-cellular resolution level. The system can be adapted to detect Pi also in organelles.

35. Wild R, Hothorn M: The macro domain as fusion tag for carrier-driven 

crystallization. Protein Sci 2017, 26:365-374.

36. Shears SB: Inositol pyrophosphates: why so many phosphates. Adv Biol Reg 2015, 

57:203-216.

37. Azevedo C, Saiardi A: Extraction and analysis of soluble inositol polyphosphates from 

yeast. Nat Protoc 2006, 1:2416-2422.

38. Gerasimaite R, Pavlovic I, Capolicchio S, Hofer A, Schmidt A, Jessen HJ, Mayer A: 

Inositol pyrophosphate specificity of the SPX-dependent polyphosphate 

polymerase VTC. ACS Chem Biol 2017, 12:648-653.

39. Lonetti A, Szijgyarto Z, Bosch D, Loss O, Azevedo C, Saiardi A: Identification of an 

evolutionarily conserved family of inorganic polyphosphate 

endopolyphosphatases. J Biol Chem 2011, 286:31966-31974.

40. Desai M, Rangarajan P, Donahue JL, Williams SP, Land ES, Mandal MK, Phillippy BQ, 

Perera IY, Raboy V, Gillaspy GE: Two inositol hexakisphosphate kinases drive 

inositol pyrophosphate synthesis in plants. Plant J 2014, 80:642-653.

41. Laha D, Johnen P, Azevedo C, Dynowski M, Weiss M, Capolicchio S, Mao H, Iven T, 

Steenbergen M, Freyer M, et al.: VIH2 regulates the synthesis of inositol 

pyrophosphate InsP(8) and jasmonate-dependent defenses in Arabidopsis. Plant 

Cell 2015, 27:1082-1097.

42. Williams SP, Gillaspy GE, Perera IY: Biosynthesis and possible functions of inositol 

pyrophosphates in plants. Front Plant Sci 2015, 6:e67.



15

43. Lv Q-D, Zhong Y, Wang Y, Wang Z, Zhang L, Shi J, Wu Z, Liu Y, Mao C, Yi KK, et al.: 

SPX4 negatively regulates phosphate signaling and homeostasis through its 

interaction with PHR2 in rice. Plant Cell 2014, 26:1586-1597.

 Demonstrate that under high Pi conditions, SPX4 binding to PHR2 prevents its localization 

to the nucleus and thus blocks its action as a transcription factor. Under low Pi, SPX4 is 

unstable and degraded via the 26S proteasome.

44. Puga MI, Mateos I, Charukesi R, Wang Z, Franco-Zorilla JM, de Lorenzo L, Irigoyen 

ML, Masiero S, Bustos R, Rodriguez J, et al.: SPX1 is a phosphate-dependent 

inhibitor of PHOSPHATE STARVATION RESPOSNE 1 in Arabidopsis. Proc 

Natl Acad Sci USA 2014, 111:14947-14952.

 This work in Arabidopsis shows that SPX1 regulates the activity of PHR1 as a 

transcription factor by binding to it in a Pi-dependent fashion. It thus links cellular phosphate 

content to the activity of PHR1 and the phosphate starvation response.

45. Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, Li C, Wu Z, Liu Y, Yu Y, et al.: 

Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting 

with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci USA 2014, 

111:14953-14958.

 A second group who independently shows, in rice, the Pi-dependent binding of SPX 

proteins to the transcription factor PHR2.

46. Kuo H-F, Chang T-Y, Chiang S-F, Wang W-D, Charng Y-Y, Chiou T-J: Arabidopsis 

inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and 

modulates phosphate homeostasis at the transcriptional level. Plant J 2014, 

80:503-515.

47. Stevensons-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD: Generation of phytate-

free seeds in Arabidopsis through disruption of inositol polyphoshate kinases. 

Proc Natl Acad Sci USA 2005, 102:12612–12617.



16

48. Couso I, Evans BS, Li JT, Liu Y, Ma F, Diamond S, Allen DK, Umen JG: Synergism 

between inositol polyphosphates and TOR kinase signaling in nutrient sensing, 

growth control, and lipid metabolism in Chlamydomonas. Plant Cell 2016, 

28:2026-2042.

49. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, 

Sharon M, Browse J, et al.: Jasmonate perception by inositol-phosphate-

potentiated COI1-JAZ co-receptor. Nature 2010, 468:400-405.

50. Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N: 

Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007, 

446:640-645.

51. Mosblech A, Koenig S, Stenzel I, Grzeganek P, Feussner I, Heilmann I: 

Phosphoinositide and inositolpolyphosphate signalling in defense responses of 

Arabidopsis thaliana challenged by mechanical wounding. Mol Plant 2008, 1:249-

261.

52. Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I: Jasmonic acid perception by 

COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant J 2011, 

65:949-957.

53. Khan GA, Vogiatzaki E, Glauser G, Poirier Y: Phosphate Deficiency Induces the 

Jasmonate Pathway and Enhances Resistance to Insect Herbivory. Plant Physiol 

2016, 171:632-644.

54. Perez-Torres CA, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, 

Estelle M, Herrera-Estrella L: Phosphate availability alters lateral root 

development in Arabidopsis by modulating auxin sensitivity via a mechanism 

involving the TIR1 auxin receptor. Plant Cell 2008, 20:3258-3272.

55. Kobayashi K, Masuda T, Takamiya K-I, Ohta H: Membrane lipid alteration during 

phosphate starvation is regulated by phosphate signaling and auxin/cytokinin 

cross-talk. Plant J 2006, 47:238-248.



17

56. Varadarajan DK, Karthikeyan AS, P.D. M, Raghothama KG: Phosphite, an analogue of 

phosphate, suppresses the coordinated expression of genes under phosphate 

starvation. Plant Physiol 2002, 129:1232-1240.

57. Brown NW, Marmelstein AM, Fiedler D: Chemical tools for interrogating inositol 

pyrophosphate structure and function. Chem Soc Rev 2016, 45:6311-6326.

58. Uslu VV, Grossmann G: The biosensor toolbox for plant developmental biology. Curr 

Opin Plant Biol 2016, 29:138-147.

59. Rouached H, Stefanovic A, Secco D, Arpat AB, Gout E, Bligny R, Poirier Y: Uncoupling 

phosphate deficiency from its major effects on growth and transcriptome via 

PHO1 expression in Arabidopsis. Plant J 2011, 65:557-570.

60. Khan GA, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, 

Rouached H: Coordination between zinc and phosphate homeostasis involves the 

transcription factor PHR1, the phosphate exporter PHO1, and its homologue 

PHO1;H3 in Arabidopsis. J Exp Bot 2014, 65:871-884.

61. Kang X, Ni M: Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX 

and EXS domains and acts in cryptochrome signaling. Plant Cell 2006, 18:921-

934.

62. Zhou Y, Ni M: SHB1 plays dual roles in photoperiodic and autonomous flowering. 

Dev Biol 2009, 331:50-57.



18

Figure legends

Figure 1. Structure of the SPX domain and function of SPX domain-containing proteins 

in plants.

(A) Ribbon diagram of the ScVtc4 SPX domain (http://rcsb.org, PDB-ID 5IIG). The 3-helix 

bundle, consisting of two long core helices and two smaller C-terminal helices, is shown in 

orange. The N-terminal α-helical hairpin motif is highlighted in yellow. The position of the 

conserved lysine residues, which form sequence fingerprints for the SPX domain, are depicted 

by blue spheres. The C-terminal α6 helix can be connected to extra domains such as RING, 

MFS, and EXS. (B) In Arabidopsis thaliana, there are 20 SPX proteins that are classified into 

four different sub-families depending on the presence of extra domains: four proteins contain 

only the SPX domain (SPX1 to SPX4), two proteins combine SPX and a RING domain (NLA 

and NLA2), three combine SPX and a MFS domain (PHT5 or VPT), and eleven proteins 

combine SPX and an EXS domain (the PHO1 family). The functions of these proteins are 

indicated.  

Figure 2. Interaction of the SPX domain with sulfate and InsP6. (A) Structure of the SPX 

domain of the human XPR1, a PHO1 homologue (http://rcsb.org, PDB-ID 5IJH, colors as in 

Fig. 1) bound to a sulfate ion (in bonds representation). Note that the SPX domain cannot 

differentiate between sulfate and Pi and that sulfate is a good structural mimic to Pi. The 

sulfate ion is in hydrogen bond contact (grey dotted lines) with only few of the lysine residues 

conserved among SPX domains. (B) Structure of the SPX domain of Chaetomium 

thermophilum Glycerophosphodiester Phosphodiesterase 1 (http://rcsb.org, PDB-ID 5IJJ) in 

complex with InsP6. The signaling molecule establishes an extensive hydrogen bond network 

with a tyrosine originating from the N-terminal helical hairpin motif and with the invariant 

lysine residues.
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