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Summary 
 

 
Neutrophils constitute the first line of defense against a variety of pathogens. 

Following Leihmania major infection neutrophils migrate rapidly and massively to the site of 

parasite inoculation. They are important players in the orchestration of the anti-leishmania 

response through the release of a plethora of cytokines, chemokines and granular components. 

In addition, neutrophils interact with antigen-presenting cells such as dendritic cells (DCs) 

and thereby contribute to the development of the adaptive immune response. However, the 

impact of neutrophils on the activation of DCs and possible consequences on disease 

progression following L. major infection are poorly understood. Therefore, we first 

investigated the influence of neutrophils on DC activation in vitro. Next we analyzed the role 

of neutrophils on the activation of DCs present at the site of infection and in the draining 

lymph node (dLN) following inoculation of L. major in the ear pinna of C57BL/6 and 

BALB/c mice and analyzed the consequences of early neutrophil depletion on disease 

progression. 

We could demonstrate that neutrophils had a negative impact on the activation of 

DCs exposed to L. major in vitro through mechanisms involving neutrophil-derived 

prostaglandins and sequestration of parasites. In BALB/c mice, depletion of neutrophils 

during the first days of infection with L. major in the ear dermis increased the expression of 

activation markers on dLN DCs but not on DCs present at the site of infection. In addition, 

BALB/c mice transiently depleted of neutrophils developed significantly smaller lesions, a 

decreased Th2 immune response and harbored fewer parasites at the site of infection 

compared to non-depleted littermates. 

In C57BL/6, mice early depletion of neutrophils had no detectable impact on the 

activation of DCs both at the site of infection and in the dLN following L. major inoculation. 

Furthermore, depletion of neutrophils had no major effect on lesion evolution and parasite 

loads despite the development of a decreased Th2 immune response compared to non-

depleted littermates. 

In summary, at the onset of infection, neutrophils are detrimental for DC activation 

and the anti-leishmania response in BALB/c mice while their role appears to be less important 

in C57BL/6 mice. These findings could have important implications for the design of new 

vaccination strategies. 
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Résumé 

 
Les neutrophiles constituent la première ligne de défense contre un grand nombre de 

pathogènes. Après infection avec Leishmania major, les neutrophiles migrent rapidement et 

massivement au site d’infection par le parasite. Les neutrophiles sont d’importants acteurs 

dans l’orchestration de la réponse anti-Leishmania, via la sécrétion de nombreuses cytokines, 

chimiokines et composés stockés dans leurs granules. De plus, les neutrophiles interagissent 

avec les cellules présentatrices d’antigènes, telles que les cellules dendritiques et en 

conséquences contribuent au développement de la réponse adaptative. A ce jour, l’impact des 

neutrophiles sur l’activation des cellules dendritiques et les possibles conséquences de 

l’interaction neutrophiles avec ces dernières sur l’évolution de la maladie suite à l’infection 

avec L. major reste peu connu. Ainsi, nous avons dans un premier temps investigué 

l’influence des neutrophiles sur l’activation des cellules dendritiques in vitro. Suite à cela, 

nous avons analysé le rôle des neutrophiles sur l’activation des cellules dendritiques présentes 

au site d’infection et dans les ganglions drainants in vivo, après inoculation intra-dermale de 

L. major dans le pavillon auriculaire de souris de souche C57BL/6 et BALB/c, ainsi que les 

conséquences de la déplétion des neutrophiles sur l’évolution de la maladie. 

Nous avons pu démontrer que les neutrophiles ont un impact négatif sur l’activation 

des cellules dendritiques exposées à L. major in vitro, via des mécanismes impliquant la 

sécrétion de prostaglandines par les neutrophiles et la séquestration des parasites. La 

déplétion des neutrophiles dans les souris BALB/c durant les premiers jours après infection 

avec L. major dans le derme de l’oreille résulte en une augmentation de l’expression de 

marqueurs d’activation des cellules dendritiques présentes dans les ganglions drainants, mais 

pas au site d’infection. De plus, les souris BALB/c transitoirement déplétées en neutrophiles 

développent des lésions significativement plus petites, une réponse de type Th2 diminuée et 

une charge parasitaire plus faible au site d’infection que les souris non déplétées. 

La déplétion des neutrophiles dans les souris C57BL/6 n’a pas d’influence détectable 

sur l’activation des cellules dendritiques que ce soit au niveau des ganglions drainants ou au 

site d’infection. La progression de la lésion et la charge parasitaire ne sont pas affectées par la 

déplétion des neutrophiles, malgré le développement d’une réponse Th2 diminuée par rapport 

aux souris non déplétées. 

En résumé, dans les premières heures après infection, les neutrophiles ont un effet 

négatif sur l’activation des cellules dendritiques et sur la réponse anti-Leishmania dans les 

souris BALB/c tandis que leur rôle paraît moins important dans les souris C57BL/6. Ces 

résultats peuvent avoir d’importantes implications en terme de développement de nouveaux 

vaccins contre Leishmania. 
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Résumé pour un large public 
 

 

Les neutrophiles représentent la première ligne de défense de l’organisme contre les 

agents infectieux et constituent la plus abondante population de globules blancs chez 

l’humain. Ils participent aussi à l’induction de la réponse immunitaire innée via la sécrétion 

de nombreuses cytokines, chimiokines, divers composants stockés dans leurs granules ainsi 

que par interaction avec d’autres cellules immunitaires telles que les cellules dendritiques. 

Les cellules dendritiques sont les principales cellules présentatrices d’antigène, font le lien 

entre le système inné et le système adaptatif et sont cruciales pour le développement d’une 

réponse protective. Les neutrophiles contribuent à l’attraction des cellules dendritiques au site 

d’infection et peuvent inhiber ou promouvoir leur activation selon le contexte. 

Dans le modèle murin d’infection avec le parasite Leishmania major, les neutrophiles 

sont les premières cellules à arriver rapidement et massivement au site d’infection. Après 

infection avec L. major, la majorité des souches de souris, telles que les souris de la souche 

C57BL/6, développent une petite lésion qui se résorbe par elle-même et sont capables de 

contrôler la prolifération parasitaire. Ces souris développent une réponse immunitaire de type 

Th1et sont considérées comme Leishmania-résistantes. A contrario, un petit nombre de 

souches de souris, telles que les souris de souche BALB/c, succombent à l’infection avec L. 

major et sont référées comme Leishmania-susceptibles. Ces souris développent une 

importante lésion et sont incapables de contrôler la prolifération du parasite au site 

d’infection, des effets associés à une réponse immunitaire de type Th2. Le rôle des 

neutrophiles, rapidement recrutés au site d’infection des souris C57BL/6 et BALB/c, a été 

investigué par de nombreux groupes de recherche, mais avec des résultats controversés. Dans 

ce projet, nous avons ainsi voulu évaluer l’impact des neutrophiles sur l’activation des 

cellules dendritiques et sur l’évolution de la lésion après inoculation de L. major dans le 

pavillon auriculaire des souris de souche C57BL/6 et BALB/c. 

Dans un premier temps, nous avons pu démontrer que les neutrophiles des souris 

BALB/c agissaient négativement sur l’activation des cellules dendritiques in vitro. Afin de 

caractériser l’influence des neutrophiles sur l’activation des cellules dendritiques in vivo, nous 

avons traité les souris avec un anticorps monoclonal qui dépléte les neutrophiles pendant les 

premiers jours après l’infection avec L. major. Nous avons observé que les neutrophiles ont 

une influence négative sur l’activation des cellules dendritiques dans les ganglions drainant le 

site d’infection, mais pas au site d’infection. De plus, les souris dont les neutrophiles sont 

déplétés avant l’infection développent une lésion plus petite, non-progressive et contenant 

moins de parasites que les souris non-déplétées. Les neutrophiles des souris Leishmania-
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résistantes ont un impact moindre sur l’activation des cellules dendritiques in vivo. 

L’évolution de la lésion ainsi que la charge parasitaire ne sont pas altérées par la déplétion des 

neutrophiles. 

En résumé, nous avons démontré dans ce projet que les neutrophiles des souris 

Leishmania-susceptibles de souche BALB/c ont un effet négatif sur la réponse anti-

Leishmania, tandis que leur rôle dans les souris résistante de souche C57BL/6 semble moins 

important. Ces résultats peuvent avoir d’importantes implications en terme de développement 

de nouveaux vaccins contre Leishmania. 
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Abbreviations 
 

 

Ab  antibody 

APC  antigen presenting cell 

BALF  bronchoalveolar lavage fluid 

BCG  Bacillus Calmette-Guérin 

BCR  B cell receptor 

BM  bone marrow 

cDC  conventional DC 

CL  cutaneous leishmaniasis 

CLR  C-type lectin receptor 

CTL  cytotoxic T lymphocyte 

DAMP  danger-associated molecular pattern 

DC  dendritic cell 

DC-SIGN DC-specific ICAM-3-grabbing non-integrin 

DCL  diffused cutaneous leishmaniasis 

dLN  draining lymph node 

fp  footpad 

G-CSF  granulocyte-colony stimulating factor 

Gfi-1  growth factor independent 1 

GM-CSF granulocyte macrophage colony-stimulating factor 

HMGB1 high-mobility group protein B 1 

iDC  immature DC 

IFNγ  interferon gamma 

IL  interleukin 

iNOS  inducible NO synthase 

iTreg  inducible regulatory T cell 

LACK  Leishmania activated C-kinase 

LCF  Leishmania chemotactic factor 

LN  lymph node 

LPS  lipopolysaccharide 

mAb  monoclonal antibody 

MCL  mucocutaneous leishmaniasis 

MHC  major histocompatibility complex 

MMP  matrix metalloproteinase 
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moDC  monocyte-derived DC 

MPO  myeloperoxidase 

NET  neutrophil extracellular trap 

NK  natural killer 

NLR  NOD-like receptor 

NO  nitric oxide 

p.i.  post infection 

PAMP  pathogen-associated molecular pattern 

PBS  phosphate buffer saline 

pDC  plasmacytoid DC 

PG  prostaglandin 

PRR  pattern recognition receptor 

RLR  RIG-like receptors 

ROI  reactive oxygen intermediate 

ROS  reactive oxygen species 

SLE  systemic lupus erythematosus 

Stat  signal transducer and activator of transcription 

TCR  T cell receptor 

Th  T helper 

TFH  T follicular helper cell 

TGFβ  transforming growth factor beta 

Tip DC  TNFα and iNOS producing DC 

TLR  Toll-like receptor 

TNFα  tumor necrosis factor alpha 

TREM  triggering receptor expressed on myeloid cells 

VL  visceral leishmaniasis 
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Introduction 
 

 

1. The immune system 
 

 Our body is constantly exposed to microorganisms present in our environment 

including bacteria, virus, fungi and parasites. To defend ourselves from those pathogens we 

possess three distinct lines of defense. The first line of defense consists of physical barriers 

such as the skin or mucosa to block the entry of pathogens into the body. If microorganisms 

succeed in crossing the epithelial barrier, the second and third lines of defense get activated – 

the innate and the adaptive immune system, respectively. 

 

1.1 The innate immune system 

 

The innate immune system is an evolutionary older form of host defense found in all 

classes of plant and animal life. It comprises cells and mechanisms that fight intruding 

pathogens in a fast but non-specific manner. Cells of the innate immune system such as 

neutrophils, macrophages, dendritic cells (DCs), natural killer (NK) cells, basophils and 

eosinophils express germline-encoded pattern recognition receptors (PRRs) to detect 

molecular motifs on invading pathogens called pathogen-associated molecular patterns 

(PAMPs) and endogenous danger signals indicating host injury termed danger-associated 

molecular patterns (DAMPs) [1]. PRRs are classified according to their structure, function 

and localization: Toll-like receptors (TLRs) [2], C-type lectin receptors (CLRs), RIG-I-like 

receptors (RLRs) [3] and NOD-like receptors (NLRs) [4]. After entering tissues, many 

pathogens are rapidly recognized and ingested by host cells. This leads to the secretion of pro-

inflammatory cytokines such as IL-1β, IL-6 and Tumor Necrosis Factor α (TNFα) as well as 

chemokines leading to the attraction of more innate immune cells such as DCs. After 

exposure to or phagocytosis of pathogens, DCs get activated, migrate to the draining lymph 

node and present antigen in the context of major histo compatibility complex (MHC) class II 

to naïve T cells, thereby initiating the adaptive immune response, our third line of defense [5, 

6].  

 

1.2 The adaptive immune response 

 

The activation of the adaptive immune system is slower compared to the innate immune 

system. In return a much broader range of antigens can be recognized in a highly specific 
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manner. The main adaptive immune cells are B and T lymphocytes developing in the bone 

marrow and thymus, respectively. Each B cell expresses a B cell receptor (BCR) and each T 

cell a T cell receptor (TCR) recognizing only one single epitope. T cells are further 

subdivided in CD4+ and CD8+ T cells. CD4+ T cells instruct other cells via the secretion of 

cytokines and by interactions through costimulatory molecules. CD8+ T cells, also called 

cytotoxic T cells (CTLs), can eliminate other cells infected with pathogens. B and T cells 

continuously circulate between secondary lymphoid organs such as spleen, lymph nodes (LN) 

or mucosa-associated lymphoid tissues. Once a B or T cell recognizes its cognate antigen 

presented by an antigen-presenting cell (APC) via their BCR or TCR, respectively, it gets 

activated. This recognition, together with additional costimulatory signals, leads to the 

differentiation into effector cells, proliferation and clonal expansion. Activated B cells 

differentiate into plasma cells secreting high-affinity antibodies. CD4+ T cells can 

differentiate into various T helper subsets and secrete specific cytokines (T helper cell 

differentiation will be discussed more in detail in chapter 1.3). CD8+ T cells differentiate into 

CTLs and eliminate infected cells. The development of the adaptive immune response leads, 

in most cases, to the efficient elimination of the agent of infection. Furthermore, some 

lymphocytes differentiate into memory cells during the adaptive immune response. Upon 

reinfection with the same pathogen, these memory cells respond faster and more efficiently. 

The development of memory is a hallmark of the adaptive immune response and most 

vaccines rely on the formation of good immunological memory and the generation of high 

titers of specific antibodies [7-9].  

 

1.3 T helper differentiation 

 

T helper cells play critical roles in orchestrating the adaptive immune response. After 

encountering their cognate antigen presented by APCs, naïve CD4+ T cells differentiate into 

various subsets including Th1, Th2, Th17, follicular T helper (TFH) and inducible regulatory T 

(iTreg) cells. Each T helper subset is characterized by a specific transcription factor, has a 

specific cytokine secretion pattern and exerts distinct functions (Figure 1). In this way an 

appropriate immune response against a variety of different pathogens can be induced and the 

pathogens be eliminated However, increasing data suggest that the different Th subsets are 

not necessarily terminally differentiated fixed lineages but that there is some plasticity among 

different Th subsets. Therefore, one Th subset can acquire characteristics of another Th subset 

under certain circumstances [10]. 
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1.3.1 T helper 1 differentiation 

 

Th1 cells induce cell-mediated immune responses against intracellular pathogens 

[11]. The differentiation of Th1 cells is driven by the cytokines IFNγ and IL-12 released by 

cells such as NK cells and DCs. IFNγ activates Stat1, which is the major transducer of IFNγ 

signaling, in the responding CD4+ T cells leading to the upregulation of the Th1 master 

regulator T-bet [12, 13]. T-bet, in turn, induces the secretion of IFNγ by T cells and the up-

regulation of the β2 chain of the IL12 receptor (IL-12Rβ2) which forms the heterodimeric IL-

12 receptor together with the constitutively expressed IL-12Rβ1 chain. IL-12-signaling 

through Stat4 induces IFNγ production by activated T cells and sustains the expression of IL-

12Rβ2 [14]. Thus IFNγ and IL-12 collaborate to induce full Th1 differentiation. At later 

stages IL-18 has been shown to increase IFNγ production by differentiated CD4+ T cells [15]. 

IFNγ activates the microbicidal functions of innate cells such as macrophages resulting in the 

production of toxic compounds like nitric oxide which leads to the elimination of the 

pathogens [16]. Moreover, IFNγ triggers an isotype switch towards IgG2a and IgG3 

antibodies secreted by B cells enhancing opsonization and phagocytosis of the pathogen. 

However, Th1 cells were also shown to be involved in chronic inflammation and tissue 

destruction illustrating the necessity of a tight regulation of Th1 cell differentiation. 

 
Figure 1: Schematic representation of Th cell differentiation in the mouse 

 

1.3.2 T helper 2 differentiation 

 

Th2 cells mediate humoral immune responses against extracellular parasitic 

infections such as helminth infections [11]. The differentiation of Th2 cells is mainly driven 
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by IL-4 which upregulates the expression of IL-4Rα and acts as positive feedback cytokine 

[17]. IL-4 activates the signal transducer Stat6 that in turn induces the expression of the 

master transcription factor GATA3 [18, 19]. However, accumulating in vivo studies indicate 

that IL-4 is not essential for Th2 differentiation under certain settings and other mechanisms 

might be involved in Th2 cell differentiation [20, 21]. The signature cytokines secreted by 

Th2 cells are IL-4, IL-5 and IL-13. These cytokines activate mast cells, eosinophils and 

induce a B cell isotype switch towards IgE and IgG1. This leads to the opsonization of 

pathogens and to the release of proinflammatory mediators such as cytokines, chemokines 

and histamins. However, excessive Th2 responses are often linked to the development of 

asthma or allergies and therefore need to be properly regulated. 

 

1.3.3 T helper 17 differentiation 

 

Th17 cells mediate host defense against extracellular bacteria and fungi [22]. 

Initially, Th17 cell differentiation was thought to be dependent on IL-6 and TGFβ which 

activate Stat3 leading to the expression of the Th17 master regulator RorγT [23]. However, an 

alternative Th17 cell differentiation model independent of TGFβ signaling was proposed 

recently. In this model IL-23 in combination with IL-1β led to differentiation of Th17 cells 

that are able to secrete IFNγ, termed pathogenic Th17 cells [24]. The signature cytokines of 

Th17 cells are IL-17A, IL17F, IL-21 and IL-22. IL-17A and IL17-F have different 

downstream targets leading to the secretion of pro-inflammatory cytokines and contributing 

to neutrophil recruitment [25, 26]. While IL-21 is thought to act as a positive feedback loop 

for Th17 cell differentiation [27], IL-22 induces antimicrobial agents in keratinocytes and is 

essential in the immune barrier function of epithelia [28, 29]. If not properly controlled 

exaggerated Th17 immune responses can cause multiple autoimmune diseases. 

 

1.3.4 Other T helper subsets 

 

Regulatory T cells  

Treg cells play a critical role in maintaining self-tolerance as well as in regulating 

immune responses [30]. Two different types of Treg cells exist – natural Treg (nTreg) cells 

that derive directly from the thymus and inducible Treg (iTreg) cells that differentiate from 

naïve CD4+ T cells in the presence of TGFβ. Both subtypes express the master regulator 

FoxP3 and the surface marker CD25 [31]. TGFβ, IL-2 and FoxP3 expression are required for 

the survival and for maintaining the suppressive function of Treg cells which is mainly 

exerted through the secretion of the immune-modulatory cytokines TGFβ and IL-10 [32, 33]. 
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Increased Treg function may be beneficial in treating autoimmune diseases or preventing 

allograft rejections [34]. On the other hand, inhibiting Treg function could enhance immunity 

against tumors and chronic infectious agent. Thus, the differentiation of Treg cells needs also 

to be tightly regulated. 

 

T follicular helper cells 

TFH cells provide help to B cells during immune responses. They are required for the 

formation of germinal centers and the generation of plasma and memory B cells secreting 

high affinity antibodies. TFH cells are characterized by the expression of distinct surface 

marker such as CXCR5, PD1, ICOS, BTLA and CD40L. The master regulator of TFH 

differentiation is Bcl-6. A recent report also demonstrated the involvement of Notch signaling 

in the differentiation of TFH cells [35]. However, it is still unclear whether TFH cells 

differentiate from naïve or already primed CD4+ T cells [36, 37]. 

 

T helper 9 cells 

Th9 cells have been recently described as IL-9 secreting cells. IL-9 secretion is 

induced by a combination of TGFβ and IL-4 and promotes mucus production from lung 

epithelial cells and pulmonary mastocytosis [38-40]. The transcription factor PU.1 is required 

for the development of IL-9-producing cells [41]. Th9 cells have been implicated to 

contribute to allergic diseases, however their exact role is still not well understood [42]. 

 

Tr1 cells 

Type 1 regulatory (Tr1) cells are T cells playing an important role in promoting and 

maintaining tolerance. They secrete large amounts of IL-10 and minimal amounts of IL-4 and 

IL-17 which distinguish them from Th1 and Th17 cells. Tr1 cells express very little if any 

FoxP3 and are thus thought to be also distinct from Treg cells [43]. 

 

1.3.5 Role of Notch signaling in T helper differentiation 

 

The Notch signaling pathway is an evolutionary highly conserved system involved in 

a variety of different processes such as embryonic development as well as adult tissue 

homeostasis and renewal. In mammals, four Notch receptors (Notch 1-4) and five Notch 

ligands (Delta-like ligand 1, 4, 5 and Jagged 1, 2) exist. Increasing data suggest that Notch 

signaling plays an important role both in the differentiation and function of different CD4+ T 

helper subsets. However, the precise role of Notch in Th differentiation is not yet fully 

understood. Indeed, some studies show that Notch is involved in Th1 differentiation while 

others report a role for Notch in Th2 or TFH differentiation. More work on the involvement of 
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Notch signaling in general and in particular on the contribution of single Notch receptors and 

ligands on T helper differentiation is needed to fully understand the contribution of Notch in 

this process [44, 45]. 

 

 

2. Neutrophils 

 

Neutrophils constitute the most abundant population of white blood cells in humans. 

They are the first line of defense against infectious agents. If microorganisms have 

successfully entered tissues, neutrophils arrive massively and rapidly at the site of insult, fight 

the pathogens and participate in the activation and regulation of the adaptive immune 

response [46-49]. 

 

2.1 History 

 

One of the first description about cellular components of the inflammatory response 

was made by William Addison in 1841. He compared colorless corpuscles in the blood with 

those of inflamed tissues and proposed that leukocytes enter tissues via diapedesis. Around 40 

years later in 1880, Paul Ehrlich developed a staining technique using hematoxylin and eosin 

(H and E) that facilitated the identification of developing phagocytes in the bone marrow, 

blood and tissues. Using this technique he could distinguish neutrophils having a neutral and 

thus unstained cytoplasm from other cells such as basophils and eosinophils. In 1884, 

Metchnikov observed the phagocytic process under the microscope and is credited with the 

origin of the terms phagocyte and phagocytosis [50]. 

 

Figure 2: Neutrophil stained with the H and E method (adapted from 

http://medcell.med.yale.edu/histology/blood_bone_marrow_lab/neutrophil.php) 
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2.2 Development and homeostasis 

 

Neutrophils develop in the bone marrow from hematopoietic stem cells (HSC) during 

a tightly regulated process termed granulopoiesis. The differentiation process takes about two 

weeks and is separated in five different morphological stages: myeloblast, promyelocyte, 

myelocyte and metamyelocyte, band cell, polymorphonuclear granulocyte [46]. The 

transcription factors CCAAT/enhancer binding protein a (C/EBPa), PU.1 and growth factor 

independent-1 (Gfi-1) are essential for terminal granulopoiesis [51-53]. The major cytokine 

for neutrophil differentiation and survival is granulocyte colony stimulating factor (G-CSF). 

However, G-CSF-deficient mice still possess 25% residual neutrophils and are able to 

generate fully mature neutrophils [54]. Thus, involvement of other cytokines such as GM-

CSF, IL-6, IL-3, IL-17 and IL-22 in granulopoiesis has been suggested [55]. Once fully 

differentiated, matured neutrophils are retained in the bone marrow. Indeed, circulating 

neutrophils represent only 1-2% of morphologically mature neutrophils in the bone marrow 

[56]. The bone marrow reserve is critical for host defense, as these neutrophils can be rapidly 

mobilized in case of infection or injury. The retention of neutrophils in the BM is mainly 

regulated by the interaction of chemokine receptors such as CXCR4 (favoring retention) and 

CXCR2 (favoring release) and their ligands CXCL12 and KC and Groβ, respectively. The 

interaction of CXCR4 on neutrophils with CXCL12 secreted by BM stromal cells leads to 

retention of neutrophils in the BM. In case of an infection, G-CSF is released by BM 

macrophages leading to the downregulation of CXCR4 on neutrophils and to their release in 

the blood [57, 58]. Under homeostatic conditions, neutrophils are rather short-lived cells. The 

half-life of neutrophils in circulation was thought to be approximately 1.5 and 8 hours in mice 

and human, respectively. However recent studies challenged this concept proposing that the  

average circulatory lifespan of neutrophils is up to 12.5 hours in mice and 5.4 days in human 

[59, 60]. 

 Granules are the hallmark of granulocytes and store proteins that can kill microbes 

and lead to tissue digestion. Neutrophil granules are classified into four different subsets 

based on the presence of characteristic granule proteins: primary or azurophilic granules, 

secondary or specific granules, tertiary or gelatinase granules and secretory vesicles. These 

granules harbor more than 300 different proteins. Granules are formed during granulocytic 

differentiation: primary granules at the early promyelocyte stage, secondary granules at the 

myelocyte-metamyelocyte stage, tertiary granules at the band cell stage and secretory vesicles 

in mature neutrophils [61, 62]. 
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2.3 Functions 

 

Once released into the blood stream neutrophils begin to seek signs of inflammation 

and infection leading to a series of events culminating in transendothelial migration to the site 

of insult. The neutrophil recruitment cascade involves the following steps: tethering, rolling, 

adhesion, crawling and transmigration. The first rolling step is mostly selectin-dependent. 

Chemokines presented on the luminal part of the endothelium activate neutrophils inducing 

conformational changes of neutrophil surface integrins. The next steps such as adhesion, 

crawling and transmigration depend on integrin interactions. Chemokine gradients along the 

endothelium guide neutrophils to the preferential site of transmigration. Two different models 

of transmigration exist: the paracellular model in which neutrophils transmigrate between 

endothelial cells and the transcellular model in which neutrophils transmigrate through 

endothelial cells [49]. 

 

2.3.1 Neutrophils in host defense 

 

Neutrophils arrive rapidly and massively at the site of infection and contribute to 

pathogen elimination. Chemokines such as IL-8 in humans or KC and MIP2 in mice, 

complement C3 and possibly pathogen-derived factors contribute to neutrophil chemo-

attraction [63, 64]. Neutrophils express a wide variety of PRRs such as TLRs, CLRs, RLRs 

and NLRs through which they recognize PAMPs and DAMPs [65]. This recognition leads to 

their activation and phagocytosis of the pathogen. Neutrophils possess different ways to 

eliminate pathogens such as the respiratory burst, nitric oxide (NO) production, the release of 

granular proteins and the formation of neutrophil extracellular traps (NETs). 

 

 

Respiratory burst 

The respiratory burst is mediated by the NADPH complex. In resting neutrophils, 

components of the NADPH complex are spatially separated into the cytosol and the 

membrane. Upon stimulation, the cytosolic part gets translocated to the membrane resulting 

in the activation of the NADPH complex [66]. Its activation leads to an increase in oxygen 

consumption and the generation of reactive oxygen intermediates (ROIs) such as superoxide 

anions (O2
-) and hydrogen peroxide (H2O2). Myeloperoxidase (MPO) then converts the 

relatively innocuous H2O2 in much more powerful antiseptics such as hypochlorus acid 

(HOCl) and chloramines [67]. Deficiencies of the NADPH complex were discovered in 

patients suffering from chronic granulomatous diseases (CGD) highlighting the importance of 

this complex. 
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NO production 

NO production is mediated by the enzyme inducible nitric oxide synthase (iNOS). 

Phagocytes such as neutrophils and macrophages as well as TNFα and iNOS expressing (Tip) 

DCs express iNOS and are capable of producing NO. iNOS can be induced by stimuli such as 

IFNγ, LPS or TNFα  leading to the synthesis of NO from L-arginine. NO is an antimicrobial 

agent which can inhibit or inactivate enzymes of the citric acid cycle and damage DNA. 

Furthermore, the reaction of NO with O2
- leads to the generation of peroxynitrite (ONOO-) 

capable of destroying proteins, lipids and nucleic acids from pathogens [68, 69]. 

 

Degranulation 

Neutrophils possess four different types of granules involved in tissue degradation 

and pathogen killing. The first granules to be discharged are secretory vesicles facilitating the 

adhesion of neutrophils to the endothelium and their transmigration. The next granules to be 

released are tertiary and secondary granules containing an overlapping set of proteins 

including lactoferrin, lysozyme, LL37 and matrix-metalloproteases (MMPs). These proteins 

contribute to neutrophil recruitment and tissue breakdown [70]. The last granules to be 

emptied are the primary granules containing defensins and MPO. While primary granules 

fuse to the phagolysosome, secondary granules can also be secreted in the extracellular 

environment contributing to the elimination of pathogens [61, 70]. 

 

NET formation 

NETs are composed of decondensed chromatin, histones and granular, antimicrobial 

peptides such as MPO, neutrophil elastase, lactoferrin and LL37. The release of NETs leads 

to the binding and killing of a variety of microbes including bacteria, fungi and parasites. 

Two different models of NET formation exist: direct neutrophil activation by microbes leads 

to nuclear decondensation and apoptosis resulting in NET formation. This process is rather 

slow taking between two to three hours. A faster process is mediated through indirect cell-

mediated activation. In this process, lipopolysaccharide (LPS)-mediated activation of platelets 

induces their binding to neutrophils which is rapidly (10 minutes) followed by NET release. 

Activation of the NADPH oxidase and ROS production play a central role in initiating the 

program, however the exact molecular basis of NET formation is still poorly understood [71, 

72]. 

 

 

 

 



Introduction                                                                                                                                  .	
  	
  	
  
	
  

	
  24	
  

2.3.2 Neutrophils in the orchestration of adaptive immunity 

 

Initially, neutrophils were thought to be short-lived cells that migrate to the site of 

infection, participate in pathogen killing and finally undergo apoptosis. However, this view 

has been changed over the last years. Neutrophils secrete numerous cytokines and 

chemokines (Figure 3) thereby interacting with numerous other cell populations such as DCs, 

NK cells, T cells and B cells. As a result it is now clear that neutrophils participate in the 

initiation of the adaptive immune response [47-49].  

 

Figure 3: Cytokine secretion pattern of human neutrophils [47] 

 

It was shown in an infection model of Legionella pneumophilia that depletion of 

neutrophils attenuated host defense against Legionella and blocked IFNγ production by NK 

cells. Indeed, IL-18 released by neutrophils induced IFNγ secretion by NK cells in response 

to Legionella infection suggesting that interactions between neutrophils and NK cells are of 

functional importance [73]. In 2012, Jaeger and colleagues provided novel and unexpected 

evidence that neutrophils regulate NK cell maturation, function and homeostasis. NK cells 

from mice lacking neutrophils, either due a genetic mutation or antibody-mediated neutrophil 

depletion, displayed hyperproliferation, poor survival and were blocked at an immature stage 

associated with hyporesponsiveness. The role of neutrophils regulating NK cell function was 

also shown in neutropenic patients [74]. Thus neutrophils are important regulators of NK cell 

function and homeostasis both in human and mice. 
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Neutrophils can also interact with lymphocytes. A study by Puga and colleagues 

demonstrated that neutrophils stimulated the diversification and production of 

immunoglobulin in the marginal zone of the spleen to T cell-independent antigens. Splenic 

neutrophils induced immunoglobulin class switching and antibody production by mechanisms 

involving the cytokines BAFF, APRIL and IL-21. The authors further showed that 

neutropenic patients had fewer marginal zone B cells and a lower abundance of antibodies to 

T cell-independent antigens [75]. 

Neutrophils are also involved in the regulation of T cell responses. Following 

injection of antigens in adjuvants neutrophils migrate to the dLNs where they control the 

magnitude and the spread of T cell responses through a mechanism involving the eicosanoid 

thromboxane A2 [76]. Furthermore, neutrophils can attract Th1 and Th17 cells to sites of 

inflammation via the secretion of the chemokines CCL2 and CCL9 or CCL2 and CCL20, 

respectively [77]. On the other side, Th17 but not Th1 cells secrete CXCL8 leading to 

neutrophil attraction. Moreover, activated CD4+ and CD8+ T cells, including Th17 cells, 

produce cytokines including IFNγ, GM-CSF and TNFα that promote neutrophil survival and 

activation [78, 79]. 

In summary, these data demonstrate that neutrophils are not just short-lived cells that 

kill pathogens and undergo apoptosis. They crosstalk with a variety of different cell 

populations and as a consequence participate in shaping both the innate and the adaptive 

immune response. Another important cellular crosstalk – between neutrophils and DCs – will 

be discussed in chapter 4. 

 

2.4 Role of neutrophils in different diseases 

 

Patients with congenital neutrophil deficiencies suffer from severe infections that are 

often fatal. However, neutrophil products can also be both targets and mediators of 

autoimmunity. MPO and proteinase 3 (PR3) for instance are main targets for anti-neutrophil 

cytoplasmic antibodies (ANCA), autoantibodies directed against antigens present in the 

cytoplasm of neutrophils and involved in diseases such as Wegener’s granulomatosis or SLE 

[80].  

 Given the importance of neutrophils in humans their role has been studied in several 

models of infection in mice using neutrophil-depleting antibodies. In most infection models 

caused by pathogens such as Mycobacterium, Toxoplasma, Listeria, Legionella, Candida and 

Aspergillus the presence of neutrophils was associated with resistance to infection [81-86]. In 

the infection models of Candida and Legionella susceptibility following neutrophil depletion 

was associated with a change in the immune response from Th1 to Th2. In Mycobacterium 

and Toxoplasma infection the depletion of neutrophils led to a decreased Th1 response 
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without initiating the development of a Th2 response. In the infection model of Plasmodium 

neutrophils have a deleterious role and depletion of neutrophils prevents infected mice from 

mortality [87]. 

 These data demonstrate that neutrophils play an important role in both innate 

and adaptive immunity. However, their activation needs to be tightly regulated to avoid 

possible adverse effects. The role of neutrophils during infections with Leishmania will be 

discussed in chapter 5.5. 

 

 

3. Dendritic cells 
 

DCs were first described by Ralph Steinman in 1973. They are the main APCs and 

essential mediators of immunity and tolerance. DCs are specialized for the capture, 

processing and presentation of antigens to T cells and constitute the link between the innate 

and the adaptive immune response. Whether DCs differentiate from a single or multiple 

precursor cells is still a matter of debate [88]. 

 

3.1 DC subsets in mice 

 

DCs are heterogeneous and can be classified in different subsets according to their 

phenotype, location, immunological function and dependence on infections or inflammatory 

stimuli for their generation. DCs can be divided into three main subsets as conventional DCs, 

that can be further subdivided into migratory and lymphoid-tissue resident DCs, inflammatory 

DCs and plasmacytoid DCs (pDCs) (Figure 4) [88-90]. All DC subsets express the marker 

CD11c on their surface.  

 

 

Figure 4: Murine DC subsets during steady state and inflammation [89] 
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cDCs already have a dendritic form and exhibit DC functions in steady state. Dependent on 

their location they can be further divided into migratory and lymphoid resident DCs. 

 

Migratory DCs act as sentinels in peripheral tissues such as the skin and are classified 

in three groups. Langerhans cells (LCs) are localized in the epidermis and express 

high levels of langerin. The two other DC types are found in the dermis and can be 

distinguished according to the expression of langerin as langerin+ (also called 

CD103+) and langerin- (also called CD11b+) dermal DCs (dDCs) [91]. 

 

Lymphoid-tissue resident DCs collect and present antigens in the lymphoid organ 

itself. They can be further subdivided dependent on the expression of CD8 and CD4 

as CD8+, CD4+ or double negative cDCs [92]. 

 

Inflammatory DCs are not present in steady state. Their differentiation requires a microbial or 

inflammatory stimulus. Both inflammatory and non-inflammatory monocytes are thought to 

be able to differentiate into inflammatory DCs such as monocyte-derived DCs (moDCs) or 

Tip-DCs [88]. moDCs express the surface marker CD11b and Ly6C while Tip-DCs stain 

positive for iNOS. 

 

pDCs are also known as natural interferon-producing cells and found as pre-DC in steady 

state. After stimulation by viral or microbial infection this pre-DC transforms into a pDC 

secreting large amounts of type I interferons [93]. pDCs express B220 on their surface. 

 

 

3.2 Activation and function of DCs 

 

DCs are sentinels of the immune system and enriched in non-lymphoid tissues at the 

interface with the environment and in lymphoid tissues. DCs express numerous PRRs on their 

surface allowing the sensing of a wide range of PAMPs and DAMPs. However, the 

expression profile of PRRs varies from one DC subset to another indicating differences in 

function of these subsets [90]. 

Immature DCs (iDCs) have a high endocytic activity and constantly sample for 

antigens. While migratory DCs collect antigens in surface-exposed tissues, lymphoid tissue 

resident DCs filter antigens arriving from the blood or afferent lymphatic vessels that drain 

non-lymphoid tissues [94]. Upon recognition and phagocytosis of a foreign antigen, iDCs 

undergo a maturation process involving phenotypic and functional changes. This process 

includes the downregulation of their endocytic activity and the upregulation of the chemokine 
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receptor CCR7 allowing iDCs to home to the dLN following a CCL19 and CCL21 gradient. 

Furthermore, activated DCs increase the expression of the costimulatory molecules CD80 

(B7.1), CD86 (B7.2) and CD40 as well as MHC II. In addition, activated DCs secrete 

polarizing cytokines such as IL-12, IL-6 and TNFα. The process of maturation and migration 

to the dLN allows DCs to present antigens to antigen-specific, naïve T cells. Furthermore, 

DCs deliver costimulatory and activating signals to T cells leading to their activation and 

proliferation thereby initiating the adaptive immune response [90]. 

Distinct DC subsets have different although partially overlapping functions. 

Lymphoid tissue CD8+ DCs are the main producer of IL-12 [95]. Both CD8+ and CD103+ 

cDC are able to cross-present exogenously acquired antigens on MHC I molecules. CD11b+ 

cDCs express higher levels of genes encoding proteins involved in the MHC II antigenic 

pathway compared to CD8+ DCs and are thus thought to have a predominant role in MHC II 

presentation [96]. The function of LCs in vivo is still a matter of debate and might depend on 

the type of infection or inflammatory signal they are subjected. In this line, different studies 

using mouse depletion models for LCs have shown that LCs are alternatively dispensable, 

required or redundant with dermal CD103+ DCs for induction of contact hypersensitivity [97]. 

Inflammatory DCs such as moDCs are able to carry antigen to the dLNs and induce potent 

Th1 responses [98]. More work is needed to decipher the exact contribution of each DC 

subset to the initiation of the adaptive immune response. The role of different DC subsets 

during infections with Leishmania will be discussed in chapter 5.6. 

 

 

4. Crosstalk between neutrophils and DCs 

 

The crosstalk between neutrophils and DCs has been recently reviewed by Prof. 

Tacchini-Cottier and me [99]. On the following pages (p. 29 - 32) excerpts of this review are 

presented. 

Neutrophils and DCs are both important members of the innate immune system. 

Under steady-state condition, these cells are localized in different compartments of the body. 

However, upon inflammation or infections, neutrophils and DCs colocalize at the site of 

insult and neutrophils were shown to participate in recruiting DCs and to either activate or 

inhibit their functions (Figure 5) [99]. The crosstalk of neutrophils and DCs during L. major 

infections will be discussed in a separate chapter 5.7. 
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Figure 5: The crosstalk between neutrophils and DCs [99] 

 

 

4.1 Neutrophils contribute to DC migration to sites of infection and inflammation 

 

It has been known for more than a decade that human and mouse neutrophils exposed 

in vitro to microorganisms (or parts of them) are able to secrete chemokines that contribute to 

leukocyte accumulation [100]. During neutrophil degranulation, alarmins are also released 

which contribute to the chemoattraction of iDCs, either by a direct action [α-defensins or the 

alarmin-like high mobility group protein B1 (HMGB1)] or indirectly through their induction 

of CCL3 and CCL5 release [101]. In addition, neutrophils release proteases such as cathepsin 

G and elastase that can process inactive non-classical chemokines such as prochemerin into 

chemoattractive molecules [102].  

Exposure to protozoan parasites such as Toxoplasma gondii triggers the neutrophil 

release of CCL3, CCL4, CCL5 and CCL20 iDC-attracting chemokines and supernatants of T. 

gondii tachyzoite-exposed neutrophils was shown to attract immature cDCs in vitro [103]. 

Mycobacteria were also reported to induce the release of DC-attracting chemokines by 

neutrophils, and depletion of neutrophils in infected mice delayed DC migration to the dLNs. 

Interestingly, ingestion of M. tuberculosis by neutrophils influenced DC migration: DCs that 

acquired M. tuberculosis through the ingestion of infected neutrophils migrated better to dLNs 

than DCs that acquired the bacteria directly [104].  
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Collectively, these studies reveal an important role for neutrophils in promoting DC 

migration during infection, a property that may vary depending on the host or/and the type of 

pathogen. 

 

4.2 Conditions where neutrophils induce DC activation 

 

Neutrophils can contribute to the mobilization of DCs to sites of infection, thus an 

obvious question is to determine how the colocalization of neutrophils and DCs can modulate 

DC activation. Most of the studies describing neutrophil-induced DC activation were 

performed in vitro, with a few exceptions. In response to several pathogens, neutrophils can 

release DC-maturing cytokines such as TNFα. Pioneer work from the group of E. Denkers 

demonstrated that T. gondii-exposed mouse neutrophil supernatants induced cDC maturation 

in vitro, as defined by the upregulation of co-stimulatory markers on DCs and their release of 

TNFα [103, 105]. A role in the activation of cDCs was also reported for BCG-infected 

neutrophils. Contact-dependent DC activation was characterized by the release of IL-12 by 

mouse cDCs, and by the secretion of decreased levels of IL-10 in human DCs compared to 

cDCs exposed to BCG alone [106]. Moreover, mouse neutrophils exposed in vitro to 

Aspergillus germ tubes induced the activation of cDCs, also by a contact-dependent 

mechanism involving DC-specific ICAM3-grabbing non-integrin (DC-SIGN) on DCs [107]. 

Activated human neutrophils were shown to induce the maturation of human moDCs by cell-

cell contact-dependent mechanisms, where Mac-1 (CD11b/CD18) on neutrophils interacts 

with DC-SIGN inducing the secretion of TNFα. Interestingly, interactions of neutrophils and 

DCs were visualized in colonic mucosa of patients with Crohn’s disease, suggesting that 

interactions between neutrophils and DCs could occur in vivo, however DC activation by 

neutrophils was not investigated in that study [108]. Contact-dependent activation of DCs by 

human neutrophils was also reported in response to LPS and IL-2 or IL-15/18 stimulation; 

neutrophils were shown to potentiate the activity of slanDCs, a subset of DCs present only in 

humans. Activation was also contact-dependent, but involved CD18/ICAM-1 interactions. In 

this system, neutrophil-activated DCs released IL-12p70 which induced the secretion of IFNγ 

by NK cells, potentiating DC-neutrophil interaction and contributing to the launching of the 

adaptive immune response [109]. 

Upon degranulation, neutrophils release numerous granule components that can also 

influence DC maturation. In addition to cytokines such as TNFα, they release alarmins that 

can activate nearby cells including DCs	
   [110]. Among alarmins, α-defensins, cathelicidins, 

lactoferrin as well as HMGB-1 that has alarmin-like properties have been reported in most 

cases to induce the activation of pDCs, either directly or indirectly through their presence in 
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neutrophil extracellular traps (NETs). The presence of LL-37 on NETs was recently described 

to activate pDCs, a subset of DCs specialized in sensing nucleic acid danger signals and which 

upon activation secrete large amounts of IFNα. The activation of pDCs by NETs contributes 

to the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease. 

Activation of pDCs by NETs resulted in the secretion of TNFα, IL-6 and IFNα, a TLR9-

mediated process that involved the neutrophil granule peptides LL-37 and the human 

neutrophil peptide (HNP) [111, 112]. In psoriasis, secretory leukocyte proteinase inhibitor 

(SLPI), another component of NETs, was also shown to stimulate pDCs in a TLR9-dependent 

manner [113]. These studies demonstrate that NETs can modulate the immune response 

through the activation of pDCs. 

Collectively, these studies convincingly show that neutrophils have the potential to 

activate DCs in vitro. However, more studies performed in both humans and mice will need to 

be conducted to determine the in vivo conditions where neutrophils activate DCs, if this 

activation is restricted to specific DC subsets, and to define how these interactions impact the 

development of the adaptive immune response. 

 

4.3 Conditions where neutrophils can prevent DC activation 

 

In contrast to their DC-activating role discussed above, in some circumstances, 

neutrophils can prevent DC activation. Phagocytosis of apoptotic cells (efferocytosis) leads to 

the resolution of inflammation [114]. In this line, the uptake of apoptotic or necrotic 

neutrophils was shown to inhibit the induction of co-stimulatory molecules on DCs, affecting 

T cell responses [115]. On the contrary, the presence of high numbers of apoptotic neutrophils 

has been reported to induce DC maturation [116] and DCs can acquire antigens through the 

phagocytosis of microorganism-containing apoptotic neutrophils. Delaying neutrophil 

apoptosis will thus have a direct effect on the availability of antigens for DCs and the 

development of the adaptive immune response. In this line, phagocytosis of M. tuberculosis by 

neutrophils was shown to inhibit neutrophil apoptosis, limiting antigen uptake by DCs, a 

process delaying the onset of the immune response [117]. Collectively, accumulating data 

suggest that the effect of apoptotic neutrophils on DC maturation may vary and be context-

dependent. 

Neutrophils can also release cell surface-derived vesicles called ectosomes that expose 

phosphatidyl serine on their surface, an “eat me” signal for DCs. Ectosomes can prevent the 

LPS-induced maturation of moDCs in vitro. Indeed, human neutrophil ectosomes modified the 

phagocytic properties of moDCs, impaired the expression of co-stimulatory molecules and the 

secretion of cytokines including TNFα and IL-12 while they increased the release of TGFβ, an 
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anti-inflammatory cytokine [118]. Upon neutrophil degranulation, the release of elastase was 

also shown to downmodulate DC activation, inducing DC secretion of TGFβ [119]. 

Neutrophils can migrate rapidly and transiently to dLNs. The presence of neutrophils 

in the dLNs may also influence DC activation, a process that is just beginning to be 

investigated. Following injection of protein antigens in adjuvants, neutrophils that rapidly 

migrated to dLNs made brief contact with DCs. Interestingly the brief presence of neutrophils 

in the dLNs had a major negative impact on the development of CD4+ T cell priming. This 

negative effect appeared to occur only with the first wave of neutrophils that reaches the 

dLNs during the first days after injection [120]. It will be interesting to characterize in more 

details the importance of the early migration of neutrophils to the dLNs in several models of 

infection, and to better characterize the type of DC involved in the impaired activation and if 

the direct effect on T cells may also contribute to the neutrophil inhibitory impact.  

In summary, neutrophils contribute to the migration of DCs to the site of infection. In 

addition, they are able to activate DCs or inhibit DC activation in a contact-dependent manner 

or by the release of soluble factors and NETs. The knowledge gained on the impact of 

neutrophils on DC function could have important implications in vaccination. 

 

 

5. Leishmaniasis 
 

5.1 Epidemiology 

 

Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus 

Leishmania. The parasites belong to the order Trypanosomatidae and are spread by the bites 

of infected sandflies of the genus Phlebotomus or Lutzomyia (figure 6). Leishmaniasis is 

endemic in 88 countries of the world with a majority of the cases occurring in developing 

countries mostly in tropical and subtropical regions. Currently, about 12 million people are 

infected and 350 million people are living in endemic areas. An estimated 2 million new cases 

(1.5 million cases of cutaneous and 0.5 million of visceral leishmaniasis) occur each year. 

There are more than 20 different species of leishmania parasites that can infect mammals 

including humans. In humans, infections with leishmania causes a wide range of clinical 

symptoms that can be classified in 4 different forms: 

 

 

 

 



  Introduction 
	
  

	
   33	
  

Figure 6: Example of a sand fly vector and leishmania promastigotes in culture (adapted from 

http://www.cdc.gov/parasites/leishmaniasis) 

 

Cutaneous leishmaniasis (CL) 

CL is the most common form characterized by local, ulcerative lesions that are in 

most cases self-healing. Most cases of CL in the Old World (Africa, Asia and Europe) occur 

in Afghanistan, Iran, Saudi Arabia, Syria, Ethiopia and Sudan caused by L. major, L. tropica 

and L. aethiopica. In the New World (North and South America) most cases occur in Brazil 

and Peru due to infections with L. mexicana and L. amazonensis. 

 

Diffused cutaneous leishmaniasis (DCL) 

DCL is characterized by the presence of disseminated and chronic skin lesions 

resembling those of lepromatous leprosy. DCL is difficult to treat.  

 

Mucocutaneous leishmaniasis (MCL) 

In MCL, parasites disseminate from the skin via the lymphatic system to the naso-

oropharyngeal mucosa. This can lead to the destruction of mucosal tissues of the mouth, nose 

and throat. MCL mostly occurs in Brazil, Bolivia and Peru due to infections with L. 

braziliensis. 

 

Visceral leishmaniasis (VL) 

VL, also called Kala-azar, is the most severe form of leishmaniasis and can be fatal if 

left untreated. In VL, the parasites visceralize to inner organs such as the spleen, liver and 

bone marrow. Manifestations of VL include fever, weight loss, hepatosplenomegaly and 

pancytopenia. The majority of VL cases occur in just six countries – Bangladesh, Brazil, 

Ethiopia, India, Nepal and Sudan caused by L. donovani in East Africa and the Indian 

subcontinent and by L. infantum (also known as L. chagasi) in Europe, North Africa and 

Latin America.  
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Figure 7: Different clinical forms of Leishmaniasis: Cutaneous (a), mucocutaneous (b) and 

visceral (c) leishmaniasis (adapted from [121]) 

 

5.2 Life-cycle of the parasite 

 

All leishmania spp share a similar life cycle. They are transmitted by the bite of a 

female sand fly of the genus Phlebotomus or Lutzomyia. The parasites are found in the 

salivary glands of the sand fly as metacyclic promastigotes which is the infectious form of the 

parasite. This form is characterized by an elongated shape and the presence of a flagellum. 

Once transmitted into the skin of the host, neutrophils are the first cells that arrive at the site 

of infection and that are in contact with the parasite. Next monocytes and macrophages, the 

latter being the definite host cells of the parasites, enter the site of infection and take up the 

parasites. However, it is still not clear whether macrophages take up the parasites directly or 

via the phagocytosis of infected cells. Within the phagolysosome of macrophages, the 

metacyclic promastigotes transform into amastigotes. This form is the replicative form 

characterized by a round shape without flagellum. The amastigotes replicate within the 

macrophages until the cells burst. Free amastigotes are taken up by surrounding cells or, 

depending on the species, disseminate to other tissues or organs. The cycle continues when 

another sand fly is taking a blood meal on an infected host thereby taking up free parasites or 

infected cells. The parasites are released in the midgut of the sand fly and transform into 

procyclic promastigotes. This form of the parasite has a low virulence but replicates rapidly 

by binary fission. Finally, the parasites transform into metacyclic promastigotes, migrate to 

the salivary gland of the sand fly and the cycle continues when this sand fly takes another 

blood meal (Figure 8). 

 Depending on the Leishmania strain and the region, parasites can be transmitted in an 

anthropontic or a zoonotic manner. Anthroponotic Leishmaniasis is transmitted from human 

to vector to human while zoonotic Leishmaniasis is transmitted from animal to vector to 

human. 
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Figure 8: The leishmania life cycle 

 

5.3 Treatment and vaccines 

 

The treatment of leishmaniasis is difficult since infections with different strains of 

parasites cause different manifestations of the disease. Thus, the treatment approach depends 

in part on parasite and host factors and the area of the world the patient is located. The first 

choice among drugs used for the treatment of leishmaniasis are still pentavalent antimonials 

such as sodium stibogluconate (Pentostam, manufactured by Wellcome Foundation) and 

meglumine antimoniate (Glucantime, manufactured by Rhone Poulenc). Other 

chemotherapeutic drugs that are currently used for the therapy of leishmaniasis are 

amphotericin B, pentamidine, miltefosine and paramomycin. In addition, azoles, allopurinol, 

sitamaquine and antiretroviral drugs are in clinical use as well. A more recent drug is 

liposomal amphotericin B for which the elevated prices were reduced by 90% thanks to the 

WHO’s advocacy campaign. However, the cost of these compounds is still high and thus a 

major issue. Other problems of these drugs are their high toxicity and the numerous adverse 

side effects leading patients to withdraw from treatment favoring the emergence of resistant 

strains. Therefore new approaches are needed. One such approach is the combination therapy 

combining different drugs in order to shorten the duration of drug administration and to 

prevent the emergence of resistant strains [122, 123]. 
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The most of effective protection against leishmaniasis would be a vaccine. Following 

resolution of cutaneous lesions, a long-lasting immunity usually develops in both human and 

mice. This observation let to the assumption that the prevention of the disease by vaccination 

should be feasible. Great efforts have been taken to develop a protective vaccine against 

leishmaniasis but to date no effective vaccine against the disease in humans is available yet. 

The first vaccination strategy against leishmaniasis was the injection of infective and virulent 

Leishmania from skin lesion exudates called Leishmanization. However, the health threat for 

patients, especially for immune-compromised patients, treated this way was too high and first 

generation vaccines consisting of killed whole parasite and live attenuated parasite vaccines 

were developed. Other vaccination strategies that have been or are currently being evaluated 

are DC-based vaccines, salivary antigen-based vaccines and DNA vaccines [124-126]. More 

work and a better understanding of the factors regulating parasite persistence and maintaining 

immunological memory are needed, both in mice and especially in humans. These insights 

might be critical for the design and the development of an effective anti-Leishmania vaccine. 

 

5.4 The murine model of L. major infection 

 

The experimental murine model of L. major infection led to the first observations that 

revealed the involvement of different T helper subsets in disease outcome. Since then it has 

been an important tool in deciphering T helper cell differentiation in vivo. Initially, a high 

dose of stationary phase parasites (1 to 3 million) was injected subcutaneously in the hind 

footpad. Recently, another model injecting a lower dose (10 – 1000) of metacyclic 

promastigotes in the ear dermis was developed which better mimics the number of parasites 

transmitted during the bite of a sand fly [127]. 

Following the transmission of the parasite either by needle inoculation or the bite of 

an infected sand fly, most mouse strains such as C57BL/6, C3H, SV129 or B10.D2 develop a 

small lesion which heals over time. These mice develop a Th1 response characterized by the 

secretion of high levels of IFNγ by CD4+ T cells. IFNγ leads to iNOS induction in 

macrophages and subsequent NO production. This results in the killing of the parasites and 

control of infection. In addition, these mice are resistant to a second parasite challenge and 

thus called Leishmania-resistant mice. 

Few mouse strains however, such as BALB/c mice, develop an inflammatory non-

healing lesion. These mice develop a Th2 immune response and secrete high levels of IL-4, 

IL-13 and IL-5. These cytokines lead to alternative macrophage activation and to proliferation 

and dissemination of the parasites. As a result these mice succumb to infection and are called 

Leishmania-susceptible mice (Figure 9). 
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Figure 9: The murine model of L. major infection 

 

The murine model of L. major infection has been studied extensively to decipher the 

mechanisms leading to resistance or susceptibility to infection. The mechanisms include host 

genetic factors as well as the developing immune response [128-130]. Studies on mice of the 

leishmania-resistant C57BL/6 background showed the importance of IL-12 and IFNγ in 

resistance to a high dose L. major infection. IL-12p70 is a heterodimer formed by the subunits 

IL-12p40 and IL-12p35. Following L. major infection mice lacking IL-12p40, IL-12p35 or 

the IL-12-singaling transducer Stat4 develop non-healing lesions and show exacerbated 

parasite growth [131-133]. Mice deficient for IFNγ default to the Th2 pathway and are 

susceptible to L. major infection [134]. Mice lacking the IFNγ receptor are also unable to 

control parasite growth and lesion size despite the development of a polarized Th1 immune 

response [135]. IFNγ induces iNOS expression in macrophages leading to NO-production and 

parasite killing. The importance of iNOS was shown when resistant mice treated with iNOS 

inhibitor failed to control infection [136]. 

The mechanisms leading to susceptibility to L. major infection were mainly studied 

using mice on the leishmania-susceptible genetic background BALB/c. One important 

cytokine for the induction of Th2 immune responses is IL-4. Following L. major infection, a 

CD4+ T cell subset expressing the Vβ4Vα8 T cell receptor recognizes the immunodominant 

epitope Leishmania activated C kinase (LACK) resulting in an early burst of IL-4 [137]. This 

early IL-4 is thought to induce IL-12 unresponsiveness and may thus be important for the 

induction of a Th2 immune response [138, 139]. In 1996, Kopf and coworkers published that 

IL-4-deficient mice on a BALB/c background were resistant to infection following a high 

dose inoculation of L. major (strain FEBNI) [140]. However, in the same year the group of 

Muller showed that BALB/c mice deficient for IL-4 were still susceptible to a high dose 

infection of L. major (strain LV39) infection indicating that IL-4-/- BALB/c mice reveal 
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differences in susceptibility to L .major substrains and that other factors may be involved in 

susceptibility to L. major infection [141]. In 1999, Noben-Trauth and colleagues showed that 

IL-4-/- BALB/c mice were susceptible to infections with L. major LV39 but partially 

controlled infections with L. major IR173. Several factors including the arginase activity of 

different L. major isolates as well as the age of infected mice were shown to contribute to the 

L. major strain-specific disease outcome in IL-4-/- BALB/c mice [142]. It has been further 

demonstrated that BALB/c mice deficient for the IL-4 receptor α chain (IL-4Rα-/-) were 

susceptible to infections with L. major LV39 while IL-4Rα-/- mice efficiently controlled 

infections with L. major IR173 [143]. The fact that IL-4Rα-/- mice were more resistant to L. 

major IR173 infection than IL-4-/- mice suggested a role for IL-13 since IL-4Rα is a 

component of both the IL-4R and the IL-13R. Indeed, mice deficient for IL-13 are resistant to 

L. major infection [144]. However, blocking IL-13 signaling in IL-4-/- mice did not change 

the course of infection and these mice were still susceptible to L. major infection [145]. These 

findings suggest that other factors than just IL-4 and IL-13 are involved in susceptibility to L. 

major infection.  

Other factors involved in resistance or susceptibility to L. major infection are IL-17, 

IL-10, TNFα, arginase activity  and Treg cells. Following L. major (strain Friedlin) injection 

BALB/c mice deficient for IL-17A developed smaller lesions and showed decreased parasite 

loads but still mount a Th2 immune response. Improved disease outcome was associated with 

a reduced neutrophilic infiltrate into lesions of IL-17-/- mice [146]. BALB/c mice lacking IL-

10 or treated with an anti-IL-10R mAb were partially resistant to L. major LV39 infection. 

Lesion sizes and parasite loads are further reduced in BALB/c IL-4Rα x IL-10 double 

knockouts [147]. In C57Bl/6 mice IL-10 plays an essential role in parasite persistence since 

sterile cure is achieved in IL-10-/- mice and in mice treated with an anti-IL-10R mAb during 

the chronic phase of L. major infection [148]. An important role for TNF has been shown 

using TNF-/- and membrane TNF-knock-in (mTNF) mice that express functional mTNF but 

do not release soluble TNF. While TNF-/- mice developed unhealing lesions mTNF mice 

controlled lesion development and were able to clear neutrophils from the site of infection 

showing that the membrane bound form of TNF is sufficient to mediate protection [149]. 

Another factor involved in susceptibility to L. major infection is the enzyme arginase which is 

a hallmark of alternatively activated macrophages and induced by Th2 cytokines such as IL-4. 

Arginase activity promotes the growth of Leishmania parasites by affecting the polyamine 

synthesis in macrophages and promotes pathology during L. major infection [150] Besides 

soluble and cell-intrinsic factors, different cell populations such as Treg cells are also 

involved in promoting resistance or susceptibility to L. major infection. Indeed, depletion of 

Treg cells in C57BL/6 mice enhances the development of a Th1 response but renders them 
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susceptible to reinfection [151]. In BALB/c mice however, depletion of Treg cells enhances 

the development of a Th2 response and these mice harbor more parasites and increased 

lesions [152]. 

In summary, the mechanisms leading to resistance or susceptibility to L. major 

infection involve multiple mechanisms and are a combination of genetic and cellular factors 

as well as cytokines. The murine model of L. major infection is an invaluable tool to further 

study these mechanisms and new insights can be used for novel vaccine designs. 

 

5.5 The role of neutrophils in L. major infection 

 

Neutrophils are the first cells that are rapidly and massively recruited to the site of L. 

major infection. Numerous studies have investigated the role of neutrophils in response to L. 

major, both in vitro and in vivo. However, the impact of neutrophils in promoting resistance 

or susceptibility is still not fully understood. One reason for that is the heterogeneity of these 

studies using different parasite strains, doses, different mouse strains and treatments to 

deplete neutrophils. Furthermore, different ways of parasite transmission had been used such 

as needle inoculation in the footpad or the ear or infection of ears by bites of infected sand 

flies [153-155]. 

First studies by Beil et al. described the predominant neutrophilic infiltrate 3h post 

injection of a high dose of L. major in the footpad of C57BL/6 and BALB/c mice [156]. Since 

then these findings have been confirmed and extended in both mouse strains to the ear pinna 

injection site by needle inoculations as well as by the bite of infected sand flies in C57BL/6 

mice [157-161]. Chemokines such as IL-8 in humans and CXCL1 (KC), CXCL2 (MIP-2) and 

CXCL6 (GCP-2) in mice contribute to neutrophil recruitment [162]. Following L. major 

inoculation in the skin of mice KC mRNA expression has been reported to be rapidly 

upregulated [157]. Furthermore, the parasites themselves produce the leishmania chemotactic 

factor (LCF) inducing IL-8 secretion by human neutrophils promoting their own recruitment 

[163]. Other factors contributing to neutrophil recruitment to the site of infection are 

complement C3 as well as components of the salivary glands of Lutzomyia intermedia and 

Lutzomyia longipalpis [64, 164, 165]. IL-17 contributes to neutrophil recruitment in later 

phases of infection in BALB/c mice following L. major inoculation [146]. Thus, various 

factors derived from the host, the parasite and the vector contribute to neutrophil recruitment 

to the site of L. major infection. 

Once at the site of infection neutrophils secrete numerous cytokines, chemokines, 

granular components and interact with other cells and participate in shaping the immune 

response. However, L. major induces distinct neutrophil phenotypes in mice resistant or 

susceptible to L. major infection [166]. The expression levels of TLR2, TLR7 and TLR9 in 
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response to L. major in vitro are significantly higher on neutrophils from C57BL/6 mice. 

Furthermore, only neutrophils from C57BL/6 mice secrete IL-10 and biologically active IL-

12 while those from BALB/c mice secrete IL-12p40 homodimers that block IL-12 signaling 

[166]. In addition, neutrophils from C57BL/6 mice release two to three times more neutrophil 

elastase than neutrophils from BALB/c mice [167]. Moreover, the outcome of co-cultures of 

apoptotic non-infected neutrophils with macrophages infected with L. major in vitro is 

dependent on the genetic background of the donor mice. The engulfment of apoptotic 

neutrophils by macrophages from C57BL/6 mice led to parasite killing, a process which was 

dependent on TNF, neutrophil elastase and TLR4 expression by macrophages. In contrast, 

using cells from BALB/c mice resulted in exacerbated parasite growth through the production 

of PGE2 and TGFβ [167, 168]. Moreover it was shown that co-cultures of neutrophils with an 

excess of macrophages significantly increased neutrophil apoptosis. This finding was even 

more enhanced when L. major parasites were added to the cultures [169].  

The interactions of neutrophils with macrophages in vivo are not clear. It was 

demonstrated that L. major parasites are able to inhibit the oxidative burst and thus survive in 

neutrophils [170]. In 2008, Laskay and colleagues reported that macrophages phagocytose 

apoptotic neutrophils containing live L. major and through this process silently take up the 

parasites in the absence of activation signals induced via direct engulfment of the parasites. 

This process was termed the Trojan Horse infection model [171]. In the same year, Peters and 

colleagues used two-photon intra-vital microscopy to visualize the events occurring early post 

L. major inoculation in the ear dermis and could not observe the uptake of infected 

neutrophils by macrophages within the analyzed time frame [158]. Thus, macrophages take 

up the parasite either via the Trojan Horse model or by phagocytosis of viable parasites 

released by apoptotic neutrophils. In both models, the anti-inflammatory effect of the 

efferocytosis of dying neutrophils by macrophages leads to the silent entry of the parasite into 

macrophages. 

The role of neutrophils in the development of the immune response and disease 

progression following L. major infection in vivo was mainly studied by treating mice with 

neutrophil-depleting monoclonal antibodies (mAbs) [158, 161, 168, 172, 173]. Initial studies 

were carried out using the mAb RB6-8C5 which recognizes the Gr1 epitope present on Ly6G 

and Ly6C [174]. Thus this mAb does not only deplete neutrophils but also other cells 

expressing Gr1 including inflammatory monocytes, eosinophils and subsets of DCs. Another 

mAb used to deplete neutrophils is the NIMP-R14 [175]. This mAb efficiently depletes 

neutrophils, however the exact epitope and possible cross-reactivity with other cells are not 

completely known. The third neutrophil-depleting mAb is the 1A8 [176]. This mAb is 

neutrophil-specific and does not deplete other cell populations. However, the depletion of 
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neutrophils is incomplete and does not last as long as with the other two mAbs. Depending on 

the mAb used and the site and route of parasite injection the outcomes vary. 

 

Mouse 

strain 

Site and 

route of 

infection 

Parasite strain Antibody Outcome Ref. 

C57BL/6 Footpad 

(sc) 

Bokkara RB6-8C5 Increased parasite load in 

dLN 6h, 24h, 16d and 29d p.i. 

[172] 

C57BL/6 Footpad 

(sc) 

LV39 

(MRHO/Sv/59/P) 

NIMP-R14 Increased parasite load in fp 

35d p.i; no difference 65d p.i. 

[161] 

C57BL/6 Footpad 

(sc) 

LV39 

(MRHO/Sv/59/P) 

RB6-8C5 Increased parasite load in 

dLN 10d p.i. 

[168] 

C57BL/6 Ear     

Sand fly 

Friedlin 

(MHOM/IL/80) 

RB6-8C5 Decreased parasite loads in 

ear 2 and 4 weeks p.i. 

[158] 

BALB/c Footpad 

(sc) 

Bokkara RB6-8C5 No difference in dLN 24h, 

16d and 29d p.i. 

[172] 

BALB/c Footpad 

(sc) 

LV39 

(MRHO/Sv/59/P) 

NIMP-R14 Decreased parasite load in fp 

35d p.i. 

[161] 

BALB/c Footpad 

(sc) 

LV39 

(MRHO/Sv/59/P) 

RB6-8C5 Decreased parasite load in 

dLN 10d p.i. 

[168] 

BALB/c Footpad 

(sc) 

MHOM/SU/73/ 

5ASKH 

RB6-8C5 Increased parasite loads in fp 

11 weeks p.i. 

[173] 

	
  
Table 1: Outcomes of Leishmania infection following neutrophil depletion in vivo (adapted 

from [155]) 

 

 Studies carried out in our lab using the mAb NIMP-R14 showed that transient 

depletion of neutrophils prior to infection with L. major resulted in a transient increased 

susceptibility to infection in C57BL/6 mice. However, the final disease outcome was not 

affected by early neutrophil depletion [161]. In BALB/c mice however, depletion of 

neutrophils prevented the early burst of IL-4 mRNA otherwise occurring in the dLN of 

BALB/c mice. Furthermore, CD4+ T cells remained responsive to IL-12 signaling and 

decreased Th2 immune responses were observed. This resulted in the development of non-

progressive, chronic lesions and decreased parasite loads [161]. These results indicate an 

important and deleterious role for neutrophils in susceptible BALB/c mice while their role 

might be less important in resistant C57BL/6 mice. An overview of results from different 

studies on the outcome of L. major infection following neutrophil depletion in vivo is shown 

in table 1. 
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Following L. major infection, neutrophils are the first cells to arrive at the site of 

insult. Although many studies have been performed to analyze their role during L. major 

infection, it is still not clear if and how neutrophils promote or suppress disease progression. 

More work and better tools are needed to be able to understand the impact of neutrophils 

during infections with L. major. 

 

5.6 The role of DC subsets during L. major infection 

  

DCs are the main APCs of the body and constitute the link between the innate and 

adaptive immune system. During infections with L. major, DCs were shown to be 

indispensable to launch a protective immune response. Phagocytosis of L. major by DCs 

leads to their activation and IL-12 secretion [177]. However, it is still controversial which DC 

subset is presenting L. major antigens in the dLN in vivo. In 2004, Ritter et al showed that 

following high dose L. major infection CD11b+ LN-resident DCs and CD8a- langerin- dermal 

DCs were infected and responsible for leishmania antigen presentation in the dLN [178]. Two 

years later in 2006, Iezzi et al. demonstrated that LN-resident rather than skin-derived DCs 

initiated specific T cell responses after a high dose injection L. major IR173 or Friedlin [179]. 

In 2007, Leon et al. showed that moDCs formed at the site of infection control the induction 

of protective Th1 responses against L. major [98]. The role of LCs in L. major infection is 

controversial. In 2004, Ritter and colleagues showed that LCs are dispensable following a 

high dose of L. major FEBNI infection. However, in 2011, Kautz-Neu and coworkers 

demonstrated that LCs have a negative effect on disease progression since the selective 

depletion of LCs resulted in reduced Treg cell immigration to the site of infection and an 

enhanced Th1 response resulting in attenuated disease following inoculation of a low dose of 

metacyclic L. major Friedlin parasites [180]. Thus it is still not clear which DC subset is 

initiating a protective immune response but it might be possible that different DC subsets 

have distinct functions for the initiation and the maintenance of the immune response. 

 

5.7 The crosstalk of neutrophils and DCs during L. major infection 

 

Both neutrophils and DCs have important functions during L. major infections. 

However, only little is known about their crosstalk during infection. Our lab has demonstrated 

that following L. major inoculation, neutrophil-derived CCL3 is essential for the recruitment 

of moDCs to the site of infection in C57BL/6 but not BALB/c mice. Depletion of neutrophils 

abolished recruitment of this DC subset to the site of infection. Furthermore, L. major-

infected CCL3-/- mice adoptively reconstituted with WT neutrophils were able to attract DCs 

to the site of parasite inoculation, demonstrating that neutrophil-derived CCL3 is contributing 
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to the early DC recruitment following L. major infection [159]. Moreover neutrophils were 

shown to inhibit DC activation in the skin early after L. major infection. Infected neutrophils 

in the skin expressed elevated levels of apoptotic markers and were preferentially captured by 

dermal DCs. Depletion of neutrophils prior to L. major infection led to increased DC 

activation, enhanced the priming of L. major specific CD4+ T cells and promoted the early 

anti-leishmania response [160]. Of note, both of the above mentioned studies were performed 

using resistant C57BL/6 mice. The impact of neutrophils on the recruitment and activation of 

DCs in susceptible mice is less clear. Also, the role of neutrophils on DC function in the dLN 

following L. major infection is not well understood. 

 

 

6. Triggering receptor expressed on myeloid cells 1 
 

Triggering receptors expressed on myeloid cells (TREMs) are evolutionary conserved 

innate immune receptors which have been described over the last years. In human, the TREM 

family consists of TREM receptors 1 and 2 as well as TREM-like receptors 1 to 4. TREM3 

exists only as pseudogene in human. In mice, this family consists of TREM receptors 1 to 5 

as well as TREM-like receptors 1, 2, 4, 5 and 6 and the recently characterized TREM family 

member PDC-TREM [181]. TREM-like genes and pseudogenes have been predicted by 

computational analysis of the TREM genomic region [182].  

TREM1 is a transmembrane glycoprotein that consists of a single extracellular 

immunoglobulin-like domain of the V-type, a transmembrane region with a charged lysine 

residue and a short cytoplasmic tail. It associates with the adaptor molecule DNAX activation 

protein 12 (DAP12) for signaling and function [183, 184]. In human, TREM1 is expressed on 

blood neutrophils, CD14hi monocytes and macrophage subsets, in particular on lymph node, 

peritoneal and alveolar macrophages. In mice, neutrophils, monocytes, macrophages and 

BMDCs but not bone-marrow derived macrophages express TREM1 [181]. Additionally to 

expression on the cell surface, TREM1 is also found as soluble form (sTREM1) in serum and 

bronchoalveolar lavage fluid (BALF) in patients with infections. Increased concentrations of 

sTREM1 in the BALF have been shown to represent a highly precise marker for the presence 

of bacterial or fungal infections in pneumonia patients [185, 186]. The functions of sTREM1 

as well as the ligand for TREM1 are still unknown.  

TREM1 is expressed on both monocytes and neutrophils. On neutrophils TREM1 

ligation in synergy with LPS stimulation leads to secretion of IL-8 and myeloperoxidase [183, 

187]. Moreover it has been shown that ligation of TREM1 induced rapid degranulation of 

neutrophilic granules, respiratory burst and, to a lesser extent, phagocytosis, the major 

effector functions for clearance of pathogens. The activation of effector functions occurred 
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synergistically with various TLR ligands, e.g. LPS (TLR4), Pam3Cys (TLR2) or R-848 

(TLR7/8). However, TREM1 accelerates apoptosis in the TLR-stimulated neutrophil 

population [188]. Thus TREM1 plays a regulatory role not only in activating effector 

function, but also in limiting neutrophils survival and, along with this, an ongoing 

inflammatory response by the induction of apoptosis. 

TREM1 is also expressed on mononuclear phagocytes and administration of 

mononuclear phagocytes with an agonistic TREM1 antibody followed by activation of PRR 

such as those of the TLR family, results in greater increase in cytokine and chemokine 

secretion such as TNFα, GM-CSF, IL-1β, IL-8 and MCP-1, compared to either stimulus 

alone. Treatment of monocytes with an agonistic TREM1 antibody was also shown to 

increase expression of molecules related to antigen presentation and T cell activation such as 

CD86 and MHC class II, which correlated with a greater ability of these cells to activate T 

cells in vitro. Moreover engagement of TREM1 led to a strong up-regulation of surface 

expression of the adhesion molecules CD29, CD11c and CD49e [183, 184, 187, 189, 190]. 

Crucial functions for TREM1 signaling in vivo have also been reported. In a mouse model of 

LPS-induced endotoxemia it was shown that blocking TREM1 signaling either by a TREM1-

Fc fusion protein or by an antagonistic peptide (LP17) was sufficient to reduce circulating 

inflammatory cytokines to sublethal levels and thus protect the experimental animals from 

septic shock and death [183, 190]. Furthermore, TREM1 was shown to be involved in human 

inflammatory bowel disease and in models of experimental colitis [191, 192]. In summary, 

TREM1 is thought to be a positive regulator of inflammatory responses. 
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Material and Methods 
 

 

1. Mice 

 

Female C57BL/6, BALB/c and DBA mice were purchased from Charles River 

(Lyon, France). C57BL/6 Trem-1-deficient mice were given by Prof. C. Muller (University of 

Bern, Switzerland). All mice were kept in the pathogen-free facility at the CIIL center in 

Epalinges and used between 6 to 8 weeks of age. All animal experimental models were 

approved by the veterinary office regulations of the State of Vaud, Switzerland, authorization 

1266.5 and 1266.6 to FTC. 

 

 

2. Parasites, injections and limiting dilution assay 

 

L. major LV 39 parasites (MRHO/Sv/59/P strain) expressing the red fluorescent 

protein mcherry were a gift from Prof. Jeremy Mottram (University of Glasgow, Scotland). 

The parasites were maintained in vivo in DBA mice and grown in vitro in M199 media 

(GIBCO) supplemented with 10% FCS (PAA Laboratories), 4% HEPES (Amimed), 1% 

antibiotics (penicillin, streptomycin, neomycin, GIBCO) and 50 µg/ml hygromycin B (PAA 

Laboraties). For ear infections, 2x105 stationary phase or metacyclic parasites in 10 µl 

incomplete DMEM (GIBCO) were injected i.d. in the ears. Lesion development was 

measured weekly using a Vernier caliper. For in vitro experiments, metacyclic parasites were 

isolated from stationary growth cultures using a ficoll (Sigma) gradient. Briefly, a three phase 

gradient was established by underlying the parasites first with 10% ficoll followed by 20% 

ficoll. The falcon was spun for 15 min at room temperature without break and the top two 

phases containing the metacyclic parasites collected. The parasites were washed and 

resuspended in IMDM medium (Gibco) containing 10% FCS (Brunschwig), 10 mM HEPES, 

50 µM β-mercaptoethanol and 50 U/ml antiobiotics (penicillin, streptomycin, Gibco) (further 

referred to as complete IMDM). To determine parasite loads in infected ears, ears were 

digested (see chapter 6) and limiting dilution assays using ten-fold serial dilutions plating 

1x105 cells in 100 µl in the first column/dilution were performed [193]. The numbers of 

parasites per ear were calculated using the program Estimfree.  
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3. in vitro experiments 

 

3.1 CD8α+ MutuDC line 

 

The CD8α+ MutuDC line H-2d [194] was given by Prof. Hans Acha-Orbea and kept 

in vitro in complete IMDM at 37C with 5% CO2 .When required DCs were incubated for 10 

min in 1X sterile PBS supplemented with 5 mM EDTA and 20 mM HEPES and harvested. 

The cells were washed, resuspended in complete IMDM and used for the various 

experiments.  

 

3.2 Purification of inflammatory neutrophils 

 

BALB/c mice were injected with 500 µl sterile PBS containing 2% starch (Merck). 

Twelve hours later, mice were sacrificed and peritoneal washes in a final volume of 7 ml cold 

PBS performed. Peritoneal exudate cells (PECs) were washed, resuspended in PBS 

containing 0.5 % BSA (AppliChem) and 2 mM EDTA and filtered through a 40 µm cell 

strainer. PECs were stained with an FITC-anti-mouse Ly6G mAb and purified by magnetic 

activated cell sorting (MACS) using anti-FITC beads (Milteny Biotech) according to the 

manufactures instructions. Inflammatory neutrophils were resuspended in complete IMDM 

and purity of neutrophils was at least 96% as analyzed by FACS staining. For conditions 

where apoptotic neutrophils were used, neutrophils were exposed to UV light for 10 min. 

After this treatment around 75% of cells were apoptotic as analyzed by Annexin V staining. 

In some experiments, neutrophils were incubated with 0.2 mg/ml indomethacin (Sigma) for 

15 min at 37C, washed and added to the cultures. 

 

3.3 Setup of in vitro cultures 

 

For in vitro experiments, 2.5x105 CD8α+ Mutu DCs were plated in 600 µl complete 

IMDM in a 24-well plate. Twelve hours later, 2.5x106 neutrophils were added to the 

appropriate wells in a volume of 200 µl. At the same time, 1.25x106 metacyclic L. major 

parasites (ratio DC : parasites = 1 : 5) were added to the appropriate wells. As positive 

controls, DCs or neutrophils were stimulated with 0.1 µM CpG (Trilink), 5 µg/ml poly I:C 

(Invivogen) and 10 ng/ml IFNγ (eBioscience). All wells were added up with complete IMDM 

to a final volume of 1 ml. After 18 hours of co-cultures supernatants were taken and cells 

harvested as described above. Levels of IL-12p70 (BD Bioscience), IL-12p40 and TNFα 

(both eBioscience) in supernatants were analyzed by ELISA according to the manufacturer’s 
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instruction. Expression of activation markers on DCs and apoptosis of neutrophils were 

analyzed by FACS (see chapter 4). 

 

 

4. Flow cytometry 

 

4.1 Analysis of cell surface molecules 

 

For analysis of surface molecules, cells were incubated with the mAb 24G2 on ice to 

block FcRs and then stained with antibodies in 50 µl FACS buffer (PBS containing 3% FCS) 

for 20 min on ice. After one washing step the cells were incubated with secondary reagents in 

50 µl FACS buffer on ice for 20 min. Cells were washed again and resuspended in 100 µl for 

flow cytometrical analysis. In some experiments DAPI (20 µg/ml) was added to the samples 

right before acquisition to exclude dead cells. All antibodies and secondary reagents used are 

listed in table 2.  

 

4.2 Intracellular staining 

 

For intracellular cytokine staining, 1x106 dLN cells were stimulated with PMA (50 

ng/ml, Sigma), ionomycin (500 ng/ml, Sigma) and Brefeldin A (1 µg/ml, BD Pharmingen) for 

4h at 37°C. Cells were then harvested, washed, blocked and stained with the cell surface 

marker AF700-anti-mouse CD4 and APC-anti-mouse CD8. Cells were fixed with 4% 

paraformaldehyde and permeabilized with PBS containing 2% FCS and 0.5% saponin 

(Sigma) over night. Intracellular cytokines were stained using PE- anti mouse IFNγ, FITC- 

anti mouse IL-4 or the isotype controls PE- IgG2a or FITC- IgG1.  
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Target Species Clone Conjugate Supplier 

Ly6G Rat 1A8 FITC BD Pharmingen 

Ly6G Rat 1A8 APC-Cy7 BioLegend 

Ly6G Rat NIMP-R14 FITC Hybridoma 

CD11c Ar hamster N418 PE-Cy7 eBioscience 

F4/80 

F4/80 

Rat 

Rat 

BM8 

BM8 

APC 

Biotin 

eBioscience 

BioLegend 

CD11b Rat M1/70 eFluor 450 eBioscience 

CD80 

CD80 

CD86 

MHC II 

CD40 

Ly6C 

Ly6C 

B220 

Gr-1 

Gr-1 

CD4 

CD8 

CD45 

TcRβ  

CD19 

IFNγ  

IL-4 

IgG1 

IgG2k 

IgG1 

IgG2a 

IgG2b 

Streptavidin 

Annexin V 

Annexin V 

Ar hamster 

Ar hamster 

Rat 

Rat 

Ar hamster 

Rat 

Rat 

Rat 

Rat 

Rat 

Rat 

Rat 

Rat 

Ar hamster 

Rat 

Rat 

Rat 

Rat 

Ar hamster 

Rat 

Rat 

Rat 

 

 

16-10A1 

16-10A1 

GL1 

M5/114.15.2 

HM40-3 

HK1.4 

HK1.4 

RA3-6B2 

RB6-8C5 

RB6-8C5 

GK1.5 

53-6.7 

30-F11 

H57-597 

6D5 

XMG1.2 

BVD6-24G2 

eBRG1 

B81-3 

eBRG1 

eBR2a 

RTK4530 

 

 

FITC 

APC 

PE 

AF700 

Biotin 

FITC 

APC 

PE 

PE 

APC 

AF700 

APC 

PerCP-Cy5.5 

PE-Cy5 

APC 

PE 

FITC 

FITC 

FITC 

PE 

PE 

AF700 

PE-Cy5 

FITC 

PE 

BD Pharmingen 

eBioscience 

BD Pharmingen 

BioLegend 

eBioscience 

BioLegend 

eBioscience 

eBioscience 

BD Pharmingen 

eBioscience 

BioLegend 

BioLegend 

BD Bioscience 

eBioscience 

BioLegend 

eBioscience 

eBioscience 

eBioscience 

BD Pharmingen 

eBioscience 

eBioscience 

BioLegend 

BD Bioscience 

BioLegend 

BD Pharmingen 

 

Table 2: Reagents used for flow cytometry 
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4.3 Staining for apoptosis 

 

For analysis of apoptosis, cells were first blocked and stained with primary mAbs as 

described above. Then cells were washed twice with PBS and resuspended in 100 µl Annexin 

V binding buffer (BD Pharmingen). Five minutes before acquisition 2.5 µl of Annexin per 

sample were added. Right before acquisition 1 µl of DAPI (20 µg/ml) was added to the 

samples. Cells negative for both Annexin V and DAPI were considered viable. Annexin V 

single positive cells were considered as early apoptotic and double positive cells as late 

apoptotic or necrotic. 

 

4.5 Analysis 

 

All cell events were acquired on a LSR II or LSR II SORP flow cytometer (BD 

Bioscience). Data were analyzed using FlowJo software (Tree Star).  

 

 

5. Neutrophil depletion 

 

For transient neutrophil depletion mAbs were used. Six hours prior to and 1.5 days 

post infections, mice were inoculated i.p. with 100 µg of the mAb NIMP-R14 (Adipogen, 

Epalinges, Switzerland), a rat IgG2b mAb recognizing selectively Ly6G [175]. As control, 

mice were inoculated i.p. with 100 µg of the mAb RR3-16 recognizing the V alpha 3.2 chain 

of the T cell receptor in mouse strains bearing the b haplotype such as C57BL/6 mice (gift 

from R. McDonald, Ludwig Institute of Cancer Research, Epalinges, Switzerland). Of note, 

the V alpha 3.2 chain is absent in mice with the d haplotype including BALB/c mice. 

 

 

6. Digestion of ears and dLNs 

 

For analysis of cellular content and expression of activation markers on DCs, infected 

ears were taken, the dorsal and ventral sheets separated with forceps, cut into small pieces and 

incubated in 1 ml DMEM medium (GIBCO) containing 0.2 mg/ml Liberase TL (Roche) at 

37°C. After two hours the reaction was stopped by adding 2 ml of DMEM medium 

supplemented with 5% FCS, 2% HEPES, 2% antibiotics (penicillin, neomycin, streptomycin) 

and 1% β-mercaptoethanol (further referred to as complete DMEM). Cells were filtered 

through a 40 µm cell strainer in a final volume of 10 ml, washed and counted. dLNs were 
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perfused with 1 ml DMEM medium containing 1 mg/ml collagenase D (Roche) and 40 µg/ml 

DNase (Roche) using a syringe and incubated for 15 minutes at 37°C. The reaction was 

stopped by adding 2 ml of complete DMEM. Lymph nodes were then homogenized in a final 

volume of three ml using a glass homogenizer, washed and counted. 

 

 

7. Cytokine detection 

 

Mice infected with L. major were sacrificed at the indicated time points. dLNs were 

taken and digested as described above. Cells were incubated at a concentration of 5x106 

cells/ml in complete DMEM alone, on plate-bound anti-CD3 (0.5 µg/ml) or in the presence of 

UV-irradiated L. major stationary phase parasites (1x106 parasites/ml) for 72 hours at 37°C. 

Cell-free supernatants were taken and cytokine contents were analyzed by ELISA according 

to the manufacturer’s instructions: IL-4, IL-10 (both BD Bioscience) and IL-17 

(eBioscience). IFN-γ was detected by an in-house ELISA. Briefly, ELISA plates (F96 

Maxisorb NUNC immune plates) were coated with an anti-IFNγ mAb (clone 01E70 3B2) in 

PBS over night at 4°C. The plates were washed three times with PBS containing 0.05% 

Tween 20 (AppliChem) and standard and sample dilutions incubated for two hours. The 

plates were washed again and bound IFNγ detected with a biotinylated anti-IFNγ mAb (clone 

AN-18.14.24) diluted in PBS containing 1% BSA for two hours. After another washing step 

tetramethylbenzidine solution (BD TMB substrate reagent set) was added to the wells and the 

reaction was stopped with 2N H2SO4. The optical density of 450 nm was determined with a 

plate reader (Dynamica LEDETECT 96). 

 

 

9. Statistics 

 

Results represent means +/- SEM. Data was analyzed using GraphPad Prism 5 

software. Statistical significance was determined by an unpaired two-tailed Student’s t-test. P 

values were considered significant when p < 0.05 *, p < 0.01 **, p < 0.001 ***.  
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Aim of the thesis 
 

 

Neutrophils arrive rapidly and massively at the site of Leishmania major inoculation 

in the skin. They participate in shaping the immune response by the secretion of numerous 

factors including cytokines and chemokines and by interactions with antigen-presenting cells 

such as dendritic cells (DC). More specifically, neutrophils participate in the attraction of 

DCs to the site of infection and can either promote or inhibit their activation. However, the 

influence of neutrophils on the activation of DCs following L. major inoculation is poorly 

understood. 

 

In this study, we firstly aimed to investigate if neutrophils have an impact on the 

activation of DCs in vitro and to decipher the mechanisms involved in their regulation of DC 

activation. To this end we set up co-cultures of CD8α+ DCs, L. major parasites and 

inflammatory neutrophils. As readout we analyzed the expression of activation markers on 

DCs and analyzed the cytokine content in the supernatants. 

Furthermore we assessed the role of neutrophils on the activation of DCs in vivo at 

the site of infection and in the dLN three days following L. major inoculation in the ear pinna 

of Leishmania-resistant C57BL/6 and susceptible BALB/c mice. To this end, we made use of 

the neutrophil-depleting mAb NIMP-R14. When injected prior to infection, neutrophils are 

absent during the first three days of infection. The expression of activation markers on DCs 

present at the site of infection or in the dLN from mice depleted or not of neutrophils was 

analyzed three days post infection. We followed lesion development over time and analyzed 

parasite loads as well as the impact of the absence of neutrophils during the first three days of 

infection on the development of the adaptive immune response. 

 

 



	
  

 

 

 

 

 

 

 

 

 



  Results 
	
  

	
   57	
  

Results 
 

 

1. The role of neutrophils in BALB/c mice upon L. major infection 

 

 Neutrophils are the first line of defense against microbial agents and participate in the 

elimination of pathogens. Furthermore, it has been shown that neutrophils interact with 

various other cell types and participate in the orchestration of the adaptive immune response. 

Following L. major infection, neutrophils migrate massively and rapidly to the site of insult. 

Previous studies demonstrated the deleterious role of the early neutrophilic infiltrate in 

BALB/c mice using mAbs to transiently deplete neutrophils. Mice depleted transiently of 

neutrophils at the onset of infection developed significantly smaller and non-progressive 

lesions compared to non-depleted littermates. However, the impact of neutrophils on the 

activation of DCs early after infection has not been investigated in BALB/c mice. 

 

1.1 The impact of neutrophils on DC activation in vitro 

 

1.1.1 Neutrophils down-regulate DC activation in vitro 

	
  
We first analyzed whether neutrophils have an impact on the activation of DCs in 

vitro. Since we were interested in the role of neutrophils on DC activation in the dLN, we 

used CD8α+ DCs which are the main IL-12-producing DC subset for these experiments . The 

MutuDC CD8α+ cell line H-2d retained all major features of freshly isolated ex vivo CD8α+ 

DCs such as expression of activation marker and cytokine secretion [194]. We set up co-

cultures of CD8α+ DCs, inflammatory neutrophils and metacyclic L. major parasites and 

analyzed the expression of the DC activation markers CD80, CD86, CD40 and MHC II. 

Cytokine secretion was also analyzed in the culture media. The incubation of DCs with L. 

major parasites led to increased expression of all four activation markers on DCs compared to 

when DCs are cultured alone. However, the addition of inflammatory neutrophils together 

with L. major to DCs significantly decreased the expression of CD86 and to a lesser extend 

the expression of CD80, CD40 and MHC II on DCs (Figure 1A).  

Next we determined the levels of IL-12p40, IL-12p70 and TNFα in the supernatants. 

In cultures of DCs only, neutrophils in presence or absence of L. major, or neutrophils and 

DCs, the levels of IL-12p40, IL-12p70 and TNFα detected 18 hours after culture onset were 

below detection limit. Incubation of DCs with L. major induced a robust secretion of IL-

12p40, p70 and TNFα. However, the addition of neutrophils and L. major to DCs led to 
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significantly decreased levels of IL-12p70 and TNFα, and to a smaller degree to decreased 

IL-12p40 levels, compared to those observed in cultures of DCs with L. major only (Figure 

1B).  

In the same experiment the rate of infected DCs in the different co-cultures was 

analyzed. When DCs were incubated with L. major, around 30% of the DCs were infected 

after 18 hours. The addition of neutrophils decreased the infection rate of DCs almost three 

fold (to 11%) (Figure 1C). Thus, neutrophils appear to sequester L. major and downregulate 

the activation of DCs in vitro. 

 

Figure 1: Neutrophils have a negative impact on DC activation in vitro 
Co-cultures of DCs, metacyclic L. major (Lm) parasites and inflammatory neutrophils (PMN) were set-
up in vitro as indicated. After 18 hours, cells were collected and (A) the expression of activation 
markers CD80, CD86, CD40 and MHC II gated on DCs was analyzed by FACS. (B) Cytokine content 
in the supernatants was determined by ELISA. (C) In the same experiment, the percentages of infected 
mcherry-L. major-positive DCs were analyzed in the different co-cultures. Numbers indicated in the 
gates represent the percentage of mcherry-L. major-positive DCs. The data shown are from one 
experiment representative of three individual experiments ((*, p<0.05; **, p<0.01). 
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1.1.2 The negative effect of neutrophils on DC activation is not due to efferocytosis 

 

The phagocytosis of apoptotic cells (efferocytosis) by DCs is known to downregulate 

their activation. We reasoned that the apoptotic state of neutrophils could contribute to their 

negative effects on DC activation. To this end we first analyzed if the infection of neutrophils 

with L. major induced apoptosis. We incubated neutrophils with L. major and analyzed 

apoptosis in infected and non-infected neutrophils. No difference in the expression of the 

apoptotic marker phosphatidylserine detected by Annexin V staining as well as uptake of 

DAPI was seen between infected and non-infected neutrophils (Figure 2A).  

In order to test whether the apoptotic state of neutrophils has an effect on DC 

activation, DCs were incubated with L. major and viable or UV-treated apoptotic/necrotic 

neutrophils were added to the culture. After UV-treatment, 75% of neutrophils were 

apoptotic/necrotic (Annexin V+) as measured by the expression of Annexin V and DAPI by 

FACS (Figure 2B). The addition of viable neutrophils to DCs and L. major decreased the 

expression of all four activation markers analyzed on DCs compared to cultures without 

neutrophils. However, when apoptotic neutrophils were added to cultures of DCs and L. 

major, the negative impact on the expression of activation markers on DCs was lower than 

that observed when viable neutrophils were added. (Figure 2C). 

Next we analyzed the levels of IL-12p40 and TNFα in the supernatants of the co-

cultures. When apoptotic neutrophils were added to DC and L. major, the negative impact on 

cytokine secretion observed when live neutrophils were added was reduced and similar levels 

of IL12-p40 and TNFα were measured (Figure 2D). Thus, the negative effect of neutrophils 

on DC activation does not appear to result from exposure to apoptotic neutrophils On the 

contrary, viable neutrophils have a stronger, negative impact on DC activation than apoptotic 

neutrophils in vitro. 
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Figure 2: Impact of neutrophil apoptosis on DC activation  
(A) Inflammatory neutrophils were incubated with metacyclic L. major parasites for 18 hours and the 
expression of phosphatidylserine detected by Annexin V and the uptake of DAPI analyzed by flow 
cytometry on non-infected and L. major-infected neutrophils  (B) Co-cultures of DCs, metacyclic L. 
major (Lm) parasites and inflammatory viable or UV-treated apoptotic (apo) inflammatory neutrophils 
(PMN) were set-up in vitro as indicated. Apoptosis was analyzed by staining for Annexin V and DAPI 
gated on Ly6G+ neutrophils. Numbers in the quadrants represent the percentages in the respective 
quadrants. (C) Co-cultures were incubated for 18 hours, cells were collected and the expression of 
activation markers CD80, CD86, CD40 and MHC II gated on DCs analyzed by FACS and (D) cytokine 
content in the supernatants determined by ELISA. The data shown are from one preliminary 
experiment (**, p<0.01). 
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1.1.3 Neutrophil-derived prostaglandins contribute to the downregulation of DC 

activation in the presence of L. major 

 

A recent report by the group of Unanue showed that following injection of antigen in 

adjuvants prostaglandins secreted by neutrophils in the dLN control the magnitude and spread 

of the immune response [76]. For this reason we wanted to analyze whether neutrophil-

derived prostaglandins have an effect on DC activation in the presence of L. major.  

 
Figure 3: Neutrophil-derived prostaglandins contribute to the downregulation of DC activation 
Co-cultures of DCs, metacyclic L. major (Lm) parasites and inflammatory non- or indomethacin-
treated (indo) neutrophils (PMN) were set-up in vitro as indicated. (A, B) Co-cultures were incubated 
for 18 hours, cells were collected and the expression of activation markers CD80, CD86, CD40 and 
MHC II gated on DCs analyzed by FACS. (C).Cytokine content in the supernatants of co-cultures was 
determined by ELISA  The data shown are from one preliminary experiment (*, p<0.05; **, p<0.01; 
***, p<0.001). 
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To this end, we incubated DCs and L. major with non- or indomethacin-treated 

neutrophils and analyzed the expression of activation markers on DCs. Indomethacin is an 

inhibitor of the enzymes cyclooxygenase (COX) 1 and 2 that participate in the synthesis of 

prostaglandins from arachidonic acid. As seen previously, the addition of neutrophils to 

cultures of DCs and L. major resulted in decreased expression of CD86 and to a lesser extent 

CD80, CD40 and MHC II on DCs. However, treatment of neutrophils with indomethacin 

partially blocked this effect resulting in higher expression of CD86 and to a smaller degree of 

CD40 on DCs compared to conditions where non-treated neutrophils were added (Figure 3A). 

Of note, treatment of neutrophils with indomethacin had no effect on the viability of 

neutrophils (data not shown.) Furthermore, there was no difference in the expression of 

activation markers on DCs when non- or indomethacin-treated neutrophils were incubated 

with DCs without addition of L. major (Figure 3B). 

We next assessed the content of IL12-p40, IL12-p70 and TNFα in the supernatants of 

these co-cultures. As seen previously, the addition of neutrophils to DCs and L. major 

significantly decreased the levels of all three cytokines in the supernatants. Comparing the 

cytokine content between cocultures of DCs, L. major and non-treated neutrophils with 

cocultures of DCs, L. major and indomethacin-treated neutrophils, the levels of IL12-p40 and 

TNFα were significantly higher in the latter cultures. However, cytokine levels from these 

latter cultures were still significantly lower compared to cultures of DCs with L. major alone 

(Figure 3C). Thus, neutrophil-derived prostaglandins contribute partially to the negative 

impact on DC activation in vitro.  

 

 

1.2 The impact of neutrophils on DC activation in vivo 

 

1.2.1 Characterization of the mAb NIMP-R14 

 

Having seen that neutrophils down-regulate DC activation in vitro, we next wanted to 

investigate if neutrophils have an impact on DC activation both at the site of infection and in 

the dLN following L. major infection in vivo. To this end we made use of the neutrophil-

depleting mAb NIMP-R14 that has been shown to efficiently deplete neutrophils for three 

days [161]. However, the exact epitope and thus the specificity of this mAb is still unknown. 

In order to further characterize this mAb we injected i.p. 100 µg of the mAbs NIMP-

R14 or a control mAb (RR3-16) six hours prior and 1.5 days post infection of L. major in the 

ear pinna. At different time points the numbers of Ly6CintGr-1hi neutrophils (gate 1), 

Ly6CintGr-1- cells including resident monocytes (gate 2), Ly6ChiGr-1int cells including 
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inflammatory monocytes (gate 3), CD11c+ DCs (gate 4) and CD11c+Ly6C+CD11b+ moDCs 

(gate 5) were analyzed at the site of infection and in the dLNs since these are the sites where 

DC activation will be studied. Analysis of the different populations is shown in Figure 4A. 

Neutrophils were efficiently depleted for three days in NIMP-R14 treated animals that were 

infected with L. major 6 hours after the first mAb injection both at the site of infection 

(Figure 4B) and in the dLN (Figure 4C). The injection of the mAb NIMP-R14 did not affect 

Ly6Cint cells, Ly6Chi cells, DCs and moDCs both at the site of infection and in the dLN. A 

small increase (two fold) in the number of Ly6Cint cells in the dLNs 72 hours post infection 

was observed (Figure 4C). Consequently, the mAb NIMP-R14 (from now on referred to as 

anti-PMN) was a good tool and further used to study the impact of neutrophils on the 

activation of DCs at the site of infection and in the dLNs. 

 

 

Figure 4: The mAb NIMP-R14 selectively depletes neutrophils at the site of infection and in the 
dLN. BALB/c mice were injected i.p. with 100 µg of the mAbs RR3-16 (control) or NIMP-R14 (anti-
PMN) 6 hours prior to and 1.5 days post inoculation of L. major parasites in the ear dermis. At 2, 12, 
20 and 72 hours post parasite inoculation, infected ears and dLNs were harvested, digested and cellular 
content analyzed by FACS. (A) A representative gating strategy of Ly6CintGr-1hi neutrophils (gate 1), 
Ly6CintGr-1- cells (gate 2), Ly6ChiGr-1int cells (gate 3), CD11c+ DCs (gate 4) and 
CD11c+Ly6C+CD11b+ moDCs (gate 5) gated on CD45+ cells is shown. (B) The values of four 
individual ears (site of infection) and (C) dLNs for each time point are expressed as mean +/- SEM. 
The data shown are pooled from two individual experiments per time point. (*, p<0.05) 
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1.2.2 Depletion of neutrophils has no detectable impact on DC activation at the site of 

infection 

 

In order to study the impact of neutrophils on the activation of DCs in vivo, BALB/c 

mice were treated with an anti-PMN or control mAb and inoculated with L. major parasites in 

the ear dermis. Three days post infection the cellularity of infected ears and the expression of 

activation markers on DCs were analyzed.  

 

Figure 5: Depletion of neutrophils has no detectable impact on DC activation at the site of 
infection three days post L. major inoculation BALB/c mice were injected i.p. with 100 µg of the 
mAbs RR3-16 (control) or NIMP-R14 (anti-PMN) 6 hours prior to and 1.5 days post inoculation of L. 
major parasites in the ear dermis. Three days post parasite inoculation, infected ears (n = 6 ears per 
group) were harvested, digested and cellular content analyzed by flow cytometry. (A) Bar graphs 
express the mean +/- SEM of numbers of total cells, Ly6CintGr-1hi neutrophils, CD11c+ DCs and 
mcherry+CD11c+ infected DCs per ear. (B) A representative gating strategy for CD11c+ DCs gated on 
CD45+ cells is shown. (C) Histograms of CD80, CD86, CD40 and MHC II expression gated on 
CD11c+ DCs from concatenated samples are shown. The data shown are from one experiment and 
representative of three experiments (**, p<0.01). 
 

Neutrophils were efficiently depleted in anti-PMN treated mice while no differences in the 

number of total cells, DCs and infected DCs were observed (Figure 5A). Furthermore we 

could not detect any major differences in the expression of the activation markers CD80, 
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CD86, CD40 and MHC II on total CD11c+ DCs between neutrophil-depleted and non-

depleted mice (Figure 5B, C). Thus neutrophils do not appear to have a major impact on DC 

activation at the site of infection three days post L. major inoculation. 

 

1.2.3 Neutrophils decrease DC activation in the dLN 

 

It has been shown that neutrophils migrate to the dLN following L. major infection 

([161] and Figure 4). Thus, we next wanted to examine the effect of neutrophil-depletion on 

the cellularity and DC activation in the dLN.  

 
Figure 6: Depletion of neutrophils increases DC activation in the dLN three days post L. major 
inoculation BALB/c mice were injected i.p. with 100 µg of the mAbs RR3-16 (control) or NIMP-R14 
(anti-PMN) 6 hours prior to and 1.5 days post inoculation of L. major parasites in the ear dermis. (A) 
Three days post parasite inoculation, dLNs (n= 6 per group) were harvested, digested and cellular 
content analyzed by flow cytometry. Bar graphs express the mean +/- SEM of numbers of total cells, 
Ly6CintGr-1hi neutrophils, CD11c+ DCs and mcherry+CD11c+ infected DCs per ear. (B) A 
representative gating strategy for CD11c+ DCs gated on CD45+ cells is shown. (C) Histograms of 
CD80, CD86, CD40 and MHC II expression gated on CD11c+ DCs from concatenated samples are 
shown. The data shown are from one experiment and representative of three experiments (*, p<0.05). 

 

Injection of the anti-PMN mAb efficiently depleted neutrophils while we did not 

observe any differences in the numbers of total cells and DCs. However, the number of L. 
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major-infected DCs was significantly higher in neutrophil-depleted mice (Figure 6A). When 

we analyzed the expression of activation marker on total CD11c+ DCs, the expression of 

CD86 and MHC II was significantly increased in neutrophil-depleted mice compared to non-

depleted littermates. The expression of CD80 and CD40 was slightly increased (Figure 6C). 

Taken together, depletion of neutrophils led to increased numbers of infected DCs and 

enhanced DC activation in the dLN three days post L. major infection. 

 

1.3 The consequences of early neutrophil depletion on lesion development, parasite load 

and the developing immune response 

 

Neutrophils have a negative impact on DC activation both in vitro and in the dLN 

three days post infection in vivo. We next analyzed the effects of the early and transient 

neutrophil depletion on lesion evolution, parasite loads and the developing immune response. 

 

1.3.1 Development of a novel scoring method to monitor lesion development following 

intra-dermal injection of L. major in the ear 

 

Initially, most studies using the murine model of L. major infection were carried out 

inoculating parasites in the hind footpad. In recent years, new protocols have been adapted 

injecting the parasites intradermally into the ears. However, given the different anatomy of 

the ear compared to the footpad, monitoring lesion development in the ear is technically more 

difficult and until now there is no consensus on how to monitor lesion size development in 

this anatomic localization. For this reason we developed a novel scoring method to follow 

lesion evolution. This system takes into account each step of lesion evolution occurring 

during the infection: from the appearance of first signs of inflammation such as redness to 

development of necrosis with potential tissue destruction (Figure 7). 

 
Figure 7: A new scoring method to monitor lesion evolution in the ear following L. major 
infection in the ear dermis. BALB/c mice were inoculated with 1x105 L. major parasites in the ear 
dermis. Lesion size was measured weekly using a Vernier caliper. A table describing the attribution of 
different scores depending on the appearance and size of the lesion is shown. Pictures of infected ears 
representing different scores as indicated in the figure are shown. 
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Lesion scoring is comprised between 0 and 8. At the onset of infection, observations of 

inflammatory signs (redness, swelling of blood vessels) are assigned a score of 0.5. The 

appearance of swelling or a small non-measurable papule receives a score of 1. As lesions 

become quantifiable the length and width of the lesion is measured using a caliper. The larger 

dimension is used to assign a score. For example, if the higher diameter of the lesion is 

between 2.00 mm and 2.49 mm a score of 2 is attributed, from 2.50 to 2.99 a score of 2.5 and 

so on until a diameter higher than 5.50 mm (score 5.5). A score of 6 is assigned when first 

signs of necrosis are observed at the site of infection. Severe necrotic lesions without tissue 

destructions receive a score of 7. Once tissue destruction at the site of infection appears a 

score of 8 is attributed (Figure 7). Consequently, this scoring system represents the evolution 

of lesion development as observed visually in an adequate way. Importantly, fine and precise 

lesion modulations, especially at the beginning of lesion formation and at later time points 

when tissue modifications and necrosis occur, are properly represented. 

 

1.3.2 Early and transient depletion of neutrophils resulted in the development of non-

progressive lesions and decreased parasite loads 

 

 In order to investigate the role of the early neutrophilic infiltrate, BALB/c mice were 

treated with an anti-PMN or control mAb prior to injection of L. major parasites in the ear 

dermis. Lesion evolution was monitored using the novel scoring method described above.  

 

Figure 8: Depletion of neutrophils leads to the development of non-progressive lesion following L. 
major infection BALB/c mice were injected i.p. with 250 µg of the mAbs RR3-16 (control) or NIMP-
R14 (anti-PMN) 6 hours prior to inoculation of L. major parasites in the ear dermis. Lesion 
development was assessed by measuring lesion size weekly for six weeks. (A) Values represent the 
mean lesion score +/- SEM of 5 mice per group. (B) At 14 days and (C) six weeks post infection, 
numbers of parasites in ear lesions were quantified using limiting dilution assay. Parasite loads of 
individual ears are shown as mean +/- SEM. Results are pooled from two independent experiments (C) 
or representative of two independent experiments (A, B) (**, p<0.01; ***, p<0.001). 
 

BALB/c mice that received the anti-PMN mAb developed significantly smaller, non-

progressive lesions compared to control-injected littermates (Figure 8A). Furthermore the 
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number of parasites in the infected ears was quantified 14 days and 6 weeks post infection. 

Depletion of neutrophils led to a significant reduction in parasite loads 14 days and  6 weeks 

post infection at the site of infection. (Figure 8B, C). Thus, early and transient depletion of 

neutrophils led to the development of non-progressive lesions and decreased parasite loads in 

infected ears. 

 

1.3.3 Depletion of neutrophils leads to decreased secretion of IL-4 and IL-17 six weeks 

post L. major infection 

 

To determine if the depletion of neutrophils had an impact on the developing immune 

response, we harvested dLNs from control and anti-PMN-treated mice two and six weeks post 

L. major infection and analyzed cytokine secretion of restimulated dLN cells by ELISA. We 

observed no significant difference in the levels of IFNγ in the supernatants both at two and six 

weeks post infection. However, IL-4 content in the supernatants was decreased in cell 

cultures from neutrophil-depleted compared to non-depleted mice at both time points 

analyzed (Figure 9). Of note, results obtained for IFNγ and IL-4 by ELISA were confirmed by 

intracellular FACS staining (data not shown). The levels of IL-10 in the supernatants were 

comparable between neutrophil-depleted and non-deleted mice, both at two and six weeks 

post infection. Analyzing IL-17 secretion, we found increased levels in cell cultures from 

neutrophil-depleted mice at two weeks post L. major infection but decreased levels at six 

weeks post infection (Figure 9).  

Consequently, transient depletion of neutrophils decreased IL-4 secretion at two and 

six weeks post L. major infection while it led to a transient increased IL-17 secretion at two 

weeks while IL-17 secretion was significantly decreased at six weeks post L. major infection.  
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Figure 9: Depletion of neutrophils leads to decreased secretion of IL-4 and IL-17 six weeks post 
L. major infection. BALB/c mice were injected i.p. with 250 µg of the mAbs RR3-16 (control) or 
NIMP-R14 (anti-PMN) 6 hours prior to inoculation of L. major parasites in the ear dermis. Two (white 
bars) and six (black bars) weeks post infection, dLN cells were isolated and restimulated with UV-
treated L. major parasites for 72 hours. Cell-free supernatants were collected and cytokine levels of 
IFNγ, IL-4, IL-17 and IL-10 analyzed by ELISA. Values represent the mean +/- SEM of 5 mice per 
group and are representative of two experiments (*, p<0.05). 
 

 

2. The role of neutrophils in C57BL/6 mice upon L. major infection 

 

2.1 The impact of neutrophils on DC activation in vivo 

 

In Leishmania-susceptible BALB/c mice, we observed that neutrophils have a 

negative impact on DC activation early after parasite inoculation. Next we wanted to 

investigate the impact of neutrophils on DC activation following L. major infection in 

Leishmania-resistant C57BL/6 mice, both at the site of infection and in the dLN. 
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2.1.1 Depletion of neutrophils has no detectable impact on DC activation at the site of 

infection three days post L. major inoculation 

 

In order to analyze the impact of neutrophils on DC activation at the site of infection, 

C57BL/6 mice were treated with a control- or anti-PMN mAb prior to L. major inoculation in 

the ear dermis. Three days post infection, the cellularity of infected ears and the expression of 

activation markers on DCs were analyzed. In anti-PMN-treated mice, neutrophils were 

efficiently depleted while there was no significant difference in the numbers of total cells, 

DCs and infected DCs compared to control-treated mice (Figure 10A). Analyzing the 

expression of the activation markers CD80, CD86, CD40 and MHC II on total CD11c+ DCs, 

there was no significant difference between control- and anti-PMN-treated mice (Figure 10B). 

Thus, we could not detect any impact on DC activation at the site of infection three days post 

L. major inoculation.  

 
Figure 10: Depletion of neutrophils has no detectable impact on DC activation at the site of 
infection three days post L. major inoculation C57BL/6 mice were injected i.p. with 100 µg of the 
mAbs RR3-16 (control) or NIMP-R14 (anti-PMN) 6 hours prior to and 1.5 days post inoculation of L. 
major parasites in the ear dermis. (A) Three days post parasite inoculation, infected ears (n = 6 ears per 
group) were harvested, digested and cellular content analyzed by flow cytometry. Bar graphs express 
the mean +/- SEM of numbers of total cells, Ly6CintGr-1hi neutrophils, CD11c+ DCs and 
mcherry+CD11c+ infected DCs per ear. (B) Histograms of CD80, CD86, CD40 and MHC II expression 
gated on CD11c+ DCs from concatenated samples are shown. The data shown are from one experiment 
and representative of three experiments (**, p<0.01). 
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2.1.2 Depletion of neutrophils has no detectable impact on DC activation in the dLN 

three days post L. major infection 

 

Having seen that neutrophils have a negative impact on DC activation in the dLN of 

BALB/c mice, we next wanted to investigate the role of neutrophils on the activation of DCs 

in the dLNs of C57BL/6 mice. To this end, C57BL/6 mice were treated as described above 

and the cellularity and expression of activation markers on DCs in the dLNs analyzed three 

days post L. major infection in the ear dermis. Injection of the anti-PMN mAb led to an 

efficient depletion of neutrophils while numbers of total cells, DCs and infected DCs were 

comparable to control-injected mice (Figure 11A). Furthermore, depletion of neutrophils had 

no major impact on the expression of CD80, CD86, CD40 and MHC II on total dLN CD11c+ 

DCs (Figure 11B). Consequently, neutrophils have no detectable impact on DC activation in 

the dLN three days post L. major infection. 

 

Figure 11: Depletion of neutrophils has no detectable impact on DC activation in the dLN three 
days post L. major inoculation C57BL/6 mice were injected i.p. with 100 µg of the mAbs RR3-16 
(control) or NIMP-R14 (anti-PMN) 6 hours prior to and 1.5 days post inoculation of L. major parasites 
in the ear dermis. (A) Three days post parasite inoculation, dLNs (n = 6 dLNs per group) were 
harvested, digested and cellular content analyzed by flow cytometry. Bar graphs express the mean +/- 
SEM of numbers of total cells, Ly6CintGr-1hi neutrophils, CD11c+ DCs and mcherry+CD11c+ infected 
DCs per ear. (B) Histograms of CD80, CD86, CD40 and MHC II expression gated on CD11c+ DCs 
from concatenated samples are shown. The data shown are from one experiment and representative of 
three experiments (**, p<0.01). 
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2.2 The consequences of early neutrophil depletion on lesion development, parasite loads 

and the developing immune response 

 

2.2.1 Early and transient depletion of neutrophils has no major effect on lesion 

development and parasite loads 

 

In order to investigate the role of the early neutrophilic infiltrate on lesion 

development and parasite loads in infected ears, C57BL/6 mice were treated with a control- 

or anti-PMN mAb prior to inoculation of L. major in the ear dermis. Early depletion of 

neutrophils had no effect on lesion evolution compared to control-treated littermates (Figure 

12A). Furthermore, infected ears from neutrophil-depleted and non-depleted mice harbored 

similar numbers of parasites six weeks post parasite inoculation (Figure 12B).  

 
Figure 12: Depletion of neutrophils has no effect on lesion development in C57BL/6 mice 
following L. major infection. C57BL/6 mice were injected i.p. with 250 µg of the mAbs RR3-16 
(control) or NIMP-R14 (anti-PMN) 6 hours prior to inoculation of L. major parasites in the ear dermis. 
(A) Lesion development was assessed by measuring lesion size weekly for six weeks. Values represent 
the mean lesion score +/- SEM of 5 mice per group. (B) Six weeks post infection, numbers of parasites 
in ear lesions were quantified using limiting dilution assay. Parasite loads of individual ears are shown 
as mean +/- SEM. Results are representative of two independent experiments. 
 

 

2.2.2 Early and transient depletion of neutrophils has no effect on the Th1 cell immune 

response following L. major infection 

 

 Next we wanted to analyze whether the depletion of neutrophils affected the immune 

response 14 days and 6 weeks post L. major infection. To this end, C57BL/6 mice were 

treated and infected as described above. At the indicated time points, dLNs were harvested 

and cytokine production by restimulated dLN cell cultures determined by ELISA. Depletion 

of neutrophils had no effect on the production of IFNγ, IL-4, IL-17 and IL-10 14 days post 
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infection (Figure 13A). However, at six weeks post infection, depletion of neutrophils 

resulted in decreased levels of IL-4 while there where no differences for IFNγ, IL-17 and IL-

10 (Figure 13B). Thus, early and transient neutrophil depletion did not impact on Th1 cell 

response but decreased the Th2 immune response six weeks post infection. 

 

 
Figure 13: Depletion of neutrophils does not change Th1 cell differentiation but leads to 
decreased IL-4 secretion by dLN cells six weeks post L. major infection. C57BL/6 mice were 
injected i.p. with 250 µg of the mAbs RR3-16 (control) or NIMP-R14 (anti-PMN) 6 hours prior to 
inoculation of L. major parasites in the ear dermis. (A) Fourteen days and (B) six weeks post infection, 
dLN cells were restimulated with UV-treated L. major parasites for 72 hours. Cell-free supernatants 
were collected and cytokine levels of IFNγ, IL-4, IL-17 and IL-10 analyzed by ELISA. Values 
represent the mean +/- SEM of 5 mice per group and are representative of two experiments (*, p<0.05). 
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Discussion 
 

 

1. The role of neutrophils upon L. major infection in BALB/c mice 

 

1.1 The role of neutrophils on DC activation in vitro 

 

Neutrophils and DCs are both important cells of the immune system. Under 

homeostatic conditions, these cells are localized in different compartments of the body. 

However, neutrophils and DCs colocalize at sites of insult as well as in the dLN following 

infection or inflammation. It has been shown that neutrophils contribute to the recruitment of 

DCs and either promote or inhibit their activation.  Neutrophils can promote DC activation by 

the release of soluble factors such as cytokines and granular components as well as in a 

contact-dependent manner. In addition, the release of NETs can lead to DC activation. 

However, neutrophils are also able to inhibit DC activation under certain circumstances. The 

efferocytosis of apoptotic neutrophils by DCs can downregulate DC activation. Furthermore, 

the release of neutrophil granular components can prevent DC activation (reviewed in [99]). 

In the context of L. major infection, only little is known on the role of neutrophils on DC 

function. Our lab has previously demonstrated that the neutrophil-derived CCL3 is essential 

for the recruitment of DCs to the site of infection in C57BL/6 mice [159]. Furthermore, 

neutrophils were shown to inhibit DC activation in the skin early after inoculation of a high 

dose of metacyclic L. major Friedlin parasites in the ear pinna of C57BL/6 mice [160]. 

However, both of the above mentioned studies have been performed in Leishmania-resistant 

C57BL/6 mice. The impact of neutrophils on DC activation in Leishmania-susceptible 

BALB/c mice is less clear. Especially the role of neutrophils on DC activation in the dLN 

following L. major infection is poorly understood. 

  In order to investigate the influence of neutrophils on DC activation, we first 

performed different experiments in vitro. Since we were especially interested in the role of 

neutrophils on DC activation in the dLN, we wanted to use DCs present in LNs. However, the 

isolation of DCs ex vivo poses a number of technical limitations. Firstly the number of DCs 

that can be recovered ex vivo and used for experiments is very limited. Secondly, the isolation 

process can induce significant DC activation and isolated DCs undergo rapid apoptosis in 

culture [195]. For these reasons, we made use of the CD8α+ Mutu DC line originating from 

splenic BALB/c CD8α+ cDC [194]. These DCs have retained all major features compared to 

wild type CD8α+ DCs including the expression of surface markers such as Clec9A, DEC205 

and CD24, positive responses to TLR3 and TLR9 stimuli, secretion of cytokines and 
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chemokines as well as the upregulation of activation markers upon stimulation (Devika 

Ashok et al, manuscript in preparation and [194]). Thus, the CD8α+ Mutu DCs were a good 

tool for us to study the impact of neutrophils on DC activation in vitro.  

We showed that the incubation of CD8α+ DCs with metacyclic L. major parasites 

activated DCs characterized by increased expression of the activation markers CD80, CD86, 

CD40 and MHC II and a robust secretion of IL-12p40, IL-12p70 and TNFα. These findings 

are in line with previously published results using skin DCs [177, 196]. However, the addition 

of inflammatory neutrophils together with L. major parasites to DCs led to a lower expression 

of CD86 and to a smaller degree of CD80, CD40 and MHC II on DCs. In addition, a 

corresponding decreased secretion of IL-12p40, IL-12p70 and TNFα in vitro was observed, 

compared to cultures of DCs with L. major only.  

Neutrophils are short-lived cells that become rapidly apoptotic and it has been 

demonstrated that the uptake of apoptotic neutrophils by DCs decreased the expression of 

activation markers on DCs [115]. In addition, a recent report showed that M. tuberculosis 

promoted its replication through the suppression of neutrophil apoptosis thereby limiting 

pathogen uptake by DCs and delaying the onset of the adaptive immune response [117]. Thus 

we reasoned that neutrophil apoptosis and the availability of parasite antigens could influence 

DC activation. The impact of L. major in promoting neutrophil apoptosis is controversial. 

While some studies showed that L. major delays neutrophil apoptosis in vitro [153, 197, 198], 

another report demonstrated that infected neutrophils recovered form the ear dermis were 

more apoptotic than non-infected cells [160]. When we compared neutrophil apoptosis 

between infected and non-infected neutrophils in vitro, we could not detect any major 

differences. Possible explanations for the different results obtained in different studies could 

be due to the different L. major strains, the neutrophil to parasite ratios, incubation times of 

neutrophils and L. major used, as well as the origin of neutrophils (dermal versus BM-derived 

or peritoneally induced (p.i.) inflammatory neutrophils). Analyzing neutrophil-apoptosis in 

the co-cultures of DCs, L. major and p.i. inflammatory neutrophils, the majority of 

neutrophils were non-apoptotic and did not stain for Annexin V and DAPI after 18 hours in 

culture. The addition of UV-treated, apoptotic/necrotic neutrophils to DCs and L. major did 

not further decrease DC activation compared to the addition of viable neutrophils. In contrast, 

the negative effect of apoptotic/necrotic neutrophils on DC activation in the presence of L. 

major was less strong. than the effect of viable neutrophils. Thus, it seems that in our in vitro 

studies, neutrophil apoptosis does not play a major role in the downregulation of DC 

activation and other factors might be involved in preventing DC activation. 

Neutrophils migrate rapidly to the site of L. major infection or inoculation with a high 

dose of parasites. They are the major infected cells early after infection. A recent report 
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demonstrated that following immunization with antigen in adjuvants neutrophils competed 

with APCs for antigens resulting in a decreased T cell response [120]. Thus we thought that 

the sequestration of antigens by neutrophils could have a negative impact on DC activation in 

vitro considering that DCs get activated when exposed to L. major [177, 196]. When we 

analyzed the percentage of infected DCs in co-cultures of DCs and L. major, almost 30% of 

DCs were infected after 18 hours. However, when neutrophils together with L. major were 

added to the DCs, the percentage of infected DCs dropped to 11% while 20% of neutrophils 

were infected. These results suggest that the sequestration of parasites by neutrophils might 

contribute to their negative impact on DC activation. 

Following injection of antigen in adjuvants in the footpads of mice, neutrophils 

migrated rapidly to dLNs and neutrophil-derived prostanoids were responsible for the control 

of the magnitude and spread of the T cell response [76]. The enzymes COX-1 and COX-2 

convert arachidonic acid into prostanoids. It was shown that upon PMA-stimulation of 

neutrophils the expression of the genes Ptgs-1 and Ptgs-2 encoding COX-1 and COX-2, 

respectively, was upregulated. Increased levels of the prostanoid metabolites PGE2, PGD2, 

PGF2 and thromboxane were detected by mass spectrometry in cultures of stimulated 

compared to non-stimulated neutrophils [76]. The release of prostanoids by neutrophils 

exposed to L. major has not yet been investigated to our knowledge. However, incubation of 

neutrophils with L. chagasi and Lutzomyia longipalpis salivary gland sonicate (SGS) induced 

PGE2 release by neutrophils [199]. Furthermore, the ingestion of apoptotic neutrophils by 

macrophages stimulated the release of TGF-β and PGE2 resulting in a downregulation of 

macrophage activation [168, 198]. Stimulation of DCs with phlebotomine SGS induced the 

production of PGE2 and IL-10. These factors acted in an autocrine manner on DCs leading to 

the decreased expression of MHC II and CD86 [200]. Consistently, the addition of PGE2 to 

DCs induced IL-10 production that suppressed IL-12 release and decreased MHC II 

expression [201]. This negative effect of PGE2 on DC function was mediated through the 

PGE2 receptors EP2 and EP4 [202]. Since prostanoids can have a negative effect on DC 

activation, we reasoned that neutrophil-derived prostanoids could contribute to the observed 

negative effect of neutrophils on DC activation in vitro. Indeed, when we pre-treated 

neutrophils with the COX-inhibitor indomethacin before we added them to the cocultures of 

DCs and L. major, we observed a significant increase in CD86 expression on DCs as well as 

elevated secretion of IL12-p40 and TNFα compared to when non-treated neutrophils were 

added to the cocultures. However, the addition of indomethacin-treated neutrophils together 

with L. major to DCs resulted in significantly decreased levels of IL-12p40, IL12-p70 and 

TNFα compared to cocultures of DCs with L. major alone. Thus, neutrophil-derived 

prostanoids contribute to the negative effect of neutrophils on DC activation but there are also 
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other factors involved in this process. Since indomethacin is a general inhibitor of COX-1 and 

COX-2 other neutrophil-derived prostanoids than PGE2 could mediate the negative effect on 

DC activation. Furthermore we cannot exclude that the neutrophil-derived prostanoids trigger 

the release of other cytokines such as IL-10 which could also contribute to decreasing DC 

activation. 

Collectively, in this study we demonstrated that neutrophils have a negative impact 

on DC activation in vitro. This negative effect of neutrophils is mediated, at least in part, 

through the sequestration of parasite antigens as well as the secretion of prostanoids. 

 

 

1.2 The role of neutrophils on DC activation in vivo 

 

The analysis of the role of neutrophils in vivo has been difficult due to the lack of 

good neutropenic mouse models. Mice deficient for G-CSF or the G-CSF receptor have 

markedly reduced numbers of circulating neutrophils that have an increased susceptibility to 

apoptosis. Nevertheless, these mice still produce mature neutrophils [54, 203]. A recently 

described mouse strain termed Genista is neutropenic and offers an interesting model to study 

neutrophils in vivo. These mice have a point mutation in the transcriptional repressor growth 

factor independent 1 that causes a block in terminal granulopoiesis. Genista mice do not have 

mature neutrophils but they have a small number of atypical CD11b+Ly6Gint neutrophils 

[204]. However, to date these mice are only available on a C57BL/6 genetic background. 

Thus, in order to study the role of neutrophils in BALB/c mice we made use of neutrophil-

depleting antibodies. Three different antibodies are currently used to deplete neutrophils in 

vivo – the RB6-8C5, 1A8 and NIMP-R14 mAbs. However, these mAbs differ in their 

specificity and efficacy. The mAb RB6-8C5 recognizes the epitope Gr-1 present on Ly6G and 

Ly6C [174]. Thus besides neutrophils this mAb also depletes other Gr-1 expressing cells such 

as inflammatory monocytes, eosinophils and different DC subsets. Another mAb used to 

deplete neutrophils is the 1A8 [176]. This mAb specifically recognizes neutrophils, however 

the depletion is incomplete and does not last as long as depletions using the other two mAbs. 

The third neutrophil-depleting mAb is the NIMP-R14 [175]. This mAb efficiently depletes 

neutrophils, however the exact epitope and possible cross-reactivity with other cells are not 

completely known. For this reason we further characterized the NIMP-R14 mAb. Since we 

intended to study the role of neutrophils on DC activation both at the site of infection and in 

the dLN, we analyzed these two sites at different time points after inoculation of L. major in 

the ear pinna and administration of the mAb NIMP-R14 or a control mAb 6 hours prior 

infection. At both sites neutrophils were efficiently depleted for three days in NIMP-treated 

mice while we could not detect major differences in the numbers of Ly6Cint cells, Ly6Chi 
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cells, DCs and moDCs compared to control injected littermates. However, we cannot exclude 

that other cell subsets such as eosinophils or other organs such as the spleen are affected by 

the mAb NIMP-R14. Nevertheless, for the purpose of our study the mAb NIMP-R14 was a 

good tool to study the impact of neutrophils on DC activation and was used for further 

experiments. 

Our in vitro data suggested that neutrophils have a negative impact on DC activation 

through mechanisms involving the sequestration of antigens and the secretion of prostanoids. 

A recent report demonstrated that neutrophils have a negative impact on DC activation at the 

site of infection three days following inoculation of 2x106 metacyclic L. major Friedlin in the 

ear pinna of C57BL/6 mice. The phagocytosis of L. major by neutrophils was shown to 

induce apoptosis and dermal DCs acquired the parasites mainly by phagocytosing apoptotic, 

infected neutrophils. The authors suggested that the efferocytosis of apoptotic neutrophils 

decreased DC activation [160]. In our study, depletion of neutrophils did not have any 

detectable impact on DC activation at the site of infection three days post inoculation of 2x105 

stationary phase or metacyclic L. major LV39. Thus, it is likely that the different strains of 

parasites and the genetic background of the hosts account for the different results obtained 

concerning the role of neutrophils on DC activation in the ear dermis. Whether in our in vivo 

studies the phagocytosis of L. major LV39 by neutrophils induces neutrophil apoptosis and 

whether DCs acquire the parasites via efferocytosis of infected neutrophils will need to be 

investigated in vivo. 

Neutrophils are the first cells that arrive at the site of parasite infection or inoculation 

of a high dose of L. major, and they rapidly migrate to the dLNs. A negative effect of 

neutrophil-recruitment to the dLNs on the developing immune response has been recently 

reported [76, 117, 120]. Following immunizations with antigens in adjuvants, neutrophils 

migrated rapidly to the dLNs and competed for antigens with APCs resulting in attenuated T 

and B cell responses [120]. Furthermore neutrophils controlled the magnitude and the spread 

of T cell responses to distal LNs, a process that was dependent on neutrophil-derived 

prostanoids [76]. Another report demonstrated that during infections with M. tuberculosis, 

neutrophils limited the pathogen uptake by DCs thereby delaying the immune response [117]. 

In our study, depletion of neutrophils prior to inoculation of L. major resulted in an enhanced 

expression of activation markers on dLN DCs compared to non-depleted littermates. In 

addition, the number of infected DCs was significantly higher in dLNs of neutrophil-depleted 

compared to non-depleted mice. These data suggest that one of the mechanism involved in 

the negative effect on DC activation observed following L. major inoculation may occur  

through the sequestration of parasite antigens by neutrophils. These data are in line with 

results obtained in vitro. Direct uptake of the parasites by DCs could enhance DC activation 

through the recognition of parasite derived PAMPs by PRRs such as TLRs expressed on DCs 
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and parasite antigens could be more accessible to the MHC class I and II processing 

machinery. In our in vitro experiments neutrophil-derived prostanoids contributed to the 

negative impact of neutrophils on DC activation. The role of neutrophil-derived prostanoids 

in hampering DC activation in vivo following L. major inoculation still needs to be 

determined. 

The contribution of distinct DC subsets in the initiation of the L. major protective 

immune response is still not clear. Different studies demonstrated the involvement of CD11b+ 

LN-resident, CD8α-langerin- dermal or moDC formed at the site of infection in antigen 

presentation and initiation of the adaptive immune response following L. major infection [98, 

178, 179]. In our studies we analyzed total CD11c+ DCs present in the dLN three days post L. 

major infection. This includes LN-resident DC subsets such as CD8α+ DCs and DCs that 

migrated from the site of infection to the dLN such as dermal DCs, LCs and moDCs. The 

effect of neutrophils on the activation of distinct DC subsets in vivo needs further 

investigation. 

We demonstrated that following needle inoculation of a high dose of L. major in the 

ear dermis, neutrophils that migrated in the dLNs have a negative effect on DC activation 

three days post infection. During natural transmission of the parasites by the bite of an 

infected sand fly, the initial neutrophilic infiltrate is more massive, localized and sustained 

compared to needle inoculation of the parasite. Thus, the negative effect of neutrophils on DC 

activation might be even stronger following natural sand fly transmission of the parasites 

thereby playing an important role on the establishment and progression of the disease. 

 

 

1.3 The consequences of early neutrophil depletion on disease progression  

 

The role of neutrophils in promoting or suppressing the anti-leishmania response in 

leishmania-susceptible BALB/c mice in vivo was primarily addressed by treating mice with 

neutrophil-depleting antibodies. Depending on the mAb used to deplete neutrophils and the L. 

major strain the outcomes of the studies varied. In 1998, Lima et al. demonstrated that in 

BALB/c mice the depletion of neutrophils using the mAb RB6-8C5 prior to L. major 

inoculation led to increased parasite spreading and footpad swelling compared to non-treated 

littermates [172]. Our lab showed in 2000 that the early and transient depletion of neutrophils 

prior to injection of L. major LV39 resulted in the development of significantly decreased 

lesions compared to non-depleted littermates. Furthermore, neutrophil-depleted mice had 

lower parasite loads and developed decreased Th2 immune responses [161]. Then, the group 

of Dos Reis found in 2004 that neutrophil-depleted mice (mAb RB6-8C5) had decreased 
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parasite loads in the dLN 10 days post inoculation of L. major LV39 [168]. Using the RB6 

neutrophil-depleting mAb, Chen et al. showed in 2005 that depletion of neutrophils prior to 

inoculation of L. major (MHOM/SU/73/5ASKH) resulted in the development of larger 

lesions that harbored more parasites [173]. Thus, different studies have addressed the role of 

neutrophils upon L. major infection in BALB/c mice and found different results depending on 

the L. major strain used to infect mice and the mAb administered to deplete neutrophils. 

However, all of the above mentioned studies used s.c. inoculations of the parasites in the 

footpads. The impact of neutrophils on the anti-leishmania response following intra dermal 

needle injection of L. major in the ear of BALB/c mice has not been investigated yet.  

We demonstrated that neutrophil-depleted mice developed significantly smaller, non-

progressive lesions compared to control-treated mice. Furthermore, the numbers of parasites 

in infected ears from neutrophil-depleted mice were decreased at the time points analyzed 

(two and six weeks post infection). Depletion of neutrophils significantly decreased Th2 

responses while Th1 responses were not altered. These results are in line with previous data 

obtained in our lab using s.c. inoculation in the footpad [161]. In the former study dLN CD4+ 

T cells of neutrophil-depleted BALB/c mice did not downregulate the expression of the IL-

12R β2-chain and remained responsive to IL-12 signaling unlike those of control-treated 

littermates. Neutralization of IL-12 reversed the protective effect of neutrophil-depletion 

[161]. Since here we observed a similar decrease in Th2 immune responses it is likely that 

CD4+ T cells from BALB/c mice depleted of neutrophils remain responsive to IL-12 

signaling. Having observed a strong negative effect of neutrophils on DCs in terms of 

expression of activation markers and secretion of the Th1-inducing cytokine IL-12p70 and 

TNF in vitro, the increased activation of dLN DCs in vivo could contribute to promoting a 

protective anti-leishmania immune response in BALB/c mice.  

IL-17 was shown to promote progression of cutaneous leishmaniasis in susceptible 

BALB/c mice. Indeed, IL-17-deficient BALB/c mice developed significantly smaller, non-

progressive lesions. Improved disease outcome was associated with an impaired recruitment 

of neutrophils to the site of infection due to a decreased accumulation of CXCL2 in the lesion 

[146]. We could demonstrate that early and transient depletion of neutrophils prior to L. 

major inoculation resulted in significantly increased production of IL-17 by dLN cells two 

weeks post infection. However, when we analyzed IL-17 secretion by dLN cells six weeks 

post L. major inoculation, we found significantly lower levels in anti-PMN-treated mice. In 

addition to the decreased levels of IL-17, the numbers of neutrophils present in the lesions of 

anti-PMN treated mice was significantly reduced six weeks post L. major inoculation 

compared to control-treated littermates (data not shown). One possible explanation for this 

discrepancy in IL-17 production two and six weeks post infection could be that the early 

depletion of neutrophils induced the secretion of Th17-promoting factors such as IL-6, TGFβ 
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or IL-1β resulting in the development of Th17 cells early after parasite inoculation. 

Furthermore it has been suggested that IL-23 production by L. major infected DCs maintains 

Th17 cells [146]. Early after infection in anti-PMN-treated mice a higher number of infected 

DCs and higher IL-17 levels were observed. In contrast, in at later stages we observed 

decreased parasite numbers and lower IL-17 levels. Another report demonstrated that 

following Mycobacteria infection neutrophil-derived IL-10 specifically shut down IL-17 

production by Th17 cells but did not affect IFNγ production by Th1 cells due to the Th17 

CD4 cell-restricted expression of the IL-10R [205].  

Collectively, we could demonstrate here that neutrophils have a negative impact on 

DC activation in vitro as well as in vivo and that they promote progression of cutaneous 

leishmaniasis in susceptible BALB/c mice following needle inoculation of high doses of L. 

major. Following natural transmission of the parasites by the bite of an infected sand fly the 

neutrophilic infiltrate is more massive and sustained compared to needle inoculation of the 

parasites. It has been demonstrated that mice vaccinated with a killed L. major vaccine were 

protected against needle inoculation of the parasites but not against the bite of an infected 

sand fly. Only the sand fly but not the needle challenge resulted in a sustained presence of 

neutrophils at the inoculation site and depletion of neutrophils following sand fly transmission 

of the parasites promoted the efficacy of the killed vaccine [206]. Thus, the deleterious effect 

of neutrophils, especially following the bite of an infected sand fly, should be considered for 

new vaccination strategies. 

 

 

2. The role of neutrophils upon L. major infection in C57BL/6 mice 

 

2.1 The impact of neutrophils on DC activation in vivo 

 

Our lab has previously demonstrated that the early infiltrate of neutrophils to the site 

of L. major inoculation is comparable between C57BL/6 and BALB/c mice. However, only 

neutrophils from C57BL/6 mice secreted significant levels of the DC-attracting chemokine 

CCL3 upon exposure to L. major resulting in the accumulation of LCs, dermal and moDCs at 

the site of parasite inoculation and depletion of neutrophils prior to L. major inoculation 

significantly decreased DC numbers compared to control-treated littermates [159]. When we 

analyzed the numbers of DCs and infected DCs present at the site of infection we did not 

observe any significant differences between control- and anti-PMN-treated mice. However, 

while the previous study analyzed DCs migrating out of the ear dermis ex vivo 24 hours post 

parasite inoculation, enzymatic digestion to recover total DCs from ears three days post L. 
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major infection was used in the present study. Thus different isolation procedures could 

explain the differences observed concerning the impact of neutrophil-depletion on DC 

recruitment. 

A recent report has shown that neutrophil depletion prior to inoculation of L. major 

Friedlin in the ear dermis induced increased expression of activation markers on dermal DCs 

[160]. However, we did not observe any detectable differences in the expression of the 

activation markers CD80, CD86, CD40 and MHC II on total CD11c+ DCs recovered from 

ears of control- or anti-PMN-treated C57BL/6 mice three days post L. major LV39 

inoculation,. Factors that might account for the different results are the use of different L. 

major strains, different inoculum doses and the use of distinct neutrophil-depleting mAbs. 

Our results suggest that neutrophils have no detectable impact on the activation of DCs 

present at the site of infection three days post L. major LV39 inoculation. 

We found similar numbers of neutrophils migrating to the dLNs of BALB/c and 

C57BL/6 mice following L. major inoculation in the ear dermis. However, depletion of 

neutrophils in C57BL/6 mice had no major impact on the expression of activation markers on 

dLN DCs. Furthermore we did not see any differences in the numbers of infected DCs in the 

dLNs of control- or anti-PMN-treated C57BL/6 mice while neutrophil-depletion in BALB/c 

mice resulted in higher numbers of infected DCs in the dLNs compared to control-treated 

littermates. Thus, the differential sequestration of parasites by neutrophils from C57BL/6 and 

BALB/c mice could account for the different outcomes on DC activation. Furthermore L. 

major induces distinct phenotypes in C57BL/6 or BALB/c neutrophils. Only neutrophils from 

C57BL/6 mice secrete IL-10 and biologically active IL-12 while those from BALB/c mice 

secrete IL-12p40 homodimers and TGF-β [166, 169]. In addition, the expression of levels of 

TLR2, TLR7 and TLR9 as well as secretion of elastase in response to L. major in vitro was 

significantly higher in neutrophils from C57BL/6 mice [166, 167]. Other neutrophil-derived 

factors that have been shown to negatively influence DC activation are prostanoids and MPO 

[76, 207]. Whether these factors are involved in hampering DC activation in response to L. 

major infection in vivo and whether their expression is differentially regulated by neutrophils 

from C57BL/6 or BALB/c mice still needs to be investigated. In summary, in the present 

study the depletion of neutrophils in C57BL/6 mice had no detectable impact on the 

activation of DCs both at the site of infection and in the dLN following L. major inoculation. 

This may be linked to the distinct   neutrophil phenotypes observed in L. major exposed in 

C57BL/6 and BALB/c neutrophils. 
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2.2 The consequences of early neutrophil depletion on disease progression  

 

Several reports have demonstrated that in C57BL/6 mice depletion of neutrophils 

prior to inoculation of L. major s.c. in the footpads led to increased parasites loads in the 

dLNs at early stages of infection (from 6 hours to 29 days post infection) [161, 168, 172]. 

However, following natural infection involving L. major transmission by the bite of infected 

sand flies, parasite loads were substantially reduced at the site of infection at one and four 

weeks post parasite transmission in anti-PMN treated C57BL/6 mice [158]. Previous studies 

from our lab have shown that early and transient depletion of neutrophils prior to infection of 

L. major in the footpad led to a transient increase in lesion growth. Yet, neutrophil-depleted 

C57BL/6 eventually controlled lesion growth and parasite replication as efficiently as control-

treated littermates [161]. The role of neutrophils on disease progression following needle 

inoculation of high dose of L. major in the ear pinna has not been investigated yet. We could 

demonstrate that depletion of neutrophils had no major influence on lesion development and 

parasite loads in infected ears following L. major inoculation. Furthermore depletion of 

neutrophils did not affect the production of IFNγ, IL-4, IL-17 and IL-10 two weeks post 

infection. At six weeks post parasite inoculation IL-4 levels were reduced in anti-PMN-

treated C57BL/6 mice. However, both control- and anti-PMN-treated mice developed a 

dominant Th1 immune response and secreted IL-4 levels were very low. Consequently, the 

decreased IL-4 levels in anti-PMN-treated mice did not further improve disease outcome. 

Thus, the impact of neutrophils on the anti-leishmania response in C57BL/6 mice depends on 

the site and route of infection and the L. major parasite strain.  

Besides the differences in phenotypes of neutrophils from C57BL/6 and BALB/c 

mice exposed to L. major, their crosstalk with other cells also varies. In this line, the 

engulfment of apoptotic neutrophils by macrophages led to parasite killing using cells derived 

from C57BL/6 mice. In contrast, co-cultures of apoptotic neutrophils and macrophages from 

BALB/c mice resulted in exacerbated parasite growth and the production of PGE2 and TGFβ 

[167, 168]. Thus, different effects of L. major on neutrophils from C57BL/6 and BALB/c 

mice and consequently the influence of neutrophils on other cells such as macrophages and 

DCs might account for the distinct roles of neutrophils on disease progression in C57BL/6 

and BALB/c mice. 

In summary, we have demonstrated that neutrophils have a negative impact on DC 

activation both in vitro and in vivo and play a deleterious role during infections with L. major 

in susceptible BALB/c mice. These results suggest that L. major parasites exploit neutrophils 

to impair the innate response of DCs and macrophages in order to delay the onset of the 

adaptive immune response Taking into consideration that the neutrophilic infiltrate is more 
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massive and sustained following natural transmission of L. major by the bite of an infected 

sand fly, the harmful role of neutrophils could be even more enhanced upon natural 

transmission. In this line it has been demonstrated that a killed Leishmania vaccine promoted 

protection against needle inoculation of L. major parasites but failed to protect against 

infected sand fly challenge. This failure in protection was linked to a sustained presence of 

neutrophils at the site of infection following the bite of an infected sand fly and depletion of 

neutrophils following vector transmission promoted the efficacy of the killed vaccine and 

protected mice against the sand fly challenge [206]. Thus, the impact of neutrophils on the 

anti-leishmania response should be considered for the development of new therapeutic 

approaches as well as for the design of new vaccination strategies. , 
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Perspectives 
 

 

We have demonstrated that neutrophils have a negative impact on DC activation both 

in vitro and in vivo in BALB/c mice following L. major infection. Furthermore we have 

shown that the early neutrophilic infiltrate following L. major inoculation is detrimental in 

BALB/c mice while its role in C57BL/6 mice appears to be less important. However, there 

are still open questions that need further investigation: 

 

 

1. Do neutrophils exposed to L. major secrete prostanoids and are there differences 

between neutrophils from C57BL/6 and BALB/c mice? 

 

Our studies have demonstrated that neutrophils from C57BL/6 and BALB/c mice 

have a different impact on DC activation. Moreover, neutrophil-derived prostanoids are 

involved in the downregulation of DC activation in vitro. However, which prostanoids are 

secreted by neutrophils in response to L. major and if there are differences between 

neutrophils from C57BL/6 and BALB/c mice is not known. To test this neutrophils from 

C57BL/6 or BALB/c mice could be incubated with L. major parasites and the secretion of 

different prostanoids such PGE2, PGF2, PGD2 and thromboxane A analyzed in the culture 

supernatants by ELISA. These results would allow us to further define the mechanisms by 

which neutrophils downregulate DC activation and could explain, at least in part, the 

differences observed in C57BL/6 and BALB/c mice. 

 

 

2. How do neutrophils downregulate DC activation in vitro 

 

Depending on the results obtained from the phenotypical characterization of 

neutrophils we will use specific prostanoid-inhibitors to analyze the contribution of distinct 

prostanoids on DC activation. Furthermore it has been demonstrated that the addition of PGE2 

to DCs induced IL-10 secretion that suppresses IL-12 release and decreases MHC II 

expression on DCs. Thus the impact of IL-10 on the decreased DC activation in the co-culture 

system could be analyzed. 

In addition to the release of soluble factors, neutrophils can also affect DC activation 

by cell-contact dependent mechanisms. In order to test if direct cell contact is involved in the 

negative impact of neutrophils on DC activation, transwell assays in which neutrophils are 
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separated from DCs by a membrane that allows the trafficking of soluble mediators but 

inhibits direct cell contact could be used. Depending on the results further use of mAbs 

blocking specific molecules such as DC SIGN or Mac-1 on neutrophils could be used to 

identify the surface molecules that could influence DC activation by a cell contact dependent 

mechanism. 

So far we have used CD8α+ Mutu DCs and starch-elicited, inflammatory neutrophils 

in our in vitro co-cultures. It will be interesting to analyze the impact of neutrophils on 

different ex vivo FACS-sorted DC subsets. 

 

 

3. Do mechanisms found in vitro also translate to studies in vivo? 

 

Experiments performed in vitro will provide mechanisms indicating how neutrophils 

can downregulate DC activation. As a next step we will expand these findings to studies in 

vivo. Depending on the results obtained in vitro mice will be treated with specific 

pharmaceutical inhibitors or mAbs to block soluble factors or surface molecules and analyze 

DC activation both at the site of infection and in the dLN following L. major inoculation. To 

analyze if such factors are neutrophil-specific, we could deplete mice of neutrophils and 

reinject in the same mice neutrophils that have been treated with specific inhibitors or that are 

deficient for the production of certain factors. Mice treated this way could be compared to 

neutrophil-depleted mice reinjected with untreated wild type neutrophils in terms of 

expression of activation markers on DCs.  

Furthermore selected DC subsets from mice depleted or not of neutrophils could be 

analyzed for their expression of activation markers. 

 

 

4. Does the enhanced DC activation observed in neutrophil depleted BALB/c mice lead 

to increased T cell proliferation and function? 

 

 We have demonstrated that in BALB/c mice depletion of neutrophils led to increased 

expression of activation markers on DCs in the dLN. In order to investigate whether this 

increased DC activation has an impact on T cell proliferation and function, DCs from control- 

and anti-PMN-treated BALB/c mice isolated from the dLN three days post L. major 

inoculation by FACS will be incubated with purified CFSE-labeled CD4+ T cells from three 

weeks L. major infected mice for five days. As read out of T cell function T cell proliferation 

in terms of CFSE dilution will be analyzed and the cytokine content in the supernatants 

measured. 
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5. What is the impact of neutrophils during L. major infection in neutropenic mice 

 

Due to the lack of good neutropenic mouse models, the role of neutrophils on the 

anti-leishmania response has been mainly studied using neutrophil-depleting mAbs. However, 

each of the currently used mAbs has certain disadvantages and even more importantly, 

neutrophils can be depleted only transiently for a short period of time. Depending on the mAb 

used to deplete neutrophils, the outcome of different studies varied. Recently, a new 

neutropenic mouse strain termed Genista on the leishmania-resistant C57BL/6 genetic 

background has been generated. It will be interesting to use those mice to study the role of 

neutrophils during infections with L. major in the absence of possible side effects caused by 

the injection of different mAbs. Results obtained using Genista mice could solve some of the 

discrepancies on the role of neutrophils following L. major infection between distinct reports 

that had used different mAbs to deplete neutrophils. 

 Since we have demonstrated that while in C57BL/6 the early neutrophilic infiltrate 

seems to be less important, it is harmful in BALB/c mice following L. major inoculation. 

Thus it would be interesting to backcross Genista mice on the Leishmania-susceptible 

BALB/c background and analyze the anti-Leishmania response in those mice in the absence 

of mature neutrophils.  

 

Data from all these experiments could provide insight in the mechanisms how 

neutrophils can affect DC activation in the context of L. major infection and might be 

important for the development of new potential therapies and vaccines against Leishmania. 

 

 



	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Other contributions 
	
  

	
   91	
  

Other contributions 
 

 

1. Deficiency in TREM-1 attenuates disease severity without affecting pathogen 

clearance 

 

TREM-1 is an immune receptor expressed by myeloid cells such as neutrophils that 

has the capability to greatly amplify proinflammatory responses. The role of TREM-1 in vivo 

has been mainly studied by injecting agonistic or antagonistic proteins or peptides. However, 

interactions of these agents with the yet unknown TREM-1 ligand could also effect signaling 

through other receptors and controversial results have been obtained concerning the 

involvement of TREM-1 for microbial control. In order to explicitly study the role of TREM-

1 during homeostasis and disease, we have generated Trem-1 deficient mice.  

 

Trem-1-/- mice were viable, fertile and showed no alterations in the hematopoietic 

compartment. Following experimentally-induced intestinal inflammation or challenge with L. 

major, influenza virus or L. pneumophilia, Trem-1-/- mice showed substantially reduced 

immune-associated disease while still being able to control infections. These results suggest a 

pathogenic role for TREM-1 during parasitic as well as viral infections. Thus, therapeutic 

blocking of TREM-1 might be beneficial in various inflammatory disorders by hampering 

excessive inflammation while preserving the capacity for microbial control. 

 

My contribution to this study was to investigate the role of Trem-1 in infections with 

L. major. I performed and analyzed experiments for Figure 6 and contributed to the Figure 

design. 
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Abstract  

Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of 

pro-inflammatory innate immune reactions. While TREM-1-amplified responses 

likely aid an improved detection and elimination of pathogens, excessive production 

of cytokines and oxygen radicals can also severely harm the host. Studies addressing 

the pathogenic role of TREM-1 during endotoxin-induced shock or microbial sepsis 

have so far mostly relied on the administration of TREM-1 fusion proteins or peptides 

representing part of the extracellular domain of TREM-1. However, binding of these 

agents to the yet unidentified TREM-1 ligand could also impact signaling through 

alternative receptors. More importantly, controversial results have been obtained 

regarding the requirement of TREM-1 for microbial control. To unambiguously 

investigate the role of TREM-1 in homeostasis and disease, we have generated mice 

deficient in Trem1. Trem1-/- mice are viable, fertile and show no altered hematopoietic 

compartment. In CD4+ T cell- and dextran sodium sulfate-induced models of colitis, 

Trem1-/- mice displayed significantly attenuated disease that was associated with 

reduced inflammatory infiltrates and diminished expression of pro-inflammatory 

cytokines. Trem1-/- mice also exhibited reduced neutrophilic infiltration and decreased 

lesion size upon infection with Leishmania major. Furthermore, reduced morbidity 

was observed for influenza virus-infected Trem1-/- mice. Importantly, while immune-

associated pathologies were significantly reduced, Trem1-/- mice were equally capable 

of controlling infections with L. major, influenza virus, but also Legionella 

pneumophila as Trem1+/+ controls. Our results not only demonstrate an unanticipated 

pathogenic impact of TREM-1 during a viral and parasitic infection, but also indicate 

that therapeutic blocking of TREM-1 in various inflammatory disorders holds 

considerable promise by blunting excessive inflammation while preserving the 

capacity for microbial control. 
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Author Summary 
Triggering receptor expressed on myeloid cells-1 (TREM-1) is an immune receptor 

expressed by myeloid cell subsets that has the capacity to greatly augment pro-

inflammatory responses in the context of a microbial infection. While a TREM-1-

amplified response likely serves the efficient clearance of pathogens, it also bears the 

potential to cause substantial tissue damage or even death. Hence, TREM-1 appears a 

possible therapeutic target for tempering deleterious host-pathogen interactions. 

However, in models of bacterial sepsis controversial findings have been obtained 

regarding the requirement of TREM-1 for bacterial control - depending on the overall 

degree of the TREM-1 blockade that was achieved. In order to conclusively 

investigate harmful versus essential functions of TREM-1 in vivo, we have generated 

mice deficient in Trem1. Trem1-/- mice were subjected to experimentally-induced 

intestinal inflammation (as a model of a non-infectious, yet microbial-driven disease) 

and also analysed following infections with Leishmania major, influenza virus and 

Legionella pneumophila. Across all models analysed, Trem1-/- mice showed 

substantially reduced immune-associated disease. We thus describe a previously 

unanticipated pathogenic role for TREM-1 also during a parasitic and viral infection. 

More importantly, our data suggest that effective microbial control can be achieved in 

the context of blunted inflammation in the absence of TREM-1. 
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Introduction 
Innate immune cells express several cell surface receptors and intracellular sensing 

molecules that allow for autonomous recognition of pathogen- and danger-associated 

molecular patterns (PAMPs and DAMPs) and initiation of pro-inflammatory anti-

microbial reponses. Toll-like receptors (TLR) and nucleotide-binding oligomerization 

domain (NOD)-like receptors, which recognize a diverse group of highly conserved 

microbial structures, represent only two examples of large innate immune receptors 

families with activating functions. Over the last decade, an additional family of 

evolutionary conserved innate immune receptor has been identified and characterized, 

the so-called triggering receptors expressed on myeloid cells (TREMs). TREMs 

belong to the immunoglobulin (Ig) superfamily of receptors and contain both 

inhibitory and activating receptors [1,2,3]. In contrast to the fairly ubiquitously 

expressed TLRs and NOD-like receptors, expression of TREMs is restricted to cells 

of the myeloid lineage [4]. Moreover, based on their capacity to integrate and potently 

modulate TLR- and NOD-induced signals, TREMs appear to mainly act as fine-tuners 

rather than initiators of inflammatory responses [3,5]. While TREM-1, TREM-2, 

TREM-3 (in the mouse) receptors [4,6], and the TREM-1 like transcripts TLT-1 and 

TLT-2 have been described [7,8], TREM-1 is the first identified and best 

characterized receptor of the TREM family with activating functions. TREM-1 

consists of an ectodomain, composed of a single Ig V-type domain, a transmembrane 

region and a short cytoplasmic tail that recruits DAP12 for signaling [4]. TREM-1 is 

constitutively expressed on neutrophils and on subsets of monocytes and 

macrophages, and TREM-1 expression is further upregulated upon exposure of cells 

to microbial products [4]. Whereas crosslinking of TREM-1 with agonistic antibodies 

alone induces only modest cellular activation, TREM-1 potently synergizes with 

distinct TLR ligands for a substantial amplification of oxidative burst and production 

of pro-inflammatory mediators such as TNF, IL-1!, IL-6, IL-8, MCP-1 and Mip-1" 

[4,9,10].  

In vivo, the role of TREM-1 has been mostly characterized in experimental models of 

endotoxin-induced shock or microbial sepsis where blockade of TREM-1 signaling 

conferred significant protection [9,11,12]. The detection of TREM-1 in inflammatory 

lesions caused by bacterial or fungal agents, but not in psoriasis or immune-mediated 

vasculitis [9], has further led to the general concept that TREM-1 is primarily 
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involved in microbial diseases, particularly, since elevated levels of the serum soluble 

form of the shed TREM-1 surface receptor (sTREM-1) also appear to associate with 

bacterial infections in patients with pneumonia or suspected sepsis [13,14]. 

However, increasing evidence is now emerging that TREM-1 may additionally play a 

role in non-infectious inflammatory conditions. Thus, expression of TREM-1 can also 

be induced by the non-microbial agent monosodium urate monohydrate crystals 

(MSU) or by hypoxic cell culture conditions in vitro [15,16]. Augmented sTREM-1 

levels have been reported for patients with rheumatoid arthritis, acute pancreatitis, 

chronic obstructive pulmonary disease and cardiac arrest [17,18,19,20]. Furthermore, 

we have previously described an involvement of TREM-1 in human inflammatory 

bowel diseases (IBD) and in models of experimental colitis [21,22,23]. 

Investigations on the precise function of TREM-1 in distinct diseases have so far been 

complicated by the still unidentified ligand(s) for TREM-1. Putative ligands for 

TREM-1 have been described on the surface of human platelets and on murine 

granulocytes during experimental peritonitis and endotoxaemia [12,24,25]. In 

addition, necrotic cell lysates also appear to stimulate pro-inflammatory responses in 

a TREM-1-dependent manner, which may relate to association of TREM-1 with the 

High Mobility Group Box 1 (HMGB1) protein [26,27]. Hence, it can be speculated 

that not only PAMPs but also DAMPs induce signaling via TREM-1 and that several 

ligands for TREM-1 may exist.  

In the absence of clearly defined ligands for TREM-1, studies addressing the impact 

of TREM-1 in disease have so far mostly relied on the use of TREM-1/Ig fusion 

proteins or synthetic peptides mimicking part of the extracellular domain of TREM-1. 

Although by the use of these agents substantial protection from endotoxin-induced 

shock, microbial sepsis or experimental colitis could be conferred [9,11,12,22], 

several aspects regarding the true biological role of TREM-1 remain unclear. First, 

considering the redundancy of innate immune receptor-ligand interactions, the 

possibility exists that in these previous studies not only signaling through TREM-1 

but through additional, potentially more relevant receptors was prevented. Second, 

controversial findings have been obtained with respect to the impact of impaired 

TREM-1 signaling on microbial control [9,28,29,30].  

In order to unambigously investigate the role of TREM-1 in homeostasis and disease, 

we have generated a TREM-1-deficient (Trem1-/-) mouse by targeted deletion of exon 

2. Here we show, employing distinct inflammation and infection models ranging from 
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experimental colitis to infections with Leishmania major, influenza virus and 

Legionella pneumophila, that complete absence of TREM-1 significantly attenuates 

morbidity and immune-mediated pathologies while microbial control remains 

unimpaired. These findings not only demonstrate an unanticipated clear role for 

TREM-1 in chronic inflammatory disorders, parasitic and viral infections, but also 

illustrate the potential for a novel therapeutic intervention in various disease settings. 

 

Results 
Deletion of Trem1 has no apparent impact under homeostatic conditions 

To account for potential embryonically lethal effects of a total deletion of the Trem1 

gene and leave open the possibility for a cell-specific ablation of TREM-1 expression, 

a targeting vector was designed for conditional deletion of exon 2 (Fig. S1). Exon 2 

encodes the extracellular domain of TREM-1 and also contains the putative ligand 

binding site [31]. Breeding of Trem1+/flox chimeric offspring mice with deleter mice 

that expressed Cre ubiquitously yielded viable Trem1+/- x Cre+/- offspring. Moreover, 

interbreeding of Trem1+/- mice gave rise to Trem1-/- mice at the expected Mendelian 

frequencies, and Trem1-/- mice were equal in size, weight and fertility to littermate 

Trem1+/+ controls. We thus continued to characterize these Trem1-/- mice with a 

ubiquitously deleted Trem1 gene by elementary flow cytometry analyses. Deletion of 

Trem1 indeed resulted in a gene-dose-dependent loss of TREM-1 surface expression 

by peripheral blood neutrophils and Ly6Clo monocytes (Fig. 1). Accordingly, TREM-

1 was still expressed at ~2-fold reduced levels in Trem1+/- mice, while surface 

TREM-1 expression was absent on myeloid cells in Trem1-/- mice (Fig. 1). Absence 

of Trem1 did not appear to affect the composition of various immune compartments, 

since almost identical numbers of distinct myeloid and lymphoid cell subsets could be 

retrieved from the peripheral blood, bone marrow (BM) and spleen of Trem1-/- mice 

compared to age- and sex-matched Trem1+/+ controls (Fig. S2). However, to formally 

exclude a potential effect of TREM-1 on hematopoiesis, the BM of Trem1-/- and 

Trem1+/+ mice was analysed in more depth with respect to hematopoietic stem cell 

and myeloid progenitor numbers following lineage depletion and depletion of 

lymphoid progenitors (Fig. 2). Stem cell-enriched cells were identified by their 

lineage- (lin-) Sca-1+ c-kithi phenotype (LSK cells) while common myeloid 

progenitors (CMP), granulocyte/macrophage progenitors (GMP) and 
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megakaryocyte/erythrocyte precursors (MEP) were discriminated within the Sca-1- c-

kithi population according to their differential expression of Fc!R and CD34, 

respectively (Fig. 2a). Compared to Trem1+/+ mice, Trem1-/- mice exhibited equal 

numbers of LSK cells, CMP, GMP and MEP (Fig. 2b). Moreover, similar numbers of 

colony forming units could be observed in lineage-depleted (lin-) BM cells isolated 

from Trem1-/- mice (Fig. 2b). Although these analyses indicated again that TREM-1 

was unlikely to play a substantial role in hematopoietic processes, we were intrigued 

by the selective expression of surface TREM-1 by GMP, but not by CMP (Fig. 2a). 

As a final measure, we therefore established mixed bone marrow chimeras with either 

Trem1-/- (x GFP-/-) and Trem1+/+ x GFP+/+ BM cells or, as a control, Trem1+/+ (x 

GFP-/-) and Trem1+/+ x GFP+/+ BM cells. Analysis of chimeric mice at 10 and 31 

weeks post reconstitution and calculation of the respective ratios of GFP- to GFP+ 

peripheral blood neutrophil, Ly6Chi or Ly6Clo monocyte numbers, respectively, 

demonstrated an equal capacity of Trem1-/- BM to give rise to distinct myeloid subsets 

as Trem1+/+ BM. Thus, while the potential role of TREM-1 expression by GMP still 

remains to be explored, deficiency in Trem1 does not appear to affect hematopoietic 

processes under homeostatic conditions. 

We next addressed whether absence of Trem1 could affect other receptors that use 

DAP12 for signaling, either by the potential presence of increased levels of 

intracellularly available DAP12 or by the lack of counterregulatory signals conferred 

by TREM-1. Indeed, the hyperresponsive phenotype of DAP12-deficient 

macrophages is largely ascribed to a lack of inhibitory signals by TREM-2 which also 

employs DAP12 [32]. Due to the important role of TREM-2 in osteoclast formation 

and function [33,34], we reasoned that lack of TREM-1 expression in Trem1-/- mice 

could possibly manifest in altered osteoclastogenesis. However, as determined by 

Xray and MicroCT analyses, no differences in bone density could be detected 

between Trem1-/- mice and their age- and sex-matched Trem1+/+ controls (Fig. S3). 

Taken together, these analyses revealed no apparent phenotype of Trem1-/- mice under 

homeostatic conditions. 

 

Trem1-/- x Rag2-/- mice are largely protected from a CD4 T cell-induced colitis 

We have previously demonstrated a substantial accumulation of TREM-1 expressing 

macrophages in the inflamed, but not uninflamed, intestinal mucosa of patients with 
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IBD and of mice with experimental colitis [22,23]. Hence, one of our major interests 

in the characterization of the Trem1-/- mouse was to unambigously investigate the role 

of Trem1 in the pathogenesis of IBD. To this end, CD4+ CD25- CD45RBhi T cells 

were adoptively transferred into Helicobacter-positive Trem1+/+ x Rag2-/- and Trem1-/- 

x Rag2-/- recipient mice and mice were monitored regularly for clinical signs of 

colitis. Compared to Trem1+/+ x Rag2-/- mice, which had lost ~20% of their initial 

body weight at the end of the observation period, weight loss in Trem1-/- x Rag2-/- 

mice was minimal and only transient (Fig. 3a). Furthermore, shortening of the colon 

was substantially attenuated in Trem1-/- x Rag2-/- mice (Fig. 3a). While some of the 

Trem1-/- x Rag2-/- mice still exhibited moderate histopathological signs of intestinal 

inflammation, the overall histopathological score was significantly reduced (Fig. 3b).  

In order to gain insight in the potential underlying mechanism of the highly attenuated 

colitis in Trem1-/- x Rag2-/- mice, colonic lamina propria cells that were isolated from 

both groups of mice in the absence of an adoptive CD4+ T cell transfer (healthy 

colon) or 12-13 days post colitis induction were analysed by FACS. As depicted in 

the representative FACS plots shown in Fig. 4a, the colonic lamina propria of healthy 

Trem1+/+ x Rag2+/+ mice and Trem1-/- x Rag2-/- mice contained a similar proportion of 

CD11b+ MHCIIhi cells and Gr1+ cells were virtually absent. In contrast, Gr1+ cells, 

representing infiltrating Ly6Chi Gr1int monocytes and Ly6Cint Gr1hi neutrophils, were 

readily detected in Trem1+/+ x Rag2+/+ mice and Trem1-/- x Rag2-/- mice at 12-13 days 

post colitis induction (Fig. 4a). Notably, the relative frequency of Gr1+ cells among 

CD45+ CD11b+ colonic LP cells was ~5-fold lower in Trem1-/- x Rag2-/- mice (Fig. 

4a). In further contrast to the colonic LP of healthy mice, among LP MHCII+ Gr1- 

cells of colitic mice two populations of MHCIIhi Ly6Clo and MHCIIint Ly6Chi cells 

could be discriminated, likely representing intestinal macrophages and monocytes in 

the process of differentiation (Fig. 4a) [35,36]. Also within this gate of MHCII+ Gr1- 

cells, substantial differences could be detected between the two groups of mice. 

Accordingly, the relative frequency of MHCIIint Ly6Chi cells was increased in colitic 

Trem1+/+ x Rag2-/- mice whereas Trem1-/- x Rag2-/- mice exhibited a larger proportion 

of MHCIIhi Ly6Clo macrophages (Fig. 4a). 

When colonic LP cells of n=9 mice of both groups were systematically analysed at 

12-13 days post colitis induction, substantially reduced numbers of various cell 

subsets could be seen in Trem1-/- x Rag2-/- mice (Fig. 4b). Thus, Trem1-/- x Rag2-/- 

mice not only exhibited reduced infiltrating CD4+ T cells but also significantly 
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decreased numbers of neutrophils, Ly6Chi monocytes and MHCIIint Ly6Chi cells (Fig. 

4b). These differences were not apparent for the colonic LP of healthy Trem1+/+ x 

Rag2-/- and Trem1-/- x Rag2-/- mice which mainly contained MHCIIhi Ly6Clo cells 

anyway (Fig. 4a and 4c). 

To gain more insight which myeloid TREM-1-expressing cell subset could potentially 

be involved in driving intestinal inflammation in Trem1+/+ x Rag2-/- mice, TREM-1 

surface expression was analysed on colonic LP neutrophils, Ly6Chi monocytes as well 

as CD11b+ Ly6C+ Gr1- and CD11b+ Ly6C- Gr1- cells. As reported previously [23,37], 

in the healthy colonic LP TREM-1 expression was hardly detectable owing to the 

absence of infiltrating neutrophils and Ly6C+ cells (Fig. 4a and 4d). In colitic 

Trem1+/+ x Rag2-/- mice, TREM-1 expression was observed on neutrophils, Ly6Chi 

monocytes and CD11b+ Ly6C+ Gr1- cells (Fig. 4d). Moreover, CD11b+ Ly6C- Gr1- 

cells, likely representing intestinal macrophages, that were isolated from colitic 

Trem1+/+ x Rag2-/- mice exhibited a ~3-fold upregulated expression of surface TREM-

1 (Fig. 4d).  

In line with the reduced infiltrating cell numbers, expression of mRNA for several 

innate and adaptive pro-inflammatory chemokine and cytokine was significantly 

decreased in the lamina propria of Trem1-/- x Rag2-/- compared to Trem1-/- x Rag2-/- 

mice (Fig. 4e). 

 

Trem1-/- mice display an attenuated form of an acute T cell independent dextran 

sodium sulfate (DSS)-induced colitis 

TNF! produced by nonlymphoid cells plays a non-redundant role in the CD4+ T cell 

transfer modell of colitis as Tnf-/- x Rag2-/- mice are completely protected from colitis 

induction [38]. However, in experimental models of acute intestinal inflammation 

such as the T cell-independent DSS-induced colitis, Tnf-/- mice exhibit aggrevated 

disease [39,40], presumably, because early anti-microbial responses are 

fundamentally impaired. Due to the central function of TREM-1 in amplifying pro-

inflammatory cytokine production and oxidative burst, we hypothesized that during 

acute intestinal inflammation complete absence of Trem1 could also prove 

detrimental. Intriguingly, although upon administration of 3% DSS Trem1-/- mice 

initially lost weight to a similar extent as Trem1+/+ mice, weight loss was 

considerably attenuated at 7 days post colitis induction and at 9 days Trem1-/- mice 
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had already improved again (Fig. 5a). Moreover, in Trem1-/- mice shortening of the 

colon was markedly attenuated and histopathological colitis scores were significantly 

decreased (Fig. 5b). Thus, while exhibiting reduced immune-mediated pathologies, 

Trem1-/- mice still appeared capable of dealing with the microbial translocation that 

ensues following DSS-induced breaching of the intestinal epithelial barrier. 

 

Infection with Leishmania major leads to smaller inflammatory lesions with 

decreased neutrophilic cellular infiltrates in Trem1-/- mice 

The observations made in the acute DSS model of colitis raised our interest whether 

Trem1-/- mice would also be able to control bona fide microbial infections, in 

particular, since maximal silencing of TREM-1 by a siRNA approach had proven 

deleterious in a fecal peritonitis model [29]. Since the rapid kinetics of this model 

hardly allowed to simultaneously look at beneficial effects of the Trem1 deficiency on 

immune-mediated tissue damage or to assess potential adverse consequences for the 

priming of adaptive immune responses, we chose the Leishmania major infection 

model. Following infection with L. major, C57BL/6 mice develop local cutaneous 

lesions that spontaneously resolve within 4-8 weeks. Central to the resolution is the 

TNF!-mediated control of the early inflammatory response or the clearance of 

neutrophils, respectively, and the later IFN"-mediated and Th1-driven elimination of 

the parasite by the infected macrophages [41,42].  

Upon injection of 3x106 L. major promastigotes s.c. in the footpad of Trem1+/+ and 

Trem1-/- mice, an attenuation in lesion development was apparent in Trem1-/- mice 

already at 14 days post infection. From thereof, Trem1-/- mice showed a significantly 

decreased lesion size (Fig. 6a). Notably, however, parasite counts did not differ 

between Trem1-/- and Trem1+/+ mice (Fig. 6b). We further analysed the cellular 

composition of infected footpads from Trem1-/- and Trem1+/+ mice at 21 days post 

infection. While the overall cell counts were comparable, the cellular infiltrate in 

Trem1-/- mice exhibited ~ 3-fold reduced neutrophil numbers (Fig. 6c). To look at the 

potential impact of the Trem1-deficiency on the priming of Th1 responses, expression 

of IFN" was analysed in cells isolated from the draining lymph node. The frequency 

of IFN"-secreting CD4+ T cells was similar in Trem1-/- and Trem1+/+ mice (Fig. 6d). 

In addition, comparable levels of IFN" were detected in cells of both groups of mice 

upon re-stimulation in vitro with the parasite (Fig. 6d). These data are in line with the 
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the comparable parasite killing that was observed for Trem1-/- and Trem1+/+ mice. 

Thus, in the L. major infection model, absence of Trem1 does not appear to have 

adverse consequences on the priming of adaptive immune responses and on parasite 

control while neutrophil-mediated inflammatory lesion development is substantially 

reduced.  

 
Stimulation via TREM-1 induces TNF secretion and resistance to apoptosis in 

SCF-condHoxb8 progenitor-derived neutrophils 
The reduced neutrophil numbers at L. major-infected sites and the decreased lesion 

size in Trem1-/- mice agree with the notion that neutrophils play a central role in 

inflammatory lesion development. Indeed, the presence of non-healing lesions in L. 

major susceptible BALB/c strains is associated with elevated numbers of neutrophils 

[43]. Since neutrophils constitutively express high levels of TREM-1 (Fig. 1b, 4d), we 

aimed to investigate the consequences of TREM-1-mediated stimulation on their 

functional responses in more detail. Analysis of mouse neutrophils has so far been 

complicated by the limited numbers of cells that can be retrieved, their short life span 

and their distinct differentiation stages. Hence, we made use of a recently described 

system by which neutrophils can be differentiated ex vivo in large numbers using 

conditional Hoxb8 [44]. Using a slightly modified protocol, BM-derived  progenitors 

were lentivirally transduced with conditional Hoxb8 in the presence of SCF, resulting 

in immortalized myeloid progenitor lines, termed SCF-condHoxb8. Upon shutdown of 

Hoxb8 expression by withdrawal of 4-OHT cells differentiate into mature neutrophils 

in the presence of SCF. As shown in Figure 7a and 7b, withdrawal of 4-OHT in fact 

induced the appearance of cells bearing the characteristic phenotype of mouse 

neutrophils after in vitro differentiation for 5 days. Moreover, Trem1+/+ SCF-
condHoxb8-derived mature neutrophils also expressed distinct levels of surface TREM-

1 (Fig. 7b). TREM-1-mediated stimulation of Trem1+/+, but not of Trem1-/-, SCF-
condHoxb8-derived mature neutrophils resulted in pronounced expression of TNF and 

iNOS (Fig. 7c and 7d). Since neutrophil survival versus apoptosis could represent a 

deciding factor in the control of inflammation not only in the  L. major infection 

model but also in the pathogenesis of experimental colitis [45], we compared the 

susceptibility of Trem1+/+ and Trem1-/- neutrophils to spontaneous apoptosis. 

Following prolonged culture of fully differentiated SCF-condHoxb8-derived 
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neutrophils in vitro, an increasing and comparable frequency of AnnexinV+DAPI+ 

cells was detected for Trem1+/+ and Trem1-/- neutrophils (Fig. 7e). However, in the 

presence of additional TREM-1-mediated stimulation by an agonistic antibody, a 

reduced apoptosis rate as based on diminished Caspase 3/7 activity could be observed 

for Trem1+/+ neutrophils (Fig. 7f). Thus, TREM-1-mediated activation of mouse 

neutrophil appears to significantly contribute to survival. 

 

Influenza virus-infected Trem1-/- mice exhibit reduced morbidity but an equal 

capacity for viral clearance 

Intrigued by the substantially diminished inflammatory lesions, yet intact parasite 

clearance in L. major-infected Trem1-/- mice, we aimed to substantiate these findings 

in an altogether different infection model. Since high expression of TREM-1 by 

alveolar macrophages and previously published data [28,30,46,47] suggest a potential 

role for TREM-1 in lung inflammatory responses, we infected Trem1+/+ and Trem1-/- 

mice intratracheally with 50 PFU influenza A virus PR8. Hypothermia and body 

weight loss, which are characteristically associated with experimental influenza virus 

infection, were observed in Trem1+/+ mice at 7 days post infection (Fig. 8a and 8b). 

While the body temperature also dropped in Trem1-/- mice, a quicker recovery from 

hypothermia was seen in the Trem1-/- group (Fig. 8a). Moreover, weight loss in 

Trem1-/- mice was significantly attenuated and Trem1-/- mice further exhibited reduced 

levels of IL-6 in bronchoalveolar lavage fluid (BALF) at 10 days post infection (Fig. 

8b and 8c). Notably, in spite of the reduced morbidity observed, Trem1-/- mice were 

equally capable of clearing the influenza virus infection as Trem1+/+ controls (Fig. 

8d).  

 

Trem1-/- mice are equally capable of clearing L. pneumophila as Trem1+/+ controls 

After having established that deficiency in TREM-1 attenuates disease but does not 

impair pathogen control during a parasitic and viral infection, respectively, we last 

sought to address the significance of TREM-1 in a bacterial infection model. Indeed, 

controversial results have been obtained with respect to the importance of TREM-1 in 

microbial control following infection of experimental animals with Pseudomonas 

aeruginosa [28,30]. Here, we employed a Legionella pneumophila infection model 

which also causes severe upper airway inflammation in permissive mice and critically 

depends on neutrophil-mediated microbial control. As shown in Figure 9, 3 days after 
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infection with 5 x 106 CFU of L. pneumophila, CFU and neutrophil numbers in the 

BALF did not significantly differ between Trem1+/+ and Trem1-/- mice. Furthermore, 

no differences in CFU could be detected when Trem1+/+ and Trem1-/- mice were 

analysed at 5 days post infection (data not shown). 

 

Discussion 
The significance of TREM-1 as a central amplifier of acute pro-inflammatory 

responses during endotoxin-induced shock and microbial sepsis is well established. 

However, increasing evidence, including the recently reported association of TREM-1 

with the DAMP protein HMGB1 [26,27], also suggests a potential role for TREM-1 

during non-infectious and chronic inflammatory conditions. In line with this notion, 

we have previously described a crucial involvement of TREM-1 in IBD as based on 

the significant amelioration of experimental colitis upon blockade of TREM-1 with 

the antagonistic LP17 peptide. Blocking TREM-1 signaling by daily administration of 

TREM-1-Ig fusion proteins or synthetic analogues in chronic disease models is not 

only costly and straining but also fails to cover for the possibility that the yet 

unidentified TREM-1 ligand may signal through alternative receptors. 

Here, we have generated a Trem1-/- mouse to unambiguously investigate the impact of 

a complete TREM-1-deficiency on the pathogenesis of experimental colitis but also of 

two other distinct sub-acute disease settings where the role of TREM-1 has so far not 

been addressed in vivo, i.e. inflammation induced by a parasitic and viral infection. 

Our findings demonstrate that Trem1-/- mice not only show a highly attenuated CD4+ 

T cell- and DSS-induced colitis but also display significantly reduced lesion size and 

diminished morbidity during infections with L. major and influenza virus, 

respectively.  

The substantial attenuation of illness and immune-mediated pathologies in Trem1-/- 

mice across these distinct models suggests a common mechanism by which TREM-1 

signaling promotes inflammation irrespective of the original trigger. Several non-

exclusive scenarios can be considered that may account for the attenuated disease in 

Trem1-/- mice: A priori reduced chemotactic recruitment of Trem1-/- neutrophils and 

monocytes, diminished pro-inflammatory activities, reduced life-span, and/or altered 

hematopoietic generation of myeloid cell subsets. Although we observed significantly 

decreased numbers of distinct myeloid cell subsets in the LP of colitic Trem1-/- x 
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Rag2-/- mice and at L. major-infected sites in Trem1-/- mice, respectively, we consider 

it unlikely that deficiency in TREM-1 causes an intrinsic primary defect in 

chemotaxis. When we analysed L. major infected sites at an early time-point, i.e. 3 

days post infection, no differences in cellularity were detected between Trem1+/+ and 

Trem1-/- mice (data not shown). Moreover, a recent study clearly demonstrated that 

TREM-1/3 proteins are not required for transendothelial migration of neutrophils 

[30]. Nonetheless, the markedly decreased expression of monocyte-, granulocyte-, but 

also T cell-specific chemokine mRNAs in the LP of Trem1-/- x Rag2-/- mice will in a 

secondary manner certainly have contributed to the decreased accumulation of 

inflammatory cells. Besides the diminished expression of chemotactic mediators, the 

colonic LP of colitic Trem1-/- x Rag2-/- mice also exhibited substantially reduced 

mRNA levels of several innate cytokines, including IL-1!, IL-6 and TNF. While it 

was beyond the scope of our analyses to determine the most relevant cellular sources 

for these mediators, and their reduced expression in the entire colonic LP in Trem1-/- x 

Rag2-/- mice certainly also reflects the decreased cellular infiltration, we consider it 

likely that TREM-1-amplified production of pro-inflammatory cytokines by distinct 

infiltrating myeloid cell subsets represents a key and early pathogenic event that will 

ultimately determine the later disease course and may largely account for the 

attenuated disease in Trem1-/- mice. In this respect, it is noteworthy that the colonic 

LP of colitic Trem1-/- mice contained markedly fewer MHCIIint Ly6Chi cells or 

inflammatory macrophages with the capacity for expression of pro-inflammatory 

mediators [35,36]. 

As we have employed a CD4+ T cell-dependent colitis model and indeed observed 

considerably reduced CD4+ T cell numbers and correspondingly also mRNA levels 

for IFN" and IL-17 in the colonic LP of transferred Trem1-/- x Rag2-/- mice, the 

question arises whether deficiency in TREM-1 may directly impact the priming of 

adaptive immune responses. Whereas in the colitis model we have not analysed CD4+ 

T cell responses in more detail, CD4+ T cells isolated from L. major-infected and 

CD8+ T cells retrieved from influenza virus-infected Trem1-/- mice, respectively, 

exhibited an unimpaired capacity for IFN" production compared to T cells from 

Trem1+/+ mice. Moreover, we have also addressed the impact of a complete TREM-1-

deficiency in an asthma model, hypothesizing that in the absence of TREM-1 

induction of Th2 responses may be favoured. However, Trem1-/- mice showed no 
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evidence for increased airway hyperresponsiveness, decreased Th1 or increased Th2 

responses (data not shown). Last, we have directly compared Trem1-/- and Trem1+/+ 

bone-marrow derived dendritic cells (which unlike bona fide DC do express TREM-1 

due to the presence of GM-CSF in the differentiation medium) in their T cell priming 

capacity in vitro. Besides reduced production of TNF, IL-1! and IL-6, Trem1-/- 

BMDC showed lower production of IL-2, IL-10 and IL-23 in response to stimulation 

with LPS and agonistic TREM-1 mAbs (data not shown). Nevertheless, proliferation 

as well as IL-17 and IFN" production did not differ between CD4 T cells co-cultured 

with TREM-1-stimulated Trem1-/- and Trem1+/+ BMDC, respectively (data not 

shown). 

Another cytokine that was expressed at distinctly lower levels in the colonic LP of 

colitic Trem1-/- x Rag2-/- mice was GM-CSF that has recently been ascribed an 

important pathogenic role in experimental colitis by promoting the accumulation of 

bone marrow but also peripheral granulocyte-monocyte progenitors (GMPs) [48]. It is 

therefore plausible that the attenuated disease and decreased myeloid infiltrates 

observed in Trem1-/- mice may to some extent also relate to diminished stimulation of 

upstream and extramedullary hematopoietic processes due to overall lower levels of 

inflammatory cytokines and translocated microbial products. Importantly, a positive 

feedback loop appears to exist between TREM-1 and GM-CSF: On one hand, TREM-

1 expression can be induced in the presence of GM-CSF [25], on the other hand, 

engagement of TREM-1 in the presence of TLR agonists potently increases 

production of GM-CSF [49,50]. Although under homeostatic conditions we found no 

evidence for altered myelopoiesis in Trem1-/- mice, the expression of TREM-1 by 

GMP, but not CMP, is intriguing and we are currently comparing hematopoietic 

processes in Trem1-/- and Trem1+/+ mice that have been exposed to inflammatory 

stimuli. 

The deciding role of neutrophils in the L. major infection model [42] and the 

substantially decreased lesion size in Trem1-/- mice have prompted us to investigate 

the impact of TREM-1 on neutrophil-mediated functions in more detail. In particular, 

we were interested in the potential modulatory effect of TREM-1 ligation on 

neutrophil survival as delayed neutrophil apoptosis could also represent a deciding 

pathogenic factor in intestinal inflammation [45]. In agreement with a previous report 

[30], deficiency in TREM-1 caused no intrinsic predisposition for increased 
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spontaneous neutrophil apoptosis. However, agonistic TREM-1 stimulation 

significantly promoted survival of SCF-condHoxb8 progenitor-derived neutrophils. 

Hence, in chronic disease settings TREM-1 could indeed prolong inflammation by 

negatively regulating neutrophil apoptosis.  

Considering the various effector cell types and mechanisms by which TREM-1-

mediated stimulation could contribute to disease, it may appear intriguing that 

deficiency in TREM-1 did not completely protect from disease. Accordingly, the 

degree of protection from colitis was not much higher in Trem1-/- mice compared to 

mice that were treated with the antagonistic LP17 peptide in our previous study [22]. 

We hypothesize that the absence of complete protection in Trem1-/- mice may 

primarily relate to the role of TREM-1 as an amplifier but not inducer of pro-

inflammatory reactions [3,5]. While we cannot rule out a potential participation of 

TREM-3, we believe that the protective effects seen in Trem1-/- mice are too 

substantial for a major involvement of TREM-3 in the inflammatory models analysed. 

One of the most striking findings of the present study was the observation that 

microbial control was apparently not impaired in Trem1-/- mice in spite of the blunted 

inflammatory responses. Hence, while Tnf-/- or anti-TNF-treated mice exhibit an 

aggrevated acute DSS-induced colitis [39,40] and also show enhanced parasite and 

bacterial burdens upon infection with L. major and L. pneumophila, respectively 

[41,51], Trem1-/- mice appeared equally capable of controlling a parasitic, viral and 

bacterial infection as Trem1+/+ controls. This observation is in line with the main 

function of TREM-1 as an inflammatory fine-tuner which still allows for pro-

inflammatory TLR or NOD-like receptor-induced reactions in its absence. Moreover, 

TREM-1 does not appear to be involved in phagocytic or direct antimicrobial activity 

of myeloid cells [30,49,52]. Still, conflicting data on the effect of a TREM-1 blockade 

on microbial control have been reported from various bacterial challenge models. 

Injection of a TREM-1/IgG fusion protein allowed for sufficient control of an E. coli-

induced peritoneal infection and conferred protection [9] whereas maximal but not 

half-dose siRNA silencing of TREM-1 increased mortality in a fecal peritonitis model 

[29]. Similarly, administration of the antagonistic LP17 peptide protected rats from a 

P. aeruginosa-induced pneumonia [28], whereas complete deficiency in TREM-1/3 

led to markedly increased mortality in Pseudomonas aeruginosa-challenged mice due 

to defective transepithelial migration of neutrophils [30]. It has been proposed that the 

degree of TREM-1 blockade was a likely critical parameter to account for these 
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disparant findings [29,30]. However, our findings demonstrate that microbial control 

must not necessarily be impaired in mice with a complete deficiency in TREM-1, 

even when employing a L. pneumophila infection model where early neutrophil 

accumulation is also crucial for bacterial clearance [53]. Thus, we speculate that 

possibly the infection dose, the nature of the microbial agent and/or the kinetics of the 

infection may be critical parameters regarding the requirement for TREM-1. 

In summary, while the impact of TREM-1 on microbial control still needs further 

investigations across different experimental models, our extensive characterisation of 

Trem1-/- mice shows an unanticipated prominent role for TREM-1 in parasitic and 

viral infections. Our findings thus suggest that therapeutic targeting of TREM-1 holds 

considerable promise for various non-infectious and infectious inflammatory 

disorders and may bypass the increased risk for impaired microbial control which is 

associated with the general targeting of TNF. 
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Materials and Methods 

Mice 
Breedings and cohort maintenance were performed under SPF conditions in isolated 

ventilated cages in the central animal facility of the Medical School, University of Bern.  

 

Ethics statement 

All animal experiments were approved by the Veterinary Offices of the Cantons of Bern, 

Lausanne and Zurich and performed in compliance with Swiss laws for animal protection. 

 

Generation of Trem1-deficient mice. 

The generation of Trem1-deficient mice was designed and carried out in collaboration with 

the TaconicArtemis GmbH (Köln, Germany). To account for potential lethal effects of a total 

deletion of the Trem1 gene and to allow for a possible cell-specific ablation of Trem1 

expression, a targeting vector was designed for conditional deletion of exon 2, which encodes 

the extracellular part of Trem1 and also contains the putative ligand binding site [31]. As 

illustrated in the supplemental material Fig. S1, the targeting vector was constructed on the 

basis of the cloning vector KS loxP ftr Neo BS to flank exon 2 with loxP sites, to comprise 

additional restriction sites (AseI and AvaI) and to contain PuroR (flanked by F3 sites) and 

Neomycin (flanked by FRT sites) positive selection marker cassettes to control for 

homologous recombination upstream and downstream of exon 2, respectively. For 

counterselection, a Tk cassette was included downstream of exon 4. As a template for the 

PCR reactions a BAC-based plasmid containing the entire genomic mouse Trem1 locus 

(RP23-32N8) was obtained from BACPAC Resources Center BPRC (Oakland, USA). The 

targeting vector was electroporated into a C57BL/6N.tac embryonic stem cell line 

(TaconicArtemis). On day 2, cells were selected with Puromycin and G418 and on day 8 

counterselection with Gancyclovir was initiated. Isolated and expanded ES clones were 

screened for complete integration of the targeted allele by standard Southern blotting analyses 

with probes located upstream of exon 1 (5e2) or exon 3 (ila1) (Fig. S1). Primer sequences for 

generation of the 5e2 Southern probes were: CGGATTTGACCAGGAATGACAG(sense) and 

CTTCCAGTTCATTCATGGACAGC (antisense) and for the ila1 Southern probe: 

AGCTCCTCTTGTCTGCCATTCAAGGC (sense) and GGCTACAACCTTGTTCTGCAG 

(antisense). Eight positive clones could be identified and the ES clone A-A5 was 

subsequently injected into Balb/c derived blastocytes which were then transferred to 

pseudopregnant NMRI females. Chimeric offspring were bred to C57BL/6 female mice 

(C57BL/6-Tg(ACTB-Flpe)2Arte, TaconicArtemis) transgenic for Flp recombinase to achieve 

deletion of the FRT and F3 flanked selection cassettes PuroR and Neomycin, respectively. 
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Germline transmission of the targeted Trem1 allele was identified by coat color contribution 

and by PCR using oligo 1_sense (GTGCTCAGAGAATGTCTTTGTATCC) and oligo 

4_antisense (CCCTGGTCAGACCATTTACC) which either yield a 1.3 kb fragment for the 

wildtype (WT) allele or a 1.6 kb fragment for the conditional Trem1flox allele. (Fig. S1). 

Cycling conditions were: 5’ at 95°C followed by 35 cycles consisting of 30’’ at 95°C, 30’’ at 

60°C, 1’ at 72°, followed by 10’ at 72°C. Thus identified Trem1+/flox mice  

(C57BL/6-TREM-1tm1821_33.1Arte) were mated with male mice carrying the Cre recombinase 

under the control of the ROSA26 locus (C57BL/6-Gt(ROSA)26Sortm16(Cre)arte, 

TaconicArtemis) to obtain systemic deletion of one Trem1 allele (Trem1+/-). Trem1+/- x Cre+/- 

mice were interbred to achieve deletion of Cre and to obtain wildtype controls (Trem1+/+) and 

heterozygous (Trem1+/-) and homozygous (Trem1-/-) Trem1-deficient mice. Deletion of exon 2 

in Trem1+/- and Trem1-/- mice was assessed by the genotyping PCR strategy described above 

and depicted in Fig. S1. Trem1+/+ and Trem1-/- mice were subsequently expanded for 

experiments. For the CD4 adoptive transfer model of colitis, Trem1-/- x Rag2-/- mice were 

generated by crossing Trem1-/- mice with Helicobacter+ Rag2-/- mice and interbreeding of the 

F1 offspring. The Helicobacter+ status of the Trem-1-/- x Rag2-/- offspring was confirmed by 

PCR testing (MicrobioS GmbH, Reinach, Switzerland).  

 

Flow cytometry (FACS) 
The following mAbs were used: anti-mouse CD11b-Pacific Blue (M1/70), CD45-Pacific Blue 

(30-F11), CD45-Brilliant Violet570 (30-F11), CD4-APC-Cy7 (RM4-5), Gr1-PE (RB6-8C5), 

NK1.1-PE-Cy7 (PK136), Ly6G-APC-Cy7 (1A8) and F4/80-biotin (BM8) IL-7R!-biotin 

(A7R34), CD3"-biotin (145-2C11) CD19-biotin (6D11), Gr1-biotin (RB6-8C5) and Ter119-

biotin (TER119), all purchased from Biolegend; anti-mouse CD115-PE (AFS98), Gr1-APC 

(RB6-8C5), CD45-eFluor605 (30-F11), CD45.1-PE (A20), MHCII-APC (M5/114.15.2), 

CD11c-PE (N418), CD11b-eFluor450 (M1/70), Streptavidin-PE-Cy7, were purchased from 

eBioscience (San Diego, USA); anti-mouse Ly6C-FITC (AL-21) from BD Pharmingen (San 

Diego, USA) and anti-mouse TREM-1-APC (174031) from R&D Systems. DAPI 

(Invitrogen) was used in a final concentration of 0.5 µg/ml to exclude dead cells. Prior to 

FACS stainings, Fc receptors were blocked using supernatant from the hybridoma 2.4G2. 

Cells were acquired on a LSRII SORP (BD Biosciences, San Diego, USA) and analysed 

using FlowJo cytometric analysis program (Tree Star, Ashland, USA). 

 

Impact of TREM-1 on hematopoiesis 
Analysis of hematopoietic stem cells and progenitors  
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For FACS analysis of stem cell enriched LSK cells and myeloid progenitors, and also for 

determination of colony-forming units, a prior lineage depletion was performed using 

biotinylated Abs against red blood cell precursors (!-Ter119), B cells (!-CD19), T cells (!-

CD3"), myeloid cells (!-Gr1), MACS !-biotin beads, and LS columns (Miltenyi Biotec). 

Lymphoid progenitors were further removed by adding anti-IL-7R!-biotin.  

 

Determination of colony forming units  

3.33 # 103 lin- cells were transferred into methocult base medium (M3134; Stemcell 

Technologies) supplemented with 15% FCS, 20% BIT (50 mg/ml BSA in IMDM, 1.44 U/ml 

recombinant-human (rh) insulin (Actrapid, Novo Nordisk) and 250 ng/ml human holo 

transferrin [Prospec]), 100 µM 2-$-mercaptoethanol, 2 mM l-glutamine, 

penicillin/streptomycin, and 50 ng/ml recombinant-mouse SCF (rmSCF), 10 ng/ml rm–IL-3, 

10 ng/ml rh-IL-6 and 50 ng/ml rm-Flt3-ligand (all from Prospec). Colonies and cells were 

enumerated after 7 days (%30 cells/colony). 

 

Generation of mixed bone marrow chimeras 

Congenic (CD45.1+) recipient mice were irradiated in two split doses with 650 cGy in a 4 h 

interval in a Gammacell 40 exactor (Best Theratronics). Total donor bone marrow (BM) was 

collected from Trem1-/-, Trem1+/+ and Trem1+/+ x GFP+/+ mice as described below. Donor 

BM was mixed 1:1 and 15 x 106 total cells of either mixed Trem1-/- and Trem1+/+ x GFP+/+ 

BM cells or mixed Trem1+/+ and Trem1+/+ x GFP+/+ BM cells were transferred in 200 µl PBS 

i.v. into the irradiated recipient mice. After transfer, the recipients were treated with 

antibiotics (Baitryl and Bactrim) in the drinking water for two weeks. After 10 weeks, the 

grade of chimerism was controlled in the peripheral blood by calculating the CD45.2+ / 

CD45.1+ ratio. In all chimeras, the grade of chimerism among the circulating myeloid cells 

was at least 99%. 

 

Generation and analysis of SCF-dependent conditional Hoxb8-immortalised  

progenitor cells and neutrophils 
Generation of Hoxb8 progenitor lines and differentiation of neutrophils 

The protocol was adapted from the method described by Wang et al. [44] with the major 

modification of using a different inducible expression system [54]. In brief, bone marrow-

derived haematopoietic progenitors were isolated from Trem1+/+ and Trem1-/- mice by 

magnetic bead-based lineage depletion (BD IMagTM mouse hematopoietic progenitor cell 

enrichment set-DM, BD Biosciences) following the manufacturer instructions. 2-5 x 105 

lineage- cells were incubated for 36 hours in complete RPMI Medium (RPMI 1640/Glutamax 
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supplemented with 10% FCS, 1% penicillin/streptomycin solution and 50 !M 2-

mercaptoethanol). Cells were then transduced with pF-5xUAS-Hoxb8(mm)-SV40-puro-

GEV16 lentiviral particles by spin-infection (1000 rpm, 2 hours, 30°C) in presence of 8 !g/ml 

polybrene. Cells were subsequently cultured in complete RPMI medium supplemented with 

SCF (added as 10% of CHO/SCF(mm)-conditioned supernatant) and Hoxb8 expression was 

induced by addition of 100 nM 4-OHT. Transduced cells were positively selected with 1.0 

!g/ml puromycin for a minimum of one month. The resulting immortalized cell lines were 

termed SCF-condHoxb8. For in vitro differentiation of SCF-condHoxb8 cells into mature 

neutrophils, cells were washed twice in PBS to remove all traces of 4-OHT and were then 

replated at 20'000 cells / ml in complete RPMI medium containing SCF (but no 4-OHT). 

Mature neutrophils were thus obtained after 5 - 6 days as judged by morphology and surface 

expression of CD11b and Gr-1, as well as loss of c-kit (CD117) as determined by flow 

cytometry.  

 

Apoptosis measurements 

Spontaneous apoptosis of mature Trem1+/+ versus Trem1-/- neutrophils was assessed at 5 days 

post differentiation in SCF-containing medium and 8 h, 24 h, and 48 h later, respectively. 

Immediately upon removal from plates, neutrophils were washed in cold PBS and AnnexinV 

Binding Buffer and stained with FITC-conjugated AnnexinV (BD Pharmingen) according to 

the manufacturer’s instructions. DAPI (Sigma-Aldrich) was added immediately prior to 

aquisition by flow cytometry. Only AnnexinV and DAPI  double-positive cells (AnnexinV+ 

DAPI+) were considered in the analysis of apoptotic cells. For determination of TREM-1-

mediated effects on apoptosis induction, 5 days differentiated neutrophils were stimulated in 

vitro in 96-well U-bottom plates at 2 x 105 cells / well in complete RPMI medium lacking 

SCF in the presence of 10 µg/ml plate-bound anti-TREM-1 mAb (MAB1187; R&D) or a 

respective isotype control (RTK2758, Biolegend) for 24 h. Since the relative stickiness of 

neutrophils activated by plate-bound anti-TREM-1 did not allow for removal from the plates 

and FACS-based analysis of AnnexinV+ DAPI+ cells without causing a substantial bias by the 

selective analysis of non-adherent cells, Caspase 3/7 activity was determined by the Apo-

Tox-GloTM assay (Promega) according to manufacturer’s instructions.  

 

Experimental animal models 
CD4 T cell adoptive transfer model of colitis 

Colitis was induced in (Helicobacter-positive) Rag2-/- and Trem1-/- x Rag2-/- mice by adoptive 

transfer of 2 x 105 CD4+ CD25- CD45RBhi FACS-sorted T cells as described previously [55]. 

Mice were sacrificed at 12-13 d post CD4 T cell transfer at the onset of clinical signs of 
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colitis (diarrhea, weight loss, symptoms of abdominal pain) in Trem1+/+ mice. 

Dextran sodium-sulfate (DSS)-induced colitis 

Colitis was induced in (Helicobacter-negative) Trem1+/+ and Trem1-/- mice by administration 

of 3% 36'000 – 50'000 MW DSS (MP Biomedicals, Solon, USA) in the drinking water for 5 d 

followed by 4 d of regular tap water and euthanization at d 9. 

 

Leishmania major (L. major) infections 

L. major LV39 (MRHO/Sv/59/P strain) parasites were maintained in vivo in DBA/2J mice 

and further cultured in vitro in M199 medium supplemented with 10% FCS, 4% HEPES and 

2% antibiotics (penicillin, streptomycin, neomycin). Mice were infected with 3x106 parasites 

s.c. in the hind footpad in a final volume of 50 !l as previously described [41]. Footpad lesion 

size was measured with a Vernier caliper. The number of parasites in lesions were evaluated 

by limiting dilution analysis [56]. 

 

Influenza virus infections 

Influenza virus strain PR8 (A/Puerto Rico/34 H1N1) was originally provided by J. Pavlovic 

(University of Zurich, Switzerland). For infections, mice were anaesthetized and inoculated 

intratracheally with 50 PFU influenza virus in 50 µl endotoxin-free PBS. For collection of 

bronchoalveolar lavage (BAL) fluid, lungs were flushed with 3x 400 µl PBS. To determine 

influenza viral titers in the lungs, lungs were collected at the indicated time-points, 

homogenized and serially diluted with MDCK cells as previously described [57].  

 

Legionella pneumophila infections 

L. pneumophila strain JR32 (Philadelphia-1; sg1) (reference: PMID: 8225610) was grown for 

3 days on charcoal yeast extract (CYE) agar plates at 37°C and resuspended in PBS prior to 

infection. Mice were anesthetized by i.p. injection of 5 µg xylazine/100 µg ketamine per gram 

body weight and infected intranasally with 5 x 106 L. pneumophila. Three  days post 

infection, mice were sacrificed and perfused and bronchoalveolar lavage fluid (BALF) was 

extracted with 1 ml PBS, 5mM EDTA. CFU were quantified by plating serial dilutions on 

CYE agar plates and counted after 3 days incubation at 37°C. BALF neutrophils were 

quantified by flow-cytometry. 

 

Cell isolations   

Spleen and peripheral blood 

Blood was collected by tail vain incision or by cardiac puncture into heparinised PBS. Spleen 

cells were released by homogenization of spleens between the frosted ends of two glass slides 
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into PBS containing 5% horse serum. Erythrocytes were depleted by brief incubation with 

ACK lysis buffer. 

 

Bone marrow 

Femurs and tibiae were removed and placed in ice-cold PBS. Remaining flesh was removed 

and bones were rinsed with sterile PBS. After opening of the bones, the BM was flushed with 

a 26 GA 3/8 needle into RPMI 10% FCS. Erythrocyte-depleted BM cells were either used for 

FACS-based characterizations with or without prior lineage depletion or for the generation of 

mixed BM chimeras. 

 

Colonic lamina propria 

Colons were opened longitudinally and cut into small pieces. The epithelium was removed by 

incubation in HBSS/HEPES containing 5% horse serum, 5 mM EDTA and 2 mM DTT at 

37°C for 3 x 30 min under magnetic stirring. Lamina propria (LP) cells were obtained by 

subsequent digestion with 200 U/ml collagenase (Type IV; Sigma-Aldrich) and 50 U/ml 

DNase (Type I, grade II; Roche) for 2 x 45 min. The LP fraction was filtered through a 40 

µM cell strainer, counted by Trypan Blue staining and further characterized by FACS. 

 

Footpads 

Footpads were digested using 1 mg/mL collagenase D in HBSS.  

 

Histopathological analysis of mouse intestinal tissue sections 

To assess the presence of histopathological alterations on formalin-fixed, paraffin-embedded 

and hematoxylin-eosin-stained colonic tissue sections, a scoring system ranging from 0 (no 

alterations) to 15 (most severe signs of colitis) was established, including the following 

parameters: cellular infiltration (0-3), loss of goblet cells (0-3), crypt abscesses (0-3), 

epithelial erosions (0-1), hyperemia (0-2), thickness of the colonic mucosa (0-3). Histological 

scoring was performed by a pathologist (V.G.) blinded to sample identity.  

 

RNA extractions and quantitative RT-PCR analyses 
RNA was isolated using RNA isolation reagent (Tri-Reagent, Molecular Research Center). 

DNA was digested using DNase I (Ambion), and cDNA was generated using High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems). Expression of genes was analysed 

using Qiagen Quantitect Primer Assays on a 7500 Real-time PCR System (AB Biosystems). 

The house keeping gene GAPDH was used for normalization of gene expression. 
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Analysis of cytokines in supernatants and bronchoalveolar lavage (BAL) 
Cell-free supernatants derived from SCF-cond Hoxb8 neutrophils and BAL fluid from influenza 

virus infected mice were analysed by ELISA (Biolegend).  

 

Analysis of bone density 
X-ray 

High resolution X-ray analyses on anesthetized mice were performed with the MX-20 

Faxitron (X-ray Corporation, Edimex, LePlessis, France).  
 

MicroCT 

For high resolution microcomputed tomography (MicroCT) tissues were fixed in 4% 

paraformaldehyde in PBS for 24 h and subsequently transferred to 70% EtOH for µCT 

analysis (MicroCT40, Scanco, Bruettisellen, Switzerland). 

 

Statistical analyses 
All data were analysed with GraphPad Prism software using the Student’s t-test.  

 

Online supplemental material 
Fig. S1 provides a schematic illustration of the wildtype Trem1 locus, the targeting vector and 

the conditional and constitutive knockout alleles. In addition, Southern blot and PCR analyses 

for detection of the targeted allele in embryonic stem cells and detection of wildtype, 

conditional and constitutive knockout alleles in offspring mice, respectively, are presented. 

Fig. S2 shows a comparison of the composition of peripheral blood, bone marrow and spleen 

immune compartments in Trem1+/+ versus Trem1-/- mice. Fig. S3 shows X-ray and MicroCT 

analyses that were carried out to determine bone density in Trem1+/+ versus Trem1-/- mice. 
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Figure legends 

Figure 1.  TREM-1 surface expression by peripheral blood myeloid cell subsets 

from wildtype versus Trem1-deficient mice. Peripheral blood cells obtained from 

wildtype (Trem1+/+) and Trem1-deficient (Trem1+/- and Trem1-/-) mice (n=2 mice for 

each group) were stained for surface expression of TREM-1 and analysed by FACS. 

(A) Representative gating strategy to identify neutrophils and LyC6lo and Ly6Chi 

monocytes. (B) Representative histograms showing TREM-1 surface expression 

(lines) versus isotype controls (filled histograms). (C) Mean fluorescence intensity 

(MFI) of TREM-1 surface expression. Mean values of n=2 mice analyzed are shown 

with error bars indicating the range. 

 

Figure 2. Unimpaired hematopoiesis in Trem1-/- mice. (A) Representative dot plots 

show the FACS-based identification of lineage-depleted (lin-) Sca1+ c-kithi (LSK) 

cells and lin- Sca1- c-Kithi myeloid progenitors in Trem1+/+ (top panels) and Trem1-/- 

(bottom panels) bone marrow (BM) following lineage depletion and depletion of 

lymphoid progenitors by MACS. Common myeloid progenitors (CMP), granulocyte-

macrophage progenitors (GMP) and megakaryocyte/erythrocyte progenitors (MEP) 

were further discriminated according to their expression of Fc!R and CD34. Filled 

histograms show TREM-1 surface expression by LSK cells, CMP, GMP and MEP 

progenitors from Trem1-/-mice in comparison to Trem1+/+ mice (lines). (B) Absolute 

cell numbers of total BM cells, lin- BM cells, lin- Sca1- c-kithi myeloid progenitors, 

LSK cells, CMP, GMP and MEP and colony forming units (CFU) of hematopoietic 

precursors isolated from the BM of Trem1+/+ and Trem1-/- mice were determined as 

described in the Materials and Methods section. Mean values of n=2 mice analysed 

are shown with error bars indicating the range. (C) Mixed BM chimeras were 

generated by i.v. transfer of 1:1 mixed Trem1+/+ x GFP+/+ and Trem1-/- x GFP-/- BM 

cells (white circles, dotted lines) into irradiated recipient mice. As control, and to 

account for potential interfering effects of the GFP expression, mixed BM from 

Trem1+/+ x GFP+/+ and Trem1+/+ x GFP-/- mice (black circles and lines) was 

transferred into additional recipient mice. BM chimeras were analyzed after 10 and 31 

weeks of chimerism. Neutrophils, Ly6Chi and Ly6Clo monocytes were identified in 

the peripheral blood according to the depicted gating strategy and the GFP- : GFP+ 

cell ratio in the respective cell subsets was determined. Mean values of n=4-5 mice 



  Other contributions 
	
  

	
   121	
  

 

 30 

analyzed per group are shown with error bars indicating the SEM. ns, no statistically 

significant difference. 

 

Figure 3. Trem1-/- x Rag2-/- mice are protected from CD4+ T cell-induced colitis. 

Colitis was induced in Trem1+/+ x Rag2-/- (filled circles) and Trem1-/- x Rag2-/- mice 

(white circles) by i.p. injection of 2 x 105 CD4+ CD45RBhi T cells. (A) Weight loss 

relative to the initial body weight. Mean values of n=9 mice analysed per group are 

shown with error bars indicating the SEM. Colon lenghts were determined in 

individual mice (symbols). Lines show mean values for each group of mice. (B) 

Photographs (magnification: 10x) of representative H&E-stained colonic tissue 

sections of a Trem1+/+ x Rag2-/- (histopathological score: 14) and Trem1-/- x Rag2-/- 

mouse (histopathological score: 2). Histopathological scores were determined for 

individual mice by a pathologist according to criteria defined in the Materials and 

Methods section. Symbols show scores for individual mice and lines indicate the 

mean value for each group of mice. ***, p < 0.001; **, p < 0.01. 

 

Figure 4. Upon colitis induction, Trem1-/- x Rag2-/- mice exhibit substantially 

reduced inflammatory infiltrates and diminished expression of pro-

inflammatory mediators. (A-C) Lamina propria cells were isolated from the colon 

of Trem1+/+ x Rag2-/- and Trem1-/- x Rag2-/- mice 12-13 days post adoptive transfer of 

colitogenic CD4 T cells or from untransferred mice (healthy colons) and analysed by 

FACS. (A) After exclusion of doublets and dead cells, CD11b+ cells were 

discriminated from CD4+ T cells and further subgated into MHClo Gr1+ (gate 1) and 

MHChi Gr1- (gate 2) cells. In gate 1, monocytes and neutrophils were identified 

according to their Ly6Chi Gr1int and Ly6Cint Gr1hi phenotype, respectively. In gate 2, 

MHCII+ cells were further subdivided into two populations of MHCIIint Ly6Chi and 

MHCIIhi Ly6Clo cells. (B, C) Absolute numbers of total cells recovered from 

individual mice (symbols; lines indicate mean values per group) and mean values ± 

SEM for CD45+ cells, CD4+ T cells, CD11b+ cells and subsets defined within the 

CD11b+ gate as illustrated in (A). Per group, n=9 mice adoptively transferred with 

CD4 T cells (B) and n=4 untransferred (C) mice were analysed. (D) TREM-1 surface 

expression by neutrophils (Ly6Cint Gr1hi), monocytes (Ly6Chi Gr1int) and CD11b+ 

Gr1- Ly6C+ versus Ly6C- subsets identified in the lamina propria (according to the 

gating strategy depicted in D) of colitic (n=9) versus healthy (n=4) Trem1+/+ x Rag2-/- 
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mice. (E) Colonic tissues were assessed for the expression of pro-inflammatory 

mediators by qRT-PCR. Bars show mean values ± SEM for n=9 mice. (E). ***, p < 

0.001; **, p < 0.01. N.D. = not determined due to insufficient cell numbers. 

 

Figure 5. Attenuated dextran sodium-sulfate (DSS)-induced colitis in Trem1-/- 

mice. Colitis was induced in Trem1+/+ and Trem1-/- mice by administration of 3% 

DSS in the drinking water for 5 days, followed by 4 days on regular tap water. (A) 

Weight loss relative to the initial body weight. Mean values of n=17 (Trem-1+/+) and 

n=16 (Trem1-/-) mice are shown with error bars indicating the SEM. Colon lenghts 

were determined in individual mice (symbols). Lines show mean values for each 

group of mice. (B) Photographs (magnification: 10x) of representative H&E-stained 

colonic tissue sections of a Trem1+/+ (histopathological score: 13) and Trem1-/- mouse 

(histopathological score: 5.5). Histopathological scores were determined for 

individual mice by a pathologist. Symbols show scores for individual mice and lines 

indicate the mean value for each group of mice. ***, p < 0.001; **, p < 0.01. 

 

Figure 6. Trem1-/- mice develop smaller inflammatory lesions and show 

decreased cellular infiltrates at L. major infection sites. (A) Trem1+/+ and Trem1-/- 

mice were inoculated with 3x106 L. major promastigotes s.c. in the footpad and lesion 

development was measured over time. Each data point represents the mean lesion size 

± SEM of n=5 mice analysed per group. (B) Parasite load was assessed at 35 days 

post infection (p.i.) by limiting dilution analysis. (C) Infected footpads from Trem1+/+ 

and Trem1-/- mice (n=4-5 mice per group) were isolated 21 days p.i., digested and the 

cellular content was analysed by flow-cytometry. Data show mean values ± SEM of 

cells and are representative of two independent experiments. (D) Draining lymph 

node cells from Trem1+/+ and Trem1-/- mice (n=4 mice per group) were isolated 35 

days p.i.; the frequency of CD4+ IFN!+ T cells was analysed by intracellular FACS 

staining or cells were re-stimulated with UV-treated L. major parasites and 

IFN! levels in the supernatants were assessed by ELISA. Data show mean values ± 

SEM of triplicate measurements. Representative data from one out of three 

independent experiments are shown. ***, p < 0.001; **, p < 0.01; *, p < 0.05. 
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Figure 7. TREM-1 mediates TNF!  secretion and resistance to apoptosis in SCF-
condHoxb8 progenitor-derived neutrophils. SCF-condHoxb8 Trem1+/+ and Trem1-/- 

progenitor lines were generated by lentiviral transduction of Hoxb8 into BM-derived 

hematopoietic cells obtained from the respective mice and culture in the presence of 

SCF and 4-hydroxytamoxifen (4-OHT). For in vitro neutrophil differentiation, SCF-
cond Hoxb8 cells were cultured for additional 5-6 days in the absence of 4-OHT. (A) 

H&E stained cytospins of Trem1+/+ SCF-condHoxb8 progenitor cells (left) and 

differentiated neutrophils (right). (B) FACS-based characterization of Trem1+/+ (top 

panels) and Trem1-/- (bottom panels) SCF-condHoxb8 progenitor cells (left) and 

differentiated neutrophils (right). (C) TNF! and iNOS mRNA expression by 

Trem1+/+ and Trem1-/- SCF-condHoxb8 differentiated neutrophils following 2 h 

stimulation with plate-bound agonistic anti-TREM-1 mAb or an isotype control 

antibody was determined by qRT-PCR. (D) TNF! secretion by Trem1+/+ and Trem1-/- 

SCF-condHoxb8 differentiated neutrophils in response to stimulation with an agonistic 

anti-TREM-1 mAb was assessed by ELISA. (E) Spontaneous apoptosis of Trem1+/+ 

and Trem1-/- SCF-condHoxb8 neutrophils in vitro was analysed at 5 days post 

differentiation with SCF  (0 h) and the indicated time-points beyond by FACS-based 

determination of AnnexinV and DAPI double-positive cells. Bars show mean values 

± SEM for n=3 in vitro replicates from one representative experiment out of three 

independent experiments. (F) Caspase 3/7 activity was assessed upon 24 h stimulation 

of differentiated Trem1+/+ and Trem1-/- SCF-condHoxb8 neutrophils with plate-bound 

agonistic anti-TREM-1 mAb or an isotype control antibody. Bars show mean values ± 

SEM for n=3 in vitro replicates from one representative experiment out of three 

independent experiments. **, p < 0.01.  

 

Figure 8. Reduced morbidity but intact viral clearance in influenza virus-

infected Trem1-/- mice. Trem1+/+ and Trem1-/- mice were infected intratracheally with 

50 PFU influenza A virus PR8. (A, B) Body temperature and weight loss relative to 

the initial body weight following infection. Graphs show mean values ± SEM of n=10 

mice per group (C, D) Mice were sacrificed at the indicated time-points post 

infection. Bars show mean values ± SEM of n=4 (day 6) and n=6 (day 10) mice per 

group. (C) Lung viral titers were determined by plaque assay on MDCK cells. (D) IL-

6 and IL-12 levels in BAL fluid were assessed by ELISA. **, p < 0.01; *, p < 0.05. 
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Figure 9. Trem1-/- mice are equally capable of clearing L. pneumophila as 

Trem1+/+ controls. Trem1+/+ and Trem1-/- mice were infected intranasally with 5 x 106 

CFU L. pneumophila. 3 days post infection CFU (A) and neutrophils (B) were 

quantified in the BALF. ns, no statistically significant difference. 

 

Supplemental Figure S1. Generation of Trem1-deficient mice. 

Trem1-deficient mice were generated as described in detail in the Materials and 

Methods section. In brief and as depicted in (A), a targeting vector was designed for 

conditional deletion of exon 2 (coding for the extracellular V-type Ig-like domain) by 

flanking of exon 2 with loxP sites. The targeting vector was further constructed to 

contain additional restriction sites (AseI and AvaI), the positive selection markers 

PuroR flanked by F3 sites and Neo flanked by FRT sites and the counterselection 

cassette Tk. The vector was electroporated into a C57BL/N.tac embryonic stem (ES) 

cell line. Genomic DNA of selected ES clones was subjected to enzymatic digestion 

with either AseI or AvaI and standard Southern blotting analyses with probes located 

upstream of exon 1 (5e2) or exon 3 (ila1) to identify successful recombination or 

presence of the correctly targeted allele, respectively. Balb/c-derived blastocytes 

injected with the so identified targeted ES clone A-A5 were then transferred to 

pseudopregnant NMRI females and chimerism in the offsprings was assessed by coat 

colour contribution (white/black). Chimeric offspring were bred to C57BL/6 females 

transgenic for Flp to achieve Flp-mediated removal of the F3 and FRT flanked PuroR 

and Neo selection markers, respectively. Germline transmission was identified by the 

presence of black C57BL/6 offspring, representing heterozygous floxed Trem1 (+/flox) 

mice that possessed the conditional knockout allele following Flp recombination. 

Trem1+/flox female mice were mated with heterozygous Cre-transgenic (Cre+/-) 

“deleter” males to generate Trem1+/- mice with a heterozygous constitutive knockout 

allele. Trem1+/- x Cre+/- mice were interbred to generate fully Trem1-deficient 

(Trem1-/-) mice. (A) Schematic presentation of the Trem1 wildtype allele, the 

targeting vector, the targeted allele before and after Flp recombination in vivo and the 

final constitutive knockout allele after Cre recombination in vivo. (B) Southern blot 

analyses of the ES clone A-A5 demonstrating presence of the targeted allele (TA) 

following either digestion of genomic DNA with AseI and hybridization with 5e2 

probe or digestion with AvaI and hybridization with ila1 probe. Restriction enzyme 
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and Southern blot hybridization sites are indicated in (A). (C) A PCR-based 

genotyping strategy was developed to identify presence of the wildtype allele, the 

conditional knockout allele in Trem1+/flox mice and the knockout allele in Trem1+/- 

mice. PCR primer sites are indicated in (A). 

 

Supplemental Figure S2. Composition of immune compartments in Trem1+/+ and 

Trem1-/- mice. Peripheral blood (A), bone marrow (B) and spleen cells (C) from 16 

weeks old age- and sex-matched Trem1+/+ (n=3) and Trem1-/- mice (n=3) were 

characterized by FACS. Representative dot plots show the gating strategies for 

identification of the respective cell subsets and graphs show the mean values ± SEM 

of total cell counts of n=3 mice per group.  

 

Supplemental Figure S3. Comparison of bone density in Trem1+/+ versus Trem1-/- 

mice. Bone density in 40 and 56 weeks old female Trem1+/+ (n=5) and Trem1-/- (n=5) 

mice was determined by X-ray analysis. Two 56 weeks old mice per group were 

additionally analysed by !icroCT. Analysis of vertebral bodies is shown. 
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ABSTRACT
Neutrophils are massively and rapidly recruited following
infection. They migrate to the site of acute infection and
also transiently to dLNs. In addition to their well-established
role as microbial killers, accumulating evidence shows that
neutrophils can play an immunoregulatory role. Neutrophils
were recently shown to influence the activation of different
leukocyte types including NK cells, B cells, and DCs. DCs
are professional APCs playing a key role to the launching
and regulation of the immune response; thus, crosstalk
between neutrophils and resident or newly recruited DCs
may have a direct impact on the development of the anti-
gen-specific immune response and thereby, on the out-
come of infection. Neutrophils may regulate DC recruit-
ment and/or activation. We will review here recent prog-
ress in the field, including those presented during the first
international symposium on “Neutrophil in Immunity”, held
in Québec, Canada, in June 2012, and discuss how neu-
trophil regulatory action on DCs may differ depending on
the type of invading microorganism and local host fac-
tors. J. Leukoc. Biol. 93: 000–000; 2013.

Introduction
Neutrophils are among the first cells recruited to sites of infec-
tion, and they contribute significantly to acute inflammation. In
addition to their well-described antimicrobial innate immune
function, their transient presence significantly affects the mi-
croenvironment through their secretion of soluble mediators.
Among these, cytokines, chemokines, and alarmins (endogenous
molecules that are constitutively available, including antimicrobial
peptides) may affect hematopoietic and nonhematopoietic cells and
contribute to the initiation of the adaptive immune response [1].

Neutrophils that are recruited within tissues can interact locally
with several leukocyte subsets, including DCs. Neutrophils were
shown to participate in the recruitment and activation of macro-
phages [2], and their role as key regulators of NK cell maturation

and function was reported in humans and mice [3, 4]. In addi-
tion, Cerutti and coworkers [5] recently described a population
of splenic neutrophils that interacts with marginal zone B cells,
contributing to the regulation of T cell-independent antibody
responses. We will focus here on the crosstalk between neutro-
phils and DCs, as DCs are key players in the initiation of the anti-
gen-specific immune response, bridging innate and adaptive im-
munity (reviewed in ref. [6]). DCs can detect and acquire anti-
gens in peripheral tissues, and under inflammatory conditions,
they up-regulate the expression of several surface molecules, in-
cluding chemokine receptors that promote their migration
through the afferent lymphatic vessels to the dLNs. During this
process, DCs lose their antigen uptake property and acquire anti-
gen-presentation capacities, increasing their secretion of cyto-
kines, up-regulating the expression of costimulatory and MHC
molecules, and allowing the presentation of processed antigens to
the few antigen-specific, naïve CD4! or CD8! T cells present in
the dLNs (reviewed in ref. [6]). In contrast, during steady state,
DCs will induce tolerance to the presented antigen. There exist
two main subsets of DCs in humans and mice, classified as cDCs
and pDCs (for more details, see refs. [7, 8]). Here, we will briefly
review how neutrophils contribute to the regulation of DC re-
cruitment and activation at the site of infection and in the dLNs
and discuss the various factors determining whether neutrophils
contribute to DC activation or inhibition, a decision that will have
a major impact on the developing T cell immune response.

NEUTROPHILS CONTRIBUTE TO DC
MIGRATION TO SITES OF INFECTION
AND INFLAMMATION

It has been known for more than one decade that human and
mouse neutrophils exposed in vitro to microorganisms (or
parts of them) are able to secrete chemokines that contribute
to leukocyte accumulation [9]. Human neutrophils found at
sites of inflammation were shown to change their chemokine
expression pattern, suggesting a role for neutrophil-secreted
chemokines in leukocyte recruitment [10]. During neutrophil

1. Correspondence: Dept. of Biochemistry, WHO Immunology Research and
Training Center, University of Lausanne, Boveresses 155, 1066 Epalinges,
Switzerland. E-mail: fabienne.tacchini-cottier@unil.ch

Abbreviations: BCG"Bacillus Calmette-Guérin, cDC"classical DC, DC-
SIGN"DC-specific ICAM-3-grabbing nonintegrin, dLN"draining LN,
HMGB1"high-mobility group protein B1, iDC"immature DC, Mac-1"mac-
rophage antigen-1, Mo-DC"monocyte-derived DC, MRSA"methicillin-re-
sistant Staphylococcus aureus, NET"neutrophil extracellular trap,
pDC"plasmacytoid DC
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degranulation, alarmins are also released [11]. Alarmins con-
tribute to the chemoattraction of iDCs, either by a direct ac-
tion (!-defensins or the alarmin-like HMGB1) or indirectly
through their induction of CCL3 and CCL5 release, two
chemokines involved in the recruitment of iDCs. In addition,
neutrophils release proteases, such as cathepsin G and elas-
tase, that can process inactive, nonclassical chemokines, such
as prochemerin, into chemoattractive molecules [12].

Exposure to protozoan parasites, such as Toxoplasma gondii, trig-
gers the neutrophil release of CCL3, CCL4, CCL5, and CCL20
iDC-attracting chemokines, and supernatants of T. gondii
tachyzoite-exposed neutrophils were shown to attract immature
cDCs in vitro [13]. We reported that exposure to Leishmania ma-
jor, another protozoan parasite, induced the release of CCL3 by
neutrophils of a L. major-resistant mouse strain, whereas only very
low levels of this chemokine were released by neutrophils of a L.
major-susceptible mouse strain. We then showed that following L.
major inoculation, neutrophil-derived CCL3 is a chemokine essen-
tial for the recruitment of Mo-DCs to the site of infection. Deple-
tion of neutrophils using the mAb NIMP-R14, specific for Ly6G,
abolished recruitment of this DC subset to the site of infection.
Furthermore, L. major-infected CCL3!/! mice, adoptively recon-
stituted with WT neutrophils, were able to chemoattract DCs to
the site of parasite inoculation, demonstrating that neutrophil-
derived CCL3 is contributing to the early DC recruitment follow-
ing L. major infection [14]. Neutrophils from MRSA-resistant or
MRSA-susceptible mice secreted distinct DC-attracting chemo-
kines, with the selective release of CCL3 by neutrophils from
MRSA-resistant mice, but DC migration was not tested in this in
vitro study [15]. Mycobacteria were also reported to induce the
release of DC-attracting chemokines by neutrophils, and deple-
tion of neutrophils in infected mice delayed DC migration to the
dLNs. Interestingly, ingestion of Mycobacterium tuberculosis by neu-
trophils influenced DC migration: DCs that acquired M. tuberculo-
sis, through the ingestion of infected neutrophils, migrated better
to dLNs than DCs that acquired the bacteria directly [16]. Collec-
tively, these studies reveal an important role for neutrophils in
promoting DC migration during infection, a property that may
vary depending on the host or/and the type of pathogen.

CONDITIONS WHERE NEUTROPHILS
INDUCE DC ACTIVATION

Neutrophils can contribute to the mobilization of DCs to sites of
infection; thus, an obvious question is to determine how the colocal-
ization of neutrophils and DCs can modulate DC activation. Most of
the studies describing neutrophil-induced DC activation were per-
formed in vitro, with a few exceptions. To evaluate the impact of
neutrophils on DC activation, it is essential to consider the neutro-
phil status, determining if they are alive or if they are dying, and in
that case, which type of cell death (apoptosis, necrosis, NETosis)
they are undergoing, as this will critically influence the neutrophil
impact on DC activation. Ingestion of apoptotic cells by DCs mostly
impairs DC activation, leading to tolerance [17]. In contrast, live
neutrophils may activate DCs. GM-CSF-activated, live human neutro-
phils were shown to induce cDC activation in vitro by contact-depen-
dent and -independent, undefined mechanisms [18]. In addition, in
response to several pathogens, neutrophils can release DC-maturing

cytokines, such as TNF-!. Pioneer work from Denkers and coworkers
[13, 19] demonstrated that T. gondii-exposed mouse neutrophil su-
pernatants induced cDC maturation in vitro, as defined by the up-
regulation of costimulatory markers on DCs and their release of
TNF-!. The exact impact of neutrophil-derived chemokines on DC
activation in vivo remains to be determined using a system that selec-
tively depletes neutrophils. A role in the activation of cDCs was also
reported for BCG-infected neutrophils. Contact-dependent DC acti-
vation was characterized by the release of IL-12 by mouse cDCs and
by the secretion of decreased levels of IL-10 in human DCs com-
pared with cDCs exposed to BCG alone [20]. Similarly, live human
neutrophils infected with M. tuberculosis were shown to activate cDCs
[21]. However, as discussed below, the impact of neutrophils on DC
activation during this infection is still not clear and may also delay
the onset of the immune response. Activated human neutrophils
were shown to induce the maturation of human Mo-DCs by cell-cell,
contact-dependent mechanisms, where CD11b (CD11b/CD18,
Mac-1) on neutrophils interacts with DC-SIGN, inducing the secre-
tion of TNF-!. Interestingly, interactions of neutrophils and DCs
were visualized in colonic mucosa of patients with Crohn’s disease,
suggesting that interactions between neutrophils and DCs could oc-
cur in vivo; however, DC activation by neutrophils was not investi-
gated in that study [22]. Mouse neutrophils exposed in vitro to
Aspergillus germ tubes induced the activation of cDCs, also by a con-
tact-dependent mechanism involving DC-SIGN on DCs [23]. Con-
tact-dependent activation of DCs by human neutrophils was also re-
ported in response to LPS and IL-2 or IL-15/18 stimulation; neutro-
phils were shown to potentiate the activity of 6-sulfo LacNAc
(SLAN)" DCs, a subset of DCs present only in humans. Activation
was also contact-dependent but involved CD18/ICAM-1 interactions.
In this system, neutrophil-activated DCs released IL-12p70, which
induced the secretion of IFN-" by NK cells, potentiating DC-neutro-
phil interaction and contributing to the launching of the adaptive
immune response [24].

Upon degranulation, neutrophils release numerous granule
components that can also influence DC maturation. In addition
to cytokines, such as TNF-!, they release alarmins that can acti-
vate nearby cells, including DCs [25]. Among alarmins, !-de-
fensins, cathelicidins, lactoferrin, as well as HMGB1, which has
alarmin-like properties, have been reported, in most cases, to in-
duce the activation of pDCs, directly or indirectly through their
presence in NETs. Monocytes that are differentiated into DCs in
the presence of the human cathelicidin LL-37 showed increased
activation by LPS [26], whereas LL-37 added at the same time as
LPS decreased activation of Mo-DCs [27], showing distinct immu-
nomodulation roles by neutrophils. The presence of LL-37 on
NETs was described recently to activate pDCs, a subset of DCs
specialized in sensing nucleic acid danger signals, and which
upon activation, secretes large amounts of IFN-!. NETs are com-
posed of neutrophil DNA and a range of antibacterial proteins.
The formation of NETs helps to contain and eliminate pathogens
[28]. Gilliet and coworkers [29] presented recent data, demonstrat-
ing that activation of pDCs by NETs contributes to the pathogenesis
of systemic lupus erythematosus, an autoimmune disease. Activation
of pDCs by NETs resulted in the secretion of TNF-!, IL-6, and
IFN-!, a TLR9-mediated process that involved the neutrophil gran-
ule peptides LL-37 and the human neutrophil peptide [30]. In pso-
riasis, secretory leukocyte proteinase inhibitor, another component

2 Journal of Leukocyte Biology Volume 93, February 2013 www.jleukbio.org



  Other contributions 
	
  

	
   141	
  

 

 

of NETs, was also shown to stimulate pDCs in a TLR9-dependent
manner [31]. These studies demonstrate that NETs can modulate
the immune response through the activation of pDCs.

Collectively, these studies convincingly show that neutrophils
have the potential to activate DCs in vitro. However, more
studies performed in humans and mice will need to be con-
ducted to determine the in vivo conditions where neutrophils
activate DCs, if this activation is restricted to specific DC sub-
sets, and to define how these interactions impact the develop-
ment of the adaptive immune response.

CONDITIONS WHERE NEUTROPHILS CAN
PREVENT DC ACTIVATION

In contrast to their DC-activating role discussed above, in some
circumstances, neutrophils can prevent DC activation. Phagocyto-
sis of apoptotic cells (efferocytosis) leads to the resolution of in-
flammation [32]. Internalization of apoptotic neutrophils (con-
taining or not microorganisms or their antigens) by DCs may also
lead to the prevention of DC activation. In this line, the uptake
of apoptotic or necrotic neutrophils was shown to inhibit the in-
duction of costimulatory molecules on DCs, affecting T cell re-
sponses [33]. On the contrary, the presence of high numbers of
apoptotic neutrophils has been reported to induce DC matura-
tion [34], and DCs can acquire antigens through the phagocyto-
sis of microorganism-containing apoptotic neutrophils. Delaying
neutrophil apoptosis will thus have a direct effect on the availabil-
ity of antigens for DCs and the development of the adaptive im-
mune response. In this line, phagocytosis of M. tuberculosis by
neutrophils was shown to inhibit neutrophil apoptosis, limiting
antigen uptake by DCs, a process delaying the onset of the im-
mune response [35]. The parasite L. major has also been shown
to delay neutrophil apoptosis in vitro [36]; however, it remains
controversial whether this also occurs in vivo. In contrast, inges-
tion of L. major by neutrophils in parasite-inoculated mice was
shown to increase neutrophil apoptosis compared with neutro-
phils that did not engulf parasites. This favored the capture of
apoptotic neutrophils by DCs, preventing the activation of in-
fected DCs in the skin [37]. Collectively, accumulating data sug-
gest that the effect of apoptotic neutrophils on DC maturation
may vary and be context-dependent.

Neutrophils can also release cell surface-derived vesicles, called
ectosomes, that expose phosphatidyl serine on their surface, an
“eat me” signal for DCs. Ectosomes can prevent the LPS-induced
maturation of Mo-DCs in vitro. Indeed, human neutrophil ecto-
somes modified the phagocytic properties of Mo-DCs and im-
paired the expression of costimulatory molecules and the secre-
tion of cytokines, including TNF-! and IL-12, whereas they in-
creased the release of TGF-", an anti-inflammatory cytokine [38].
These data suggest that neutrophil ectosomes can induce DC tol-
erance in vitro; however, these findings still need to be con-
firmed in vitro and in vivo. Upon neutrophil degranulation, the
release of elastase was also shown to down-modulate DC activa-
tion, inducing DC secretion of TGF-" [39].

Neutrophils can migrate rapidly and transiently to dLNs. The
presence of neutrophils in the dLNs may also influence DC activa-
tion, a process that is just beginning to be investigated. Following
injection of protein antigens in adjuvants, neutrophils that rapidly

migrated to dLNs made brief contact with DCs. Interestingly the
brief presence of neutrophils in the dLNs had a major negative im-
pact on the development of CD4! T cell priming. This negative ef-
fect appeared to occur only with the first wave of neutrophils that
reaches the dLNs, during the first days after injection [40]. Of note,
neutrophils also transiently migrated to the dLNs following inocula-
tion with L. major, and depletion of neutrophils during the first days
of infection resulted in a major change in the development of the T
cell immune response, whereas depletion of neutrophils occurring
at a later time did not have an effect [41]. It will be interesting to
characterize in more details the importance of the early migration of
neutrophils to the dLNs in several models of infection and to better
characterize the type of DC involved in the impaired activation and
if the direct effect on T cells may also contribute to the neutrophil
inhibitory impact. The knowledge gained could have important im-
plications in vaccination.

CONCLUDING REMARKS

As discussed in this review, neutrophils are capable of recruiting
iDCs and can activate or inhibit DCs (Fig. 1). However, when
examining the increasing data reported on the crosstalk between
neutrophils and DCs, some caution must be exerted. First, one
needs to consider the differences that exist between human and
mouse neutrophils. Neutrophil numbers differ significantly be-
tween the two species: they comprise 50–70% of leukocytes of
peripheral blood in humans and only 10–25% in that of mice
[42]. Moreover, human and mouse neutrophils also differ quali-
tatively in the factors they release with a direct impact on DCs.
For instance, as presented by Cassatella and coworkers [43], the
IL-10 cytokine is secreted by mouse- but not by human-activated
neutrophils. In addition, !-defensins are present selectively in
human but not mouse neutrophils [44, 45]. Some of the mecha-
nisms of neutrophil-DC crosstalk may thus differ between hu-
mans and mice. Secondly, most findings concerning neutrophils
have been obtained in vitro and still need to be confirmed in
vivo. The majority of mouse studies has been performed using
neutrophil-depleting mAb. The mAb RB6-8C5 was widely used to
deplete neutrophils, but it recognizes not only the molecule
Ly6G present on neutrophils but also Ly6C, a molecule also pres-
ent on other cell types, such as pDCs and monocytes. The two
other mAb available to deplete neutrophils are the 1A8, an IgG2a
mAb [46], and the NIMP-R14, an IgG2b mAb [47], which recog-
nize Ly6G selectively. However, injection of the 1A8 mAb leads to
incomplete depletion of neutrophils in vivo, and relatively high
doses of mAb are needed. The NIMP-R14 mAb has a better effi-
ciency in neutrophil depletion in vivo; however, the exact epitope
recognized by this mAb is not well defined [48]. As reported dur-
ing the meeting by Nigrovic and colleagues [49], injection of
small amounts of the 1A8 mAb was shown to block neutrophil
recruitment, and the antibody decreases the expression and func-
tion of "2 integrins, an effect that will need to be taken into ac-
count when using antibodies directed against Ly6G. Methods of
neutrophil depletion that do not rely on the use of antibodies
are therefore needed to exclude potential artifacts as a result of
antibody presence and possible indirect effects not related to the
absence of neutrophils. The newly described neutropenic Geni-
sta mice offer an interesting model to study the role of neutro-
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phils. These mice have neutropenia, resulting from a point
mutation in the transcriptional repressor growth factor inde-
pendence 1, which causes a block in terminal granulopoiesis
[4, 50]. Genista mice do not have mature neutrophils, but they
have a small number of atypical CD11b! Ly6Gint neutrophils.
The availability of new tools together with new advances in
imaging will improve the study of the immunoregulatory role
of neutrophils in vivo and should allow a better characteriza-
tion of the importance of DC-neutrophil crosstalk in different
diseases.
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