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Summary  

Background and purpose 

APETx2, a toxin from the sea anemone Anthropleura elegantissima inhibits acid-sensing ion 

channel 3 (ASIC3)-containing homo- and heterotrimeric channels with IC50 values < 100 nM 

and 0.1-2 µM, respectively. ASIC3 has been shown to mediate acute acid-induced and 

inflammatory pain response, and several animal studies relied on APETx2 as a selective 

pharmacological tool. Toxins from sea anemone have been shown to modulate voltage-gated 

Na+ channel (Nav) function. The aim of this study was to test whether APETx2 affects Nav 

function in sensory neurons. 

Experimental approach 

The effect of APETx2 on Nav function was studied in rat dorsal root ganglion (DRG) neurons 

by whole-cell patch-clamp. 

Key results 

APETx2 inhibited the tetrodotoxin (TTX)-resistant Nav1.8 currents of DRG neurons with an 

IC50 of 2.6 µM. TTX-sensitive currents were inhibited to a smaller extent. The inhibition of 

Nav1.8 currents is due to a rightward shift in the voltage dependence of activation, and a 

reduction of the maximal macroscopic conductance. The inhibition of Nav1.8 by APETx2 was 

confirmed on the cloned channel expressed in Xenopus oocytes. In current-clamp experiments 

in DRG neurons the number of action potentials induced by injection of a current ramp was 

reduced by APETx2.  

Conclusions and implications 

APETx2 inhibits in addition to ASIC3 Nav1.8 channels at concentrations used in in vivo 

studies. The limited specificity of this toxin should be taken into account when using APETx2 

as a pharmacological tool. Its dual action will be an advantage for the use of APETx2 or its 

derivatives as analgesic drugs.  
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Introduction 

Voltage-gated Na+ channels (Navs) mediate the initial upstroke of the action potential (AP) in 

excitable tissues. They are made of a large pore-forming Nav α subunit composed of four 

repeated domains each containing six transmembrane segments, and associated auxiliary β 

subunits (Catterall et al., 2005; Patino et al., 2010). Nine different Nav α subunits have been 

reported so far. They can be classified into two groups based on their sensitivity to the 

Japanese puffer fish toxin tetrodotoxin (TTX); TTX-sensitive (TTX-S: Nav1.1, -1.2, -1.3, -1.6 

and -1.7) and TTX-resistant (TTX-R: Nav1.5, -1.8 and -1.9) channels (Catterall et al., 2005).  

Nav1.1, -1.6, -1.7, -1.8 and -1.9 are the major isoforms present in the peripheral nervous 

system (Berta et al., 2008; Catterall et al., 2005). Differences between Nav α isoforms include 

their voltage dependence and their inactivation kinetics, with the TTX-R channels showing 

slower inactivation (Catterall et al., 2005). Changes in the expression and function of Navs 

occur in pathological situations such as peripheral nerve injury and contribute to altered pain 

sensing (rev. in (Dib-Hajj et al., 2010)). 

 

Acid-sensing ion channels (ASICs) are H+-gated Na+-permeable neuronal channels (Holzer, 

2009; Kellenberger, 2008; Wemmie et al., 2006). ASICs are expressed in neurons of the 

central and the peripheral nervous system (Krishtal, 2003; Wemmie et al., 2006). Functional 

ASICs are made of homo- or heterotrimeric assemblies of subunits arising from three 

different genes including two splice variants (ASIC1a, -1b, -2a, -2b and -3, (Gonzales et al., 

2009; Jasti et al., 2007; Wemmie et al., 2006)). ASIC subunits of the peripheral nervous 

system are frequently co-expressed with nociceptive markers in small diameter DRG neurons 

(Poirot et al., 2006; Wemmie et al., 2006). When activated by a pH drop to < pH 7, 

endogenous ASICs are able to induce APs in rodent neurons of the central and peripheral 

nervous system (Poirot et al., 2006; Vukicevic et al., 2004). Owing to their expression pattern 
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and functional responses, ASICs were proposed to be involved in acid-induced nociception in 

inflammatory conditions where the extracellular pH is decreased. Studies with knockout mice 

indicated a role for ASIC3 in inflammatory and acid-induced pain sensation (Chen et al., 

2002; Price et al., 2001; Sluka et al., 2003).  

 

The toxin APETx2 of the sea anemone Anthropleura elegantissima inhibits, as a purified 

native preparation (Diochot et al., 2004) or as recombinantly or synthetically produced 

peptide (Anangi et al., 2010; Jensen et al., 2009; Karczewski et al., 2010) homotrimeric 

ASIC3 with IC50 values < 100 nM.  In rat DRG neurons, ASIC3 is mainly present in 

heterotrimeric channels which require higher APETx2 concentrations for inhibition (IC50 0.1 

– 2 µM) or are APETx2-insensitive (Diochot et al., 2004). In vivo studies with rats have 

shown that both intrathecal and intraplantar administration of APETx2 at concentrations of 

0.02 – 20 µM prevents acid-induced, inflammatory and postoperative pain (Deval et al., 2011; 

Deval et al., 2008; Karczewski et al., 2010).  

 

Multiple sea anemone toxins are known to slow or inhibit Na+ channel inactivation by binding 

to receptor site 3. The location of the receptor site 3 on the extracellular side of 

transmembrane segment IVS4 suggests that these toxins slow inactivation by preventing the 

outward movement of the voltage sensor (Catterall et al., 2007; Rogers et al., 1996; Smith et 

al., 2007). The toxin APETx1 was shown to inhibit voltage-gated K+ channels (Kvs) (Diochot 

et al., 2003; Zhang et al., 2007). APETx2, which has a high sequence similarity with APETx1 

did not affect a number of different Kv channels at 300 nM, and showed partial inhibition of 

Kv3.4 only at 3 µM (Diochot et al., 2004).   
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The high concentrations of APETx2 that were likely reached in several animal studies 

prompted us to investigate a possible effect of APETx2 on sensory neuron Nav channels. We 

show in this study that APETx2 at 1 µM, a concentration used in animal and in in vitro 

studies to block endogenous ASIC3-like channels, substantially inhibits TTX-R Nav1.8 

currents and causes a small inhibition of TTX-S currents in rat DRG neurons. The inhibition 

of Nav1.8 is due to a rightward shift in the voltage dependence of activation and a reduction in 

the maximal macroscopic conductance. In current-clamp experiments APETx2 reduced the 

number of APs induced by current injection. Experiments with cloned Nav1.8 expressed in 

Xenopus oocytes confirm the inhibition of Nav currents by APETx2. The limited specificity of 

this toxin should be taken into account when using it as a pharmacological tool. For the use of 

APETx2 or derivatives as analgesic drugs this dual action would certainly be an advantage. 
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Methods 

DRG isolation and culture 

All experimental procedures were carried out according to the Swiss Federal Law on Animal 

Welfare and approved by the Committee on Animal Experimentation of the Canton de Vaud.  

Adult male Wistar rats (Charles River, France) were killed using CO2 and lumbar DRGs were 

removed bilaterally. The isolated DRGs were incubated at 37°C for 2 h in Neurobasal A 

medium (Invitrogen) containing type P collagenase (0.125%, Roche, Basel, Switzerland) and 

trypsinized (0.25%, Invitrogen) 30 min at 37°C in divalent-free PBS solution. Ganglia were 

then triturated with a disposable 1 ml plastic tip and plated on high molecular weight poly-

lysine (0.1 mg/ml, mol wt>300000, Sigma, Buchs, Switzerland) coated coverslips. Neurons 

were held at 37°C overnight and medium was replaced the following morning by L15 

Leibovitz medium (Invitrogen) supplemented with 10% fetal calf serum (FCS, GIBCO), 5 

mM HEPES and pH adjusted to 7.4 using NaOH. Neurons were kept at 4°C and used within 

24h of plating (Blair et al., 2002).    

 

Recombinant expression of ASIC3 

Chinese Hamster Ovary (CHO) cells were transfected with the rat ASIC3 cDNA clone in the 

pEAK8 expression vector and grown in DMEM/F12 (Invitrogen) medium supplemented with 

3.6% FCS and 1% Penicillin/Streptomycin (Invitrogen). Puromycin (10 µg/ml, PAA 

laboratories, Austria) was added to the culture medium to achieve stable selection of ASIC3 

expressing cells.  

 

Electrophysiology on mammalian cells 

Measurements were carried out with an EPC10 patch clamp amplifier (HEKA electronics, 

Lambrecht, Germany). Data acquisition was performed using HEKA’s Patchmaster software. 
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Voltage was not corrected for the liquid junction potential. The sampling interval was set to 

50 µs (20 kHz) and low-pass filtering to 5.0 kHz for all experiments except for ASIC3, Kv 

experiments, and the Nav use-dependence experiments, for which the sampling interval was 

100 µs (10 kHz) and the low pass filter was set to 3.0 kHz. Toxin was applied using the 

gravity driven MPRE8 perfusion system (Cell MicroControls, Norfolk, VA). Neurons were 

continuously perfused with either the control or the toxin-containing solution and voltage 

protocols were applied during steady-state toxin application. Pipettes were pulled from thin 

wall borosilicate glass and had resistances between 0.9 and 3 MΩ when filled with pipette 

solution. Series resistance compensation was set to 85-95% in all experiments. Voltage-clamp 

protocols were applied at a sweep frequency of 0.05 Hz (20 s pulse interval). The neuron 

diameter was estimated from the average of the longest and shortest axes as measured through 

an eyepiece micrometer scale. Only small diameter DRG neurons (<32 µm) were included in 

this study. Capacity transients were partially cancelled using the internal clamp circuitry. The 

remaining transients and leak were subtracted using the P/8 procedure from a holding 

potential of -80 mV.  

 

Solutions 

The external solution for CHO and current-clamp experiments was composed of (in mM) : 

140 NaCl, 4 KCl, 1 MgCl2, 2 CaCl2, 10 HEPES, 10 MES, 10 glucose and pH adjusted to 7.4 

or 6.0 with NaOH. The external solution for DRG voltage-clamp experiments was (in mM) : 

85 Choline-Cl, 20 TEA-Cl, 35 NaCl, 3 KCl, 1 MgCl2, 1 CaCl2, 0.1 CdCl2, 10 glucose, 10 

HEPES and pH was adjusted to 7.4 using TRIS. The pipette solution for measurements of 

ASIC3-expressing CHO cells was composed of (in mM) : 90 CsOH, 90 gluconic acid, 10 

NaCl, 10 KCl, 1 MgCl2, 60 HEPES, 10 EGTA and pH adjusted to 7.3 using CsOH. For 

whole-cell voltage-clamp experiments with DRG neurons we used the following pipette 
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solution: (in mM) : 70 CsGluconate, 70 CsCl, 3.5 NaCl, 2 MgCl2, 0.1 CaCl2, 1.1 EGTA, 10 

HEPES and pH adjusted to 7.3 with CsOH. Intracellular solution for current-clamp 

experiments contained (in mM): 140 KCl, 0.5 EGTA, 5 HEPES and 3 Mg-ATP adjusted to 

pH 7.3 with KOH. Prior to the experiment, 0.1% bovine serum albumin (fatty acid-free BSA, 

Sigma) was added to all external solutions. After establishment of the whole-cell 

configuration, neurons were allowed to equilibrate with the pipette solution for at least 5 min.  

 

Two-electrode voltage-clamp of Xenopus oocytes  

Xenopus laevis stage V-VI oocytes were removed and treated with collagenase (Sigma type I) 

for defolliculation. cRNA of human Nav 1.8 (Ekberg et al., 2006) was synthesized using an 

mMessage mMachine cRNA transcription kit (Ambion Inc., Austin, TX, USA) and injected at 

20-40 ng per oocyte. Oocytes were kept at 18°C in ND96 solution containing 96 mM NaCl, 2 

mM KCl, 1 mM CaCl2, 2 mM MgCl2, 5 mM HEPES, 5 mM pyruvic acid, 50 µg/ml 

gentamicin (pH 7.4), and fetal horse serum (2.5%). Currents were recorded 2–6 days after 

cRNA injection under voltage-clamp (Axoclamp 900A, Molecular Devices, CA, USA) using 

two standard glass microelectrodes (0.5–1 MΩ) filled with 3 M KCl solution. Stimulation, 

data acquisition (10 kHz sampling, 2 kHz low pass filter), and analysis were performed using 

pCLAMP software (Version 10, Molecular Devices, CA, USA). All experiments were 

performed at 20–21°C in ND96 solution containing 0.1% BSA.  

  

Toxin handling and preparation 

The synthetic APETx2 toxin from Smartox (La Tronche, France) or synthesized by a 

laboratory involved in the study (Jensen et al., 2009) was used. The lyophilized toxin was re-

suspended in deionized water (supplemented with 0.1% BSA). Aliquots were frozen at -20°C 

until use. APETx2 stock solution was diluted in 0.1 % BSA-containing bath solution prior to 
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the experiment. The results obtained with APETx2 from the different sources were not 

different from each other. Tetrodotoxin (TTX) from Latoxan (Valence, France) was stored as 

a 1 mM stock solution and diluted in the measuring solution containing 0.1 % BSA.  

 

Data Analysis and statistics 

Normalized concentration-inhibition curves were fitted using the Hill function: 

In=1/(1+(IC50/c)nH) where In is the inhibition, IC50 is the concentration of half-maximal 

inhibition, c the concentration of inhibitor and nH the Hill number. Voltage dependence of 

activation was obtained from conductance-voltage curves using a Boltzmann equation: 

G(V)=Gmax/(1+exp((V-V0.5)/k)) where G is the conductance, Gmax the maximal conductance, 

V the voltage, V0.5 the voltage of half-maximal activation and k the slope factor. Currents 

were converted to conductance at each voltage using the following equation: G(V)=I/(V-Vrev) 

where I is the current and Vrev the reversal potential obtained for each IV curve by linear 

interpolation. Kinetics of inactivation were obtained by fitting a single exponential to the 

falling phase of the current traces at each voltage: I(V)=Ip(V)*exp(-t/τinactivation(V)) with I the 

current, Ip the peak inward current, t the time and τinactivation the time constant of inactivation. 

Kinetics of recovery from inactivation were obtained by fitting the data to three exponential 

components: I=A0+Afast*exp(-t/τfast)+Amid*exp(-t/τmid)+Aslow*exp(-t/τslow), with Afast, Amid and 

Aslow the relative components amplitudes, A0 the initial amplitude, A0+Afast+Amid+Aslow=1 and 

τfast, τmid and τslow the different components time constants. Data analysis was performed using 

Heka’s Fitmaster and Origin 8.5 software (OriginLab, Northampton, MA, USA). Direct 

comparison between values from paired experiments were performed using paired Student's t-

test for comparison of two conditions, and with one-way repeated measures ANOVA 

followed by Fisher's post hoc test for comparison of three conditions. Stars indicate statistical 
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significance with: * (p<0.05), ** (p<0.01) and *** (p<0.001). Data are presented as mean ± 

SEM.  
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Results 

Inhibition of ASIC3 by APETx2 

In order to validate the synthetic toxin, the inhibition of ASIC3 by synthetic APETx2 was 

measured using whole-cell voltage-clamp from CHO cells expressing homotrimeric rat 

ASIC3. Typical traces of ASIC3 currents in the absence and presence of 500 nM APETx2 are 

shown in Fig. 1A, and the concentration dependence of ASIC3 inhibition by APETx2 is 

plotted in Fig. 1B. The IC50 value obtained from a Hill fit (see Methods) was 87 ± 9 nM 

(n=9), which is close to published values (Anangi et al., 2010; Diochot et al., 2004; Jensen et 

al., 2009; Karczewski et al., 2010).  

 

Inhibition of DRG neuron voltage-gated Na+ currents by APETx2 

In whole-cell voltage-clamp experiments on acutely dissociated rat DRG neurons 1 µM 

APETx2 reversible inhibited the Nav inward current. A typical experiment is illustrated in 

Fig. 2, showing current traces of an activation curve from a neuron under different conditions. 

Panel i shows the Nav current without any inhibitor, panel ii the Nav current in the presence of 

1 µM APETx2, and panel iii represents the difference of the two, thus the total APETx2-

sensitive current. APETx2 washout was rapid and complete in < 20 s. Panels iv-vi show, from 

the same cell, traces measured in the presence of 300 nM TTX in order to leave only the 

TTX-R current, without (panel v) or with (panel vi) 1 µM APETx2. Panel vi shows the 

difference, thus the APETx2-sensitive component of the TTX-R current. The traces shown in 

the lowest row were obtained by subtraction of the traces of the middle row from the 

correspondent traces of the top row, yielding the TTX-S component without (panel vii) or 

with APETx2 (panel viii). In order to quantify the inhibition of TTX-S currents by APETx2, 

the TTX-R, APETx2-sensitive current (panel vi) was subtracted from the total APETx2-

sensitive current (panel iii) yielding the TTX-S APETx2-sensitive current (panel ix). This 
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analysis allowed calculation of the current inhibition of the two Nav current components, 

indicating that 1 µM APETx2 inhibited 21 ± 6 % of the TTX-S and  42 ± 5 % of the TTX-R 

Nav peak current amplitude (measured at -20 and 0 mV, respectively, n = 4).  

 

It has previously been shown that Nav1.8 has slower inactivation kinetics than TTX-S Navs, 

and that Nav1.9 currents inactivate so slowly that they appear as almost non-inactivating 

during the 100 ms of the depolarizing pulse (Cummins et al., 1999). In our experimental 

conditions we did not see a Nav1.9-like current (Fig. 2, panel iv), likely because in these 

conditions Nav1.9, which requires a very negative holding potential for activity, was mostly 

inactivated (Cummins et al., 1999; Renganathan et al., 2002). The TTX-R APETx2-sensitive 

component therefore corresponds mostly to Nav1.8 current. Since APETx2 showed strongest 

inhibition of this Nav current component we focused the remainder of this study on Nav1.8 

current inhibition by APETx2. 

  

Inhibition of Nav1.8 currents of rat DRG neurons by APETx2 

To isolate the Nav1.8-mediated currents we used the protocol shown in the upper panel of Fig. 

3A. In the typical experiment illustrated in the lower panel of Fig. 3A, 1 µM APETx2 

inhibited ~45% of the peak Nav1.8 inward current at 0 mV. The current-voltage curve of this 

experiment is shown in Fig. 3B. The activation conductance-voltage curve of the Nav1.8 

current in the absence (control and washout) or presence of 1 µM APETx2 is shown in Fig. 

3C, with the lines representing a fit to the Boltzmann equation (see Methods). Application of 

1 µM APETx2 shifted the voltage of half-maximal activation, V0.5 from 3.1 ± 0.8 to 6.0 ± 1.0 

mV (p=0.004), increased the slope factor k from 7.2 ± 0.4 to 8.6 ± 0.4 (p<10-5) and reduced 

Gmax by 31.4 ± 2.5 % (p<10-5; see Table 1, n=9). Toxin washout led to functional parameters 

close to control conditions (Fig. 3C, Table 1).  
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The voltage dependence of steady-state inactivation (SSIN) was measured using the protocol 

shown in the left panel of Fig. 3D. The normalized test current amplitude is plotted as a 

function of the conditioning voltage in the right panel of Fig. 3D, with the lines representing a 

fit to the Boltzmann equation. APETx2 at 1 µM reduced the normalized current amplitude 

measured at 0 mV by 44.8 ± 1.7 % (p<10-5), shifted the voltage of half-maximal inactivation, 

V0.5IN from -27.5 ± 1.1 to -24.9 ± 1.0 mV (p<10-5), and increased the slope factor from 4.7 ± 

0.2 to 5.7 ± 0.3 mV (p=0.002; see Table 1, n=12). Washout led to functional parameters 

similar to those obtained in control conditions before toxin application (Fig. 3D, Table 1). 

Taken together, these data show that APETx2 induces a small shift in Nav1.8 voltage 

dependence of activation and inactivation to more depolarized values, decreases Gmax and 

increases the slope factor k. These effects are readily reversible. 

 

The concentration dependence of Nav1.8 peak current inhibition by APETx2 is illustrated by 

traces of a representative experiment in Fig. 4A, and the current inhibition is plotted as a 

function of the toxin concentration in Fig. 4B.  In these experiments the Nav1.8 current was 

again isolated by the presence of 300 nM TTX. Under the assumption that at sufficiently high 

toxin concentration inhibition is complete, the IC50 is 2.6 ± 0.3 µM at 0 mV (Figure 4B, n=3-

11). Figure 4C illustrates the inhibition of Nav1.8 currents at high APETx2 concentration (20 

µM) at different voltages. The kinetics of APETx2 binding and unbinding were measured by 

eliciting Nav1.8 current responses by 50-ms depolarizations at different times after the start of 

1 µM APETx2 perfusion (binding) and after the start of the washout of APETx2 (unbinding), 

as presented in Fig. 4D. The rate constant of unbinding, koff was 0.29 ± 0.04 s-1 (n=5). The 

observed rate constant of APETx2 binding was 0.67 ± 0.04 s-1 (n=6) at 1 µM, corresponding 
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to an association rate constant of 3.8 * 105 M-1 s-1 after correction for the contribution of the 

koff to the observed kinetics of block.  

To determine whether inhibition was use-dependent, Nav1.8 currents were elicited by 

depolarizations to +20 mV at different frequencies in the absence or presence of 1 µM 

APETx2. To correct for drug-independent inactivation with increasing stimulation frequency, 

responses in the presence of 1 µM APETx2 were normalized to the responses obtained at the 

same frequency in the absence of APETx2. Figure S1 shows representative traces, and plots 

the normalized inhibition as a function of the pulse number at different frequencies, 

demonstrating that the inhibition is not use-dependent. 

 

APETx2 modulates the inactivation time course of Nav1.8 channels in rat DRG neurons 

Exposure to APETx2 induced a slowing of the open-channel inactivation, as illustrated in Fig. 

5A at pulse potentials of 0 mV (left panel) and +20 mV (right panel). APETx2 at 1 µM 

increased the time constant of open channel inactivation from 6.9 ± 0.5 to 14 ± 1.1 ms at 0 

mV (n=23, p<10-8) and from 1.9 ± 0.1 to 5.1 ± 0.5 at +20 mV (n=20, p<10-5, Fig. 5B).   

 

Recovery from inactivation was studied using a standard two-pulse protocol (Fig. 5C top 

panel). Two 100 ms depolarizations to +20 mV were separated by an increasing interval Δt at 

-80 mV. The peak current amplitude elicited by the second depolarization normalized to that 

of the first depolarization is plotted as a function of the interval Δt in Fig. 5C. Three 

exponential components were required to fit the recovery time course (see Methods). While 

the slow component was not affected by the toxin, the fast and intermediate components were 

altered in the presence of 1 µM APETx2 leading to a slight acceleration of the initial phase of 

recovery.  
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Inhibition of recombinant Nav1.8 by APETx2 

To confirm the inhibition of Nav1.8 on the cloned channel, we applied the toxin to Xenopus 

oocytes expressing human Nav1.8. Figure 6A shows traces of currents elicited by 

depolarization from -80 to 0 mV in the presence of the indicated concentrations of APETx2, 

from a typical experiment. Figure 6B plots the concentration dependence of the inhibition by 

APETx2. At 30 µM, the highest concentration used, inhibition was 60 ± 2 % (n=6). Although 

the curve appears to saturate at a maximal inhibition of slightly more than 60 %, it is equally 

possible that at higher concentrations inhibition would be complete. In Fig. 6B, the black 

solid line represents the fit of the data to the Hill equation, yielding an IC50 of 6.6 ± 0.5 µM 

and a maximal inhibition of 65 ± 2%, and the red line is from a fit in which maximal 

inhibition was set to 100 %, yielding an IC50 of 18.7 ± 1.4 µM (n=4). The observed IC50 is 

therefore 3-7-fold higher than the value obtained from DRG neurons.  The current-voltage 

curve in the absence and presence of 30 µM APETx2 is plotted in Fig. 6C. APETx2 at 30 µM 

shifted the V0.5 of activation from 17.1 ± 1.3 mV to 26.6 ± 1.6 mV (Fig. 6D, n=8, p=0.003). 

Due to significant time-dependent increase in amplitude the inhibition of Gmax by APETx2 

could not be quantitatively assessed (Fig. 6D). In conclusion, the oocyte experiments confirm 

the current inhibition and the change in voltage dependence of activation of Nav1.8 by 

APETx2.  

 

APETx2 modulates neuronal activity in rat DRG neurons 

Neurons were held in whole-cell current-clamp close to -60 mV. Only cells with resting 

membrane potentials ≤ -60 mV were included in the experiments. A 100-ms current ramp 

from 0 to 1 nA was injected to induce APs, as illustrated in Fig. 6A. Under these conditions 1 

µM APETx2 reversibly reduced the number of APs from 2.38 ± 0.43 to 1.23 ± 0.38 (n=13, 

p<10-6; Fig. 6B).  
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In order to assess a possible effect of APETx2 on Kv channels of DRG neurons, the protocol 

shown in panel 6C was applied using a KCl-based pipette solution. The Kv activation curve is 

shown in Fig. 6D. APETx2 at 1 µM did not significantly shift V0.5 (n=5, p=0.16) and there 

was no evidence for a change in Gmax in the presence of APETx2. 	  
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Discussion and Conclusions 

In the present study we show that the toxin APETx2 of the sea anemone Anthropleura 

elegantissima, currently known as a selective ASIC3 inhibitor, in addition inhibits Nav 

currents in rat DRG neurons at concentrations that are used for inhibition of heterotrimeric 

ASIC3-containing channels. At 1 µM the APETx2 inhibition of the TTX-R Nav1.8 current is 

stronger than that of TTX-S currents. The current inhibition is due to a small positive shift in 

the voltage dependence of activation and a decrease in the maximal conductance. We show 

with current-clamp experiments that the Nav inhibition by APETx2 translates into a decrease 

in neuronal excitability.  

 

Inhibition of voltage-gated Na+ channels by APETx2 

We observed a concentration-dependent inhibition of the Nav currents in rat DRG neurons. 

Pharmacological distinction into TTX-S and TTX-R currents showed, at 1 µM APETx2, 21 % 

inhibition of the TTX-S and 42 % inhibition of the TTX-R component. Under the 

experimental conditions chosen the Nav1.9 channels were largely inactivated. Therefore the 

observed TTX-R current is mostly mediated by Nav1.8.  

 

The observed inhibition of Nav1.8 currents by APETx2 is in part due to a small shift in the 

voltage dependence of activation towards more depolarized values. In addition, the maximal 

conductance measured at +40 mV was reduced by APETx2. Comparison of the voltage-

conductance curves (Fig. 3C) shows that the inhibition is maximal in the voltage range 

around -10 to +10 mV and becomes smaller at more positive pulse potentials. From our data 

there is no evidence for voltage dependence in the binding of the toxin. Since the current 

inhibition was rapid when the toxin was applied at negative potentials, we conclude that 

APETx2 readily binds to Nav1.8 in the closed state. 
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The positive shift in V0.5 by APETx2 was observed with endogenous and recombinant 

Nav1.8, while a significant change in Gmax could only be shown for the endogenous Nav1.8 

current of DRG neurons. In spite of these differences, APETx2 inhibited significantly the 

Nav1.8 current in the different experimental conditions.  In addition to the observed reduction 

of the current amplitude, APETx2 had three effects on inactivation, a slowing of the kinetics 

of inactivation, a positive shift in the voltage dependence of SSIN, and an increase in the 

relative amplitude of the fastest component of recovery from inactivation. These effects 

suggest that APETx2 destabilizes the inactivated state.  

  

Comparison with other sea anemone toxins acting on voltage-gated Na+ channels 

Most peptide toxins from sea anemones belong to either of two main classes, Nav toxins or Kv 

toxins (Beress et al., 1975; Honma et al., 2006). On Nav, sea anemone toxins bind to site 3 

and prolong the open state of the channels, resulting in a slowing of the macroscopic current 

inactivation (Catterall et al., 2007; Rogers et al., 1996; Smith et al., 2007). Most of these 

toxins also increase the Nav peak current amplitude. Several recently identified sea anemone 

peptide toxins do not fall into either of the two main categories and constitute a new family 

(Honma et al., 2006; Shiomi, 2009). These include toxins acting on K+ channels (BDS-I, 

BDS-II, APETx1), a toxin likely inhibiting Navs (BcIV, (Oliveira et al., 2006)), a toxin with 

no known target (Am II), as well as APETx2 (rev. in (Shiomi, 2009). The phylogenetic tree in 

supplemental Fig. S2A shows the relatedness of different sea anemone toxins, illustrating that 

the recently identified toxins are different from the two established classes. Comparison of the 

primary sequence between APETx2 and the sea anemone Nav toxins shows low similarity, 

although five of the six conserved cys residues are also conserved in APETx2 (Supplemental 

Fig. S2B). Several residues in the sea anemone Nav toxins that were shown to be critical for 

their function (rev. in (Bosmans et al., 2007; Honma et al., 2006; Smith et al., 2007)) are not 
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conserved in APETx2.  It is interesting to note in this context that certain scorpion toxins 

compete with sea anemone toxins for binding to site 3, although these two classes of toxins 

are unrelated on the level of the primary sequence and the 3D structure. Solution structures of 

several Nav-targeting sea anemone toxins and of APETx1 and APETx2 are available. The 

basic fold of APETx2 consists of a disulfide-bonded core containing a four-stranded β-sheet 

(Chagot et al., 2005). Despite conservation of this fold between the Nav-targeting class of sea 

anemone toxins and APETx2, the 3D structures are quite different.  

The comparison with Nav-targeting sea anemone toxins thus shows that APETx2 slows 

inactivation, as do other sea anemone toxins, but is clearly distinct with regard to its amino 

acid sequence and 3D structure and its ability to decrease rather than increase the Nav current 

amplitude.  

 

Inhibition of ASIC3 and Nav1.8 in sensory neurons  

In DRG neurons APETx2 showed a concentration-dependent inhibition of ASIC3-like 

currents with an IC50 of ~200 nM; the inhibition was however incomplete, leaving at 3 µM 

APETx2 51% of the control ASIC3-like current amplitude (Diochot et al., 2004). The ASIC3-

like current in the cited study was likely mediated at least in part by ASIC3-containing 

heteromers. In the present study, APETx2 inhibited Nav1.8-like current with an IC50 of 

~2.6 µM in rat DRG neurons, leading to 20-50% inhibition of Nav1.8 current in the 

concentration range 0.2 – 3 µM.   

 

APETx2 has been used as an ASIC3-selective inhibitor in several in vivo studies on rats to 

confirm the role of ASIC3 as sensor in acid-induced, inflammatory and postoperative pain 

(Deval et al., 2011; Deval et al., 2008; Karczewski et al., 2010). In these studies APETx2 was 

applied locally or intrathecally, at concentrations between 0.022 and 20 µM.  While the 
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effective concentrations in in vivo studies are difficult to estimate, it is expected that at the 

higher concentrations injected, micromolar concentrations of APETx2 were reached locally,   

sufficient for partial Nav1.8 inhibition.  

 

Nav1.8 is a sensory neuron-specific voltage-gated Na+ channel (Akopian et al., 1996) that, 

owing to its depolarizing gating properties, is an important carrier of current during the action 

potential upstroke (Blair et al., 2002; Renganathan et al., 2001). Multiple inflammatory 

modulators are able to affect Nav1.8 expression and function. Studies with Nav1.8 knockout 

mice have suggested an important role for Nav1.8 in inflammatory conditions (rev. in (Dib-

Hajj et al., 2010)). Furthermore, several studies have demonstrated the analgesic efficacy of 

both centrally and peripherally administered Nav1.8 inhibitors (Ekberg et al., 2006; Jarvis et 

al., 2007). 

Thus, in the studies in which micromolar concentrations of APETx2 were injected, it is likely 

that a part of the observed analgesic effect of APETx2 was due to its inhibition of Nav1.8 

currents. There is evidence for a role of ASIC3 in pain sensing from studies with knockout 

mice (Price et al., 2001; Sluka et al., 2003), supporting the conclusion that likely a part of the 

observed effect of APETx2 on the acute acid-induced and inflammatory response is due to 

ASIC3 blockade. In addition, the two studies using higher APETx2 concentrations showed in 

separate experiments with si-RNA evidence for a role of ASIC3 in inflammation- and wound-

induced pain (Deval et al., 2011; Deval et al., 2008).  

 

Conclusions 

The observation that APETx2 inhibits Nav in addition to ASIC3 currents needs to be 

considered when using APETx2 as a pharmacological tool. ASICs and sensory neuron-

specific voltage-gated Na+ channels are potential drug targets of high interest. In the light of 
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the findings reported here, APETx2 might be a basis for the development of more potent 

Nav1.8 and/or ASIC3 inhibitors. Currently, several nervous system drugs act on more than 

one target, as e.g. some anti-epileptic drugs. The fact that APETx2 targets two players in pain 

sensation could certainly be an advantage for the use of APETx2 or its derivates as analgesic 

drugs.  

 

  



23 

Acknowledgments 

 

We thank Jonas Jensen for providing APETx2 toxin and Richard Lewis for access to the 

hNav1.8 clone.  We thank Todd Scheuer, Marc Suter, Gaetano Bonifacio, Aurélien Boillat, 

Cédric Laedermann and Miguel Van Bemmelen for comments on a previous version of the 

manuscript. 

 

This work was supported by the Swiss National Science Foundation (Grant 31003-‐135542) 

to S.K and National Health & Medical Research Council of Australia (Grant ID 511067) to 

L.D.R.. 

 

 



24 

References 

 

 

Akopian, AN, Sivilotti, L, Wood, JN (1996) A tetrodotoxin-resistant voltage-gated sodium 

channel expressed by sensory neurons. Nature 379(6562): 257-262. 

 

Anangi, R, Chen, CC, Lin, YW, Cheng, YR, Cheng, CH, Chen, YC, et al. (2010) Expression 

in Pichia pastoris and characterization of APETx2, a specific inhibitor of acid sensing ion 

channel 3. Toxicon 56(8): 1388-1397. 

 

Beress, L, Beress, R, Wunderer, G (1975) Isolation and characterisation of three polypeptides 

with neurotoxic activity from Anemonia sulcata. FEBS Lett 50(3): 311-314. 

 

Berta, T, Poirot, O, Pertin, M, Ji, RR, Kellenberger, S, Decosterd, I (2008) Transcriptional 

and functional profiles of voltage-gated Na(+) channels in injured and non-injured DRG 

neurons in the SNI model of neuropathic pain. Mol  cell Neurosci 37(2): 196-208. 

 

Blair, NT, Bean, BP (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX- resistant 

Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J. 

Neurosci. 22(23): 10277-10290. 

 

Bosmans, F, Tytgat, J (2007) Sea anemone venom as a source of insecticidal peptides acting 

on voltage-gated Na+ channels. Toxicon 49(4): 550-560. 

 



25 

Catterall, WA, Cestele, S, Yarov-Yarovoy, V, Yu, FH, Konoki, K, Scheuer, T (2007) 

Voltage-gated ion channels and gating modifier toxins. Toxicon 49(2): 124-141. 

 

Catterall, WA, Goldin, AL, Waxman, SG (2005) International Union of Pharmacology. 

XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. 

Pharmacol Rev 57(4): 397-409. 

 

Chagot, B, Escoubas, P, Diochot, S, Bernard, C, Lazdunski, M, Darbon, H (2005) Solution 

structure of APETx2, a specific peptide inhibitor of ASIC3 proton-gated channels. Protein Sci 

14(8): 2003-2010. 

 

Chen, CC, Zimmer, A, Sun, WH, Hall, J, Brownstein, MJ (2002) A role for ASIC3 in the 

modulation of high-intensity pain stimuli. Proc Natl Acad Sci U S A 99(13): 8992-8997. 

 

Cummins, TR, Dib-Hajj, SD, Black, JA, Akopian, AN, Wood, JN, Waxman, SG (1999) A 

novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small 

primary sensory neurons. J Neurosci 19(24): RC43. 

 

Deval, E, Noel, J, Gasull, X, Delaunay, A, Alloui, A, Friend, V, et al. (2011) Acid-Sensing 

Ion Channels in Postoperative Pain. J Neurosci 31(16): 6059-6066. 

 

Deval, E, Noel, J, Lay, N, Alloui, A, Diochot, S, Friend, V, et al. (2008) ASIC3, a sensor of 

acidic and primary inflammatory pain. EMBO J 27(22): 3047-3055. 

 



26 

Dib-Hajj, SD, Cummins, TR, Black, JA, Waxman, SG (2010) Sodium channels in normal and 

pathological pain. Annu Rev Neurosci 33: 325-347. 

 

Diochot, S, Baron, A, Rash, LD, Deval, E, Escoubas, P, Scarzello, S, et al. (2004) A new sea 

anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory 

neurons. EMBO J 23(7): 1516-1525. 

 

Diochot, S, Loret, E, Bruhn, T, Beress, L, Lazdunski, M (2003) APETx1, a new toxin from 

the sea anemone Anthopleura elegantissima, blocks voltage-gated human ether-a-go-go-

related gene potassium channels. Mol Pharmacol 64(1): 59-69. 

 

Ekberg, J, Jayamanne, A, Vaughan, CW, Aslan, S, Thomas, L, Mould, J, et al. (2006) muO-

conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and 

chronic pain behavior without motor deficits. Proc Natl Acad Sci U S A 103(45): 17030-

17035. 

 

Gonzales, EB, Kawate, T, Gouaux, E (2009) Pore architecture and ion sites in acid-sensing 

ion channels and P2X receptors. Nature 460(7255): 599-604. 

 

Holzer, P (2009) Acid-Sensitive Ion Channels and Receptors. In: Sensory Nerves, Canning, 

BJ, Spina, D (eds) Vol. 194, pp 283-332: Springer Berlin Heidelberg. 

 

Honma, T, Shiomi, K (2006) Peptide toxins in sea anemones: structural and functional 

aspects. Mar Biotechnol (NY) 8(1): 1-10. 

 



27 

Jarvis, MF, Honore, P, Shieh, CC, Chapman, M, Joshi, S, Zhang, XF, et al. (2007) A-803467, 

a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and 

inflammatory pain in the rat. Proc Natl Acad Sci U S A 104(20): 8520-8525. 

 

Jasti, J, Furukawa, H, Gonzales, EB, Gouaux, E (2007) Structure of acid-sensing ion channel 

1 at 1.9 A resolution and low pH. Nature 449(7160): 316-323. 

 

Jensen, JE, Durek, T, Alewood, PF, Adams, DJ, King, GF, Rash, LD (2009) Chemical 

synthesis and folding of APETx2, a potent and selective inhibitor of acid sensing ion channel 

3. Toxicon 54(1): 56-61. 

 

Karczewski, J, Spencer, RH, Garsky, VM, Liang, A, Leitl, MD, Cato, MJ, et al. (2010) 

Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. 

Br J Pharmacol 161(4): 950-960. 

 

Kellenberger, S (2008) Epithelial Sodium and Acid-Sensing Ion Channels. In: Sensing with 

Ion Channels, Martinac, B (ed) Vol. 11, pp 225-246: Springer Berlin Heidelberg. 

 

Krishtal, O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26(9): 

477-483. 

 

Oliveira, JS, Zaharenko, AJ, Ferreira, WA, Jr., Konno, K, Shida, CS, Richardson, M, et al. 

(2006) BcIV, a new paralyzing peptide obtained from the venom of the sea anemone 

Bunodosoma caissarum. A comparison with the Na+ channel toxin BcIII. Biochim Biophys 

Acta 1764(10): 1592-1600. 



28 

 

Patino, GA, Isom, LL (2010) Electrophysiology and beyond: multiple roles of Na+ channel 

beta subunits in development and disease. Neurosci Lett 486(2): 53-59. 

 

Poirot, O, Berta, T, Decosterd, I, Kellenberger, S (2006) Distinct ASIC currents are expressed 

in rat putative nociceptors and are modulated by nerve injury. J Physiol 576(Pt 1): 215-234. 

 

Price, MP, McIlwrath, SL, Xie, J, Cheng, C, Qiao, J, Tarr, DE, et al. (2001) The DRASIC 

cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. 

Neuron 32(6): 1071-1083. 

 

Renganathan, M, Cummins, TR, Waxman, SG (2001) Contribution of Na(v)1.8 sodium 

channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86(2): 629-640. 

 

Renganathan, M, Dib-Hajj, S, Waxman, SG (2002) Na-v 1.5 underlies the 'third TTX-R 

sodium current' in rat small DRG neurons. Mol. Brain Res. 106(1-2): 70-82. 

 

Rogers, JC, Qu, YS, Tanada, TN, Scheuer, T, Catterall, WA (1996) Molecular determinants 

of high affinity binding of à-scorpion toxin and sea anemone toxin in the S3-S4 extracellular 

loop in domain IV of the Na+ channel à subunit. J. Biol. Chem. 271: 15950-15962. 

 

Shiomi, K (2009) Novel peptide toxins recently isolated from sea anemones. Toxicon 54(8): 

1112-1118. 

 



29 

Sluka, KA, Price, MP, Breese, NM, Stucky, CL, Wemmie, JA, Welsh, MJ (2003) Chronic 

hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, 

but not ASIC1. Pain 106(3): 229-239. 

 

Smith, JJ, Blumenthal, KM (2007) Site-3 sea anemone toxins: molecular probes of gating 

mechanisms in voltage-dependent sodium channels. Toxicon 49(2): 159-170. 

 

Vukicevic, M, Kellenberger, S (2004) Modulatory effects of acid-sensing ion channels on 

action potential generation in hippocampal neurons. Am J Physiol Cell Physiol 287(3): C682-

690. 

 

Wemmie, JA, Price, MP, Welsh, MJ (2006) Acid-sensing ion channels: advances, questions 

and therapeutic opportunities. Trends Neurosci 29(10): 578-586. 

 

Zhang, M, Liu, XS, Diochot, S, Lazdunski, M, Tseng, GN (2007) APETx1 from sea anemone 

Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- 

related potassium channel. Mol Pharmacol 72(2): 259-268. 

 

 

 



30 

Table 1: Properties of Nav1.8 currents in the presence or absence of APETx2 

Experimental conditions are described under “Methods”. Values of Imax and Gmax are 

normalized to the control situation before toxin exposure. a, the indicated control values were 

obtained before administration of the toxin. Parameters of voltage-dependent gating obtained 

after washout of the drug are as follows (p value relative to toxin condition). Activation, V0.5 

= -1.1 ± 1.0 mV (p=4.5*10-4), k = 7.6 ± 0.3 mV (p=1.2*10-4), Gmax = 98 ± 2 % of control 

condition (p<10-5);  steady-state inactivation, V0.5 = -29.1 ± 1.0 mV (p<10-5), k = 4.7 ± 0.2 

mV (p=0.002), Gmax = 110 ± 5 % of control (p<10-5).

Condition Controla Toxin 

[APETx2] (µM) 0 1 

Activation   

V0.5 (mV) 3.1 ± 0.8 6.0 ± 1.0** 

k (mV) 7.2 ± 0.4 8.6 ± 0.4*** 

Normalized Gmax 1 0.69 ± 0.03*** 

n 9 

Steady-state inactivation   

V0.5IN (mV) -27.5 ± 1.1 -24.9 ± 1.0*** 

k (mV) 4.7 ± 0.2 5.7 ± 0.3** 

Normalized Imax (at 0 mV) 1 0.55 ± 0.02*** 

n 12 

τ inactivation (ms)  

at 0 mV 6.9 ± 0.5 14 ± 1.1 *** 

at +20 mV 1.9 ± 0.1 5.1 ± 0.5 *** 

n 11 - 22 
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Figure legends 

Figure 1. Concentration-dependent inhibition of ASIC3 by synthetic APETx2 toxin  

A. CHO cells expressing rat ASIC3 channels were incubated 30 s with or without APETx2 in the pH 

7.4 bath solution, then exposed for 5 s to a pH 6.0 solution with or without 500 nM APETx2. B. 

Concentration-dependence of ASIC3 current inhibition by APETx2. The inhibition was calculated for 

each toxin concentration from the measured ASIC3 peak current induced by pH 6, normalized to the 

peak current in the absence of toxin.  Stimulations were performed every 35 s for 5 s, to allow 

recovery of channels. The dashed line represents a Hill fit to the experimental data points, n > 3. 

	  

Figure 2. Inhibition of voltage-gated Na+ currents in rat DRG neurons by APETx2  

Currents were recorded from acutely-dissociated rat DRG neurons. Voltage-gated Na+ currents were 

elicited by 50-ms voltage steps from a holding potential of -80 mV to test potentials of  -40 to +20 

mV in 10 mV increments, in the absence of any inhibitor (panel i), in the presence of 1 µM APETx2 

(panel ii), 300 nM TTX (panel iv) or both 300 nM TTX and 1 µM APETx2 (panel v). The total 

APETx2-sensitive and the TTX-R APETx2-sensitive currents are shown in the panels iii and vi 

respectively. The TTX-S component in the absence (panel vii) or presence (panel viii) of APETx2 

was obtained by subtracting the TTX-R component (middle row) from the total currents (upper row). 

Current traces of a representative experiment in DRG neurons are shown.  

	  

Figure 3. Voltage dependence of Nav1.8 currents in the absence and presence of APETx2  

Currents were recorded from acutely-dissociated DRG neurons, with all bath solutions containing 300 

nM TTX. A. Top panel, illustration of the voltage protocol used. Currents were elicited by 50-ms 

voltage steps from -50 mV to +40 mV in 10 mV increments from a holding potential of -80 mV. The 

lower panel illustrates typical current traces obtained without (left, black trace), with 1	  µM APETx2 

(middle, red trace) and after washout (right, blue trace). B. IV curve of the experiment of panel A 
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without (empty black triangle), with (filled red circle) and after washout (empty blue square) of 1 µM 

APETx2. C. Conductance-voltage plot in the absence (empty black triangle), presence (filled red 

circle) and after washout (empty blue square) of 1	   µM APETx2. The lines represent a fit to the 

Boltzmann equation (see Table 1 for fit parameters), n = 9. D. The steady-state inactivation protocol, 

illustrated in the left panel, was composed of a 500-ms conditioning pulse, directly followed by a 50-

ms test pulse to 0 mV. Normalized current amplitudes are plotted in the right panel as a function of 

the conditioning potential. The lines represent a fit to the Boltzmann equation (see Table 1 for fit 

parameters), n=12.  

	  

Figure 4. Concentration dependence and kinetics of APETx2 action on Nav1.8 currents  

Currents were recorded from acutely dissociated DRG neurons, with all bath solutions containing 300 

nM TTX. A. Nav1.8 currents elicited by depolarizations to 0 mV from a holding potential of -80 mV 

in the presence of the indicated concentrations of APETx2 from a typical experiment. B. 

Concentration-dependence of current inhibition by APETx2, measured at 0 mV. The line represents a 

fit to the Hill equation, assuming that at high toxin concentrations inhibition is complete; for fit 

parameters see text, n≥3. C. Illustration of the effect of high APETx2 concentration (20 µM) on 

Nav1.8 currents. Left panels show traces from a typical experiment with 0 µM  (black traces) or 20 

µM APETx2 (red traces). The IV curves of these experiments are shown in the right panel.  D. 

Binding and unbinding kinetics of APETx2. The Nav1.8 current increase (unbinding) or decrease 

(binding), normalized to the current amplitude before the solution change measured at a pulse 

potential of 0 mV, is plotted as a function of the time after the start of the APETx2 washout 

(unbinding) or the APETx2 perfusion (binding). The lines represent exponential fits to the data points 

(n=5-6). Data are not corrected for the time necessary for the solution change, which had a 10-90% 

change time ≈30 ms at the outlet of the perfusion system. 
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Figure 5. APETx2 modulates the kinetics of Nav1.8 gating 

Currents were recorded from acutely-dissociated DRG neurons, with all bath solutions containing 

300 nM TTX. A. APETx2 slows inactivation kinetics. Representative traces obtained for test 

potentials of 0 (left) or +20 mV (right) in the presence (red) or absence (black) of 1	  µM APETx2  are 

shown. B. The falling phase of the individual current traces was fitted to a single exponential	  

equation (see Methods), yielding the time constant of inactivation (τinactivation). Values of	   τinactivation 

obtained at test potentials of 0 and +20 mV in the presence (filled bars) or absence of 1	  µM APETx2 

(open bars) are shown, n=20-23 paired t-test *** (p<0.001). C. Recovery from inactivation was 

determined by measuring the current evoked by two 100-ms depolarizations to +20 mV, separated by 

an interval of increasing duration at -80 mV as illustrated in the top panel. The current amplitude of 

the second depolarization, normalized to that of the first depolarization, is plotted as a function of the 

interval	   Δt for the situation with (filled circles) or without (open circles) 1	   µM APETx2. Three 

exponential components were necessary to fit the recovery time course (n=5). Fit parameters, 

indicated, as time constant τ (% relative weight of the component) and statistical significance from a 

paired t-test as * (p<0.05) and ** (p<0.001) in absence and presence, respectively of 1 µM APETx2, 

were for the fast component 2.03±0.10 ms ((20±2%) and 1.64±0.06 ms* (31±4% **), for the 

intermediate component 95±12 ms (48±2%) and 139±18 ms** (40±4% *), and for the slow 

component 1600±200 ms (32±1%) and 2030±160 ms (28±2%).  

 

Figure 6. Inhibition of recombinant Nav1.8 expressed in Xenopus oocytes 

Recordings are from Xenopus oocytes expressing hNav1.8 from a holding potential of -80 mV. A. 

Current traces obtained in the presence of the indicated APETx2 concentrations, elicited by 

depolarization to 0 mV. B. Concentration dependence of current inhibition by APETx2. The solid 

black line represents a fit to the Hill equation with maximal inhibition fitted to 65%, and the red line 

represents the fit with maximal inhibition set to 100%; for fit parameters see text (n=4-6). C.  
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Current-voltage relationship in control (black triangle), presence (red filled circle) and after washout 

(empty blue square) of 30 µM APETx2, currents were normalized to control current at -20 mV for 

each experiment. D. Conductance-voltage relationship in control (empty black triangle), presence 

(filled red circle) and after washout (empty blue square) of 30 µM APETx2, (n=7).   

 

Figure 7. APETx2 inhibits electrical activity in rat DRG neurons 

Recordings are from acutely dissociated DRG neurons, in the absence of TTX. A. In whole-cell 

current-clamp mode, current injection was adjusted to obtain a membrane potential of ~-60 mV 

under resting conditions. As illustrated in the upper panel, a 100-ms current ramp from 0 to 1 nA 

was applied to induce APs. A typical experiment is shown, with the response in the presence of 1	  

µM APETx2 (red trace), between two control responses (black and blue traces). B. The number of 

APs is shown before, during and after washout of 1	  µM APETx2 perfusion (n=13). C. In voltage-

clamp experiments, Kv currents were elicited by 100-ms step depolarizations to values ranging form 

-60 to + 80 mV in 10 mV increments. A typical experiment is shown in control (left black traces), 

presence (middle red traces) and after washout (right blue panel) of 1 µM APETx2. D. Conductance-

voltage activation curve of Kv currents in control (black triangle), presence of toxin (red filled circle) 

and after washout (empty blue square) of 1 µM APETx2 (filled symbols) (n=5). The line represents 

the fit to a Boltzmann equation. 	  
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Supplemental  Figure  S1.  APETx2  inhibition  of  Nav1.8  current  is  not  use
dependent.  Currents  were  recorded  from  acutely  dissociated  DRG  neurons,  with  all 
bath solutions containing TTX. A series of 20 50‐ms depolarizations from ‐70 mV to +20 
mV were performed at the frequencies indicated (0.5‐10Hz). A. A typical experiment at 
0.5 Hz is shown. B. Current inactivation was corrected by dividing the currents obtained 
with 1 M APETx2 to that obtained without APETx2 at each pulse. This ratio is plotted 
as a  function of  the pulse number  (1‐20)  for each stimulation  frequency, n=4  for each 
condition.  
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Supplemental Figure S2. Sequence comparison of APETx2 with other sea anemone toxins. A. 
Phylogenic tree, Nav, inhibitor of voltage-gated Na+ channels; K, inhibitor of K+ channels. Ae I from 
Actinia equina; Am II from Anthopsis maculata; ApA, ApB, from Anthopleura xanthogrammica; 
APETx1 and APETx2 from Anthopleura elegantissima; AsKS (kaliseptine), AsKC (kalicludines); 
BDS-I and BDS-II from Anemonia sulcata; BcIV from Bunodosoma caissarum; BgK from 
Bunodosoma granulifera; Da I from Dofleinia armata; PaTX from Entacmaea actinostoloides; Rp3 
from Radianthus paumotensis; Sh1 and ShK from Stychodactyla helianthus; B. Alignment of the 
novel sea anemone toxins to some of the classical Nav-targeting sea anemone toxins. Original 
references are cited in (Honma et al., 2006; Shiomi, 2009) 
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