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SUMMARY
Proliferation of neural stem/progenitor cells (NSPCs) in the adult brain is tightly controlled to prevent exhaustion and to ensure proper

neurogenesis. Several extrinsic stimuli affect NSPC regulation. However, the lack of uniquemarkers led to controversial results regarding

the in vivo behavior of NSPCs to different stimuli.We recently identified SPOT14, which controls NSPC proliferation through regulation

of de novo lipogenesis, selectively in low-proliferating NSPCs.Whether SPOT14-expressing (SPOT14+) NSPCs react in vivo to neurogenic

regulators is not known.We show that aging is accompanied by amarked disappearance of SPOT14+ NSPCs, whereas running, a positive

neurogenic stimulus, increases proliferation of SPOT14+ NSPCs. Furthermore, transient depletion of highly proliferative cells recruits

SPOT14+NSPCs into the proliferative pool. Additionally, we have established endogenous SPOT14 protein staining, reflecting transgenic

SPOT14-GFP expression. Thus, our data identify SPOT14 as a potent marker for adult NSPCs that react dynamically to positive and nega-

tive neurogenic regulators.
INTRODUCTION

New neurons are generated throughout adulthood, and at

least two neurogenic regions in the adult mammalian

brain have been identified: the subventricular zone lining

the lateral ventricles and the dentate gyrus (DG) of the

hippocampal formation (Braun and Jessberger, 2014). It

has been recently reported that in humans, up to one-

third of hippocampal neurons are replaced with newborn

neurons over a lifetime, implying a functional importance

for this process (Spalding et al., 2013). There is increasing

evidence that adult neurogenesis plays a role in cogni-

tive processes, and aberrant or decreased levels of

neurogenesis have been associated with a number of

neuropsychiatric and neurodegenerative diseases (Braun

and Jessberger, 2014; Christian et al., 2014). Notably,

adult neurogenesis is dynamically regulated, and the con-

trol over the number of newly generated neurons occurs

at multiple stages (Ma et al., 2009). For example, physical

activity such as voluntary wheel running has a robust pos-

itive effect on the number of dividing cells in the DG,

whereas an enriched environment has been shown to

promote survival of newborn neurons (Ma et al., 2009).

Aging, on the contrary, is accompanied by a drastic reduc-

tion in the number of dividing cells in the brain in

rodents as well as in humans (Christian et al., 2014;

Knoth et al., 2010).

However, the identification and in vivo tracking of

neurogenic neural stem/progenitor cells (NSPCs) remains

challenging, and no markers have been identified that
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uniquely label NSPCs (Christian et al., 2014). The diffi-

culties of identifying stem cells has led to controversial

results, as studies assessing the in vivo behavior of

NSPCs depend largely on the criteria and markers

used (Bonaguidi et al., 2011; DeCarolis et al., 2013;

Encinas et al., 2011; Lugert et al., 2010; Suh et al.,

2007). Thus, it remains unclear whether distinct

behaviors of NSPCs within the DG reflect different

stem cell populations or whether the cells are just in a

different state. Therefore, there is a need for novel and

more specific markers to identify NSPCs in the adult

hippocampus.

We have recently shown that SPOT14, a protein that is

associated with lipid metabolic processes (Colbert et al.,

2010; Cunningham et al., 1998), is specifically expressed

in the subgranular zone (SGZ) of the DG in cells with radial

and nonradial morphology, using GFP expression driven

by the regulatory elements of the SPOT14 promoter

(SPOT14 reporter mice). We have demonstrated that

SPOT14+ cells are low-proliferating, neurogenic NSPCs,

suggesting that SPOT14 could serve as a useful marker for

NSPCs (Knobloch et al., 2013). However, the expression

of endogenous SPOT14 protein and the response of

SPOT14+ NSPCs to stimuli that influence neurogenesis

remained unknown. Thus, we here established staining of

endogenous SPOT14 to verify that SPOT14 reporter mice

reflect endogenous protein expression and tested the

effects of positive and negative regulators of neurogenesis

on the behavior of SPOT14+ NSPCs in the adult

hippocampus.
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Figure 1. Endogenous SPOT14 Protein Is
Expressed in the Adult Hippocampus
(A) Endogenous SPOT14 protein revealed by
antibody staining is confined to the SGZ and
colocalizes with the NSPC markers SOX2
(red) and NESTIN (blue). Shown are repre-
sentative images of a wt mouse at 2 m (left
panel) and a magnification of the boxed
area (right panel). Arrows point to SPOT14/
SOX2/NESTIN-positive radial NSPCs, and
arrowheads point to SPOT14/SOX2-positive
nonradial NSPCs.
(B) SPOT14-GFP-expressing cells colabel
with the immunohistochemical signal from
endogenous SPOT14 protein. Shown are
representative images of a SPOT14 reporter
mouse at 2 m (left panel) and a magni-
fication of the boxed area (right panel).
Arrows point to SPOT14-GFP/SPOT14-anti-
body positive radial NSPCs, and arrowheads
point to SPOT14-GFP/SPOT14 antibody-
positive nonradial NSPCs.
Scale bars represent 50 mm (A and B, left)
and 20 mm (A and B, right). GCL, granular
cell layer.
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RESULTS

Endogenous SPOT14 Protein Is Expressed in Adult

Hippocampal NSPCs

We have previously shown that transgenic expression of

GFP driven by a bacterial artificial chromosome (BAC) con-

taining the regulatory elements of the Spot14 gene is

highly restricted to hippocampal NSPCs (Knobloch et al.,

2013). Whereas Spot14 mRNA expression correlates with

SPOT14-driven GFP (Knobloch et al., 2013), the expression
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of endogenous SPOT14 protein remained unknown. By

establishing an antibody staining against SPOT14, we

found strong enrichment of the endogenous protein

within the SGZ of the adult hippocampus (Figure 1A).

Cellular phenotyping revealed that SPOT14-expressing

cells show themorphological andmolecular characteristics

of adult hippocampal NSPCs, i.e., radial and nonradial

morphology and expression of the previously described

NSPC markers SOX2 and NESTIN (Figure 1A). Virtually

all (97.5% ± 1.4% radial, 90.2% ± 1.3% nonradial)
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SPOT14-GFP expressing cells colabeled with the immuno-

histochemical signal from endogenous SPOT14 protein

(Figure 1B; Figure S1A available online). However, we found

that a larger cohort of NSPCs expressed endogenous

SPOT14 protein compared to SPOT14-GFP expression, sug-

gesting that transgenic label expression is a reliable indica-

tor of SPOT14 expression, albeit less efficient, similar to

what has been described for other transgenic markers

(Dhaliwal and Lagace, 2011).

SPOT14+ NSPCs Disappear Markedly with Aging

We next assessed the in vivo behavior of SPOT14+ NSPCs

to a negative regulator of neurogenesis. Neurogenesis is

greatly reduced with aging, and this reduction is paral-

leled by the disappearance of putative NSPCs and/or

decreased proliferation (Christian et al., 2014; Knoth

et al., 2010). Whether or not SPOT14+ NSPCs disappear

with aging is not known. We analyzed the expression of

SPOT14-GFP at different time points in SPOT14 reporter

mice. Postnatal day 7 (p7) and p21 mice as well as mice

aged 2 months (2 m) and 7 months (7 m) showed consis-

tent expression of the transgene within the DG (Fig-

ure 2A). However, there was a drastic reduction in the

total number of SPOT14+ NSPCs with age, given the

total number of GFP-positive cells at 2 m and 7 m

(Figures 2A and 2B, left bars; Table S1). As SPOT14+ NSPCs

exist both with and without radial processes (Knobloch

et al., 2013), and because others have reported selective

activation of nonradial cells upon extrinsic modulation

of hippocampal neurogenesis (Bonaguidi et al., 2011;

DeCarolis et al., 2013; Encinas et al., 2011; Kronenberg

et al., 2003; Lugert et al., 2010; Suh et al., 2007), we

further subdivided SPOT14+ cells according to their

morphological difference into a radial and nonradial

group (Figure 2B, middle bars; Table S1). This analysis

showed that the decrease was dependent on a loss of

both radial and nonradial cells. Consequently, the ratio

of radial to nonradial NSPCs (Figure 2B, right bars; Table

S1) was not significantly changed with age. To ensure

that such substantial loss of SPOT14+ NSPCs with age is

not due to changes in transgene expression in the

SPOT14 reporter mouse, we performed in situ hybridiza-

tions using a riboprobe against Spot14 mRNA. Spot14

mRNA was consistently expressed in the SGZ of the DG

and markedly decreased with aging (Figure 2C). Antibody

staining against endogenous SPOT14 protein at p7, p21, 2

m, and 7 m further confirmed the marked decrease of

SPOT14+ NSPCs with aging (Figure S1B). The overall

morphology of SPOT14+ NSPCs as well as coexpression

of other markers such as SOX2 and NESTIN did not

change over time (Figure 2D), although NESTIN-positive

processes in the granular zone of the DG were less detect-

able at 7 months. Taken together, these data show that
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decreases markedly with aging.

Running Increases the Number of Proliferating

SPOT14+ NSPCs

To address whether or not SPOT14+ NSPCs react to a posi-

tive regulator of adult neurogenesis, SPOT14 reporter mice

had access to running wheels for 7 days. Consistent with

previous reports, voluntary physical exercise led to a signif-

icant increase in the total number of proliferating cells in

running mice compared to control mice, as measured by

5-ethynyl-20-deoxyuridine (EdU) pulse labeling (Figures

3A and 3C; Table S2). The number of proliferating

SPOT14+ NSPCs, which is low in control mice, increased

significantly with running, indicating a mobilization of

SPOT14+ NSPCs into the proliferating pool (Figures 3A

and 3B; Table S2). Increased proliferation of SPOT14+

NSPCs upon running was reflected by a small but signifi-

cant increase in the total number of SPOT14+ NSPCs in

running versus control mice (Figure 3C; Table S2). We

further subdivided the EdU+/SPOT14+ cells according to

their morphological difference into radial and nonradial

groups. The majority of double-positive cells in both

running and control mice had nonradial morphology,

and running did not change the ratio of proliferating radial

to nonradial SPOT14+ NSPCs (Figure 3D; Table S2). Taken

together, these data show that both radial and nonradial

SPOT14+ NSPCs react with increased proliferation to

running.

Transient Depletion of Proliferative Cells Recruits

SPOT14+ NSPCs

Given the dynamic behavior of SPOT14+ NSPCs to

natural positive and negative regulators of neurogenesis,

we artificially challenged the system by transient deple-

tion of highly proliferative cells. We used the cytostatic

drug temozolomide (TMZ) to selectively kill cycling

cells and analyzed the number and proliferative activity

of SPOT14+ NSPCs either directly after ablation or

after 3 days of recovery using EdU pulse labeling. As

expected, the treatment with TMZ reduced the prolifera-

tive cells in the DG of adult SPOT14 reporter mice

compared to vehicle-injected control mice (Figures 4A

and 4B; Table S3). Three days of recovery, however, was

not enough time to reach the same amount of prolifer-

ating cells as before ablation. The total number of

SPOT14+ cells was not changed upon treatment (Figures

4A and 4B; Table S3), in line with the fact that cytostatic

drugs do mainly affect highly proliferating cells and that

SPOT14+ NSPCs are low proliferating cells (Knobloch

et al., 2013). However, as a consequence of the ablation,

significantly more SPOT14+ cells were recruited into the

proliferative pool 3 days after the end of TMZ treatment,
eports j Vol. 3 j 735–742 j November 11, 2014 j ª2014 The Authors 737



Figure 2. The Number of SPOT14+ NSPCs Decreases with Aging
(A) Analysis of SPOT14 reporter mice at postnatal day 7 (p7), day 21 (p21), 2 months (2 m), and 7 months (7 m) of age shows consistent
expression of the transgene within the DG but robust reduction of SPOT14+ NSPCs with age. Shown are representative pictures of DAB
stainings against GFP.
(B) Quantification of SPOT14+ NSPCs at 2 m (n = 4) and 7 m (n = 3) illustrating the substantial decrease in the total number of
SPOT14+ cells with age (left bars). This decrease is dependent on a loss of both radial and nonradial cells (middle bars); thus, the ratio
is not changed with age (right bars). An example image of a SPOT14+ radial (arrow) and nonradial (arrowhead) cell is shown on the
right.
(C) In situ hybridization using a riboprobe against Spot14 mRNA shows expression in the DG at p7, p21, 2 m, and 7 m. In parallel to the
SPOT14-GFP expression shown in (A), Spot14 mRNA is markedly decreasing with aging.
(D) Radial and nonradial morphology as well as expression of the NSPC markers SOX2 (red) and NESTIN (blue) in SPOT14+ cells (green) is
present from early postnatal times through adulthood. Shown are representative images at p7, p21, 2 m, and 7 m.
Scale bars represent 100 mm (A and C) and 20 mm (D). Error bars represent mean ± SEM. *p < 0.05
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an effect that started directly after the end of TMZ

treatment (Figure 4C; Table S3). The majority of pro-

liferating SPOT14+NSPCs in all three groups had nonra-

dial morphology, and TMZ treatment did not change

the ratio of proliferating radial to nonradial SPOT14+
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NSPCs (Figure 4D; Table S3). These data indicate that

SPOT14+ NSPCs are reacting with increased proliferation

upon transient ablation of highly proliferative cells,

potentially to replenish the missing pool of cycling stem

cells.
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Figure 3. Running Increases Prolifera-
tive Activity of SPOT14+ NSPCs
(A) Running enhances proliferation in the
DG, as measured by EdU pulse labeling, and
leads to a mobilization of SPOT14+ NSPCs
into the proliferative pool. Shown are
representative confocal images of SPOT14
reporter mice with access to a running wheel
(Run) and control mice (Con). Arrows point
to GFP/EdU-colabeled cells. Top panels
show single channels for SPOT14-GFP
(green), middle panels EdU signal (red), and
lower panels an overlay of SPOT14-GFP/EdU.
(B) Quantification of SPOT14+/EdU+ dou-
ble-labeled cells (n = 3 per group).
(C) Quantification of total numbers of EdU+
cells and SPOT14+ cells. Note the slight but
significant increase in SPOT14+ NSPCs in
running mice.
(D) Quantification of SPOT14+/EdU+ cells
subdivided into radial and nonradial mor-
phology. The majority of double-positive
cells in both running and control mice have
nonradial morphology. Running does not
change the ratio of proliferating radial to
nonradial SPOT14+ NSPCs (n = 3 per group).
Scale bar represents 100 mm. Error bars
represent mean ± SEM. *p < 0.05
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DISCUSSION

One of the major problems in the field of adult neurogen-

esis is the in vivo identification of neurogenic, self-renew-

ing NSPCs. So far, there are no unique markers that

clearly label only NSPCs. Therefore, marker combinations

together with morphological criteria are currently neces-

sary to identify NSPCs. However, such combined measures

render the in vivo labeling and fate tracking of NSPCs

complicated. The identification of more restrictive markers

will facilitate the isolation of NSPCs to enable gene and

protein expression analyses of NSPCs without cross-

contamination of other neural cell types and without the

need for sophisticated multilabeling approaches (Becker-

vordersandforth et al., 2014; Bracko et al., 2012; Pastrana

et al., 2009).

We have recently shown that SPOT14 is expressed in a

highly restrictive manner in low-proliferating NSPCs, mak-

ing this protein an excellent candidate marker for adult

hippocampal NSPCs (Knobloch et al., 2013). Even though

SPOT14-GFP labels a small number of classical astrocytes in

the molecular layer, its expression appears to be much

more confined to neurogenic NSPCs compared to other

transgenic markers such as NESTIN-GFP, highly expressed
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in astrocytes in the DG and cornu ammonis/alveus or

SOX2-GFP, highly expressed in the majority of hippocam-

pal astrocytes (Bracko et al., 2012; Kronenberg et al., 2003;

Suh et al., 2007).

To further establish the usefulness of SPOT14 as a NSPC

marker, we established protocols allowing for immunohis-

tochemical detection of endogenous SPOT14 protein.

Comparing endogenous SPOT14 and transgenic SPOT14-

GFP expression, we confirmed the reliability of the

SPOT14 reporter mouse. Importantly, the availability of

an antibodyworking on adult brain tissue sections substan-

tially increases the usability of SPOT14 as a marker in com-

bination with other antibodies or transgenic reporter mice.

Using the SPOT14-GFP expressing transgenic reporter

line, we studied the behavior of SPOT14+ NSPCs in the

DG to neurogenic regulators in vivo. Increased proliferative

activity of SPOT14+ NSPCs upon running is in line with

data from other transgenic reporter mice such as NESTIN-

GFP mice (Kronenberg et al., 2003), SOX2-GFP mice (Suh

et al., 2007), or HES5-GFP mice (Lugert et al., 2010). How-

ever, we did not observe a selective activation of radial

NSPCs as shown in HES5-GFP mice (Lugert et al., 2010).

SPOT14+ NSPCs rather behaved similarly to SOX2-GFP

cells (Suh et al., 2007), where also both radial and nonradial
eports j Vol. 3 j 735–742 j November 11, 2014 j ª2014 The Authors 739



Figure 4. Transient Ablation of Highly Proliferating Cells Recruits SPOT14+ NSPCs into the Proliferative Pool
(A) Treatment with TMZ reduces the total number of proliferative cells in the DG of adult SPOT14 reporter mice. However, as a consequence
of the ablation, more SPOT14+ cells are recruited into the proliferative pool. Shown are representative images (EdU in red, SPOT14-GFP in
green) of control mice (left panel) and mice immediately or 3 days after TMZ (middle and right panel). Arrows point to GFP/EdU-colabeled
cells.
(B) Quantifications show the drop in total EdU+ cells after TMZ treatment. The total number of SPOT14+ cells is not affected, in line with
the fact that cytostatic drugs mainly affect highly proliferating cells (n = 3 per group).
(C) TMZ-induced transient depletion of highly proliferative cells recruits SPOT14+ cells into proliferation 3 days after the end of TMZ
treatment.
(D) The majority of double-positive cells in all three groups have nonradial morphology and TMZ treatment does not change the ratio of
proliferating radial to nonradial SPOT14+ NSPCs (n = 3 per group).
Scale bar represents 100 mm. Error bars represent mean ± SEM. *p < 0.05
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cell types increased proliferation upon running. This is sup-

ported by the finding that virtually all SPOT14+ NSCPs are

also positive for SOX2 (Knobloch et al., 2013).

SPOT14 is functionally important by reducing substrate

availability for fatty acid synthase (FASN), leading to

reduced de novo lipogenesis (Knobloch et al., 2013). Inter-

estingly, a recent publication demonstrated that Fasn

mRNA is upregulated in the hippocampus upon running

and that inhibition of FASN impaired exercise-mediated

improvement in spatial memory, which was accompanied

by reduced NSPC proliferation in the DG (Chorna et al.,

2013). This further emphasizes the importance of

de novo lipogenesis for proper neurogenesis and shows a

dynamic regulation of this pathway upon an extrinsic

stimulus.

To address whether SPOT14+ NSPCs also react to a nega-

tive regulator of neurogenesis, we analyzed the expression

pattern of SPOT14 in the context of aging. Increased quies-

cence of NSPCs aswell as a loss ofNSPCs, decreased survival

of progeny, or general negative influences of the aging

systemic milieu have all been suggested to be the underly-

ing cause of reduced production of new neurons with

age (Couillard-Despres, 2012). The marked decrease of
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SPOT14+ NSPCs with age supports the hypothesis that a

loss of NSPCs occurs, but whether this is due to cell

death or terminal differentiation is not clear (Encinas

et al., 2011). However, our previous data with inducible

SPOT14 lineage tracing in adult mice showed no increase

in the amount of astrocytes 3 months after induction, sug-

gesting that terminal differentiation of SPOT14+ NSPCs

into astrocytes is not substantial (Knobloch et al., 2013).

NSPCs are not only influenced by physiological factors

but also react to noxious stimuli. After ablation of the pro-

liferative pool using antimitotic drugs, a dynamic activa-

tion of quiescent adult NSPCs that fully re-establishes the

germinal layer has been shown (Doetsch et al., 1999).

The bona fide stem cells are not affected by the treatment,

as they are not frequently dividing, but appear to perceive

that there is need for regeneration and initiate prolifera-

tion. To test whether SPOT14+ NSPCs would respond simi-

larly to such manipulation, we used the antimitotic drug

TMZ. TMZ treatment reduced proliferation by almost

30%, but 3 days of recovery was not enough to restore pro-

liferation entirely. Nonetheless, the increase of prolifer-

ating SPOT14+ NSPCs became apparent immediately after

drug treatment and reached significance 3 days later,
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suggesting that these primarily quiescent cells can react to a

noxious stimulus and contribute to regeneration. Both

radial and nonradial SPOT14+NSPCs increased their prolif-

eration, speaking against SPOT14-labeled subpopulations

that react distinctly to different stimuli, as described for

HES5-GFP-positive stem cells (Lugert et al., 2010).

Taken together, we here show that the recently identified

marker SPOT14 labels low-proliferating NSPCs in the hip-

pocampus that react dynamically to positive and negative

neurogenic stimuli in vivo. These data further validate

the usefulness of this restrictive and functionally relevant

marker to analyze the behavior of NSPCs to various

extrinsic stimuli. The availability of functional SPOT14

antibodies, a SPOT14 reporter line, as well as an inducible

SPOT14-CreERT2 line (Knobloch et al., 2013) extend the

current toolbox to study adult neurogenesis and will allow

further dissection and better understanding of the complex

regulation of NSPCs within the adult brain.
EXPERIMENTAL PROCEDURES

Animals
Animal experiments were approved by the veterinary office of the

Canton of Zurich, Switzerland. The SPOT14 reportermice were ob-

tained as previously described (Knobloch et al., 2013). The running

group (n = 3) had free access to steel runningwheels for 7 days. The

control group (n = 3) was kept single-caged in identical cages

without running wheels. During days 4–7, all animals received

four intraperitoneal (i.p.) injections of EdU (50 mg/kg, Sigma)

and were killed 24 hr later. For the time-course analysis, three

(p7, p21, 7 months) or four (2 months) SPOT14 reporter mice

were perfused per age group. For the ablation experiment,

SPOT14 reportermice (n = 3) received three i.p. injections of temo-

zolomide (TMZ; Temodal, Schering-Plough, 25 mg/kg, in DMSO/

PBS) or were control-injected with DMSO/PBS only (n = 3). Two

hours after the last injection, they received a single dose of EdU

(50 mg/kg) and were killed 3 hr later. An additional group of

mice (n = 3) received TMZ as described above butwas left to recover

for 3 days. A single EdU injection was given 3 hr before perfusion.

All mice were transcardially perfused with 0.9% saline followed by

4% paraformaldehyde (PFA)/0.1 M phosphate buffer. Brains were

postfixed overnight in phosphate-buffered 4% PFA and subse-

quently stored in 30% sucrose-PBS solution.
Tissue Preparation, Staining, and Image Analysis
Brains were processed and stained as previously described (Kno-

bloch et al., 2013), and 40-mm-thick free-floating serial sections

were blocked with PBS containing 0.5% donkey serum and

0.05%TritonX-100 and stainedwith primary antibody in blocking

solution overnight at 4�C. The GFP staining was additionally

enhanced using biotinylated secondary antibodies followed

by streptavidin-coupled fluorophores. Cell nuclei were counter-

stained with DAPI (1:5,000 in Tris-buffered saline, Sigma). Anti-

bodies used were: rabbit a-GFP (1:500, Invitrogen), chicken

a-GFP (1:500, Aves Labs), goat a-SOX2 (1:500, Santa Cruz Biotech-
Stem Cell R
nology), and mouse a-NESTIN (1:500, BD Biosciences). Secondary

antibodies (Jackson ImmunoResearch or Chemicon International)

were applied 1:250 at room temperature (RT) for 1–2 hr. For endog-

enous SPOT14 staining, sectionswere pretreatedwith PBS contain-

ing 0.5% donkey serum and 1% Triton X-100 for 5 hr at RT

followed by 3 days primary antibody incubation in PBS containing

0.5% donkey serum and 0.05% Triton X-100 at 4�C (rabbit

a-SPOT14, 1:250, Abcam). The SPOT14 staining was additionally

enhanced using a biotinylated secondary antibody (2–4 hr RT) fol-

lowed by streptavidin-coupled fluorophores (2–4 hr RT). 3,30-Dia-

minobenzidine (DAB) staining was done as described above with

quenching of endogenous peroxidase in 0.6% H2O2 prior to anti-

body incubation. The Vectastain ABC Kit was used for the color re-

action according to the manufacturer’s protocol (Vectastain ABC

Kit, Vector Laboratories). EdU stainings were performed before

antibody incubation using the Click-iT EdU Imaging Kit

(Invitrogen). Every 12th or every 4th section (corresponding to a

12th or to a 3rd of the entire brain) of coronally or sagittally cut

brains spanning the complete rostrocaudal extent of the hippo-

campus were collected and used for quantifications, and 20-mm-

thick image stacks of DGs were taken with a confocal microscope

(Leica SP2-AOBS and Zeiss LSM700). Shown are maximum

intensity projections. DAB staining was analyzed using a Zeiss

AxioImagermicroscope. GFP-expressing cells with apical processes

spanning the granule cell layer were classified as radial glia-like

cells and GFP-expressing cells with short, horizontal processes

were classified as nonradial glia-like cells, as described previously

(Kronenberg et al., 2003; Lugert et al., 2010; Suh et al., 2007).

The number of EdU- and GFP-positive cells was counted in a

blinded manner using Imaris (Bitplane) 3D reconstructions to

verify signal colocalization for double-positive cells.

Statistical Analysis
Unpaired t tests and nonparametric Mann-Whitney U tests were

used for the running and aging analyses. Differences in the three

groups of the TMZ ablation experiment were analyzed using

ANOVA followed by Fisher’s post hoc test. Numbers (n) indicate

the number of individual mice. Significance levels were set at

p < 0.05.
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Malhotra, S., Bachoo, R., Götz, M., Lagace, D.C., and Eisch, A.J.

(2013). In vivo contribution of nestin- and GLAST-lineage cells

to adult hippocampal neurogenesis. Hippocampus 23, 708–719.

Dhaliwal, J., and Lagace, D.C. (2011). Visualization and genetic

manipulation of adult neurogenesis using transgenic mice. Eur. J.

Neurosci. 33, 1025–1036.

Doetsch, F., Garcı́a-Verdugo, J.M., and Alvarez-Buylla, A. (1999).

Regeneration of a germinal layer in the adult mammalian brain.

Proc. Natl. Acad. Sci. USA 96, 11619–11624.

Encinas, J.M., Michurina, T.V., Peunova, N., Park, J.-H., Tordo, J.,

Peterson, D.A., Fishell, G., Koulakov, A., and Enikolopov, G.

(2011). Division-coupled astrocytic differentiation and age-related

depletion of neural stem cells in the adult hippocampus. Cell Stem

Cell 8, 566–579.

Knobloch, M., Braun, S.M.G., Zurkirchen, L., von Schoultz, C.,
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Figure S1. Endogenous SPOT14 protein is expressed by SPOT14-GFP positive NSPCs  
(A) Quantification method to analyze co-labeling of SPOT14-GFP and endogenous SPOT14 

immunohistochemical signal: a 3D surface of the GFP signal is generated using Imaris 

software (first and second panel), the surface is then used on the endogenous SPOT14 

signal (third panel) to mask this channel and generate an artificial co-labeling channel (fourth 

panel). This co-labeling channel is used together with the SPOT14-GFP channel to 

determine the number of positive radial and non-radial NSPCs positive for both reporter and 

endogenous SPOT14. Scale bar represents 50 µm. 

(B) Analysis of SPOT14 reporter mice at postnatal day 7 (p7), day 21 (p21), 2 months (2m) 

and 7 months (7m) of age shows that both the endogenous SPOT14 and the SPOT14-GFP 

reporter signals are drastically reduced with age. Scale bar represents 50 µm. 
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Table S1: detailed cell numbers of aging experiment 
 
Aging (Figure 2) 2m (n = 4) 

(mean ± SEM) 
7m (n = 3) 

(mean ± SEM) 

Total number of SPOT14+ cells per DG 1557 ± 176 876 ± 98 

Total number of radial SPOT14+ cells per DG 682 ± 97 288 ± 50 

Total number of non-radial SPOT14+ cells per DG 875 ± 82 588 ± 61 

Percentage of radial SPOT14+ cells per DG 43.8 ± 6.3 32.9 ± 5.7 

Percentage of non-radial SPOT14+ cells per DG 56.2 ± 5.3 67.1 ± 7.0 

 
 
 
Table S2: detailed cell numbers of running experiment  

 
Running (Figure 3) Con (n = 3) 

(mean ± SEM) 
Run (n = 3) 

(mean ± SEM) 

Total number of EdU+ cells per DG 2052 ± 287.7 4605 ± 325.1 

Total number of SPOT14+/ EdU+ double positive 
cells per DG 166 ± 13.2 269 ± 21.5 

Total number of SPOT14+ cells per DG 1338 ± 32.4 1584 ± 75.3 

Percentage of radial SPOT14+ / EdU+ double 
positive cells per DG 22.6 ± 2.4 21.4 ± 1.8 

Percentage of non-radial SPOT14+ / EdU+ double 
positive cells per DG 77.4 ± 2.4 78.6 ± 1.8 

 
 
 

Table S3: detailed cell numbers of transient ablation experiment 
 
Transient ablation (Figure 4) Con (n = 3) 

(mean ± SEM) 
TMZ (n = 3) 

(mean ± SEM) 
TMZ 3d (n = 3) 
(mean ± SEM) 

Total number of EdU+ cells per DG 943.5 ± 42.7 632.0 ± 31.4 678.0 ± 90.8 

Total number of SPOT14+ cells per 
DG 1708.5 ± 171.6 1810.0 ± 158.5 1612.0 ± 199.4 

Percentage of SPOT14+ / EdU+ 
double positive cells of all EdU+ cells 
per DG 

7.7 ± 0.9 10.8 ± 0.8 12.8 ± 1.8 

Percentage of radial SPOT14+ / 
EdU+ double positive cells per DG 12.6 ± 4.2 12.8 ± 7.2 14.7 ± 7.4 

Percentage of non-radial SPOT14+ / 
EdU+ double positive cells per DG 87.4 ± 4.2 87.2 ± 7.2 85.3 ± 7.4 
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