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INTRODUCTION:  
Quantitative Magnetic Resonance Imaging (qMRI) provides a measure of physical tissue properties that are ideally 

independent from scanner hardware and the employed sequence. This allows a better inter- and intra-patient 

comparison, thus bearing the potential to be a good biomarker for pathology. However, long acquisition times are 

usually required for qMRI in comparison to conventional MRI, a disadvantage which is an obstacle for its use in clinical 

research and routine. Several iterative reconstruction methods have been developed to accelerate qMRI sequences; 

these algorithms usually go along with long computation times and a reduced robustness compared to a direct Fourier 

transform. Here, we propose to split the optimization problem of a model-based reconstruction of T2 maps into smaller 

sub-problems, with the purpose of increasing its robustness as well as decreasing its computational cost. This can be 

generalized to other, similarly posed problems. 

 
THEORY: 
It is common practice for model-based methods to define a cost-function that incorporates the model behavior directly 

within a data fidelity term1-3. This is also done in the “Model-Based Accelerated Relaxometry by Iterative Nonlinear 

Inversion” (MARTINI)2, a T2 mapping algorithm using a multi-echo spin-echo (MESE) sequence. MARTINI’s cost-function 

is defined as follows: 
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with TE being the echo times, N the number of coil elements, P a binary mask representing the sampling pattern, F the 

Fourier transform operator, S the coil sensitivities, M0 the equilibrium magnetization, T2 the transverse relaxation and 

Y  the acquired k-space data. Minimizing this cost-function will result in an estimation of T2 and M0. However, the 

minimization of this nonlinear problem is numerically challenging and may lead to image artifacts and long 

reconstruction times. We suggest splitting up the problem similarly to what was proposed for compressed sensing4, 

resulting in a 2-step algorithm which we term “Split-Algorithm for Fast T2 mapping” (SAFT).  

Step 1: The MESE magnetization is calculated based on an initial guess of T2 and M0 using the forward signal model: 
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Using this first guess of the magnetization, the following problem is solved with a linear least-squares algorithm: 
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estimating the magnetization M that best fits the acquired data. The second l2-norm of the cost function forces the 

magnetization to be similar to the previously calculated 𝑀̂ with the similarity weighted by α. 

Step 2: The MESE signal model is fitted onto the previously estimated M by solving the following problem with a 

nonlinear least-squares algorithm, 
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yielding a new estimate of T2 and M0. Subsequently, steps 1 and 2 are iteratively repeated until the algorithm converges 

to a minimum, providing an approximation of T2 and M0. Optionally, a spatial regularization can be added to Φ2. Here, 

we performed an additional reconstruction using a wavelet sparsity constraint for both T2 and M0. 

 

MATERIALS & METHODS:  
After obtaining written consent, three whole-brain MESE datasets (TA 3:28min, acq. matrix 260x512, resolution 

0.75x0.45x3mm³, slice gap 0.3mm, TR/∆TE 4000/10.9ms, Number of echoes/slices/concatenations 16/43/2) of healthy 

volunteers were acquired at 3T (MAGNETOM Skyra, Siemens Healthcare, Germany) using commercially available 20- and 

32-channel head/neck coils. The used prototype MESE sequence was 10x undersampled according to a GRAPPATINI 

sampling pattern5. The datasets were reconstructed using MARTINI2 and the proposed algorithm, with and without a 

spatial regularization (SAFT vs. regularized SAFT). 

 
RESULTS & DISCUSSION:  
To compare the convergence of MARTINI and SAFT, the cost value of each iteration according to Φ(T2,M0) is plotted in 

Figure 1. For a fair comparison, all algorithms were initialized with the same guess for T2 and M0. The plot demonstrates 

that both SAFT reconstructions converge smoothly and reach a minimum after ~25 iterations. MARTINI’s cost values 

jump initially until the algorithm starts converging at ~15 iterations and reaches a minimum similar to SAFT after ~60 

iterations. Example T2 maps, reconstructed using MARTINI, non-regularized and regularized SAFT, are illustrated in 

Figure 2. It can be seen that the non-regularized SAFT reconstruction resembles the results of MARTINI. The wavelet-

regularized SAFT reconstruction yields similar results but with less noise in the parameter maps. It should be noted that 

an even faster computation performance can be achieved solving Φ2 with a log-linear regression, because then the 

algorithm comprises only two linear problems. However, we used a nonlinear approach to avoid noise-induced T2 

overestimation6. 

 
CONCLUSION:  
We suggest a method that splits the nonlinear problem of model-based reconstruction into smaller sub-problems which 

are solved alternately. The splitting results in a convex convergence, improving the robustness of the inverse 

reconstruction problem. Furthermore, we demonstrate that the improved robustness can be used to add non-convex 

regularization (e.g. sparsity constraints) to the optimization in order to further improve the estimated quantitative maps. 
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Synopsis: 
Numerous iterative reconstruction techniques have been published in the past, facilitating the calculation of quantitative 
parameter maps based on undersampled k-space data. Model-based approaches, for example, iteratively minimize a 
cost function that comprises a formulation of the signal behavior. Minimizing this non-linear problem yields the 
quantitative parameter maps, but is numerically challenging and thus accompanied with reduced robustness and long 
reconstruction times compared to a direct Fourier transform. Here we suggest a method to split the optimization 
problem of a model-based T2 mapping into sub-problems which are solved alternately. The splitting results in a more 
robust reconstruction with less computational cost. 

 

Figure 1: The cost value within each iteration for SAFT (with and without regularization) and MARTINI. 

 

 

Figure 2: The reconstructed T2 maps [ms] using MARTINI (left) and non-regularized (middle) and regularized (right) SAFT. 


