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A B S T R A C T   

At a time when developments in computational approaches, often associated with the now much-vaunted terms 
Machine Learning (ML) and Artificial Intelligence (AI), face increasing challenges in terms of fairness, trans
parency and accountability, the temptation for researchers to apply mainstream ML methods to virtually any 
type of data seems to remain irresistible. In this paper we critically examine a recent proposal to apply ML to 
polygraph screening results (where human interviewers have made a conclusion about deception), which raises 
several questions about the purpose and the design of the research, particularly given the vacuous scientific 
status of polygraph-based procedures themselves. We argue that in high-stake environments such as criminal 
justice and employment practice, where fundamental rights and principles of justice are at stake, the legal and 
ethical considerations for scientific research are heightened. Specifically, we argue that the combination of 
ambiguously labelled data and ad hoc ML models does not meet this requirement. Worse, such research can 
inappropriately legitimise otherwise scientifically invalid, indeed pseudo-scientific methods such as polygraph- 
based deception detection, especially when presented in a reputable scientific journal. We conclude that 
methodological concerns, such as those highlighted in this paper, should be addressed before research can be said 
to contribute to resolving any of the fundamental validity issues that underlie methods and techniques used in 
legal proceedings.   

1. Introduction 

There is no shortage of new ideas in the persistent, often desperate, 
human effort to detect deception in a way that is reliable and free of 
adhockeries. The ancient dream of separating true from false statements 
has shaped mythology, philosophy, literature, and fiction [1]. Mary 
Poppins, for example, immediately upon her return to the Banks family, 
inquired about the children’s behaviour. Her shortcut to the children’s 
inner world is an oral “thermometer” informing her reliably that, for 
example, Michael has been “careless, thoughtless and untidy” ([2], p. 
156; [3]). This amuses adults and children alike because they can 
distinguish fiction from science, i.e. the difference between literature 
and reality. But this clear distinction is beginning to erode. It has become 
commonplace to ask what could be achieved if we used state-of-the-art 
technology, especially machine learning, to compensate for human 
shortcomings such as inferential fallibility. Modern technology could 
offer solutions to the age-old problem of discovering truth, a common 
idea, in virtually every area of human activity, including forensic 
science. 

The potential for algorithmic approaches in forensic science is 
considerable [4]. At the comparison stage, for example, when assessing 
the degree of (dis)similarity between two compared items, marks or 
traces at the level of their features, variations in the results of the same 
and different human examiners could be attenuated or even avoided by 
the use of machine-based or -assisted measurement procedures. 

Mattijssen et al. [5] present an example of this in the area of 
feature-comparison as applied to the examination of firearms. 

Once observations from a particular comparison are available, 
algorithmic approaches can also assist in assessing the probative value of 
those observations. In this context, assessing the probative value means 
quantifying the extent to which the observations and measurements 
made during a comparison support a proposition (e.g., “the striation 
mark comes from the seized tool”) over a relevant alternative (e.g., “the 
striation mark comes from an unknown tool”) (e.g. Ref. [6]). Because 
this task may involve complex computations, there is potential for 
computational methods to perform such operations with unprecedented 
speed and reliability that vastly exceed the capacity of the unaided 
human mind. An illustrative example of this is the emergence of prob
abilistic genotyping systems for evaluating complex DNA profiling re
sults, especially DNA mixtures [7]. 

While these developments are laudable, progress in this area is 
fragile. As we will show in this paper, current research, practice, and 
publication activities are prone to misconceptions and susceptible to 
careless research methodologies that can undermine much-needed trust 
in the use of science in legal proceedings. Threats come from a variety of 
sources and can cumulate, complicating the problem. Consider, for 
example, the need for terminological and conceptual clarity regarding 
purpose and methods. In many applications, these aspects are far from 
clear. For example, it is no secret that many data-related (research) 
activities that were broadly and accurately described as statistics a 

Contents lists available at ScienceDirect 

Forensic Science International: Synergy 

journal homepage: www.sciencedirect.com/journal/forensic-science-international-synergy 

https://doi.org/10.1016/j.fsisyn.2024.100479 
Received 10 April 2024; Received in revised form 10 May 2024; Accepted 13 May 2024   

www.sciencedirect.com/science/journal/2589871X
https://www.sciencedirect.com/journal/forensic-science-international-synergy
https://doi.org/10.1016/j.fsisyn.2024.100479
https://doi.org/10.1016/j.fsisyn.2024.100479
https://doi.org/10.1016/j.fsisyn.2024.100479
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsisyn.2024.100479&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Forensic Science International: Synergy 9 (2024) 100479

2

decade ago are now increasingly associated with the fashionable terms 
data science, artificial intelligence (AI), and machine learning (ML). How
ever, many AI and ML approaches are either essentially statistical in 
nature or, on the contrary, are brute force methods that lack the rigour 
and explainability of sound statistical methods. Moreover, it is not al
ways the case that rigour drives the research purpose, design, and 
method selection. Instead, it is often the case that convenience data and 
ad hoc methods are chosen first, and the purpose is constructed ex-post 
on the basis of the data and methods chosen for data analysis. One such 
example is presented and discussed in this paper. 

These introductory considerations are not a mere caricature of the 
literature on the application of AI and ML to problems in legal pro
ceedings. As we will show, the problems raised above are real and even 
appear in papers published in prestigious journals. In particular, we aim 
to show in this paper that ML approaches applied to problems in legal 
(investigative) proceedings can be flawed in the sense that they openly 
ignore the goal of working towards ground truth and that they are used 
to seemingly legitimise other, scientifically discredited methods. This 
inevitably has a negative impact on the reputation of ML itself and, more 
importantly, raises ethical concerns. 

Realistically, in a single paper we cannot provide a quantitative 
survey to characterise the extent of this problem, nor can we hope to 
remedy it. To suggest otherwise would be tantamount to attempting to 
overcome Brandolini’s principle [8].1 However, despite the fact that we 
can only reveal the tip of an iceberg, the critical exposure of problematic 
research is more important than ever, especially at a time that some have 
called “a dangerous moment for science and the public” [9,10]. 

As a running illustrative example, we will take a closer look at an 
article published in the Nature journal Scientific Reports. The article in 
question attempts to develop a “second-opinion tool” for classical 
polygraph screening aimed at detecting deception [11]. Polygraph 
screening may seem far removed from the interests of the readership of 
FSI Synergy, but there are several reasons why it is a good topic for 
discussion. First, the technology is widely used in law enforcement and 
many professional settings. This means that despite longstanding and 
fundamental criticism, members of the public are potentially exposed to 
this technology. Second, there is probably no other method in legal 
proceedings that so prominently displays the notion of truthfulness and 
the aspiration to truth-conduciveness, while at the same time relying on 
such controversial scientific foundations, as polygraph-based proced
ures. Third, deception detection can be seen as a template for any 
forensic science method that seeks to help discriminate between 
competing propositions regarding, for example, the source of evidential 
material, or alleged activities. 

These considerations raise the interesting question of what, if any
thing, ML can contribute to the scrutiny of polygraph-based procedures 
and to the meaningful application of computational methods to prob
lems of legal interest more generally. Polygraph screening also provides 
an opportunity to discuss the proper understanding of the concepts of 
ground truth and error, both of which are fraught with misunderstanding 
in forensic science [12,13]. 

This paper is structured as follows. Section 2 provides a brief intro
duction to the scientific status and current use of the polygraph in 
various areas of practice. Section 3 presents general elements of perfor
mance evaluation for forensic (science) methods. These are contrasted in 
Section 4 with elements of standard ML methodology and, in particular, 
the methodological choices made by Asonov et al. [11]. In particular, we 
will critically examine their use of data on deception detection by 
human examiners based on polygraph screening data. Discussion and 
conclusions are presented in Section 5. 

2. Scientific status and current applications of polygraph-based 
interview procedures 

The polygraph does not really need much of an introduction. How
ever, it is helpful to provide some background and context. To begin 
with, it should be noted that the polygraph is not a self-contained lie 
detection technique, contrary to what is often suggested. The polygraph 
is only a recording instrument for various physiological reactions of a 
person (interviewee). In this sense, raw polygraph screening data is 
uninterpreted. It takes a human interviewer to reach a conclusion based 
on polygraph screening data. Put differently, deception is inferred by the 
interviewer based on polygraph screening data. Thus, there is a differ
ence between physiological measurements on the one hand and con
clusions drawn by an interviewer on the other. The latter requires what 
is commonly referred to as a “paradigm” of questioning and interroga
tion, of which there are several, such as the Comparison Question Test or 
the Concealed Information Test (see, e.g. Ref. [14], for a review). 

In this paper we do not elaborate on such different application par
adigms. We consider particular interrogation paradigms and physio
logical target measures to be combined methodological packages, and 
we will occasionally, and for simplicity, refer to such methodological 
packages as “polygraph” throughout this paper. Rather, we are inter
ested in discussing how pairs of polygraph screening data and human- 
assigned conclusions (so-called “labels”), such as “deception indi
cated” and “no deception indicated”, are used in conjunction with ma
chine learning methods, regardless of the polygraph application 
paradigm chosen. 

More generally, it should also be noted that the ability of polygraph- 
based interview methods to reveal truthfulness is, to put it mildly, highly 
controversial. Since the polygraph was first implemented to infer 
deception, it has been consistently and almost universally invalidated in 
terms of its applicability in fact-finding processes. This critical position 
has emerged in academic discourse [15,16] and has been echoed by 
scientific institutions [17,18] and criminal courts (e.g. Frye v. United 
States, 293 F. 1013, D.C. Cir. 1923) that have addressed the issue. 
Similarly, the approach has fared no better when investigated by the 
military [19]. 

The main criticism at a functional level is that an interviewee’s 
physiological response may be due to a variety of factors, not necessarily 
deception ([18], p. 78; [16], p. 29). Historically, this has not always 
been properly appreciated. On the contrary, the development of the 
polygraph and its use to infer deception was influenced by a now dis
credited and outdated paradigm in psychology based on the false 
assumption that physiological processes reflect mental processes in an 
identifiable way, known as psychophysical parallelism [3]. 

However, these fundamental limitations have not prevented 
polygraph-based deception detection from being deployed in legal sys
tems. In fact, the polygraph is considered useful as an interrogation aid 
by its very ability to give the subject the impression that it is actually 
working. In other words, once the subject believes in the infallibility of 
the polygraph-based procedure, the bogus pipeline effect takes place. 
That is, simply because the interview is conducted under the false 
assumption that the polygraph (a) operates independently2 and (b) will 
ultimately reflect the person’s true attitude, and because the interviewee 
does not want to be second-guessed by the machine, he or she will feel 
pressured to disclose unfavourable statements [3,20]. This is similar to 
horoscopes, which continue to exist largely because (some) people 
believe in them. There is, however, a striking difference. With horo
scopes, everyone is free to skip them or use them in whatever way they 
choose to make personal decisions. Polygraph-based deception detec
tion, on the other hand, is in many cases compulsory and has real 

1 Broadly speaking, Brandolini’s principle states that the amount of energy 
required to refute problematic output is much greater than that required to 
produce it. 

2 As mentioned at the beginning of this section, the polygraph is not an in
dependent lie detection technique, but requires a human examiner to reach a 
conclusion. 
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consequences for the individual that are decided by third parties. 
Given these examples of complications and distortions, it should be 

clear that the use of the polygraph to detect deception has no place in 
any process that seeks to meet the demands of modern and rational 
systems of governance. Unfortunately, reality tells a different story. 
Suffice it to say that one of the most striking, understudied and under
reported developments in the criminal justice system in England and 
Wales is the increasing use of polygraph-based interrogation techniques. 
Despite severe criticism from scientific institutions and academic 
discourse, the legal system in England and Wales is using long dis
credited polygraph-based procedures to elicit unfavourable and 
incriminating statements. Statutory law covers the use of polygraph- 
based procedures as part of the parole process for released offenders, 
those convicted of terror-related offences, sexual offences and domestic 
violence. The private sector also makes extensive use of polygraph-based 
procedures, typically to screen candidates for work environments that 
require a higher level of security and integrity, such as the financial 
sector or critical infrastructure (e.g. Ref. [11]). 

3. Elements of method performance evaluation in forensic 
science 

The fragile, to say the least, scientific status of the concept of poly
graph interviews, understood in the following as a given combination of 
the use of the polygraph and an interrogation paradigm (Section 2), 
raises the question of the methodological requirements of scientific 
research to which polygraph-based research should adhere, and whether 
ML could ultimately contribute to improving the truth-conduciveness 
(e.g. sensitivity and specificity) of polygraph-based procedures. Leav
ing aside purely descriptive or observational research, and concentrating 
on merely reflecting the state of the art in polygraph interviews, one 
might be tempted to consider the following two-step procedure: Roughly 
speaking, start by determining what kind of existing data might be 
available, and then look at what standard data processing methods are 
available. These methods could then be applied to the data to help 
answer questions that fall within the scope of the chosen data processing 
method(s). The rest would follow standard ML methodology, i.e. eval
uate the results of the different data processing methods using estab
lished performance metrics, such as error rates, and then factually report 
the results. 

In the remainder of this paper, we argue against this idea and use a 
practical example to illustrate our point. In particular, rather than 
choosing data and data processing methods first, we insist on the 
importance of defining overarching goals first, and only then making 
methodological choices that might serve those goals. The primary goal 
we have in mind here with respect to methods and techniques in the 
context of legal proceedings can be generally defined as promoting ac
curacy in fact-finding (e.g. Ref. [21,22]). That is, in the absence of 
knowledge of the ground truth, the idea is to invoke and rely on methods 
and techniques that are thought to guide one towards reducing certain 
types of error. Broadly speaking, a viable method or technique is one 
that has a demonstred level performance in helping people to perform 
better than they would without formal assistance. While this may sound 
obvious, it is not always properly appreciated in current research, as we 
will show. 

In forensic science, the notion of ground truth as the relevant refer
ence point is widely accepted. The paradigmatic example of this is the 
concept of the black-box study as advocated in the PCAST report [23]. 
Black box studies are studies “in which many examiners render decisions 
about many independent tests (typically, involving “questioned” sam
ples and one or more “known” samples) and the error rates are deter
mined” ([23], pp. 5–6). Proficiency testing of examiners is also often 
mentioned in this context. The focus may be on evaluating the perfor
mance of a particular method, an examiner, or both, especially when a 
method cannot be clearly separated from a human operator. The term 
validation study is another commonly used term in this context. It can be 

used as a summary term for a wide range of different types of ground 
truth testing studies. 

It is difficult to overstate the importance of known ground truth as a 
key experimental design feature of studies aimed at evaluating the 
performance of forensic examiners and/or methods. Meuwly et al. [24], 
for example, provide a detailed validation guideline for value of evi
dence methods across trace types based on definitions previously 
described in Haraksim et al. [25]. They clearly state that “[i]n the 
validation stage we evaluate the […] method performance using the 
validation dataset (with a known ground truth)” ([24], p. 149, emphasis 
added). More recently, and along the same lines, Morrison et al. [26] 
presented principles for validation in the specific area of forensic voice 
comparison: “The performance of the system is […] assessed by 
comparing the […] output by the system with the truth as to whether 
they resulted from same-speaker or different-speaker comparisons” 
([26], p. 301, emphasis added). 

As in life in general, the devil lies in the details, especially when the 
scope of inquiry is extended into the jurisprudential domain, which in
troduces an unbridgeable gap with respect to the ground truth-focused 
account of forensic evidence given above. As a preliminary, it is 
important to recall that the “epistemic” objectives of the criminal pro
cess are normatively constituted. This point can be illustrated by refer
ence to the values of legal orders, liberal or authoritarian, as the case 
may be. Regardless of policy matters and values salient in the respective 
legal order, factual accuracy, is not the primary concern of the criminal 
process (e.g. Ref. [22] for more analysis). Even if the procedural 
framework of the criminal process aims at minimising certain types of 
undesirable consequences, empirical reality cannot serve as a reference 
point in this endeavour. In other words, since the truth value of the 
(propositional content of the) criminal verdict cannot be determined by 
external means, the term veritistic cannot be used in this context. From a 
jurisprudential point of view, therefore, any veritistic approach to evi
dence is seriously flawed. This does not, however, contradict the above 
account of ground truth testing in forensic science, which is concerned 
with aggregate measures of performance established in experiments 
under controlled conditions and propositions other than ultimate issues. 
In criminal cases, the focus is on the verdict in the particular case, which 
is not analogous to an exercise in testing under controlled conditions. 

4. The problem of data over mind: how polygraph interview 
data can make a bad case for machine learning 

This section examines how the general principles for evaluating the 
performance of forensic methods outlined in the previous section can be 
compromised when problems are approached from an overly uncritical 
standard ML perspective. To this end, it is helpful to introduce some 
elements of mainstream ML methodology. Section 4.1 provides a brief 
description of common ML templates. Readers familiar with ML meth
odologies may wish to skip this section. Because of the ease with which 
criticisms of ML can be misunderstood [27], it is worth emphasising that 
Section 4.1 is not an exhaustive account and is therefore not represen
tative of the field of ML as a whole. Moreover, our criticism in later 
sections relates to the specific application we have chosen as a running 
example. More generally, the point we seek to make is that it is 
important to expose those aspects and variants of ML that are prone to 
misapplication in forensic contexts because they reflect poorly on the 
rest of ML, especially on the meaningful and responsible uses of ML [4]. 
Section 4.2 discusses the ML methodology used in Asonov et al. [11] as 
an example of how research can conflict with the principles of perfor
mance evaluation of forensic science methods. 

4.1. Aspects of data-centric mainstream ML methodology 

In informal discussions, ML and artificial intelligence (AI) are often 
mentioned together, although they are not the same. ML is only one part 
of the broad AI landscape. We can delineate this landscape along two 
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dimensions (see e.g. [28] for an overview). One dimension relates to the 
types of problems or tasks that computational procedures aim to solve, 
such as perception, reasoning, knowledge, planning, and communica
tion. Another dimension relates to the computational procedure that is 
used to perform the specific task(s) of interest. Historically, different 
approaches can be distinguished along this dimension. In the era before 
the current era of ML, between the 1950s and 1990s, also known as 
classical AI, a predominant idea was that the tasks to be performed by a 
machine were fully defined in the code written by human programmers 
in symbolic form. This approach is well suited for tasks involving 
probabilistic reasoning and logic, but can be less effective for tasks 
where humans cannot provide a complete description of how to proceed. 

Since around the mid-1990s, the gradually evolving perspective now 
known as ML has sought to overcome the gaps in human ability to 
provide a complete specification of the task to be performed by algo
rithmic systems. ML attempts to do this by presenting the machine with 
examples of data, known as training data, for which the category mem
bership is known. In other words, these are instances where there are 
measurements of characteristics (features) of an item or event for which 
we know which category it belongs to. Through several such examples, 
the so-called learning algorithm tries to find the parameters of a function 
(in the current example, a classifier) that will later be used to process 
new items, i.e. measurements of their features (serving as inputs), but for 
which the category membership (i.e. ground truth label or output) is not 
known. The performance of the learned function, the classifier, is then 
evaluated using so-called test data. The results are summarised using 
various standard metrics, such as error rates. If the performance is un
satisfactory, the researcher may go back and critically examine the 
training data (e.g. its quality) and/or the learning algorithm itself. 
Sometimes the researcher may simply use many different methods on 
the same training data to see which method leads to the best classifi
cation performance. 

Note that for the purposes of this discussion we will focus on clas
sification as a common example of supervised learning. Here the term 
“supervised” refers to the fact that the input and output values for the 
training data are known. However, this is not the only type of learning. 
In unsupervised learning, for example, there are no a priori known class/ 
category assignments. A typical example is data clustering. Finally, we 
should also mention that classification is only one type of task to which 
ML is applied. Another common task, which is beyond the scope of our 
discussion, is regression. It aims to provide a real-valued output based on 
some input. 

The above description of standard ML methodology is broad and 
general, but sufficient to illustrate the main ideas. It is important to note 
that the learning step in the methodology, at least in the case of classi
fication, involves training data with known ground truth. Moreover, in 
the performance evaluation step, the output labels of the procedure are 
compared with the actual ground truth, since factual accuracy is the 
relevant reference point. 

However, complications and controversies can arise when the focus 
is on details. For example, a recurring controversial issue is the (degree 
of) transparency and understandability of the procedure at different 
levels of detail. The question is whether, for a given procedure that 
processes inputs to outputs (e.g. a classifier), one can reconstruct how 
the result was produced. In some cases, the procedure amounts to a 
highly transparent and rigorous statistical model (e.g. in the case of 
statistical learning techniques), so that it is actually unnecessary to use 
the fashionable term “ML” to refer to it. For such procedures, the func
tioning and results are tractable in the sense that if something does not 
work as expected, it is possible to inspect the procedure (and its 
implementation) to search for the reason(s) for the observed behaviour. 
However, many contemporary ML methods do not have this level of 
transparency because their functioning is opaque (e.g. Ref. [29]). That 
is, regardless of whether the procedure works (well) or not, as measured 
during testing, the researchers would not be able to explain why. Worse, 
if the procedure works differently than intended, or not well enough, the 

researchers have no way of discovering the source of the problem(s), 
except perhaps by trial and error. Needless to say, this is probably one of 
the least desirable properties of a method intended for use in legal evi
dence & proof proceedings, which require results based on a sufficiently 
reliable scientific foundation, not just “turning knobs”. 

Closely related to the problem of opacity may be the lack of a 
structural understanding of the problem domain, i.e. a model of reality, 
at least at a qualitative level, which requires elements – i.e. knowledge – 
beyond the naked data itself. This problem arises when taking the ML 
methodology outlined above to the point of assuming that all wisdom 
lies in the data alone. In other words, researchers proceed on the 
assumption that the computational procedure can develop the ability to 
perform certain tasks on its own, simply by processing training data. 
However, the lack of structural knowledge about the problem domain 
means a lack of insight into the problem of interest. Consequently, when 
moving from one context to another, for example, the entire training 
process of the ML procedure may have to be started from scratch. 

The above complications should not be surprising from a data-over- 
mind3 perspective, which at best seeks to find associations between in
puts and outputs, without looking further behind the “curtain” to un
cover more substantive aspects of the problem of interest. With these 
elements in mind, we are now ready to critically examine a recent 
example of the application of data-centric ML methodology to the spe
cific problem of polygraph deception detection, as presented by Asonov 
et al. [11]. In the next section, we present the ML methodology used by 
Asonov et al. [11]. We show how it runs counter to the goal of 
truth-conduciveness and why it raises research ethics concerns. 

4.2. Application of ML to polygraph screening/interview data 

The running example we consider here is the work reported by 
Asonov et al. [11], which focuses on “building a second-opinion tool for 
classical polygraph [screening]”.4 Their study addresses the question of 
how to improve the review of conclusions drawn by polygraph exam
iners, who are inevitably prone to error. Specifically, the authors seek to 
use ML as a novel way to design a computerised device for reviewing 
polygraph-based conclusions drawn by human examiners. 

We will first look at the notion of error as it relates to polygraph 
screening conclusions (Section 4.2.1), followed by a critical review of 
the application of the conventional ML template to polygraph interview 
data (Section 4.2.2). Sections 4.2.3 and 4.2.4 discuss the problem of 
ambiguously labelled data and the consequences of model-blind ma
chine learning approaches from a structural point of view. 

4.2.1. Conclusions of human examiners in polygraph interviews and the 
notion error 

In practice, two types of interview results – i.e. conclusions reached 
by polygraph interviewers – require review: “deception indicated” (DI) 
and “no deception indicated” (NDI). Each of these two results can be 
either accurate or inaccurate, depending on whether or not the inter
viewee is truthful about a particular subject of interrogation. Before 
proceeding, however, a general comment on the central notion of error 
is in order. Asonov et al. [11] argue that “screening errors are not only 
due to the method, but also due to human (polygraph examiner) errors”. 
We question whether this distinction is helpful in practice, as the poly
graph interviewer is an integral part of the screening process and it is 
difficult to separate the two. 

The whole polygraph procedure, including the conclusion reached 
by the polygraph interviewer, is in fact an interrogation tool, another 

3 We paraphrase here Pearl’s expression of “mind over data” [30].  
4 Note that Asonov et al. [11] distinguish between classical polygraph 

screening, which focuses on measuring aspects such as cardiovascular activity 
and respiration, and other types of polygraph screening, which are based on 
other variables measured using video and audio recordings. 
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Trojan horse that hides the extraction imperative under the veil of 
technological progress [3]. Its purpose and only potential is not to detect 
truth but to enable interrogators to extract confessional statements at 
the expense of rationality and legitimacy (see Ref. [1] for further dis
cussion). Furthermore, what Asonov et al. [11] presumably refer to as 
the “method” is the procedural component that involves physical mea
surements of the interrogated person. These measurements may be 
inaccurate to some degree. However, they are not directly an “error” in 
the conventional sense, i.e. with respect to the ground truth underlying 
the subject about which the examinee is being questioned. The reason 
for this, as explained in Section 2, is that DI and NDI conclusions are 
drawn by the polygraph interviewer on the basis of physiological mea
surements, not by the device used to make those measurements. 

This distinction is important because, at this point, Asonov et al. are 
putting the technological cart before the evidential horse. The main idea 
underlying polygraph interviews is one of the most characteristic tenets 
of an obsolete paradigm of psychology (Introspection), i.e. the so-called 
psychophysical parallelism, according to which mental processes run 
parallel to physiological ones [31]. This idea became the linchpin of the 
polygraph. However, the field did not survive the 1920s because it had 
too many internal methodological inconsistencies and relied on too 
many idealisations. 

It is also worth noting that the conclusions DI and NDI are not as 
categorical as one might be inclined to think, based on what the common 
notion of “lie detection” suggests. Polygraph interviewers do not directly 
“detect” lies, strictly speaking, but only indicate deception, as the terms 
DI and NDI imply. Therefore, DI and NDI conclusions express nothing 
more than a subjective, unverifiable suspicion. In practice, however, this 
subtlety is often ignored because consumers of polygraph interview re
sults often confuse indications of deception with lie detection. 

We should also include some critical reflections on the feasibility of 
error detection in principle. In any field application of polygraph 
screening, the ground truth is typically unknown, because if we knew 
the truth value of a proposition, polygraph screening would not be 
necessary. The complexity of real-life cases adjudicated in the criminal 
justice system exceeds anything found in the psychologist’s laboratory. 
Real people involved in the criminal justice system have real stakes, 
complex motivations, and varying recollections of events. Empirical 
research in this area suffers from a lack of realism, which is a prereq
uisite for validity. In addition, practical application also faces what 
empirical researchers call the “base rate problem”. As Gudjonsson ex
plains, “[a]t the most basic level we do not know the proportion of 
suspects interrogated at police stations who are genuinely guilty of the 
offence of which they are accused.” ([32], p. 173; see also [3] for further 
discussion). 

The lack of knowledge of the ground truth means that errors, i.e. a 
discrepancy between the examiner’s conclusion and the ground truth, 
cannot be detected. At best, a second examiner –human or machine – can 
review the first examiner’s recordings and either agree or disagree with 
the first examiner’s conclusion. Asonov et al. [11] call this a component 
of quality assurance: “have another examiner review the screening and 
confirm or disprove [sic] the conclusion of the original examiner” (p. 2). 
Note, however, that this is somewhat misleadingly phrased since the use 
of the term “disprove” suggests a strong claim of “falsification,” which, 
as noted above, is impossible in the absence of knowledge of the ground 
truth. Incidentally, Asonov et al. [11] acknowledge this fallibility by 
calling a review by a second examiner “not a bulletproof solution” 
because “the second examiner may make just the same mistake the 
original examiner did” (p. 2). 

The clarifications introduced above set the boundaries for assessing 
what exactly machine learning with polygraph interview data can and 
cannot legitimately claim to accomplish. We address this issue in the 
next section. 

4.2.2. Scrutinising the application of the conventional ML template to 
polygraph interview data 

As a preliminary, we should emphasise that the nature and form(at) 
of the data have a crucial impact on the meaning and appropriateness of 
the result of a standard ML application (as described in Section 4.1). By 
the nature of the data, we mean whether the data are the result of 
carefully designed experiments under controlled conditions or whether 
they are convenience (field) data. 

In the former case, i.e. structured experiments, conditions are known 
and controlled, at least to some extent. In the context of polygraph-based 
interviews, this condition may be pushed to an unrealistic level. 
Consider, for example, how researchers simplify case studies to the point 
of meaninglessness in an attempt to solve the problem of replicability for 
real events. Subjects in psychological research are typically instructed to 
imagine committing a mock crime, such as “stealing” something in the 
room. According to the researchers’ intention, this would create an 
emotional potential with which to experiment. However, this is an 
experiment with the wrong kind of guinea pigs (see already [33]), for 
the forensic context is very different from the laboratory conditions 
outlined above. 

In the latter case, i.e. convenience (field) data, conditions are more 
likely to vary from case to case, possibly quite substantially, raising the 
issue of uncontrolled confounding factors. 

By data form(at) we mean, broadly speaking, what exactly the 
measurements refer to and how the (category) labels are defined. As a 
simple example, consider a case where the measurements refer to the 
height of a person, and the (category) labels refer to whether the 
measured individual is a man or a woman, or more generally, whether 
the individual is a member of the population (group, class, etc.) 1, 2, 3, 
etc., depending on the type of classification problem at hand.5 Thus, as 
we can see, the extent to which a mainstream ML technique can actually 
“learn” anything substantial depends crucially on the quality with which 
the data has been labelled. However, as we will argue later, data alone is 
not sufficient to ensure a meaningful ML application. 

With these observations in mind, let us now turn to the study by 
Asonov et al. [11]. With regard to their methodology, two important and 
interrelated aspects need to be mentioned. The first relates to the pur
pose of the study. The authors point out that their aim is not to develop a 
device that directly outputs statements about the ground truth, i.e. the 
truthfulness of an interviewee’s answers to questions of interest. Instead, 
the authors are attempting to develop a device that provides a statement 
about what a (second) polygraph interviewer would conclude about the 
truthfulness of an interviewee’s responses (i.e. DI or NDI). For this 
reason, the authors refer to their device as a “second-opinion tool”. The 
difference between these two purposes is subtle but crucial, as we will 
see. 

Moreover, the term “second-opinion tool” is potentially confusing 
because a second-opinion is usually understood as a further statement 
about the actual ground truth, not a mere conjecture about what an 
average examiner would conclude about the ground truth. For example, 
in the context of weather forecasting, a meaningful second opinion 
would be a second statement about the future state of the world, such as 
rain or no rain the next day, not about a forecaster’s statement (or 
indication) about rain or no rain the next day. Therefore, we would not 
characterise Asonov et al.’s [11] device as a proper second-opinion tool, 
but rather as a pseudo-second-opinion tool. 

One might be tempted to say that there is no real difference between 
the two kinds of conclusions distinguished above, or that any difference 
is immaterial. However, this temptation should be resisted, as will 
become clear when we turn now to the second aspect related to the 
methodology used by Asonov et al. [11]: the nature and structure of the 
data used for ML. The authors state that their data consist of “historical 

5 Recall that, as noted in Section 4.1, classification is only one of several tasks 
for which ML is used. 
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data from 2094 field polygraph screening recordings (PSRs) including 
Deception Indicated (DI) attributes set by the examiners who conducted 
the screenings” (p. 2). Clearly, this is not data obtained under controlled 
conditions and with known ground truth (i.e. whether the interviewee 
gave a truthful answer or not), but convenience data labelled with the DI 
or NDI label of the particular examiner, i.e. something more arbitrary 
than rational. In practice, using such data for ML purposes allows a 
model to “learn” the association between the input measurements and 
the examiner’s conclusions (outputs), not with respect to the actual 
ground truth in each case. Put another way, performing ML on such data 
means mimicking human examiners at their (imperfect) level of per
formance, rather than designing a device that provides its own conclu
sion about the relevant ultimate ground truth state. 

It is worth pausing for a moment to consider what it means for ML 
systems to mimic the conclusions of human polygraph examiners. To do 
this, let us recall the goals of ML. According to at least one viewpoint, the 
purpose of ML is to develop machines that can perform certain tasks that 
would otherwise require human skills (intelligence), and ideally perform 
those tasks better than humans, especially where the tasks are complex 
and human performance is variable and poor (i.e. prone to error). This, 
in turn, raises the question of what the task actually is. 

In the context of polygraph screening (PS), the obvious primary task 
would be to infer deception. However, this task would require data 
labelled with the actual ground truth state (interviewee truthfulness), 
not just DI and NDI labels as in the convenience data used by Asonov 
et al. [11]. Thus, the task defined by Asonov et al. [11] can never reach 
the level of interviewee truthfulness. Instead, as noted in our first point 
above, the authors’ ML tool can at best flag a deviation from the 
aggregate interviewers’ conclusion (i.e. the average wisdom of the 
crowd). This not only reflects a lack of ambition to improve the 
truth-conduciveness of practical procedures (i.e. with respect to ground 
truth), but amounts to a conscious decision to abandon the concept of 
truth altogether. Asonov et al. thus replace methodological rigour with 
methodological nihilism. Limiting the scope of ML to mimicking the 
process of reaching conclusions by polygraph interviewers is tanta
mount to further enforcing and imposing current PS practice in its 
imperfect state of development and operation. Such an ML design would 
also amount to merely making the scientifically discredited practice of 
PS more economically efficient, if indeed quality assessment (QA) by 
machine could somehow replace or reduce the need for human resources 
for the same task. In other words, a research design with data that is 
deprived of actual ground truth is necessarily incapable of discovering 
anything substantially new in the effort to draw conclusions about the 
truthfulness of interviewees’ answers. 

Regarding the problem of ground truth data, one might object to our 
critique by arguing that the DI and NDI conclusions are quasi-ground 
truth labels, i.e. acceptable proxies for it. Indeed, Asonov et al. [11] 
write that “the share of examiner errors [in the data] is minor” (p. 2). 
However, this objection and assumption is unfounded and speculative. 
The authors provide no independent evidence that the proportion of 
incorrect labelling in their data can be considered low or high. Nor do 
they justify what is low enough or what level of error would be acceptable 
in operational practice. Instead, based on what we know from critical 
research on PS, we argue that error probabilities can be virtually any
thing, and even vary across settings, due to the multivariate nature of the 
problem in the first place. Furthermore, if the error rate were indeed so 
small as to be negligible, it would beg the question of why PS requires 
review, which would defeat the purpose of the study. 

4.2.3. Illustrating the problem of ML with ambiguously labelled data 
The main point made in the previous section was that training a 

machine on convenience data, where only the interviewer’s presumed 
ground truth assignment rather than actual ground truth is available, is 
problematic, regardless of whether the use of such convenience data is 
intentional rather than the result of a mere practical constraint. While 
the intricate nature of such a research design may remain difficult for the 

general readership to understand, we can further illustrate it with some 
common forensic science examples. 

A convenient example is the task of comparing a fingermark of un
known origin found at a crime scene with the reference print of a person 
of interest, and the assignment of a probative value to the similarities 
and differences observed during such a comparison. In forensic science, 
various computational methods have been developed to produce value 
of evidence assessments for the results of mark-to-print comparisons. As 
discussed earlier (Section 3), Meuwly et al. [24] proposed guidelines for 
the validation of such systems. Broadly speaking, such validation focuses 
on whether a given method produces outputs (quantified expressions of 
the value of evidence) that are congruent with ground truth. For 
example, in the case of a comparison where the crime scene mark and 
the reference print are from the same person, a system should output an 
evidence value that expresses support for the proposition that the 
compared items are from the same source, rather than the proposition 
that they are from different sources. However, there would be no in
terest in training a system on data with labels that correspond to what 
examiners believe to be the ground truth, rather than the actual ground 
truth.6 The reason for this is that we want a system that strives for 
ground truth as the relevant reference point, not just the level of human 
examiner performance, which is known to be imperfect, i.e. suboptimal 
in terms of truth-conduciveness. 

Another example, conceptually similar to fingermark examination, is 
forensic voice comparison. In this area, considerable progress has been 
made in the development of automated, human-supervised forensic 
voice comparison systems and their empirical validation under case
work conditions. As with fingermark examination, the ground truth is 
the primary reference point. The performance of forensic voice com
parison systems is evaluated against the ground truth, i.e. whether the 
examined voice recordings are from the same or two different sources 
(see especially [26]). No one in this field would advocate training and 
evaluating systems based on speech recordings labelled with what 
humans believe to be the ground truth, because such labels would not 
only be expected to differ from the ground truth, but would also 
potentially vary from examiner to examiner. The result would be 
ambiguously labelled data. 

4.2.4. The consequences of model-blind machine learning from a structural 
point of view 

So far, our discussion has focused mainly on the nature of the data 
and the impact of this aspect on the meaningfulness of the ML process. 
However, there is more to say about the intricacies of applying the 
standard ML framework. In particular, it should be kept in mind that the 
standard ML framework has little to say about the definition of the 
variables involved, other than generalities such as whether they are 
discrete or continuous, binary or multi-class, and so on. The ML template 
can therefore be applied to a wide range of problems, including textbook 
examples such as classifying papayas as tasty or untasty based on aspects 
such as softness and colour (e.g. Ref. [34]).7 While this ease and flexi
bility of application can be seen as an advantage, it can potentially lead 
to ignoring aspects of the real world that cannot be extracted from the 
data alone, regardless of the amount of training data available. Field PS 
data provide an interesting example for further consideration of this 
issue from a structural perspective. 

In the context of classification problems, it is helpful to consider – 

6 There are rare exceptions in the forensic literature. For example, Dror and 
Scurich [40] have proposed elevating the conclusion categories of human ex
aminers to ground truth states when calculating error rates, but this proposal 
has been refuted on grounds of logic [12] and practical feasibility [35]. For 
further debate on the same topic, see also Biedermann and Kotsoglou [13,36] 
and Scurich and John [37].  

7 As noted in Section 4.1, we restrict our discussion here to problems of 
classification and leave aside other tasks, such as regression. 
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structurally speaking – that the hypothesis (or class) variable conditions 
the variable for which measurements or observations are available. For 
example, in the case of height measurements for men and women, the 
distribution of measurements (e.g. the variable “height”) is said to 
depend on, or be conditioned by, the hypothesis variable (man or 
woman). On the basis of a particular measurement, we can then infer 
something about whether a given measurement is of a man or a woman, 
without necessarily making a categorical statement about class 
membership.8 

Turning now to field PS data, we can ask whether it makes sense to 
assume that DI and NDI conclusions are categories in the sense explained 
above. Put differently, the question is whether interviewers’ conclusions 
(of DI and NDI) really condition the raw PS results (measurements). This 
seems implausible in that an interviewer’s conclusion is given only after 
the PS measurements have been taken. Furthermore, while the states 
“deception” (D) and “no deception” (ND) do indeed form a hypothesis 
variable that represents ground truth, examiners’ DI and NDI conclusions 
are not a conditioning variable of the same kind.9 Rather, it is the other 
way round: an examiner’s conclusion (DI or NDI) is a consequence of the 
measurement, i.e. an ex-post statement. 

To illustrate the above point, we can use DNA analysis as a rough 
analogy (e.g. Ref. [38]). Here the ground truth (the hypothesis variable) 
is whether two biological stains come from the same individual or from 
two different individuals. This proposition logically conditions the var
iable representing the event whether the stains have corresponding or 
non-corresponding DNA profiles. Finally, depending on whether the 
stains have corresponding profiles, the scientist will report either a 
correspondence or a non-correspondence. It is important to note that it is 
not the examiner’s report of a correspondence that “makes” the DNA 
profiles correspond to one another, as this would be tantamount to 
claiming that an effect (variable) “produces” a cause.10 Instead, the 
examiner’s conclusion depends on whether or not the DNA profiles 
actually correspond. Similarly, it’s not the polygraph examiner’s 
conclusion (DI or NDI) that “causes” the raw PS results (measurements). 
Instead, the variable representing the examiner’s conclusion depends on 
the PS measurement result. It is only by making the approximation of 
interpreting the DI and NDI labels assigned by human examiners as 
proxies for the ground truth labels (D and ND) that the proper diagnostic 
structure could be restored here. However, as we have argued in Section 
4.2.2, this assumption is not warranted. 

One might object to the above analysis by claiming that DNA profile 
comparison and source inference are not the same as polygraph 
screening and deception detection. This is true in terms of practical 
details, but not at the level of the structure of reasoning. Both applications 
deal with the general problem of going from a report from a human 
source (here: an examiner’s report) to an assessment of the underlying 
ground truth via some intermediate variable(s), i.e. a chain of reasoning 
(e.g. Ref. [39]). This structural analysis is not just a conceptual nicety, 
but can actually show us how to make research on polygraph interviews 
potentially more purposeful. 

Specifically, the structural analysis of the problem of interest tells us 
that in a reasoning process in which raw PS results (measurements) are 
available, an examiner’s (mere) opinion of the ground truth, in the form 
of a DI or NDI report, is irrelevant for inferring anything about the 

ground truth (i.e. the D or ND states). The reason for this is that, 
graphically speaking, the measurement results “screen off” the hypoth
esis variable (D and ND) from the examiner’s conclusion (DI and NDI). 
This brings us back to our main argument: the natural way to build an 
examiner opinion review system would be to train on data with the 
actual ground truth labels D and ND, i.e. at the top of the inference 
chain, rather than on DI and NDI labels, which are at the bottom of the 
inference chain. 

Finally, one could argue that many standard ML methods do not 
require one to worry about structural details of the kind discussed above. 
In other words, model-blind methods focus on “learning” the associa
tions between virtually any input and output variables, regardless of 
how the variables of interest are structurally related to each other. One 
could even argue that such methods are exactly what is needed, since 
they are ideal for situations where the task to be performed is not suf
ficiently understood for humans to formally specify and implement it in 
a program. However, when relevant structural knowledge about reality 
is available, it is questionable to proceed and base ML on assumptions 
that are clearly contrary to what that knowledge would suggest. 

5. Discussion and conclusions 

The development and use of algorithmic approaches in combination 
with physiological data (including conclusions of human examiners), 
which purport to provide a second opinion tool for classical polygraph 
screening, represents a complication nested within a wider set of prob
lems that go beyond pure research settings. Government, industry and 
society as a whole form a complex, interwoven structure that provides 
fertile ground for applied research, including research into polygraph- 
based interview procedures to detect deception. Suffice it to say, for 
example, that one of the most notable recent developments in the penal 
system of several jurisdictions, including England and Wales, has been 
the increased use of polygraph-based interviewing techniques. Previ
ously restricted (by statute) to certain sex offenders released on licence, 
polygraph-based interviews can now also be imposed on released do
mestic violence and terrorism offenders, those subject to Terrorism 
Prevention and Investigatory Measures (TPIMs) and those subject to 
Sexual Harm Prevention Orders through a recent statutory power to 
impose positive requirements. In addition, the UK Government is pro
posing to introduce polygraph-based interview procedures for offenders 
convicted of murder where there is a risk of them committing a sexual 
offence on release. 

The aforementioned developments in criminal policy highlight, in 
the strongest possible way, the need for a public debate on the ethics and 
regulation of the use of technology, particularly in view of the fact that 
the standards for the use of devices such as the polygraph are not set by 
the scientific community. In the UK, for example, the design and de
livery of the “Basic Polygraph Examiner training” must conform to the 
rules and standards set by the American Polygraph Association (APA). 
Although the APA is independent of the executive, it can hardly be 
described as an independent body. On the contrary, it is a trade associ
ation with clear commercial interests. While they are more than entitled 
to promote their business objectives, it remains problematic, indeed 
scandalous, that they set the standards for the assessment, but also for 
the training and quality control of an intrusive measure [1]. 

It is tempting and misleading to think or suggest that a lack of sci
entific validity can be remedied by mere increased computational ca
pacity in general, or by the now fashionable standard ML methods run 
on convenience data in particular. The fact remains that polygraph- 
based interview procedures are pseudoscientific for the simple reason 
that case-specific physiological behaviour is more complex than what can 
be captured by frameworks that purport to identify categorical re
lationships between psychological concepts and physiological behav
iour, i.e. to identify a single cause for externally measurable behaviour, 
especially since the data include the subjective conclusions of the human 
examiner as an additional dimension. 

8 We emphasise that our discussion here does not relate to forensic evidence 
evaluation where it is generally accepted that forensic scientists should not 
opine directly on propositions, but should only assess the value of the findings 
(observations), i.e. their capacity to help discriminate between competing 
propositions of interest (e.g. Ref. [6]).  

9 Note that we have underlined the “I” in DI and NDI to highlight that the 
abbreviation stands for an examiner’s indication, which is not to be confused 
with the actual ground truth states D and ND, respectively. 
10 See e.g. Taroni et al. [41] for a graphical representation of this under

standing using a Bayesian network. 
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Building ML models, as Asonov et al. [11] do, with training data for 
which human interviewers attributed DI and NDI labels in an unverifi
able way means that the resulting models at best emulate a generic 
human interviewer. The actual ground truth as the relevant reference 
point is thus openly dismissed. Worse still, the authors’ use of the terms 
“error (detection)” and “verification” is unfounded and misleading. The 
term “error” refers to a mismatch with respect to ground truth, and 
verification requires knowledge of the ground truth – which is absent in 
Asonov et al.’s data. To suggest otherwise is ethically questionable, to 
say the least, given the strong interest that polygraph-based procedures 
continue to enjoy among interested parties. 

More generally, the authors’ suggestion that the proposed models’ 
aspiration to mere human-level performance is appropriate and suffi
cient because the intended use of their models is limited to flagging cases 
for further review by human examiners is shallow. To argue in this way 
is to suggest that ML is not intended to help practise move towards a 
level of operation more firmly rooted in factual rectitude, but merely to 
make a profoundly human black box process more economically effi
cient, which is ethically reprehensible. At a time when developments in 
the broader field of AI are facing increasingly harsh challenges over 
aspects such as fairness and accountability, Asonov et al.’s ML approach 
is thus the antithesis of where current research in the field should be 
going. Quality assurance – with or without the use of algorithmic pro
cesses – presupposes normative standards. In Asonov et al.’s case, how
ever, the decision in question (DI or NDI) is merely compared with other 
decisions of the same type, for which there are also no normative criteria 
of rectitude. Their approach therefore reduces normative criteria (the 
Ought) to empirical phenomena (the Is), which is an instance of Hume’s 
naturalistic fallacy. A decision cannot be used as a ground truth against 
which other decisions can be assessed. A decision can be (un)justified, 
(un)reasonable etc., but it cannot be true or false. Ultimately, this lack of 
normative anchor obviously undermines the relevance of subsequent 
analyses, such as the effect of controlling for environmental factors, 
some of which Asonov et al. [11] explore, on aggregate measures of 
model performance. This so-called ‘turning the knobs of the model’, 
typical of mainstream ML, does not advance our fundamental under
standing of the phenomenon of deception. 

The deployment of algorithmic approaches in the high-stake envi
ronments of criminal justice and employment practice must be based on 
defensible multidisciplinary research. The processing of mere conve
nience data by ad hoc ML models in order to seemingly improve and thus 
legitimise a scientifically questionable concept such as polygraph-based 
deception detection does not meet this requirement. Where fundamental 
rights and principles of justice are at stake, the legal and ethical con
siderations for scientific research are heightened [1]. The methodolog
ical concerns highlighted in this paper must therefore be addressed 
before research can be said to contribute to resolving any of the funda
mental validity issues underlying the use of polygraph-based deception 
detection itself, or any other method to be used in legal proceedings. 
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