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1 Introduction

Consider a stationary chi-process {χm(t), t ≥ 0} with m,m ∈ N degrees of freedom as follows

χm(t) =
(
X2

1 (t) + · · ·+X2
m(t)

)1/2
= ‖X(t)‖, t ≥ 0,

where X(t) = (X1(t), . . . , Xm(t)) is a vector Gaussian process which components are independent copies of

a standard (zero-mean and unit-variance) stationary Gaussian process {X(t), t ≥ 0} with almost surely (a.s.)

continuous sample paths and correlation function r(t) = E {X(0)X(t)} , t ≥ 0.

In this paper, we are concerned with the dependence of extremes of the continuous time and discrete time of chi-

processes. Specifically, assuming that the process {χm(t), t ∈ [0, T ]} is observed at time t ∈ R(δ) = {kδ, k ∈ N}
with frequency δ = δT > 0, of interest is the asymptotic joint distributions of (Mm(T ),Mm(δ, T )) as T → ∞
(after normalization) with

Mm(T ) := sup
t∈[0,T ]

χm(t), Mm(δ, T ) := sup
t∈R(δ)∩[0,T ]

χm(t). (1)

The impetus for this investigation comes from numerical simulations of high extremes of continuous time ran-

dom processes, see e.g., [15, 30, 37] for Gaussian processes, [16] for the storage process with fractional Brownian

motion, [13, 38, 39] for stationary vector Gaussian processes and standardized stationary Gaussian processes,

and [41] for stationary processes. It is shown in the aforementioned contributions that the dependence between

continuous time extremes and discrete time extremes is determined strongly by the sampling frequency δ and

the normalization constants, see also for related discussions [5, 20, 31, 32, 41] in the financial and time series

literature. Another motivation is that since the chi-processes appear naturally as limiting processes which have
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attracted considerable interest from both theoretical and practical fields, see e.g., [12, 25, 11, 10] for deeply

theoretical discussions involved in the continuous time extremes of various χ-processes, and [1, 4, 17, ?] for

statistics test applications concerning the maxima over the chosen time points set and the continuous time

intervals. Therefore, of crucial importance is to understand the underlying asymptotic behavior of the extremes

for different grids.

The principle challenge for χ-processes increases significantly due to no counterpart of Berman’s Normal Com-

parison Lemma for chi-distributions. However, with the technical methodology from [12, 22, 23, 24, 29, 35, 27,

26], and assuming certain locally and long range dependence on the common Gaussian process X(·), namely

(see for its extensional utilizations [26, 19, 36])

r(t) = 1− |t|α + o(|t|α), t → 0 for some α ∈ (0, 2] (2)

and

lim
T→∞

r(T ) lnT = r ∈ [0,∞), (3)

we establish our findings in Theorem 2.1 extending those for weakly dependent stationary Gaussian processes in

[30], corresponding to m = 1 and r = 0 in (3) in our setting, represent asymptotically completely dependence,

max-stable dependence and conditional independence according to the three different types of grids in the ter-

minology of [30], namely the dense grid R(δ) with δ(T ) = o((2 ln T )−1/α), T → ∞, the Pickands grid R(δ) with

δ(T ) = D(2 lnT )−1/α for some D ∈ (0,∞), and the sparse grid R(δ) with limT→∞ δ(T )(2 lnT )1/α = ∞ and

δ(T ) ≤ δ0 for some δ0 > 0.

We note in passing that our methodology is different from that in [41] which is strongly based on the Albin’s

methodology wherein the verification of technical Albin’s conditions requires in general a lot of efforts. More-

over, our theoretical results, which do not seem possible to be guessed, are of interest for simulation studies,

and give to some extent certain recommendations how tight a simulation grid should be when high extremes

are important in simulations of the chi-processes under consideration.

The rest of the paper is organized as follows. Our main results are presented in the next section. All the proofs

are relegated to Section 3 which is followed by an Appendix including some technical auxiliary results.

2 Main results

This section is devoted to the asymptotic properties of (Mm(T ),Mm(δ, T )) given in (1) for the three different

types of grids δ = δ(T ) in the terminology of [30]. Before giving our main result (see Theorem 2.1 below), we

shall first recall some asymptotic results of the considered chi-processes and introduce some notation concerning

the Pickands type constants.

As we know from [28] or Corollary 7.3 in [29] that, if the correlation function r(t) satisfies (2) and in addition

r(t) < 1 for all t 6= 0, then for any fixed T > 0

P {Mm(T ) > u} = T
21−m/2Hα

Γ(m/2)
u2/α+m−2 exp

(
−u2

2

)
(1 + o(1)), u → ∞, (4)

where Γ(·) is the Euler Gamma function and Hα ∈ (0,∞) denotes the Pickands constant, see [14, 9, 29, 19, 33, 8]

for details and various discussions. The asymptotic properties of Mm(T ) have been extensively studied in the

literature; see [2, 3, 7, 24, 28, 34, 36, 40] for various results. Moreover, if additionally condition (3) holds for

some r ∈ [0,∞), then the mixed Gumbel limit theorem holds as follows (see e.g., Theorem 3.1 in [35])

P {aT (Mm(T )− bT ) ≤ x} → E

{
exp

(
−e−x−r+

√
2rχm

)}
, T → ∞, (5)
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with χm positive such that χ2
m a chi-square random variable with m degrees of freedom, and aT , bT given by

aT =
√
2 lnT , bT = aT +

ln
(
21−m/2(Γ(m/2))−1Hαa

2/α+m−2
T

)

aT
. (6)

Next, we shall state our main result which is a type of Piterbarg’s max-discretisation theorems for chi-processes

in terms of [38]. To this end, two Picaknds type constants (see (7) below) are needed.

Let B∗
α/2(t) :=

√
2Bα/2(t) − tα with BH(·) a fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1],

and thus define a m-parameter fBm B∗
α/2(t) =

∑m
i=1 B

∗
αi/2

(ti),α = (α1, . . . , αm) ∈ (0, 2]m, t = (t1, . . . , tm) ∈
[0,∞)m with mutually independent fBms B∗

αi/2
(·), i ≤ m, see e.g., [21, 29] for related discussions on the m-

parameter fBm B∗
α/2(·). We define thus, for any D > 0 and α0 = (α, 2, . . . , 2) ∈ (0, 2]m

HD,α = lim
λ→∞

E exp
(
maxkD∈[0,λ],k∈N B∗

α/2(kD)
)

λ
, Hx,y

D,α0
:= lim

λ→∞

Hx,y
D,α0

(λ)

λm
, x, y ∈ R, (7)

which are finite and positive by Theorem 2 in [30] and Lemma 3.3, respectively, here

Hx,y
D,α(λ) =

∫ +∞

−∞
esP

{
max

t∈[0,λ]m
B∗

α/2(t) > s+ x, max
t∈[0,λ]m∩({kD,k∈N}×Rm−1)

B∗
α/2(t) > s+ y

}
ds,

and further

bδ,T =





aT +
ln

(
21−m/2(Γ(m/2))−1HD,αa

2/α+m−2
T

)

aT
, R(δ) a Pickands grid;

aT +
ln

(
21−m/2(Γ(m/2))−1δ−1am−2

T

)

aT
, R(δ) a sparse grid.

(8)

Theorem 2.1. Let (Mm(T ),Mm(δ, T )) be given as in (1). Suppose that the correlation r(·) satisfies condition

(2) and (3), we have, with involved quantities given by (5)–(8), as T → ∞ and x, y ∈ R

(a) For the sparse grid R(δ)

P
{
aT
(
Mm(T )− bT

)
≤ x, aT

(
Mm(δ, T )− bδ,T

)
≤ y
}
→ E exp

(
−
(
e−x + e−y

)
e−r+

√
2rχm

)
. (9)

(b) For the Pickands grid R(δ) = R(D(2 lnT )−1/α) with D > 0

P
{
aT
(
Mm(T )− bT

)
≤ x, aT

(
Mm(δ, T )− bδ,T

)
≤ y
}

→ E exp
(
−
(
e−x + e−y − π(m−1)/2HlnHα+x,lnHD,α+y

D,α0

)
e−r+

√
2rχm

)
. (10)

(c) For any dense grid R(δ)

P
{
aT
(
Mm(T )− bT

)
≤ x, aT

(
Mm(δ, T )− bT

)
≤ y
}
→ E exp

(
−e−min(x,y)−r+

√
2rχm

)
. (11)

Remark 2.2. (a) A straightforward application of Theorem 2.1 (a) with δ(T ) ≡ 1 yields that

P
{
aT
(
Mm(1, T )− b1,T

)
≤ x

}
→ E exp

(
−e−x−r+

√
2rχm

)
, x ∈ R,

which may have independent interest in viewpoint of statistics applications, see e.g., [6] for utilizations of the

above limit with m = 1 concerning test for additive outliers.

(b) From our results we see that the joint convergence is determined by the choice of the grids and the normal-

ization constants aT , bT and bδ,T , which is helpful in simulation studies and statistical applications, see related

discussions for vector Gaussian processes in [13].

(c) Clearly, the marginal distributions are the same, i.e., the mixed Gumbel distributions, and our results extend

those for the Gaussian processes, see [13, 30]. Moreover, the joint limit distribution for the Pickands grid is

more involved due to the complication of the Pickands type constant HlnHα+x,lnHD,α+y
D,α0

, which calculation and

simulation are open problems.
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(d) It might be possible to allow X ′
is to be dependent with condition (2) stated in a slightly general form such as

ri(t) = 1− Ci |t|αi (1 + o(1)), t → 0 as well. Results for extremes of chi-type processes for such generalizations

can be found in [1, 4, 24, 25].

(e) It might be interesting to investigate the limit theorems for different grids as in [13]. Another possibility is

to relax r ∈ [0,∞] in (3); see e.g., [26, 13] for similar discussions.

(f) Following our arguments, it might be possible to consider the same problem for locally stationary chi-processes

and cyclo-stationary chi-processes which are considered in [15, 10] and [18, 36], respectively.

3 Further results and proofs

We present first four lemmas followed then by the proofs of Theorem 2.1 for m ≥ 2 since the claim for m = 1,

the stationary Gaussian processes follows immediately from [13]. In what follows, we shall keep the notation as

in Section 1, and denote further by Φ and ϕ the survival distribution function and probability density function

of a standard normal variable, respectively. We write C for a positive constant whose values may change from

line to line. All the limits are taken as T and u tend to infinity in this coordinated way (unless otherwise stated)

u2 = 2 lnT + (2/α+m− 2) ln lnT +O(1).

Note that, in view of [29], for any closed non-empty set E ⊂ [0, T ] and Sm−1 the unit sphere in R
m (with respect

to L2-norm)

sup
t∈E

χm(t) = sup
(t,v)∈E×Sm−1

Y (t,v),

where the Gaussian field {Y (t,v), (t,v) ∈ [0, T ]× Sm−1} is given by

Y (t,v) = X1(t)v1 +X2(t)v2 + · · ·+Xm(t)vm, (t,v) ∈ [0, T ]× Sm−1.

Note in passing that the covariance function of Y (t,v), denoted by r(t,v, s,w), is as follows

r(t,v, s,w) = r(t − s)A(v,w), A(v,w) = 1− ‖v −w‖2
2

, v,w ∈ Sm−1. (12)

Therefore, crucial in the following is to construct as in [27] the grids Rα
b , b > 0 over the cylinder [0, T ]× Sm−1

(see (18) for details) and to deal with the random field Y (t,v) in terms of ξT (t,v) defined below in (16).

Let ϑ(x) = supx≤|t|≤T r(t) for any x > 0. In view of (2), we choose some small ε ∈ (0, 2−1/α) such that for all

|t| ≤ ε < 2−1/α

1

2
|t|α ≤ 1− r(t) ≤ 2|t|α. (13)

It follows further from (3) that ϑ(ε) < 1 holds for all sufficiently large T (see p. 86 in [19]). Therefore, we choose

some constants c and a such that

0 < c < a <
1− ϑ(ε)

1 + ϑ(ε)
< 1. (14)

Next, we introduce a Gaussian field ξT (t,v), (t,v) ∈ [0, T ]×Sm−1 via Y (t,v) and condition (3), which is crucial

in our proof, see the technical Lemma 3.2. Following [30], divide [0, T ] into intervals with length T a alternating

with shorter intervals with length T c and write

Ii := [(i − 1)(T a + T c), (i − 1)(T a + T c) + T a], Ei := [(i− 1)(T a + T c), i(T a + T c)), (15)

for 1 ≤ i ≤ n, n = ⌊T/(T a+T c))⌋. Here ⌊x⌋ stands for the integer part of x. We will see from Lemma 3.4 below

that, the asymptotic joint distribution of (Mm(T ),Mm(δ, T ) is determined totally by that of the maxima over

the closed set I = ∪n
i=1Ii.
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Further, let Yi(t,v), (t,v) ∈ [0, T ]× Sm−1, i ≤ n be independent copies of {Y (t,v), (t,v) ∈ [0, T ]× Sm−1} and

Zi, 1 ≤ i ≤ m be standard Gaussian random variables so that the components of the (n+m)-dimension random

vector

(Y1(t,v), . . . , Yn(t,v), Z1, . . . , Zm)

are mutually independent. We define, with ρ(T ) = r/ lnT and Gaussian random field Z(v) = Z1v1 + Z2v2 +

· · ·+ Zmvm, v ∈ Sm−1,

ξT (t,v) =
√
1− ρ(T )Yi(t,v) +

√
ρ(T )Z(v), (t,v) ∈ Ei × Sm−1, 1 ≤ i ≤ n, (16)

which covariance function ̺(t,v, s,w) is given by

̺(t,v, s,w) = r∗(t, s)A(v,w),

where

r∗(t, s) =

{
r(t − s) + (1 − r(t− s))ρ(T ), (t, s) ∈ Ei × Ei;

ρ(T ), (t, s) ∈ Ei × Ej , i 6= j.
(17)

Lemma 3.1. For the grid R(δ) is a sparse grid or a Pickands grid, there exists a grid R
α
b = R̃b ×Rb on the

cylinder [0, T ]× Sm−1 such that for any B > 0, we have for all x, y ∈ [−B,B]
∣∣∣∣P
{
aT
(
max
t∈I

χm(t)− bT
)
≤ x, aT

(
max

t∈R(δ)∩I
χm(t)− bδ,T

)
≤ y

}

−P

{
aT
(

max
(t,v)∈Rα

b ∩(I×Sm−1)
Y (t,v)− bT

)
≤ x, aT

(
max

(t,v)∈(R(δ)×Rb)∩(I×Sm−1)
Y (t,v) − bδ,T

)
≤ y

}∣∣∣∣→ 0

as T → ∞ and b ↓ 0, subsequently.

For the proof of Lemma 3.1, one can follow similar arguments as for Lemma 3 in [27] and thus we omit here.

Since the grid R
α
b is crucial for our proofs, we provide the details on its construction.

For any given ε > 0 we partition the sphere Sm−1 onto N(ε) parts A1, . . . , AN(ε) in the following way. With a

polar-coordinate transformation, any point x on the sphere Sm−1 is given in terms of angleϕ = (ϕ1, . . . , ϕm−1) ∈
[0, π)m−2 × [0, 2π) and divide all the intervals [0, π] into intervals of length ε (or less for the last interval), do

the same for the interval [0, 2π]. This partition of the parallelepiped [0, π]m−2 × [0, 2π] generates the partition

Aj , 1 ≤ j ≤ N(ε) of the sphere. For a fixed u, choose in every Aj an inner point Bj and consider the tangent

plane to the cylinder [0, T ]×Sm−1 at the chosen point. Introduce in the tangent plane rectangular coordinates,

with origin at the tangent point; the first coordinate is assigned to the direction t. In the so-constructed space

R
m, consider the grid of points

R
j,α,P
b,u,ε :=

(
bl1u

− 2
α , bl2u

−1, . . . , blmu−1
)
, j = 1, 2, . . . , N(ε)

and

R
j,P
b,u,ε :=

(
bl2u

−1, . . . , blmu−1
)
, R̃

j,P
b,u,ε :=

(
bl1u

− 2
α

)
, j = 1, 2, . . . , N(ε),

where (l1, l2, . . . , lm) ∈ Z
m. Suppose that ε is so small that the orthogonal projections of all [0, T ]×Aj onto the

corresponding tangent plane are one-to-one. Hence the distance between any two points in [0, T ]×Sm−1 has the

same order with that of their orthogonal projections on the tangent planes. Denote by AP
j the projection of Aj

at the tangent plane, and by R
j,α
b,u,ε, R

j
b,u,ε and R̃

j
b,u,ε, the prototype of Rj,α,P

b,u,ε , R
j,P
b,u,ε and R̃

j,P
b,u,ε, respectively,

under this projection. The grids

R
α
b = R

α
b,u,ε =

N(ε)⋃

j=1

R
j,α
b,u,ε, Rb = Rb,u,ε =

N(ε)⋃

j=1

R
j
b,u,ε, R̃b = R̃b,u,ε =

N(ε)⋃

j=1

R̃
j
b,u,ε (18)

with an appropriate choice of their parameters, satisfy the assertion of Lemma 3.1.

Next, we will introduce three technical lemmas which proofs will be relegated in the Appendix. We will see

that Lemmas 3.2 and 3.3 are crucial for the proof of Theorem 2.1.
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Lemma 3.2. Let the grid R(δ) be a sparse grid or Pickands grid, and R
α
b as in Lemma 3.1. For any B > 0

we have for all x, y ∈ [−B,B],

∆T,b :=

∣∣∣∣P
{
aT
(

max
(t,v)∈Rα

b ∩(I×Sm−1)
Y (t,v) − bT

)
≤ x, aT

(
max

(t,v)∈(R(δ)×Rb)∩(I×Sm−1)
Y (t,v)− bδ,T

)
≤ y

}

−P

{
aT
(

max
(t,v)∈Rα

b ∩(I×Sm−1)
ξT (t,v) − bT

)
≤ x, aT

(
max

(t,v)∈(R(δ)×Rb)∩(I×Sm−1)
ξT (t,v) − bδ,T

)
≤ y

} ∣∣∣∣→ 0

uniformly for b > 0, as T → ∞.

In the following, we denote (recall bδ,T in (8))

vT :=
bT + x/aT −

√
ρ(T ) ‖z‖

(1− ρ(T ))1/2
= bT +

x+ r −
√
2r ‖z‖

aT
+ o(a−1

T )

v∗T :=
bδ,T + y/aT −

√
ρ(T ) ‖z‖

(1 − ρ(T ))1/2
= bδ,T +

y + r −
√
2r ‖z‖

aT
+ o(a−1

T ).

(19)

Lemma 3.3. Under the conditions of Theorem 2.1, we have, with HD,α,Hx,y
D,α0

,Rb and vT , v
∗
T given by (7),

(18) and (19), respectively,

P

{
max

(t,v)∈Rα
b ∩([0,Ta]×Sm−1)

Y (t,v) > vT

}
= T a−1e−x−r+

√
2r‖z‖(1 + o(1))

P

{
max

(t,v)∈(R(δ)×Rb)∩([0,Ta]×Sm−1)
Y (t,v) > v∗T

}
= T a−1e−y−r+

√
2r‖z‖(1 + o(1)) (20)

hold for sufficiently large T and sufficiently small b > 0. And

P

{
max

(t,v)∈Rα
b ∩([0,Ta]×Sm−1)

Y (t,v) > vT , max
(t,v)∈(R(δ)×Rb)∩([0,Ta]×Sm−1)

Y (t,v) > v∗T

}

=

{
o(T a−1), R(δ) is a sparse grid;

T a−1π
m−1

2 HlnHα+x,lnHD,α+y
D,α0

e−r+
√
2r‖z‖(1 + o(1)), R(δ) is a Pickands grid

(21)

hold for sufficiently large T and sufficiently small b > 0.

Lemma 3.4. Suppose that the grid R(δ) is a sparse grid or a Pickands grid. For any B > 0, we have for all

x, y ∈ [−B,B], as T → ∞
∣∣∣∣P
{
aT
(
Mm(T )− bT

)
≤ x, aT

(
Mm(δ, T )− bδ,T

)
≤ y

}

−P

{
aT
(
max
t∈I

χm(t)− bT
)
≤ x, aT

(
max

t∈R(δ)∩I
χm(t)− bδ,T

)
≤ y

}∣∣∣∣→ 0. (22)

Proof of Lemma 3.4: The proof is similar to that of Lemma 6 in [30]. Clearly, the left-hand side of (22) is

bounded from above by

P

{
max

t∈[0,T ]\I
χm(t) > bT + x/aT

}
+ P

{
max

t∈R(δ)∩[0,T ]\I
χm(t) > bδ,T + y/aT

}
=: JT,1 + JT,2. (23)

It follows from (4) and (6) and the construction of I that (recall that (4) holds also for T = T (u) → ∞ with

suitable speed, see Theorem 7.2 of [29]), with mes(·) the Lebesgue measure

JT,1 ≤ Cmes([0, T ]\I)(bT + x/aT )
2/α+m−1Φ(bT + x/aT ) ≤ C

mes([0, T ]\I)
T

≤ C
nT c

T
→ 0

as T → ∞. Similarly, using (20) in Lemma 3.3 with v∗T and exp
(
−y − r +

√
2r ‖z‖

)
replaced by u∗

T = bδ,T+y/aT

and e−y, respectively, we have limT→∞ JT,2 = 0, hence the proof is complete. �

Proof of Theorem 2.1. First, by (16) we have

P

{
aT
(

max
(t,v)∈Rα

b ∩(I×Sm−1)
ξT (t,v) − bT

)
≤ x, aT

(
max

(t,v)∈(R(δ)×Rb)∩(I×Sm−1)
ξT (t,v) − bδ,T

)
≤ y

}
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=
1

(2π)m/2

∫

Rm

e−
1
2‖z‖

2

P

{
aT
(

max
(t,v)∈Rα

b ∩(I×Sm−1)
ξT (t,v) − bT

)
≤ x,

aT
(

max
(t,v)∈(R(δ)×Rb)∩(I×Sm−1)

ξT (t,v) − bδ,T
)
≤ y|Z1 = z1, . . . , Zm = zm

}
dz1 · · · dzm

=

∫

‖z‖≥0

(
P

{
max

(t,v)∈Rα
b
∩([0,Ta]×Sm−1)

Y (t,v) ≤ bT + x/aT −
√
ρ(T ) ‖z‖

(1 − ρ(T ))1/2
,

max
(t,v)∈(R(δ)×Rb)∩([0,Ta]×Sm−1)

Y (t,v) ≤ bδ,T + y/aT −
√
ρ(T ) ‖z‖

(1− ρ(T ))1/2

})n

dP {χm ≤ ‖z‖} . (24)

Denote

Pn,b(x, y) := P

{
max

(t,v)∈Rα
b ∩([0,Ta]×Sm−1)

Y (t,v) ≤ vT , max
(t,v)∈(R(δ)×Rb)∩([0,Ta]×Sm−1)

Y (t,v) ≤ v∗T

}
. (25)

Next, we deal with the grid R(δ) being a sparse, Pickands and dense grid in turn.

(a) For the sparse grid R(δ). Using Lemmas 3.1–3.4 and (24), the first claim in Theorem 2.1 will follow if we

show that
∣∣∣∣(Pn,b(x, y))

n − exp
(
−
(
e−x−r+

√
2r‖z‖ + e−y−r+

√
2r‖z‖))

∣∣∣∣→ 0.

Since limT→∞ Pn,b(x, y) = 1 uniformly for all x, y ∈ R and thus

(Pn,b(x, y))
n = exp (n lnPn,b(x, y)) = exp (−n(1− Pn,b(x, y))(1 + o(1))) .

Finally, using Lemma 3.3 for sparse grids, we get that

n (1− Pn,b(x, y)) = nT a−1
(
e−x−r+

√
2r‖z‖ + e−y−r+

√
2r‖z‖

)
(1 + o(1)),

which together with the fact that n = T/(T a + T c), 0 < c < a < 1 and the dominated convergence theorem

completes the proof for sparse grid.

(b) For the Pickands grid R(δ) with δ(T ) = D(2 lnT )−1/α. Similarly as for the sparse grid, it suffices to show

that

n (1− Pn,b(x, y)) =
(
e−x + e−y − π(m−1)/2HlnHa,α+x,lnHα+y

a,α0

)
e−r+

√
2r‖z‖(1 + o(1))

with Pn,b(x, y) defined in (25). This is verified by Lemma 3.3 for Pickands grids.

(c) For the dense grid R(δ). In view of Lemma 3 of [27], we have

∣∣∣∣P
{
aT
(

max
(t,v)∈[0,T ]×Sm−1

Y (t,v)− bT
)
≤ x, aT

(
max

(t,v)∈R(δ)∩[0,T ]×Sm−1

Y (t,v) − bT
)
≤ y

}

−P

{
aT
(

max
(t,v)∈[0,T ]×Sm−1

Y (t,v)− bT
)
≤ x, aT

(
max

(t,v)∈[0,T ]×Sm−1

Y (t,v)− bT
)
≤ y

} ∣∣∣∣

≤
∣∣∣∣P
{
aT
(

max
(t,v)∈R(δ)∩[0,T ]×Sm−1

Y (t,v)− bT
)
≤ y

}
− P

{
aT
(

max
(t,v)∈[0,T ]×Sm−1

Y (t,v) − bT
)
≤ y

} ∣∣∣∣→ 0.

Further, by (5)

P

{
aT
(

max
(t,v)∈[0,T ]×Sm−1

Y (t,v) − bT
)
≤ x, aT

(
max

(t,v)∈[0,T ]×Sm−1

Y (t,v) − bT
)
≤ y

}

= P

{
aT
(

max
(t,v)∈[0,T ]×Sm−1

Y (t,v) − bT
)
≤ min(x, y)

}

→ E exp
(
−e−min(x,y)−r+

√
2rχm

)
,

the required claim (c) follows. Consequently, Theorem 2.1 is proved. �
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4 Appendix

In this section, we give the proofs of Lemmas 3.2 and 3.3, respectively. Before we proceed the proof, let

us recall some basic quantities which will be repeatedly used below. For simplicity of notation, we write

uT = bT + x/aT , u
∗
T = bδ,T + y/aT with aT , bT , bδ,T given by (6) and (8). Thus

u2
T = 2 lnT + (2/α+m− 2) ln lnT +O(1), (26)

which implies that

T−1 = Cu2/α+m−2 exp

(
−u2

2

)
(1 + o(1)). (27)

Further, denote by ̟(t, s) = max{|r(t − s)|, |r∗(t, s)|} with r∗ given in (17), and define

θ(t0) = sup
0≤t,s≤T,|t−s|>t0

̟(t, s), t0 > 0.

Since θ(t0) ≥ ϑ(t0) := supt0≤|t|≤T r(t), the constants c and a given in (14) hold also for θ(·), i.e.,

0 < c < a <
1− θ(ε)

1 + θ(ε)
< 1.

Note that, from the construction of Rb given by (18), the number of points in Rb ∩ Sm−1 does not exceed

Cb−(m−1)um−1(1 + o(1)) = Cb−(m−1)(2 lnT )(m−1)/2(1 + o(1)).

Proof of Lemma 3.2: It follows by Berman’s inequality (see e.g., [29]) that, with Di = R
α
b ∩ (Ii×Sm−1), D̃i =

(R(δ)×Rb) ∩ (Ii × Sm−1), i ≤ n

∆T,b ≤
∑

(t,v)∈Di,(s,w)∈Dj ,

(t,v)6=(s,w),1≤i,j≤n

|Υr,̺|
∫ 1

0

1√
1− r(h)(t,v, s,w)

exp

(
− u2

T

1 + r(h)(t,v, s,w)

)
dh

+
∑

(t,v)∈D̃i ,(s,w)∈D̃j ,

(t,v)6=(s,w),1≤i,j≤n

|Υr,̺|
∫ 1

0

1√
1− r(h)(t,v, s,w)

exp

(
− (u∗

T )
2

1 + r(h)(t,v, s,w)

)
dh

+
∑

(t,v)∈Di ,(s,w)∈D̃j ,

(t,v)6=(s,w),1≤i,j≤n

|Υr,̺|
∫ 1

0

1√
1− r(h)(t,v, s,w)

exp

(
− u2

T + (u∗
T )

2

2(1 + r(h)(t,v, s,w))

)
dh

=: ∆
(1)
T,b +∆

(2)
T,b +∆

(3)
T,b, (28)

where Υr,̺ = r(t,v, s,w) − ̺(t,v, s,w) and r(h)(t,v, s,w) = hr(t,v, s,w) + (1− h)̺(t,v, s,w). Next, we shall

show that ∆
(i)
T,b = o(1), i = 1, 2, 3 for sufficiently large T and small b > 0, respectively.

We shall present first the proof for ∆
(1)
T,b = o(1). To this end, we consider below the sum with (t,v), (s,w) in

the same Di, 1 ≤ i ≤ n, denoted by ∆
(1,1)
T,b , and split further the sum into two parts as follows

∆
(1,1)
T,b =

∑

(t,v),(s,w)∈Di,

1≤i≤n,|t−s|≤ε

+
∑

(t,v),(s,w)∈Di ,

1≤i≤n,|t−s|>ε

=: JT,1 + JT,2 (29)

for some small ε > 0 such that (13) and (14) hold. For JT,1, note that in this case, it follows from (17) that

|Υr,̺| = ρ(T )(1− r(t − s))A(v,w), and by (2) that, we can choose small ε > 0 such that

r(h)(t,v, s,w) = (r(t − s) + (1− h)(1− r(t− s))ρ(T ))A(v,w) = r(t − s)A(v,w)(1 + o(1))

holds for sufficiently large T and |t− s| ≤ ε. Consequently, we have (recall that A(v,w) ≤ 1)

JT,1 ≤ C
∑

(t,v),(s,w)∈Di,

1≤i≤n,|t−s|≤ε

ρ(T )
√
1− r(t− s) exp

(
− u2

T

1 + r(t− s)|A(v,w)|

)
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≤ CTb−1u
2/α
T ρ(T ) exp

(
−u2

T

2

) ∑

v,w∈Rb∩Sm−1,

t∈R̃b∩[0,T ],|t|≤ε

√
1− r(t) exp

(
− (1− r(t)|A(v,w)|)u2

T

2(1 + r(t)|A(v,w)|)

)

= CTb−1u
2/α
T ρ(T ) exp

(
−u2

T

2

) ∑

v,w∈Rb∩Sm−1,

t∈R̃b∩[0,T ],|t|≤ε

√
1− r(t) exp

(
− (1− r(t))u2

T

2(1 + r(t))

)

× exp

(
− r(t)(1 − |A(v,w)|)u2

T

2(1 + r(t))(1 + r(t)|A(v,w)|)

)

≤ CTb−mu
2/α
T um−1

T ρ(T ) exp

(
−u2

T

2

) ∑

v∈Rb∩Sm−1,

t∈R̃b∩[0,T ],|t|≤ε

√
1− r(t) exp

(
− (1− r(t))u2

T

2(1 + r(t))

)

× exp

(
− r(t)(1 − |A(v,w0)|)u2

T

2(1 + r(t))(1 + r(t)|A(v,w0)|)

)
,

where w0 is any fixed point on Rb ∩ Sm−1. Since

∑

v∈Rb∩Sm−1,

t∈R̃b∩[0,T ],|t|≤ε

exp

(
− r(t)(1 − |A(v,w0)|)u2

T

2(1 + r(t))(1 + r(t)|A(v,w0)|)

)

≤
∑

v∈Rb∩Sm−1

exp
(
−Cu2

T ‖v −w0‖2
)
≤ C,

it follows further by (13), (27) and ρ(T ) = r/ lnT = O(u−2
T ) that

JT,1 ≤ CTb−mu
2/α
T um−1

T ρ(T ) exp

(
−u2

T

2

) ∑

t∈R̃b∩[0,T ],|t|≤ε

√
1− r(t) exp

(
− (1− r(t))u2

T

2(1 + r(t))

)

≤ Cb−mu−1
T

∑

t∈R̃b∩[0,T ],|t|≤ε

√
2|t|α/2 exp

(
−|t|αu2

T

8

)

≤ Cb−mu−1
T

∞∑

k=1

exp

(
−1

4
(kb)α

)

≤ Cb−mu−1
T ,

which implies that JT,1 = o(1) uniformly for b > 0 as T → ∞.

Using the fact that uT = aT (1 + o(1)), we obtain

JT,2 ≤ C
∑

(t,v),(s,w)∈Di ,

1≤i≤n,|t−s|>ε

exp

(
− u2

T

1 + |r(t− s)|

)

≤ CT 1+ab−2mu
4/α
T u2m−2

T exp

(
− u2

T

1 + θ(ε)

)

≤ CT 1+ab−2mu
4/α
T u2m−2

T T− 2
1+θ(ε)

≤ CT a− 1−θ(ε)
1+θ(ε) b−2m(lnT )2/α+m−1. (30)

Thus, JT,2 = o(1) uniformly for b > 0 as T → ∞ since a < (1− θ(ε))/(1 + θ(ε)).

Next, we consider the sum ∆
(1)
T,b with (t,v), (s,w) in Di,Dj with 1 ≤ i 6= j ≤ n, denoted by ∆

(1,0)
T,b . Note that in

this case, |t−s| ≥ T c and ̺(s,v, t,w) = ρ(T )A(v,w). Choose β such that 0 < c < a < β < (1−θ(ε))/(1+θ(ε))

and split the sum∆
(1,0)
T,b into two parts as follows

∆
(1,0)
T,b =

∑

(t,v)∈Di,(s,w)∈Dj ,

1≤i6=j≤n,|t−s|≤Tβ

+
∑

(t,v)∈Di,(s,w)∈Dj ,

1≤i6=j≤n,|t−s|>Tβ

=: ST,1 + ST,2. (31)

For ST,1, with the similar derivation as for (30), we have

ST,1 ≤ C
∑

(t,v)∈Di,(s,w)∈Dj ,

1≤i6=j≤n,|t−s|≤Tβ

exp

(
− u2

T

1 + r(t − s)

)
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≤ CT 1+βb−2mu
4/α
T u2m−2

T exp

(
− u2

T

1 + θ(ε)

)

≤ CT 1+βb−2mu
4/α
T u2m−2

T T− 2
1+θ(ε)

≤ CT β− 1−θ(ε)
1+θ(ε) b−2m(lnT )2/α+m−1 (32)

implying that ST,1 = o(1) uniformly for b > 0, since β < (1− θ(ε))/(1 + θ(ε)).

For ST,2, we need some more precise estimation. By condition (3), there exists some constant K > 0 such that

θ(t) ln t 6 K

for t, T sufficiently large. Thus θ(t) ≤ K/ lnT β, t ≥ T β holds for T large enough. Now using (26), we obtain

T 2u
4/α+2m−2
T (ln T )−1 exp

(
− u2

T

1 + θ(T β)

)
≤ T 2u

4/α+2m−2
T (lnT )−1 exp

(
− u2

T

1 +K/ lnT β

)

≤ C
(
T 2(lnT )2/α+m−2

)1− 1

1+K/ lnTβ ≤ C. (33)

Therefore, by similar arguments as for Lemma 6.4.1 of [19] we have

ST,2 ≤ C
∑

(t,v)∈Di,(s,w)∈Dj ,

1≤i6=j≤n,|t−s|>Tβ

|r(t − s)− ρ(T )| exp
(
− u2

T

1 + θ(T β)

)

≤ CTb−(2m−2)u
2/α
T u2m−2

T exp

(
− u2

T

1 + θ(T β)

) ∑

t∈R̃b∩[0,T ],t>Tβ

|r(t) − ρ(T )|

= CT 2(ln T )−1u
4/α
T u2m−2

T exp

(
− u2

T

1 + θ(T β)

)
· b−(2m−2) lnT

Tu
2/α
T

∑

t∈R̃b∩[0,T ],t>Tβ

|r(t)− ρ(T )|

≤ Cb−(2m−2) lnT

Tu
2/α
T

∑

t∈R̃b∩[0,T ],t>Tβ

|r(t) − ρ(T )|

≤ Cb−(2m−2) 1

βTu
2/α
T

∑

t∈R̃b∩[0,T ],t>Tβ

|r(t) ln t− r|+ Cb−(2m−2) r

Tu
2/α
T

∑

t∈R̃b∩[0,T ],t>Tβ

∣∣∣∣1−
lnT

ln t

∣∣∣∣,

where, by (3), the first term is o(1) uniformly for b > 0, and the second term is also o(1) uniformly for b > 0

following an integral estimate below (see also the proof of Lemma 6.4.1 in [19])

Cb−(2m−1) r

Tu
2/α
T

∑

t∈R̃b∩[0,T ],t>Tβ

∣∣∣∣1−
lnT

ln t

∣∣∣∣ ≤ Cb−(2m−1) r

Tu
2/α
T

1

lnT β

∑

t∈R̃b∩[0,T ],t>Tβ

|ln t− lnT |

= Cb−(2m−1) r

lnT β

∫ 1

0

| lnx|dx.

Consequently, combining the assertions for JT,i, ST,i, i = 1, 2 in (29), (31), we have ∆
(1)
T,b = o(1).

The proof of ∆
(2)
T,b = o(1) is similar as that for ∆

(1)
T,b = o(1) with minor modifications by replacing uT ,Di, i ≤ n

by u∗
T , D̃i, i ≤ n, we omit thus the details.

It remains to prove ∆
(3)
T,b = o(1). Recall that R(δ) can be a sparse grid or a Pickands grid. We only show below

the proof for R(δ) a sparse grid by following the main arguments as for ∆
(1)
T,b. The Pickands grid case can be

shown similarly for the sparse grid and thus we omit it here.

Consider first the sum ∆
(3)
T,b with t, s in the same Ii, i ≤ n, which is further split into two parts as

∆
(3,1)
T,b :=

∑

(t,v)∈Di,(s,w)∈D̃i,

1≤i≤n,|t−s|≤ε

+
∑

(t,v)∈Di,(s,w)∈D̃i,

1≤i≤n,|t−s|>ε

=: J̃T,1 + J̃T,2. (34)

Note that

ũ2
T :=

1

2
(u2

T + (u∗
T )

2) = 2 lnT + ln a
2/α+m−2
T + ln(δ−1am−2

T ) +O(1) (35)
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and the grid R(δ) is a sparse grid, i.e., limT→∞ δ(2 lnT )1/2 = ∞, the remaining proof of J̃T,1 + J̃T,2 = o(1) is

similar to that for JT,1 and thus we omit it here.

Next, for the remaining sum ∆
(3)
T,b −∆

(3,1)
T,b , i.e., the summand with t, s in the different intervals Ii, Ij , 1 ≤ i 6=

j ≤ n, one can show that (recall (35))

T 2u
2/α+2m−2
T δ−1(lnT )−1 exp

(
− ũ2

T

1 + θ(T β)

)
= O(1).

The rest proof of ∆
(3)
T,b −∆

(3,1)
T,b = o(1) is the same as that for (31). Consequently, we have ∆

(3)
T,b = o(1), which

together with (28) and the proved ∆
(i)
T,b = o(1), i = 1, 2, completes the proof of Lemma 3.2. �

Proof of Lemma 3.3: First, noting that

P

{
max

(t,v)∈Rα
b ∩([0,Ta]×Sm−1)

Y (t,v) > vT

}
≤ P

{
max

(t,v)∈[0,Ta]×Sm−1

Y (t,v) > vT

}
= P {Mm(T a) > vT } ,

the first assertion follows thus by (4) with elementary calculations, since (4) holds also for T = T (u) → ∞ with

suitable speed, see Theorem 7.2 of [29].

Next, we will show the proofs of (20) and (21) with R(δ) a Pickands and sparse grid, respectively.

Proof of (20) with R(δ) a Pickands or sparse grid. The proof for the Pickands grid is similar as that for Corol-

lary 7.3 in [29] with minor modification (replacing Hα by HD,α), and thus we omit the details here.

Now, we considerR(δ) a sparse grid. For simplicity, we denote in the following D̃ = (R(δ)×Rb)∩([0, T a]×Sm−1)

and

P
(1)
T,b :=

∑

t∈R(δ)∩[0,Ta]

P

{
max

v∈Rb∩Sm−1

Y (t,v) > v∗T

}
, P

(2)
T,b :=

∑

(t,v) 6=(s,w)∈D̃

P {Y (t,v) > v∗T , Y (s,w) > v∗T } .

By Bonferroni’s inequality, we have

P
(1)
T,b − P

(2)
T,b ≤ P

{
max

(t,v)∈D̃

Y (t,v) > v∗T

}
≤ P

(1)
T,b ,

therefore, it suffices to show that

P
(1)
T,b = T a−1e−y−r+

√
2r‖z‖(1 + o(1)), P

(2)
T,b = o(P

(1)
T,b)

hold for sufficiently large T and small b > 0. Clearly,

P
(1)
T,b = (1 + o(1))

∑

t∈R(δ)∩[0,Ta]

P

{
max

v∈Sm−1

Y (t,v) > v∗T

}

= (1 + o(1))T aδ−1
P {χm(t) > v∗T }

= (1 + o(1))T a−1e−y−r+
√
2r‖z‖

following by elementary calculations. It remains to deal with P
(2)
T,b . Split the term P

(2)
T,b into two parts as

P
(2)
T,b =

∑

(t,v) 6=(s,w)∈D̃,|t−s|<ǫ

+
∑

(t,v) 6=(s,w)∈D̃,|t−s|≥ǫ

=: PT,21 + PT,22. (36)

Using the well-known results for bivariate Gaussian tail probability (see e.g., p. 225 in [19]), we have

PT,21 ≤
∑

(t,v) 6=(s,w)∈D̃,|t−s|<ǫ

[
Φ(v∗T )Φ

(
v∗T

√
1− r(t,v, s,w)√
1 + r(t,v, s,w)

)]
.

By (12) and (13), we can choose ǫ > 0 small enough such that

1− r(t,v, s,w)

1 + r(t,v, s,w)
≥ 1

4
|t− s|α +

1

8
‖v −w‖2
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and we thus have

PT,21 ≤ C
∑

(t,v) 6=(s,w)∈D̃,|t−s|<ǫ


Φ(v∗T )Φ


v∗T

√
|t− s|α

4
+

‖v −w‖2
8






≤ CΦ(v∗T )
∑

(t,v) 6=(s,w)∈D̃,|t−s|<ǫ

1

|t− s|α/2v∗T
exp

(
−1

8
|t− s|α(v∗T )2

)
exp

(
− 1

16
‖v −w‖2 (v∗T )2

)

= CΦ(v∗T )
∑

t,s∈R(δ)∩[0,Ta],0<|t−s|<ǫ

1

|t− s|α/2v∗T
exp

(
−1

8
|t− s|α(v∗T )2

)

×
∑

v 6=w∈Rb∩Sm−1

exp

(
− 1

16
‖v −w‖2 (v∗T )2

)

≤ CΦ(v∗T )
∑

t,s∈R(δ)∩[0,Ta],0<|t−s|<ǫ

1

|t− s|α/2v∗T
exp

(
−1

8
|t− s|α(v∗T )2

)

×b−(m−1)um−1
T

∑

v∈Rb∩Sm−1

exp

(
− 1

16
‖v −w0‖2 (v∗T )2

)
.

where w0 is any fixed point on Rb ∩ Sm−1. Since

∑

v∈Rb∩Sm−1

exp

(
− 1

16
‖v −w0‖2 (v∗T )2

)
≤ C,

for sufficiently large T . Using further the definition of v∗T we obtain

PT,21 ≤ CT aδ−1b−(m−1)um−1
T Φ(v∗T )

∑

0<kδ≤ǫ

1

(kδ)α/2v∗T
exp

(
−1

8
(kδ)α(v∗T )

2

)

= CT a−1b−(m−1)
∑

0<kδ≤ǫ

1

[kδ(ln T )1/α]α/2
exp

(
−1

4
[kδ(ln T )1/α]α

)
(1 + o(1))

≤ CT a−1b−(m−1) 1

[(ln T )1/αδ]α/2

∑

0<k≤⌊ǫ/δ⌋+1

exp

(
−1

4
[kδ(lnT )1/α]α

)
(1 + o(1))

≤ CT a−1b−(m−1) 1

[(ln T )1/αδ]α/2
(1 + o(1))

= T a−1b−(m−1)o(1),

where we used additionally the fact that limT→∞(lnT )1/αδ = ∞, since R(δ) is a sparse grid. Thus, we have

PT,21 = o(T a−1) uniformly for b > 0 as T → ∞.

For the second term PT,22 in (36), by Normal Comparison Lemma, we have

PT,22 ≤
∑

(t,v) 6=(s,w)∈D̃,|t−s|≥ǫ

[
Φ

2
(v∗T ) + C exp

(
− (v∗T )

2

1 + |r(t,v, s,w)|

)]

≤ CT aδ−1b−2(m−1)u
2(m−1)
T

∑

ǫ≤kδ≤Ta

[
Φ

2
(v∗T ) + C exp

(
− (v∗T )

2

1 + |r(kδ)|

)]

≤ CT 2aδ−2b−2(m−1)u
2(m−1)
T

[
Φ

2
(v∗T ) + C exp

(
− (v∗T )

2

1 + ϑ(ǫ)

)]

=: PT,221 + PT,222.

By (19), we have v∗T = uT (1 + o(1)). Therefore,

PT,221 ≤ CT 2aδ−2b−2(m−1)u
2(m−1)
T

ϕ2(v∗T )

(v∗T )
2

≤ CT 2aδ−2b−2(m−1)u
2(m−2)
T exp

(
−(v∗T )

2
)

12



≤ CT 2aδ−2b−2(m−1)u
2(m−2)
T [T−1δu

−(m−2)
T ]2

= o(T a−1)

uniformly for b > 0 as T → ∞. Since uT = v∗T (1 + o(1)) = (2 lnT )1/2(1 + o(1))

PT,222 ≤ CT 2aδ−2b−2(m−1)u
2(m−1)
T exp

(
− (v∗T )

2

1 + ϑ(ǫ)

)

≤ CT 2aδ−2b−2(m−1)u
2(m−1)
T T− 2

1+ϑ(ǫ)

≤ CT a−1T a−1−ϑ(ǫ)
1+ϑ(ǫ) δ−2b−2(m−1)(ln T )m−1.

Both (14) and (lnT )1/αδ = ∞ imply ST,22 = o(T a−1) uniformly for b > 0 as T → ∞. This completes the proof

of the second assertion.

Proof of (21) with R(δ) a sparse grid For simplicity, we denote below D := R
α
b ∩ ([0, T a]× Sm−1). Obviously,

we have

P

{
max

(t,v)∈D

Y (t,v) > vT , max
(t,v)∈D̃

Y (t,v) > v∗T

}

=
∑

(t,v)∈D,(s,w)∈D̃,|t−s|<ǫ

+
∑

(t,v)∈D,(s,w)∈D̃,|t−s|≥ǫ

=: QT,21 +QT,22.

By the same argument as for the term PT,21, we have for w0 fixed on Rb ∩ Sm−1

QT,21 ≤ C
∑

(t,v)∈D,(s,w)∈D̃,|t−s|<ǫ

[
Φ(vT )Φ

(
v∗T (

1

4
|t− s|α +

1

8
‖v −w‖2)1/2

)]

≤ CΦ(vT )
∑

(t,v)∈D,(s,w)∈D̃,|t−s|<ǫ

1

|t− s|α/2v∗T
exp

(
−1

8
|t− s|α(v∗T )2

)
exp

(
− 1

16
‖v −w‖2 (v∗T )2

)

≤ CΦ(vT )
∑

t∈R̃b∩[0,Ta]

s∈R(δ)∩[0,T a],|t−s|<ǫ

1

|t− s|α/2v∗T
exp

(
−1

8
|t− s|α(v∗T )2

)

×b−(m−1)u
(m−1)
T

∑

v∈Rb∩Sm−1

exp

(
− 1

16
‖v −w0‖2 (v∗T )2

)

≤ CT ab1−mu
2/α
T u

(m−1)
T Φ(vT )

∑

0<kδ≤ǫ

1

(kδ)α/2v∗T
exp

(
−1

8
(kδ)α(v∗T )

2

)

≤ CT a−1b1−m
∑

0<kδ≤ǫ

1

(kδ)α/2(ln T )1/2
exp

(
−1

4
(kδ)α lnT

)

≤ CT a−1b1−m 1

(ln T )1/2δα/2

∑

0<k≤[ǫ/δ]+1

exp

(
−1

4
(kδ)α lnT

)

≤ CT a−1b1−m 1

[(ln T )1/αδ]α/2

= T a−1o(1),

uniformly for b > 0, where we used additionally the fact that limT→∞(lnT )1/αδ = ∞, since R(δ) is a sparse

grid.

To bound the term QT,22, using again Normal Comparison Lemma, with the same arguments as for the term

PT,22, we have

QT,22 ≤
∑

(t,v),(s,w)∈D̃,|t−s|≥ǫ

[
Φ(vT )Φ(v

∗
T ) + C exp

(
− v2T + (v∗T )

2

2(1 + |r(t,v, s,w)|)

)]

≤ CT aδ−1b−2(m−1)u
2(m−1)
T

∑

ǫ≤kδ≤Ta

[
Φ(vT )Φ(v

∗
T ) + C exp

(
− v2T + (v∗T )

2

2(1 + |r(kδ)|)

)]

13



≤ CT 2aδ−2b−2(m−1)u
2(m−1)
T

[
Φ(vT )Φ(v

∗
T ) + C exp

(
− v2T + (v∗T )

2

2(1 + ϑ(ǫ))

)]

=: QT,221 +QT,222.

By the same arguments as for PT,221 and PT,222, we can show that QT,221 = o(T a−1) and QT,222 = o(T a−1)

uniformly for b > 0 as T → ∞, respectively. Consequently, (21) holds for R(δ) a sparse grid.

Proof of (21) with R(δ) a Pickands grid. We shall use below some notation and results from [29]. Let A be a

set in R
m and d = (d1, . . . , dm) with all di > 0, i ≤ m; denote

dA =

(
x = (x1, x2, . . . , xm) :

(
x1

d1
,
x2

d2
, . . . ,

xm

dm

)
∈ A

)

and with λ > 0 a constant

gu = (u−2/α1 , u−2/α2 , . . . , u−2/αm), K = [0, λ]m.

Let Z(t), t ∈ R
m be a homogeneous Gaussian random field with correlation function rZ(t) such that, for some

αi ∈ (0, 2], i ≤ m

rZ(t) = 1−
m∑

i=1

|ti|αi(1 + o(1)), ‖t‖ → 0 and rZ(t) < 1, ∀t 6= 0.

Then it follows by similar arguments as for Lemma 6.1 in [29] that

P

(
max
t∈guK

Z(t) > u+
x

u
, max
t∈gu(R̂D×[0,λ]m−1)

Z(t) > u

)
= Hx,0

D,α(λ)Ψ(u)(1 + o(1))

as u → ∞, where R̂D = {kDu−2/α : kDu−2/α ≤ λ, k ∈ N} with D > 0 is a Pickands grid in R and Hx,0
D,α(λ) is

defined by (7). It also can be proved in a similar way as for Lemma 7.1 of [29] that

Hx,0
D,α := lim

S→∞

Hx,0
D,α(λ)

λm
∈ (0,∞).

It is easy to check that

1− r(t,v, s,w) = (1 + o(1))

(
|t− s|α +

m−1∑

i=1

(
1√
2
(wi − vi)

)2
)

as |t − s| → 0 and ‖v −w‖ → 0. Now, by similar arguments as for Theorem 7.1 and Corollary 7.3 of [29], we

have for sufficiently large T and small b > 0

P

{
max

(t,v)∈D
Y (t,v) > vT +

x

vT
, max
(t,v)∈D̃

Y (t,v) > vT

}

= (1 + o(1))P

{
max

(t,v)∈[0,Ta]×Sm−1

Y (t,v) > vT +
x

vT
, max
(t,v)∈R(δ)∩([0,Ta]×Sm−1)

Y (t,v) > vT

}

= (1 + o(1)) · 2(3−m)/2πm/2(Γ(m/2))−1T aHx,0
D,α0

v
2/α+m−1
T Ψ(vT ).

Using further (19), we get

vT =
x+ r −

√
2r ‖z‖

aT
+ bT + o(a−1

T )

= v∗T + bT − bδ,T + (x − y)/aT + o(a−1
T )

= v∗T +
lnHα − lnHD,α + x− y

v∗T
+O

(
(ln ln(T ))2(ln T )−3/2

)
.

Observing that v∗T = (2 lnT )1/2(1 + o(1)), we see that the reminder O(·) plays a negligible role. Therefore,

using again (19), we have

P

{
max

(t,v)∈[0,Ta]×Sm−1

Y (t,v) > vT , max
(t,v)∈D̃

Y (t,v) > v∗T

}

14



= 2(3−m)/2πm/2Γ−1(m/2)T aHZx,y,0
D,α0

(v∗T )
2/α+m−1Ψ(v∗T )(1 + o(1))

= T a−1π(m−1)/2HZx,y,0
D,α0

H−1
D,αe

−y−r+
√
2r‖z‖(1 + o(1)),

where Zx,y = lnHα − lnHD,α + x − y. Next, changing the variables in the definition of Hx,y
D,α0

we get that

HZx,y,0
D,α0

H−1
D,αe

−y = HlnHα+x,lnHD,α+y
D,α0

, which completes the proof of the lemma. �
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