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Main points: 

1. Astrocytic sodium is an energy currency and a key mediator of neurometabolic coupling. 

2. Fluorescent probes for ions and metabolites are being combined to bridge the 

mechanistic gap between astrocytic sodium dynamics and the metabolic machinery.  
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Abstract 

The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a 

secondary energy source to regulate the intracellular and extracellular milieu, and discard 

waste products. One of the most prominent roles of astrocytes in the brain is the Na+-

dependent clearance of glutamate released by neurons during synaptic transmission. The 

intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase 

pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular 

ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local 

availability of metabolic substrates in response to neuronal activity. This review presents basic 

principles linking the intracellular handling of Na+ following activity-related transmembrane 

fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ 

as an energy currency and as a mediator of metabolic signals in the context of neuron-glia 

interactions. We further discuss the possible impact of the astrocytic syncytium for the 

distribution and coordination of the metabolic response, and the compartmentation of these 

processes in cellular microdomains and subcellular organelles. Finally, we illustrate future 

avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ 

and the metabolic machinery. 

 

  



Chatton et al GLIA Volume 64, Issue 10 - Pages 1667–1676 

4 
 

Introduction 

The intimate relationship between Na+ and metabolism goes back to the beginnings of cellular 

life. As soon as living matter took the form of a thin lipid vesicle enclosing metabolites and 

macromolecules, it had to deal with the phenomenon proposed by Willard Gibbs and 

demonstrated experimentally by Frederick Donnan (Donnan 1911; Macknight and Leaf 1977). 

The presence of non-diffusible negatively charged species, such as metabolites, proteins and 

nucleic acids, forces an uneven distribution of diffusible ions across the cell membrane, 

resulting in lower water activity within the cell, net water influx, and cell swelling. Unless an 

equal and opposite force balances this tendency, cells will burst and die. Bacteria and plants 

counteract the Donnan effect in thrifty fashion by coating themselves with extracellular walls 

that withstand hundreds of atmospheres of pressure. Mammalian cells shunned the rigidity 

of cell walls and instead solved the challenge by bailing out water. This is not done by pumping 

water itself, but by pumping Na+ (Skou 1989), which is followed by osmotically obliged water. 

The Na,K-ATPase pump generates a double-Donnan equilibrium, whereby the asymmetric 

distribution of non-diffusible anions is exactly compensated by a counter-distribution of Na+ 

(Macknight and Leaf 1977). One thing leads to another, and the energy stored in the Na+ 

gradient has permitted the emergence of great inventions like action potentials, synaptic 

currents, memory and cognition. The downside is that bailing out requires constant 

expenditure of ATP, as evidenced by cytotoxic glial swelling following brain tissue ischemia 

and traumatic brain injury (Liang et al. 2007). The Na+ gradient is also exploited as a secondary 

energy source to clear neurotransmitters such as glutamate and GABA, and recycle waste 

products such as NH4+, functions that are much more developed in astrocytes than in neurons 

(Weber and Barros 2015). 

The maintenance of the transmembrane Na+ gradient in neural cells represents a large energy 

cost, estimated to correspond to more than half of the overall ATP hydrolyzed in the brain 

(Erecinska and Silver 1994; Hevner et al. 1992). Brain Na+ homeostasis therefore has crucial 

implications for brain energy metabolism both in health and disease, and has consequences 

for functional brain imaging techniques, as the signals that they detect are based on energy 

expenditure coupled to neuronal activity (Magistretti and Allaman 2015). The aims of this 

review are to examine the relationship between astrocyte energy metabolism and Na+ fluxes, 
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to propose a role of Na+ as an energy currency and to emphasize how little we know about 

the molecular mechanisms that control energy metabolism in glial cells. 

Transmembrane Na+ fluxes and energy metabolism 

Recent years have brought about several discoveries on the role of intracellular Na+ in neural 

cells. These advancements have been to a good extent made possible with the emergence of 

imaging technologies for monitoring Na+ dynamics in situ , and are shedding a new light on 

cerebral Na+, revealing it as a component of rapid intracellular as well as intercellular signaling 

between astrocytes and neurons. Parallel development of genetically-encoded sensors for 

glucose, ATP, NADH, lactate and pyruvate, have opened the possibility of imaging metabolite 

levels, and the determination of concentrations and fluxes, also with cellular resolution and 

in real time (for a review, see San Martin et al. 2014). The brain is conspicuous for fast local 

fluctuations of ion levels and energy demand, processes which may now be detected and 

quantified.  

Due to their large transmembrane electrochemical gradient, Na+ ions constitute a major 

driving force used for both fast electrical signaling in excitable cells and ubiquitously for 

transmembrane solute transport. Neural cells deploy energy-costly processes to ensure that 

the intracellular Na+ concentration remains low, in such a way that the ~10-fold concentration 

difference with external Na+ concentration, along with a strongly negative electrical potential, 

can be used to energize multiple ion channels and transporters. On top of their own 

housekeeping duties, glial cells have evolved specific transport functions related to their 

intimate relationship with neurons, and Na+ is key to these roles (Figure 1). Among the most 

abundant proteins of the brain are GLT-1 and GLAST, the astrocytic Na+/glutamate co-

transporters responsible for nearly instant termination of excitatory neurotransmission. GLT-

1 can lower interstitial glutamate to nanomolar levels by coupling the internalization of one 

neurotransmitter molecule to that of three Na+ ions (Levy et al. 1998). There is little doubt 

that the increases in intracellular Na+ accompany glutamatergic transmission (Chatton et al. 

2000; Karus et al. 2015; Langer and Rose 2009) and that this Na+ entry is coupled to increased 

energy consumption by astrocytes (Magistretti and Chatton 2005).  

Active neurons release K+, which depolarizes astrocytes, leading to activation of the NBCe1, 

the abundant Na+/HCO3- co-transporter (Figure 1) that, along with the plasma membrane 
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Na+/H+ exchanger (NHE), deals with the protons captured by GLT-1/GLAST and the plasma 

membrane Ca2+ pump (PMCA). NBCe1 along with NHE transporters represent the major acid-

base regulation system in neural cells (Ruffin et al. 2014). Na+ also enters cells via the Na+/Ca2+ 

exchanger (NCX), a major mechanism of Ca2+ regulation during glutamate and ATP mediated 

signaling, expressed both by neurons and glial cells, including astrocytes, microglia and 

oligodendrocytes (Annunziato et al. 2013). Another crucial Na+-dependent transport system 

expressed at the astrocyte membrane is the Na+/K+/2Cl+ cotransporter (NKCC) which 

contributes to the electroneutral uptake of Na+, K+ and Cl-, and the control of the extracellular 

K+ concentration as well as the cell volume (Kofuji and Newman 2004). Of note, the main 

inhibitory neurotransmitter GABA is also in part cleared from the brain interstitium by a Na+-

coupled cotransporter located in astrocytes although with kinetics that are different from 

those operative for glutamate, which result in only marginal and transient changes in Na+ 

homeostasis (Chatton et al. 2003). These Na+ transport mechanisms are discussed in detail 

elsewhere in this issue of Glia. The continuous influx of Na+ through these and other entry 

pathways can be evidenced for instance by experimentally inhibiting the Na,K-ATPase, which 

leads in the resting state to a rapid rise of cytosolic Na+ (Figure 2A). 

Other Na+ conductances potentially contribute to background Na+ entry in astrocytes and 

therefore to a sustained energy expenditure. Among them, hyperpolarization-activated cyclic 

nucleotide-gated (HCN) channels, permeable to both Na+ and K+, have their expression 

strongly upregulated in reactive astrocytes following ischemic insult (Honsa et al. 2014). The 

passive conductance of astrocytes was also recently shown to be to a large extent due to a 

heterodimer of two pore forming channels (K2P) composed of TWIK-1 and TREK-1 proteins 

(Hwang et al. 2014). This complex K+ channel has a non-conventional pore domain that was 

shown in cardiomyocytes to become Na+ permeable when extracellular K+ levels fall below 

~3mM (Ma et al. 2011), a situation that could occur during pathological hypokalemia. In brain 

tissue following high frequency burst of activity (Heinemann and Lux 1975), K+ was shown to 

undershoot to values as low as ~2mM. However, it remains to be determined whether the 

size and duration (0.5-4 min) of the K+ undershoot are sufficient to alter the ion selectivity of 

the channel. 

Finally, transient receptor potential vanilloid type 1 (TRPV1) was shown to be functionally 

expressed by astrocytes and to preferentially conduct Na+ (Huang et al. 2010). The 
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conductances cited above were identified and mainly studied for their roles in defining the 

membrane properties of cells. Determining their flux relative to those of housekeeping and 

activity-dependent Na+ influx pathways and thus their impact on bioenergetics, will help to 

figure out the extent to which Na+ plays a tonic and a phasic role in energy control.  

Na+ distribution and energy metabolism 

Cytosolic and sub-cellular level  

Na+ concentration in the astrocyte cytosol is in the range 10-17mM (see e.g. Chatton et al. 

2000; Rose and Ransom 1996; Rose and Ransom 1997b; Unichenko et al. 2012), whereas the 

interstitial Na+ concentration was measured to be around 150mM (Dietzel et al. 1982), 

thereby creating an approximately ten-fold concentration gradient across the plasma 

membrane. Protoplasmic astrocytes have slender processes extending for tens of 

micrometers towards synaptic regions, prompting the question of whether inside these 

structures Na+ may behave as a local signal, like Ca2+ and H+, possibly controlling local 

metabolism. According to Brownian diffusion, the answer is negative, because GLT-1-

mediated Na+ entry is too slow compared with diffusion (Barros and Martinez 2007). 

However, a Na+-sensitive dye did detect local Na+ transients in astrocytes in hippocampal 

slices (Langer and Rose 2009). This conflict between theory and experiment may be reconciled 

by the unexpected delay observed for the diffusion of non-charged fluorescent probes 

between astrocytic soma and end-feet, the processes that ensheathe capillaries (Nuriya and 

Yasui 2013). Conceivably, the diffusion of Na+ may be even more restricted if the putative 

cytosolic sieve between end feet and somata selects by charge. Similar diffusional restrictions 

appear to be present in neurons, as Na+ gradients were imaged even between adjacent 

dendritic spines, in conflict with the known diffusion coefficients measured for neuronal 

cytosol (Rose and Konnerth 2001). Thus, if restricted Na+ diffusion in astrocytes is further 

substantiated, processes would emerge as semi-autonomous in terms of Na+ handling and 

possibly of energy metabolism.  

In contrast to Ca2+ and H+ ions, which are heavily buffered, most Na+ ions are free. The 

question of whether Na+ could distribute differentially or be accumulated into intracellular 

organelles has yet to be clarified. However, limited experimental approaches can currently 

help the evaluation of the fate of intracellular Na+ and its impact on the energy metabolism. 
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Electron probe microanalysis of cryosections from slice cultures (Pivovarova et al. 2002; 

Pozzo-Miller et al. 1997) estimated a mitochondrial Na+ resting level of approximately 11-

12mM (i.e.  25mmol/kg dry weight), similar to the 19mM value found in mitochondria of living 

cultured astrocytes (Bernardinelli et al. 2006) using a mitochondria-specific Na+-sensitive 

fluorescent indicator. During neuronal activity (Pivovarova et al. 2002) or in response to 

glutamate application to astrocytes (Bernardinelli et al. 2006), mitochondrial Na+ 

concentration can reach over 30mM. The Na+ entry into mitochondria involves its exchange 

with Ca2+ by the mitochondrial Na+/Ca2+ exchanger, and may also be partly mediated by 

mitochondrial cation conductances such as mitochondrial KATP channels (Bernardinelli et al. 

2006). In physiological conditions, Na+ changes resulting from plasma membrane fluxes, in 

particular due to Na+/glutamate transport activity, appear to be faithfully transmitted to the 

mitochondrial matrix (Figure 3A). Whereas the Na,K-ATPase controls cytosolic Na+, deriving 

energy directly from the hydrolysis of ATP (see below), mitochondrial Na+ is mainly regulated 

by mitochondrial Na+/H+ exchangers (Bernardinelli et al. 2006), powered by the proton 

gradient generated by the respiratory chain. 

It is therefore likely that mitochondria–and possibly the endoplasmic reticulum— dynamically 

take up and release Na+ during activity. The participation of organelles could have functional 

role for intracellular buffering of this ion. In the case of mitochondria, the powerhouses of 

cells, it has been proposed that these Na+ concentration increases influence their oxidative 

energy production in a dynamic way, either cell-wide or at the level of single mitochondrion.  

Indeed, it was described single mitochondria in several cells types, ranging from cardiac 

myocytes to plant cells, exhibit spontaneous transients often named 'flashes' (for a critical 

review, see Schwarzlander et al. 2012), corresponding to rapid fluctuations of either matrix 

pH or superoxide production. Astrocytes were shown early on (Figure 3B) to exhibit 

spontaneous mitochondrial Na+ transients (Azarias et al. 2008). Those were proposed to be 

one component of a chain of events occurring at the level of single mitochondria, which 

involves—in addition to Na+—the rapid fluctuation of mitochondrial matrix pH, electrical 

potential,  and superoxide production,  and which was proposed to be related to the 

availability of ATP in the microdomain surrounding the mitochondria (Azarias and Chatton 

2011).  

Tissue and network level 
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Astrocytes are extensively connected by gap junctions, which enable them to function as a 

coordinated cellular ensemble, by means of apposed connexins proteins, mainly of the 

isoforms 43 and 30. In astrocytes, gap junctions between adjacent astrocyte processes enable 

forming a network named the syncytium. Gap junctions allow ions like Na+, K+ or Ca2+, as well 

as small molecules such as second messengers, or metabolites, to diffuse from one cell to 

another (for a review, see Giaume et al. 2010). The permeability of the gap junctions may be 

dynamically regulated by several factors, among them endothelin (Blomstrand and Giaume 

2006) or plasma membrane depolarization (De Pina-Benabou et al. 2001), a fact that suggests 

a constant reshaping of the astrocyte network properties, which could be used to constrain 

and adapt it to the relevant areas. 

Because of their permeability to small cations, gap junctions allow for equalizing Na+ 

concentrations across cells to approximately the same intracellular concentration (Rose and 

Ransom 1997a); conversely, blocking gap junctions was shown to lead to rapidly diverging 

resting levels of intracellular Na+ of individual cells, and therefore to differential responses to 

external stimuli. It can be deduced that the extensive mutual connectivity of astrocytes allow 

them to coordinate physiological responses as well distribute the energy burden of astrocyte 

Na+-homeostasis. 

With their ability to spread Na+ across the astrocyte network (Figure 2C), the possible role of 

gap junctions in coordinating the intracellular Na+ responses to neuronal activity within the 

network has been investigated in primary cultures (Bernardinelli et al. 2004) as well as in brain 

slices (Langer et al. 2012). It was shown that stimulation of a single astrocyte in culture 

generated a Ca2+ wave that was accompanied by an intercellular Na+ wave (Bernardinelli et 

al. 2004). The mechanism was found to involve the Ca2+-dependent release of glutamate and 

ATP from cells with elevated Ca2+. The accompanying Na+ wave was attributable to the Na+-

dependent reuptake of glutamate by surrounding astrocytes, as well as the direct diffusion of 

Na+ from cell to cell through gap junctions. In parallel, the main drive of the regenerative Ca2+ 

wave was found to be the Ca2+-dependent ATP release and paracrine stimulation of 

purinoceptors as previously described (Anderson et al. 2004; Guthrie et al. 1999). The cellular 

Na+ increases occurring across the glial network propagating the waves was shown to be 

energy costly, inasmuch as it caused an increased glucose uptake in cells reached by the 

waves, as evidenced using the fluorescent glucose analogue 2-NBD-glucose (Bernardinelli et 
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al. 2004). Furthermore, in situations where  glutamate transporters were inhibited, the Na+ 

wave—but not the Ca2+ wave—was inhibited, and so was the spatially-correlated enhanced 

glucose uptake, underlying the tight link between glutamate uptake, intracellular Na+, and 

energy demands in astrocytes. As highlighted in the perspective article by Charles (2005), 

these spatially coupled mechanisms could serve to recruit surrounding astrocytes to deliver 

the energy metabolite, notably lactate, to distant neurons. The astrocyte metabolic wave 

triggered by glutamatergic transmission could mediate the delivery of lactate to GABAergic 

neurons, inasmuch as Na+-dependent GABA uptake into astrocytes was shown not to trigger 

enhanced glucose uptake in those cells as does glutamate (see above and in Chatton et al. 

2003). 

The occurrence of intercellular glial Ca2+ waves in vivo under physiological conditions has been 

questioned. Recent studies indicated that Ca2+ waves do exist in vivo. For instance, in the 

Bergmann glia intercellular Ca2+ waves are triggered by  specific motor behaviors of the animal 

(Nimmerjahn et al. 2009); in hippocampal CA1 stratum oriens, astrocytes were shown to 

generate Ca2+ waves across the astrocyte network by mechanisms that involve purinergic 

receptors and were suppressed by tetrodotoxin (Kuga et al. 2011). Whether such waves could 

drive the propagation of Na+ and metabolic waves in vivo is uncertain. Langer et al. (2012) 

found that electrical stimulation of single astrocytes in CA1 stratum radiatum slices led to a 

Na+ wave that depended on gap junctions, but not on glutamate release and reuptake or ATP, 

as found in primary astrocytes (Figure 2C). 

The spread of Na+ through the astrocyte syncytium is also a potentially important means of 

distributing the metabolic cost of Na+/glutamate reuptake. Along these lines, it has been 

demonstrated that the astrocyte network allows distributing lactate and glucose molecules 

in activated areas (Rouach et al. 2008) in order to sustain activity (Figure 4). It is conceivable 

that intercellular Na+ fluxes paralleled these processes, which would be important to test. 

It is noteworthy that gap junctional proteins are observed at the interface between astrocytes 

and oligodendrocytes (Massa and Mugnaini 1982) and enable functional coupling between  

the two cell types (Rash et al. 2001). It has been more recently demonstrated that this so-

called panglial coupling is essential for the maintenance of myelin (Tress et al. 2012). Such 

heterologous coupling was not found between astrocytes and NG2 cell pairs, or astrocyte-
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interneuron pairs (Xu et al. 2010), which is an indication that astrocytes and oligodendrocytes 

have complementary functions. This heterologous coupling indicates that cation and 

metabolic substrates could travel between the two cell types, allowing periaxonal membranes 

to have access to a larger functional glial network than the one formed solely by 

oligodendrocytes (Figure 4). This is particularly relevant considering the fact that the brain 

tissue is a large energy consumer and contains few energy reserves. Such a metabolic coupling 

between astrocytes and oligodendrocytes has been shown to occur for the distribution of 

lactate across this cellularly heterogeneous syncytium, and to play a role in the maintenance 

of axonal function (Saab et al. 2013). 

The Na,K-ATPase as an ion and energy hub 

Eventually, the intracellular Na+ load generated must converge at the Na,K-ATPase pump, the 

mechanism chiefly responsible for Na+ extrusion from the cell (Figure 1). It is at the Na+ pump 

where the energy debt acquired by intracellular Na+ accumulation must be paid. The Na+ 

pump of astrocytes has an unusually low affinity for K+ (Larsen et al. 2014), which 

compounded with relatively low resting levels of K+ in brain interstitium (2.5 to 3mM, 

compared to 4 to 5mM in plasma), makes it responsive to physiological variations of 

extracellular K+, in contrast with the neuronal Na+ pump, which is saturated at resting 

extracellular K+ concentration and is therefore solely activated by intracellular Na+ (Kofuji and 

Newman 2004).  

The fueling of the Na+ pump has been a subject of debate. There are only three significant 

standing sources of ATP in mammalian cells: mitochondria, and the glycolytic enzymes 3-

phosphoglycerate kinase and pyruvate kinase. In the case of neurons, which spend 70% of 

their ATP on pumping Na+ but produce only 5% of their ATP through glycolysis, it follows that 

their Na+ pump must be chiefly fueled by mitochondrial ATP (Erecinska and Silver 1994), a 

prediction that has been supported experimentally (Hall et al. 2012). However, astrocytes are 

more glycolytic and handle less Na+ than neurons, opening the possibility of preferential 

fueling of the Na+ pump by glycolytic ATP, a concept deeply ingrained in cell physiology since 

the influential erythrocyte study of Mercer and Durham (1981). On the other hand, a study 

designed directly to test this possibility with the aid of high resolution FRET sensors failed to 

support preferential glycolytic fueling of the Na+ pump in astrocytes (Fernandez-Moncada and 

Barros 2014), a result consistent with previous observations in these cells (Rose et al. 1998; 
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Silver and Erecinska 1997), with the constraints of Brownian diffusion (Barros and Martinez 

2007; Martinez et al. 2010) and with the notion that some of the energy used for the extrusion 

of glutamate-linked Na+ entry is generated by the mitochondrial oxidation of glutamate itself 

(McKenna et al. 1996). It should nevertheless be noted that activation of aerobic glycolysis 

associated with the uptake of glutamate, is independent from its metabolism in the TCA cycle, 

as it is mimicked by D-aspartate which is transported into astrocytes by the same transporters 

but is not metabolized (Pellerin and Magistretti 1994). 

If the close structural and functional relationship between the glycolytic machinery, the 

glutamate transporter, and the Na+ pump (Genda et al. 2011; Rose et al. 2009) does not relate 

to preferential fueling: what does it mean? The answer to this question may well be 

bidirectional flux of information. For example the stimulations of astrocytic glycolysis 

mediated by primary engagement of GLT-1/GLAST and the NBCe1 are both abrogated by 

pharmacological blockage of the Na+ pump (Bittner et al. 2011; Pellerin and Magistretti 1994) 

indicating that information flows from surface transporters to the Na+ pump, and then to the 

glycolytic machinery. According to this view, intracellular Na+ and extracellular K+ behave as 

the respective readouts of presynaptic and postsynaptic activity, information that is 

integrated at the Na+ pump, which controls glycolysis and mitochondria via energy status 

(Magistretti and Chatton 2005). The surface transporters also affect astrocytic pH and HCO3- 

leading to parallel modulation of glycolysis (Ruminot et al. 2011), mitochondrial respiration 

(Azarias et al. 2011), and glycogen degradation (Choi et al. 2012). Information also flows in 

the opposite direction, as shown by inhibition of GLT-1 transport activity by a peptide that 

disrupts the association of the glycolytic enzyme hexokinase with mitochondria (Jackson et 

al. 2015). 

A tight coupling between Na+ entry and Na,K-ATPase activity was revealed by the massive 

intracellular Na+ increase evoked by glutamate when pump activity was inhibited by ouabain 

(Figure 2A&B). A mathematical model of the dynamics of intracellular Na+ homeostasis in 

response to glutamate indicated that already at 10µM glutamate markedly increases the 

energetic burden put on astrocytes (Chatton et al. 2000). Accordingly, marked increases in 

intracellular ATP consumption temporally match the increases in intracellular Na+ (Magistretti 

and Chatton 2005). Further stressing the key role of glutamate uptake and its coupling to the 

energy consuming activation of the Na,K-ATPase, decreased expression of the glial glutamate 



Chatton et al GLIA Volume 64, Issue 10 - Pages 1667–1676 

13 
 

transporters, GLAST or GLT-1, either by using oligonucleotide antisense (Cholet et al. 2001) or 

in knockout mice (Voutsinos-Porche et al. 2003) decreases glucose utilization in vivo in the 

somatosensory barrel cortex following activation of whiskers.  

Na+ and the control of astrocytic metabolism 

As discussed above, there is abundant evidence that neurons control astrocytic energy 

metabolism via surface Na+-coupled cotransporters and the Na,K-ATPase pump; it is also well 

established that mammalian astrocytes are primarily fueled by glucose, which is partly 

oxidized to CO2 and partly fermented to lactate, and that they store energy in the form of 

glycogen (Magistretti and Allaman 2015; Weber and Barros 2015). According to the original 

astrocyte neuron lactate shuttle (ANLS) model (Pellerin and Magistretti 1994), astrocytes 

generate and release lactate in register with neuronal activity. Lactate can then serve as a 

metabolic substrate for activated neurons. Considerable experimental evidence supports the 

ANLS model (e.g. Jolivet et al. 2015; Magistretti and Allaman 2015; Pellerin and Magistretti 

2012), the most recent one being the observation of a substantial standing gradient of lactate 

between astrocytes and neurons in the somatosensory cortex of living mice (Mächler et al. 

2015). The extent, timing, brain localization and relative weight of the multiple intercellular 

and intracellular signaling mechanisms involved in ANLS are under active experimental 

investigation. There have been several attempts to model ANLS based on theoretical 

considerations, but the results have shown to be too sensitive to initial assumptions (Dienel 

2012; DiNuzzo et al. 2010; Jolivet et al. 2015; Magistretti and Allaman 2015; Patel et al. 2014; 

e.g. Pellerin and Magistretti 2012). Overall, several lines of experimental evidence show that 

Na+ is a signal that triggers glucose uptake and lactate production by astrocytes in a process 

known as aerobic glycolysis, a biochemical pathway also known as Warburg effect. 

Interestingly, aerobic glycolysis is a hallmark of rapidly proliferating cells such as cancer cells 

(Warburg 1956). Goyal et al. (2014) recently demonstrated that periods and regions of the 

brain where aerobic glycolysis is most active correspond to a high expression of plasticity 

genes in particular those associated with synaptic remodeling. Consistent with this, during 

early brain development, aerobic glycolysis is particularly high peaking at 5 years of age, when 

it represents 30% of glucose utilization. At adulthood, aerobic glycolysis is restricted to the 

specific brain areas such as the dorsolateral prefrontal cortex, superior and medial frontal 

gyrus, precuneus and posterior cingulate cortex, while it is absent in the cerebellum 
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(Vaishnavi et al. 2010). Interestingly, these regions with high aerobic glycolysis in the adult 

correspond to a brain network known as the Default Mode Network (DMN), which is more 

active in the absence of a task-specific activation (Raichle et al. 2001). Another intriguing 

aspect of the DMN is that it is the region most subject to β-amyloid deposition (Vlassenko et 

al. 2010). 

The signaling mechanisms that bridge the gap between Na+ and the metabolic machinery are 

not fully understood (Figure 1). The first metabolic control point beyond the blood-brain 

barrier is the astrocytic glucose transporter GLUT-1, which is activated by glutamate via the 

Na+/glutamate transporter  (Loaiza et al. 2003). The stimulation of GLUT-1 by glutamate may 

be mimicked by coincidental rises of intracellular Na+ and Ca2+ (Porras et al. 2008), but the 

link between these ion changes and the activity of the glucose transporter is not known. 

Downstream of GLUT-1 is glycolysis, which is also activated by glutamate via the 

Na+/glutamate transporter (Pellerin and Magistretti 1994; Voutsinos-Porche et al. 2003). 

Whereas the observation (Figure 2B) that glutamate can induce ATP hydrolysis in ouabain-

sensitive fashion (Magistretti and Chatton 2005) suggests that the stimulation of astrocytic 

glycolysis may be explained by direct effects of adenine nucleotides on regulatory glycolytic 

enzymes, the actual control points remain to be identified. Other pending issues are the 

spatiotemporal segregation of the effects of glutamate and K+ on glycolysis, the respective 

roles of Na+, Ca2+, H+ and adenine nucleotides on the control of mitochondrial metabolism 

(Brand and Nicholls 2011), and the relative weight of non-signaling metabolism in astrocytes, 

including housekeeping and de novo synthesis of building blocks for synaptic formation and 

growth (Goyal et al. 2014).  

Conclusion and perspectives 

The molecular mechanisms involved in the control of energy metabolism in astroglial cells are 

only scarcely understood. Nevertheless, several pieces of evidence show that the Na,K-

ATPase is a major energy consumer in these cells, which argues in favor of proposing Na+ as 

energy currency and mediator of metabolic signals in the framework of neuron-glia 

interactions. Several future avenues of investigation in this field are highlighted in Box 1. It 

could be added that not only astrocyte Na+ is involved in the modulation of energy 

metabolism and aerobic glycolysis, but also other intracellular cations, such as H+ (Azarias et 

al. 2011; Ruminot et al. 2011) and  NH4+ (Lerchundi et al. 2015). We anticipate that exploring 
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the spatiotemporal distribution, physiological and pathophysiological roles of these ancient 

signals across brain areas will be an important undertaking and also a lot of fun. In the words 

of Louis Sokoloff "There is great joy embedded in the process of solving scientific problems, 

perhaps, as much as in the success of final solving them". 
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BOX 1:  Key questions to be addressed 

• What is the link between neuronal activity and astrocytic energy metabolism? 

Synaptic activity results in increased extracellular levels of glutamate and K+, which 

stimulate Na+-coupled transporters and the Na,K-ATPase pump in astrocytes. Although 

it is well established that these events lead to activation of astrocytic glucose transport 

and glycolysis and that Na+ ions are key mediators, the molecular mechanisms that 

control the metabolic machinery are unknown. 

• Is the astrocytic heterogeneity observed based on morphology or expression of glial 

markers correlated with differential energy metabolic properties? The repertoire of 

astroglial cells is both morphologically and functionally diverse. While differences at 

the level of transporters, ion channels, and receptors are increasingly investigated, the 

bioenergetic impact in the various populations is so far elusive, as is the impact on local 

neuronal network activity. 

• How are microdomain intracellular Na+ changes related to the production of energy 

equivalents? Whether a localized intracellular Na+ rise, expected to activate adjacent 

sodium pumps, engages energy metabolic pathways (glycolytic enzymes, 

mitochondria, etc.) locally or globally inside cells is so far not known. 

• How broadly across the syncytium are energy metabolic responses distributed?  

Astrocytes are extensively coupled by gap junctions that allow them to exchange ions 

and small molecules such as energy intermediates by passive diffusion. Gap junction 

proteins are not homogeneously expressed by astrocytes, which often lead to 

anisotropic coupling between cells. Moreover, a number of factors can regulate their 

opening. The issue of whether and by which mechanisms the syncytium is able to 

constrain or distribute the metabolic load within tissue is to be determined. 
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Figure legends 

Figure 1: Role of Na+ in the neuronal control of astrocytic energy metabolism. Active neurons 

release glutamate and K+, which, via GLT1/GLAST, NBCe1, and other surface transporters and 

channels, induce the influx of Na+ into astrocytes.  Intracellular Na+ together with extracellular 

K+ activate the Na+ pump  and change the ATP/ADP ratio, which along with  H+, Ca2+ and HCO3-

, modulate glucose transport, glycolysis, glycogen degradation, glucose oxidation and the 

production of lactate. Classic biochemistry mapped the pathways of glucose metabolism, but 

the mechanisms that link the neuronal cues and their second messengers to the metabolic 

machinery remain largely unknown.  

Figure 2: Intracellular Na+ handling in astrocytes and its distribution across the syncytium. (A) 

Na+ influx into astrocytes depends on glutamate uptake along with various Na+-dependent 

transport systems and is regulated by the Na,K-ATPase. Segment a shows that when the Na+ 

efflux through the Na+ pump is inhibited by ouabain, intracellular concentration rises due to 

influx through background Na+-dependent transport systems and conductances. Glutamate 

application leads to a robust Na+ rise which persists while glutamate is present. At the onset 

of glutamate washout, Na+ is rapidly extruded from the cell by the Na,K-ATPase (segment b) 

which is associated with substantial ATP hydrolysis. (Modified from: Chatton, Marquet, 

Magistretti. (2000) Eur J Neurosci. 2000 12:3843-53). (B) Tight coupling between intracellular 

Na+ concentration changes (dotted line), the cellular ATP  levels (plain line), indirectly 

determined by fluorescence imaging of free Mg2+, and the Na,K-ATPase activity. Application 

of glutamate causes the synchronized increase in both Na+ and ATP hydrolysis, while 

inhibition of the Na,K-ATPase by ouabain brings about a further increase in Na+ and a 

corresponding drop of ATP hydrolysis, both reversible upon restoration of pump activity. 

(From: Magistretti and Chatton, (2005) J. Neural Transm. 2005 Jan;112:77-85).  (C) Following 

single cell intracellular Na+ rise in astrocytes, Na+ is able to spread across the astrocyte 

syncytium (left panel) to encompass a large volume (right panel). This Na+ distribution is to a 

large extent dictated by the gap junction coupling between cells.  (Modified from: Langer, 

Stephan,Theis, Rose (2011) Glia. 60:239-252). 
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Figure 3: Mitochondrial Na+ exhibits highly dynamic regulations. (A) At the level of the 

mitochondrial population in single cells, Na+ was found to rise in the mitochondrial matrix 

(measured using the fluorescent indicator CoroNa Red, plain trace) in synchrony with 

cytosolic Na+ (measured using the cytosolic dye SBFI, dotted trace). The application of the 

mitochondrial Na+/H+ exchanger inhibitor (EIPA) responsible for regulating matrix Na+, led to 

large mitochondrial Na+ rise, further accelerated by the extracellular application of glutamate. 

(Modified from: Bernardinelli et al. (2006) Glia. 54:460-70). (B) Single mitochondrial Na+ 

undergo spontaneous spiking as displayed by false color fluorescence changes of a 

mitochondria-selective Na+ indicator (CoroNa Red). Panels 1-4 show higher magnification 

temporal series and highlight single mitochondria exhibiting reversible Na+ transients. 

(Modified from: Azarias et al. (2008) Glia. 56:342-53). 

Figure 4: Glial network involvement in the handling of cytosolic Na+ and in distributing the 

metabolic response. The scheme depicts how (1) the release of the neurotransmitter 

glutamate by neurons is followed by its Na+-dependent clearance performed mainly by 

astrocytes; (2) This Na+ influx impacts on the energy metabolism as it strongly stimulates the 

Na,K-ATPase and its associated ATP hydrolysis; (3) It follows an enhancement of glucose 

uptake, and its processing by aerobic glycolytic pathways; (4) Glial  syncytium, which 

comprises the heterocellular coupling to oligodendrocytes by connexins, allows the spatial 

distribution of ions and metabolites such as lactate; (5) Lactate is transferred to neurons by 

means of monocarboxylate transporters for its subsequent use as oxidative substrate. N: 

neuron; A: astrocyte; B: blood capillary; O: oligodendrocyte. 
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