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Abstract

A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families,
including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the
FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE
proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain,
allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa
possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic
analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX
enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory
mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are
distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4,
and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly
conserved arginine. The FRD superfamily most likely originated in bacteria.
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Introduction

All aerobic living organisms face a dilemma when confronted

with the need to assimilate the essential element iron. Indeed, iron

is the second most abundant metal on earth, yet the primary form

found in the environment is the water insoluble and metabolically

inactive ferric ion (Fe3+) [1]. The introduction and accumulation

of dioxygen, into the ancient oceans and atmosphere, by

Cyanobacteria completely changed the earth’s initial reductive

environment by gradually causing it to become oxidative. As a

result, the absorption of bioactive and water soluble ferrous ion

(Fe2+) became a challenge for all forms of life and left a great

impact on evolution [2]. One solution to the dilemma was the

emergence of ferric reductases (FRE), which transfer electrons

from cytosolic NADPH to extracellular ferric ions to generate the

reduced form of ferrous ions, which can then be transported across

the plasma membrane by specific iron transporters [3,4].

Ferric reductases (FRE) and NADPH oxidases (NOX) are

homologs [5]. Indeed, three canonical domains are commonly

shared by both protein families: a heme-containing 6 transmem-

brane (6TM) ferric reductase domain and the two C-terminal

cytoplasmic FAD-binding and NADPH-binding domains [6]. This

common organization most probably reflects the fact that they

catalyze similar reactions: Fe3++e2 = Fe2+ (ferric reductase) and

O2+ e2 = O2
2 (NADPH oxidase).

NOXs transfer electrons to oxygen to produce short-lived

superoxide which is the primary reactive oxygen species (ROS),

which is then transformed into various other ROS, such as

hydrogen peroxide, hypochlorite or ozone [7]. ROS can also be

generated as a byproduct in aerobic metabolisms, typically by

mitochondria, peroxisomes, chloroplasts, or cytochrome p-450. In

contrast, NOXs are devoted to the generation of biologically

functional ROS, which play important roles in innate immunity

[8], inter/intra-cellular signaling [9], morphogenesis and devel-

opment [10,11]. The various physiological and pathophysiological

roles of NOX enzymes have been intensively studied and reviewed

[7,12].

Detailed bioinformatics analyses highlighted both the gene

phylogeny and the structure of family members [13–16]. It was

thus shown that ferric reductase domain (FRD) superfamily

members exist in a wide variety of organisms, and many species

carry multiple gene copies [15]. What is more, structural models

have been developed for differing family members and a large

number of conserved positions were identified [14]. Various

studies inferred the evolutionary relationships of ROS-generating

NADPH oxidase families [13–15]. Finally, homologs that possess
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only the conserved ferric reductase domain have been identified in

bacteria (YedZ) and eukaryotes (STEAP; Six Transmembrane

Epithelial Antigen of Prostate) [16].

In the present study, we characterized the evolutionary history

of the FRD superfamily. By adding homologs of species from

deep-branching nodes of the species tree, we showed that families

and subfamilies emerged earlier than had been previously thought.

The gene phylogeny is discussed in the context of structural and

functional features. Findings to be highlighted include 1) conserved

residues predicted to be crucial for NADPH-oxidases; 2) the

probable lateral inheritance of the metazoan STEAP family from

bacteria and the synchronous loss of the ancient ferric reductases

in this clade; 3) the emergence of the NOX family from EF-hand

containing superfamily members; 4) the origin of the FRD

superfamily from a bacterial homolog that consists solely of a

ferric reductase domain.

Materials and Methods

Data Collection
Eukaryotic homologs of the FRD superfamily were obtained

from UniProtKB (release 2011_07) [17,18], by searching – by way

of cross-references – for three conserved domains predicted by the

Pfam database [19]: the ferric reductase-like transmembrane

component (PF01794), the FAD-binding domain (PF08022) and

the NADPH-binding domain (PF08030). Further family members

were identified in UniProtKB using Blast [20,21]. The dataset was

then complemented with homologs predicted by Ensembl (release

63, 30 June 2011), EnsemblMetazoa (release 10, July 2011),

EnsemblPlant (release 10, July 2011), EnsemblFungi (release 10,

July 2011), and EnsemblProtist (release 10, July 2011). 47

eukaryotic species were selected as representatives of their

corresponding taxonomic groups. Finally, homologs from species

of deep-branching nodes of the species tree were added. In order

to root the tree, we retrieved homologs from UniProtKB with a

conserved ferric reductase domain from complete bacterial

proteomes. 29 homologs – including long and short homologs

from 16 representative bacteria – were selected for further

analysis. The dataset is available in the File S1. For the analysis

of the full superfamily phylogeny we retrieved the 2876 predicted

ferric reductase domains from Pfam (release 26.0, November

2011).

Phylogenetic Analysis
Sequences were aligned using MAFFT (version 6) [22] with

parameter settings optimized for data with multiple conserved

domains and long gaps (E-INS-i) and scoring matrix JTT200 [23].

The gap opening penalty (1.80) and the offset value (0.1) were set

above the default. The multiple sequence alignment (MSA) was

inspected and edited with JalView (version 2.6.1) [24]. Sequences

with long gaps were either replaced by more appropriate isoforms

or removed from the alignment. The non-homologous N-terminus

of the amino acid sequences was trimmed to the beginning of the

conserved ferric reductase domain. From the obtained sequences

we constructed a second dataset which included the NOX family

members and four members of the DUOX family as an outgroup.

Both datasets were realigned as described above. From both

datasets we constructed different data models from the conserved

regions of the alignments. Following this strategy, we tried to

obtain phylogenetic signals at different levels of depth in the gene

history. The accuracy of the alignments was evaluated with

GUIDANCE (version 1.1) [25] and unreliable columns were

removed manually, mostly according to the GUIDANCE score.

The best-fit models of evolution were determined with ProtTest

(version 3.2) [26] ML phylogenies were calculated for all data

models with PhyML 3.0 [27] under the LG amino acid

substitution model [28], using eight rate categories which

approximated a gamma distribution; the alpha parameter and

the proportion of invariable sites were estimated from the dataset.

The likelihood was maximized by optimizing the tree topology

and branch lengths. The degree of support for internal branches

was assessed by the approximate likelihood-ratio test based on the

non-parametric Shimodaira-Hasegawa-like procedure (SH-aLRT)

as implemented in PhyML.

For the analysis of the superfamily, the sequence redundancy of

the predicted ferric reductase domains was reduced to 90% using

Jalview. Truncated and dubious sequences were removed and

sequences were realigned with MAFFT, using settings optimized

for data with one conserved domain and long gaps (L-INS-i) and

the scoring matrix JTT200. No other default parameter values

were changed. The alignment was edited again with Jalview. This

time, the data model was selected in a less stringent way to keep a

maximum number of positions for the analysis. Sequence

redundancies above 82% were removed from the data model.

An ML tree was constructed with PhyML using the same

evolutionary model as described above. Phylogenetic trees were

inspected and drawn using Archaeopteryx (http://www.phylosoft.

org/archaeopteryx).

Protein Sequence Analysis
All sequences were searched for possible transit peptides

(SignalP [29], TargetP [30]), transmembrane domains (TMHMM

[31], Phobius [32], MEMSAT [33]), homologous, biased and

functional regions (InterPro [34], Pfam [35]), and post-transla-

tional modifications (NMT [36]). To avoid over-prediction, we

considered positive results only, if 1) a region or site was shown to

exist or was analyzed in depth in a previous study for at least one

family member; 2) predictors had a high specificity or a region or

site is predicted by more than one predictor, or 3) the hit was

conserved for the majority of members within a clade.

For the identification of conserved sites within transmembrane

domains and conserved adjacent regions, representative homologs

of the NOX family (NOX1-4 and co-orthologs from Fungi,

Amoebozoa and Naegleria gruberi), NOX-EF group (EF-hand(s)

containing members of the NOX group), ppFRE group (protist

and plant homologs of the FRE group), and fuFRE (fungal

homologs of the FRE group) families, as well as the bacterial short

and long forms and the STEAP family were obtained from the

UniProt server and previous datasets. Sequences of each family

were aligned using MAFFT. The alignments were then inspected

manually and sequences that possessed atypical insertions within

the transmembrane domains were removed from the MSA. The

monophyletic group of YedZ-like proteins was removed from the

MSA of bacterial short forms; in the following the group was

treated as a group on its own. Well-aligned regions – including the

predicted transmembrane domains (TM3–TM5) – were extracted

from the alignments. Finally, sequence conservation logos were

constructed from the eight MSAs using the WebLogo server

(weblogo.threeplusone.com). The alignments used for this purpose

included 443 (bacterial short forms), 107 (bacterial long forms), 75

(STEAP), 22 (bacterial short forms similar to bacterial long forms),

123 (fuFRE), 54 (ppFRE), 66 (NOX-EF), and 54 (NOX)

sequences, respectively.

The analyses were performed on the Vital-IT High Perfor-

mance Computing Center (www.vital-it.ch), mafft.cbrc.jp/align-

ment/server (MAFFT), guidance.tau.ac.il (GUIDANCE), darwi-

n.uvigo.es/software/prottest.html (ProtTest), www.phylogeny.fr

[37] (PhyML), www.cbs.dtu.dk/services (SignalP, TargetP,
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TMHMM), phobius.sbc.su.se (Phobius), pfam.sanger.ac.uk (Pfam),

www.ebi.ac.uk/interpro (InterPro), weblogo.berkeley.edu (We-

bLogo) and local computers.

Collection of Functional Knowledge
A systematic literature search on experimentally characterized

homologs was conducted for NOX homologs and for selected

members of the FRE group using PubMed/MEDLINE at www.

ncbi.nlm.nih.gov/pubmed and in the reference section of relevant

UniProtKB entries.

Results and Discussion

Phylogeny of the FRD Superfamily
At the highest level of structural organization, members of the

FRD superfamily are characterized by a common transmembrane

ferric reductase domain (Pfam: PF01794) with structural similarity

to cytochrome b of the mitochondrial bc(1) complex. Our analysis

initially focused on eukaryotic homologs, whose superfamily

members also possess a dehydrogenase module consisting of an

FAD-binding domain (Pfam: PF08022) and an NADPH-binding

domain (Pfam: PF08030), both oriented towards the cytoplasm.

Conserved blocks of these homologous regions account for the

data model used in the phylogenetic analyses of the eukaryotic

genes; the phylogeny of the FRD superfamily is inferred based on

the homologous regions of the ferric reductase domain (Figure 1).

The many lineage-specific radiations in the eukaryotic clades

throughout evolution are striking (Figure 2, and File S2). Hence,

most of the analyzed species possess more than one gene copy of

this superfamily. However, organisms do not systematically

contain FRD homologs. For 33 out of 263 complete eukaryotic

proteomes in UniProtKB (release 2011_12), no homologs with a

ferric reductase domain have been predicted until now. These

species belong to the taxonomic groups Alveolata (18), Diplomonadida

(3), Euglenozoa (2), Microsporidia (4), Parabasalia (1), stramenopiles (1),

Platyhelminthes (2) and Arthropoda (2). For bacteria, FRD homologs

are annotated in only 37% of all complete proteomes.

The phylogenetic tree of the FRD superfamily suggests three

major protein groups. Clade 1 includes homologs of the ROS-

generating protein families (NOX group) as well as homologs of

ferric reductases (FRE) predominantly from plants and protists

(ppFRE). This group is of special interest in this study, because –

based on functionally characterized family members – we presume

that the functional shift from a metalloreductase to a ROS-

generating protein took place within this branch in an ancestral

gene of very early eukaryotes. The phylogeny of the ROS-

generating NADPH oxidases (NOX1-5, DUOX, RBOH, pre-

NOX) was analyzed previously [13–15]. In agreement with these

results are the sub-familial relationships within the NOX family

(Figure 1A). The sea anemone Nematostella vectensis currently

represents the most basal metazoan, and its proteome contains

three gene copies, i.e. two ortholog to the NOX1-3 subfamily and

one ortholog to the NOX4 subfamily. There is even some

evidence that the divergence of these two subfamilies took place

prior to the emergence of animal – NOX homologs of the

choanoflagellates Monosiga brevicollis and Salpingoeca sp. (strain

ATCC 50818) cluster steadily with the NOX1-3 clade. Further-

more, the NOX family includes the independently duplicated

genes from fungi, Amoebozoa and Naegleria gruberi. The presence of

these co-orthologs reveals that a gene of the NOX family was

probably already present in very early eukaryotes.

What is more challenging is the interpretation of the evolution

of the EF-hand containing protein group (NOX-EF, including

NOX5, NOXC, DUOX, and RBOH families). It has been

suggested that the EF-hand domain was acquired only once [38];

but, to our knowledge, none of the phylogenetic studies so far have

achieved a tree topology that supports a monophyletic origin of

NOX-EF prior to the divergence from the NOX family. In our

analyses, alternative interfamilial relationships are predicted for

the EF-hand containing members when datasets, analysis meth-

ods, or analysis parameters are changed (File S3). One explanation

for the observed inconsistent topology could be multiple gene

duplications that happened close together in time, leaving no or

only marginal traces of common evolution in these clades. Because

results indicate that the NOX family emerged from the NOX-EF

group, we hypothesize that the EF-hand was lost in an ancestral

gene of the NOX family.

At the base of clade 1, metalloreductases predominantly from

protists and plants (ppFRE) diverge (Figure 1B). Minor clades in

between ppFRE and the NOX group are hereafter named

preNOX (Figure 1).

Clade 2 includes solely fungal metalloreductases (fuFRE), and

the topological placement of this branch outside other eukaryotic

metalloreductases is notable (Figure 1B). Our analysis includes

genes from five representative fungal proteomes, which possess

between two and nine homologs. A more comprehensive analysis

of this clade – with homologs from 29 eumycotal proteomes –

classified members of the FRE group into 24 families [39].

So far, no metazoan eFRE orthologs have been identified.

Indeed, animals possess enzymes with the conserved ferric

reductase domain and a ferric reductase activity, but this family

(STEAP) is probably xenolog to eFRE (Figures 1C and Figure S4-

4 in File S1).

In order to root the tree, we examined FRD homologs from

prokaryotes (clade 3). This clade is composed of bacterial ferric

reductases (bFRE) including the bacterial YedZ family and the

eukaryotic STEAP family. Bacterial members can be roughly

classified into short and long forms; the short forms consist

basically of the ferric reductase domain, and the long forms of all

three domains conserved in the eukaryotic families (Figure 3).

According to Pfam cross-references in UniProtKB (release

2011_12), short forms are about 5.5 times more frequent than

the long form. Furthermore, some bacterial proteomes seem to

contain only a long form, others only a short form, while some

have both forms or none at all (Figure 2). Out of 1471 complete

bacterial proteomes provided by UniProtKB, only 543 species

possess at least one predicted homolog (Figure S4-1 in File S4). Yet

we observed no conspicuous correlation between the bacterial

taxonomy and the occurrence of homologs (Figure S4-2 in File

S4). During the analysis, we noticed only a few likely cases of HGT

from eukaryotes to bacteria. One example is the gene AM1_3152

from the cyanobacterium Acaryochloris marina (strain MBIC 11017)

(UniProtKB: B0CEP3), which could have been obtained from an

ancestral gene of the NOX5 family (Figure 1C). UniProtKB

includes four FRE family members from the archaeal domain. A

phylogenetic analysis of a prokaryotic dataset reveals that the

archaeal genes were probably derived by HGT from bacteria in

three independent evolutionary events (Figure S4-3 in File S4).

Modularity and Functional Diversification
The basic structural component of this superfamily is the

transmembrane ferric reductase domain that is present in all the

analyzed superfamily members. This domain includes four

canonical conserved heme-coordinating histidines in transmem-

brane domain 3 (TM3) and transmembrane domain 5 (TM5).

Their positions in the human NOX2 sequence are 101 and 115

(TM3), and 209 and 222 (TM5). The heme close to the cytoplasm

is expected to bind to His-101 and His-209, while the heme close
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Figure 1. Maximum likelihood phylogeny of the FRD superfamily. A. Phylogram of the NOX family rooted to DUOX genes (outgroup not
shown). The tree topology suggests lineage-specific gene duplications in all major taxonomic clades. The NOX1-3 and NOX4 subfamilies possibly
diverged before the emergence of metazoans. B. Phylogeny of eukaryotic gene families of the FRE group and the NOX group. According to this
model, the DUOX family and NOX family form sister clades, but not the EF-hands containing protein families NOX5 and DUOX. C. Phylogenetic tree of
the FRD superfamily. The tree topology proposes that the metazoan STEAP family (red) emerges from the bacterial clade at the base of the YedZ
family. The gene AM1_3152 from the cyanobacterium Acaryochloris marina (strain MBIC 11017) (UniProtKB: B0CEP3) was probably obtained from an
ancestral gene of the eukaryotic NOX5 family. Explanation: The names of gene families and gene groups are indicated with curly brackets. Branch
colors correspond to those of the listed taxonomic groups.
doi:10.1371/journal.pone.0058126.g001
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to the cell surface is expected to bind to His-115 and His-222.

Most of the bFRD clade homologs consist solely of this domain,

but seven distinct modules have been identified, which contribute

to the extension of this simple ‘bacterial structural core’ (Figure 3A,

model M7). According to Pfam cross-references in UniProtKB,

only about 12% of the bacterial homologs have a predicted

architecture similar to eukaryotic metal reductases and NADPH

oxidases, comprising the transmembrane ferric reductase domain

followed by the cytoplasmic FAD-binding and NADPH-binding

domains (Figure 3A, model M1). All in all, nine variations of this

Figure 2. Phyletic profile and molecular function of the FRD superfamily. On the left-hand side, phyletic profile for 47 species: gene copy
numbers are plotted in accordance with the species phylogeny (left) and gene families: The number of NOX homologs of a species is given in red
cells, FRE homologs in blue cells, and preNOX in orange ones. Some cells are merged according to the family hierarchy. The number of predicted
homologs is given in the last column of the phyletic profile. On the right-hand side, gene copies are represented by lines which link the
corresponding species and protein families; the thickness of these lines indicates the number of gene copies. Colored lines flag experimentally
confirmed gene functions: red = ROS-generating NADPH oxidase activity; blue = metalloreductase activity. Black circles mark species that possess
p22phox homologs.
doi:10.1371/journal.pone.0058126.g002
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‘eukaryotic structural core’ (model M1) were predicted for

sequences of our dataset (Figure 3B). Interestingly, additional

functional components are generally fused to the N-terminal of the

conserved triad. The two C-terminal domains form an elaborated

functional unit, in which the NADPH-binding domain provides

the enzyme with a readily available electron donor, thereby

enhancing its efficiency. Meanwhile the FAD-binding region

optimizes the energetic profile of the electron transport chain. This

module with redox and electron transfer properties is beneficial to

many redox systems, and thus represents an abundant structural

compound found in the vicinity of oxidoreductase domains, either

as a module in multi-domain enzymes or as a subunit of protein

complexes. This structure is often referred to as dehydrogenase

domain or dehydrogenase module. While analyzing FRD super-

family members and other unrelated proteins with a dehydroge-

nase module, transmembrane domain predictors often reported a

positive hit in between the two cofactor-binding domains. In all

logic, such a protein structure would contradict the module’s

biological function. An inspection of known structures (PDB: 3a1f,

1gvh) revealed a hydrophobic region located in the center of the

NADPH-binding domain, spanning the C-terminus of a parallel

beta-sheet, a short loop opposite the cofactor-binding site and the

N-terminal of a proximate alpha-helix. Based on this analysis, both

the existence of a transmembrane domain and a hairpin-like

structure in between the neighboring domains is therefore unlikely.

In the following sections, the different domain architectures are

discussed along with examples of well-studied proteins (Figure 3).

An overview of the molecular function of characterized family

members is given in Figure 2, and a description of the

experimentally confirmed protein functions is available in Table 1.

bFRD: Extensions to a Simple Module
Typical representatives of the ‘one-domain’ homologs from

bacteria are members of the YedZ family found in Proteobacteria,

which are involved in redox regulation and transmembrane

electron transfer [40]. The E.coli homolog of this family has been

shown to form an oxidoreductase complex with the soluble

catalytic molybdoenzyme YedY [41]. Out of 1,755 currently

available bacterial homologs in UniProtKB, YedZ is – to our

knowledge – the only characterized family member. bFRD

homologs are probably involved in many different biological

processes, as can be inferred from the diverse fusion proteins. Six

modular extensions to the bacterial structural core have been

predicted for members of the bacterial clade and, as a matter of

fact, all these domains are related to functions of electron transport

and/or exchange. Structural modifications are also observed in

homologs of the eukaryotic STEAP family that emerged from the

bacterial FRE branch. Like its bacterial homologs, STEAP1

proteins consist only of a ferric reductase domain but its paralogs,

STEAP2-4, possess additionally an NADPH-binding domain

(‘NADP oxidoreductase coenzyme F420-dependent’ domain;

Pfam: PF03807) in their N-terminal region. Such a domain

architecture has not been predicted for bacterial metal reductases.

STEAP family members have been shown to possess both ferric

reductase and cupric reductase activities [42,43]. Thus even

members of the FRD superfamily, which do not have the three

canonical domains, appear to be involved in the same molecular

function, but probably using different reaction mechanisms. We

compared the conserved amino acids found in the transmembrane

domains of both the short and the long forms of bFRD. This

revealed that most short forms possess only two (STEAP2-4: His-

115, His-222) or three (YedZ, STEAP1: His-115, His-209, His-

222) of the conserved histidines and thus probably bind only the

surface-proximal heme (Figure 4). Experimental evidence for

functional electron transport through the membrane via a single

heme is scarce but some evidence has been reported for YedZ

[41]. Instead of the cytoplasm-proximal heme-binding histidines

we found a well-conserved arginine (TM3) and glutamine (TM5).

In contrast, the long forms possess all four conserved histidines.

The few short forms that contain all four conserved histidines are

found in the direct vicinity of the long forms in our phylogenetic

tree. This finding supports the tree topology in that STEAP is

more close related to the bacterial short form, and bacterial long

forms are more closely related to eukaryotic homologs.

Most structural modifications are found in orthologs of closely

related species, thus indicating that variations of the basic core are

generally not persistent in bacteria, a fact which is typical for the

evolution of prokaryotic proteins. Hence, the enduring bacterial

‘long form’ might be more efficient than functional equivalents or

could have a unique function.

eFRE: Variations in ‘Transmembrane’
Most, if not all, fungal metalloreductases (fuFRE) contain an

additional predicted transmembrane domain that precedes the

three conserved domains of the eukaryotic structural core. The

nine Saccharomyces cerevisiae homologs are among the best-studied

examples of this group. As they are important components of the

high affinity uptake system for iron and copper ions, FRE1 and

FRE2 are involved in both ferric and cupric ion reduction. There

is evidence that FRE3-6 homologs are specific iron reductases,

whereas the FRE7 homolog is a specific copper reductase [44–46].

A recent study shows that yeast YNO1 (AIM14) - one of the 9

yeast FREs - generates ROS and affects both apoptosis and actin

cable formation [47]. The function of the N-terminally fused

transmembrane region is unknown.

In some ways similar to the fungal metalloreductases, the

majority of protist and plant homologs (ppFRE) in this group bear

predicted transmembrane regions in addition to those of the ferric

reductase domain. Two or six transmembrane domains are found

in the N-terminal of these homologs, but additional transmem-

brane helices are also predicted close to the C-terminus, within the

NADPH-binding domain in clade members from Viridiplantae and

stramenopiles. A well-studied example is the tissue-specific expression

of the eight paralogs of the ferric chelate reductase (FRO) family

from Arabidopsis thaliana [3]. Three of these homologs are located in

the membrane of organelles: FRO7 in chloroplasts, FRO3 and

FRO8 in mitochondria [48,49]. Nevertheless, all these gene copies

emerge from the eukaryotic clade and it is therefore unlikely that

they originate from an organelle genome.

Figure 3. Domain architecture of FRD superfamily members. Models of domain architectures are mapped to the phylogenetic gene trees of
bacterial (A) and eukaryotic (B) FRD homologs. Tree branch colors correspond to the color code of the models (see highlight color of model
identifiers). The three conserved domains of the ‘eukaryotic structural core’ are colored, and other predicted domains are given in black. Domain
forms indicate their function; rounded rectangle = binding of electron donor/hydrogen acceptor: FAD-binding, NADPH-binding (M3), FMN (M4);
triangle = electron transfer agent: Ferredoxin/Fer2 (M8), Rieske (M4), DOMON (M10), peroxidase-like domain (M15); circle = regulation of enzyme
activity: EF-hands (M14–M16); hexagon = protein-protein interaction: NADPH-oxidase-like domain (M16), SH3 (M17); ellipse = transport of small
solutes: MSF (M6).
doi:10.1371/journal.pone.0058126.g003
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Besides additional transmembrane domains, a single clade of

the eFRE group has acquired a new structural module. Members

of a subfamily – including seven paralogs from the Heterolobosea N.

gruberi and homologs from the stramenopiles Albugo laibachii

(UniProtKB: F0X089) and Phytophthora infestans (UniProtKB:

D0MUZ3) – contain one or two extracellular DOMON domains

(Pfam: PF03351). The DOMON domain was predicted to possess

a hydrophobic pocket that binds heme and sugar [50,51]. It has

also been suggested that it participates in an electron-transfer

system [50]. A signal peptide was predicted only for a homolog

presenting two DOMON domains.

Note that no FRE-EF forms were observed in bacteria and

eukaryotes, suggesting that the regulatory EF hand domains were

acquired by superoxide-producing NOX enzymes.

preNOX and NOX-EF: Emergence of ROS Generation and
Activity Regulation

At the base of the NOX group, homologs from Rhodophyta,

stramenopiles and Viridiplantae contain four predicted additional

transmembrane helices between the FAD-binding and NADPH-

binding domains. One study revealed a potential ROS-generating

NADPH oxidase activity for the homolog of the red algae Chondrus

crispus, [52]. This experimental evidence is interesting, because

with the occurrence of EF-hands at the N-terminus, such

homologs are known or expected to produce ROS for specific

biological functions. The algae, however, diverged before this

domain was acquired.

The functional shift from metalloreductases to ROS-generating

NADPH oxidases probably occurred early on in the NOX group

and, to some extent, seems to be linked to the occurrence of EF-

hands in the N-terminus. The binding of Ca2+ to EF-hands can

cause conformational changes linked to regulatory functions, as for

instance in calmodulin [53]. A need for regulated ROS production

is plausible because of the toxicity of the products, as illustrated by

their function in oxidative innate immune defense. At least one

EF-hand was predicted for all members of the NOX-EF group. As

the biologically active structure is generally a pair of EF-hands,

and not all predicted EF-hands have the capacity to bind Ca2+,

representative family members were inspected manually (Cox JA,

personal communication). All the studied homologs possessed at

least two EF-hands, of which at least one was canonical and hence

assumed to be Ca2+-binding. Fungal members of the paraphyletic

group of NOX-EF have a single Ca2+-binding EF-hand motif.

They seem to exhibit ROS-generating NADPH oxidase activity

and have been suggested to be regulated by Ca2+ [15,54,55]. The

metazoan NOX5 family members contain four EF-hands, and

studies in human and mouse confirmed Ca2+-regulated ROS-

generation [56,57].

A comparison of the eFRE metal reductases with expected

NADPH oxidases indicated two positions that are conserved in

members of the latter group: a histidine in addition to the two

heme-binding histidines in transmembrane domain 3 (TM3), and

a conserved threonine in transmembrane domain 4 (TM4)

(Figure 4). In accordance with their sequence position in human

NOX2, we refer to these sites as His-119 and Thr-178. His-119 is

located within the alpha-helix close to the cell surface. Well-

studied heme-binding proteins involved in oxygen-transport are

hemoglobin and myoglobin. In both molecules, dioxygen-binding

is stabilized by a hydrogen bond to a conserved histidine residue

distal to the heme-binding sites [58]. We propose that a similar

stabilizing mechanism involving His-119 could apply to the ROS-

generating homologs of the superfamily, as this position is

conserved in the vast majority of the analyzed homologs of the

NOX group. Exceptions were found in species with multiple NOX

inparalogs, and each of these species’ proteomes presented at least

one gene copy that possessed the conserved histidine (His-119).

One of these exceptions is NOXC of D. discoideum. Preliminary

studies using a NOXC knockout strain showed reduced levels of

stimulated ROS generation in vegetative and starved cells (Zhang

X, Soldati T, unpublished data). We therefore assume, that the

second conserved residue, Thr-178, is equally important for

NADPH oxidase activity, but a gating function seems more likely

than oxygen-binding. According to an analysis of the functional

roles of catalytic residues [59], threonine has been found to

predominantly perform stabilizing functions. Of note is a

conserved glycine residue (Gly-179) adjacent to the conserved

threonine, which is actually not specific to NOX homologs, but

which forms a conserved dipeptide in the probable ROS-

generating proteins. Natural variants in human NOX2 have been

identified in patients with inheritable disorders related to innate

immunity: mutations in His-119 as well as in Gly-179 lead to a

chronic granulomatous disease (CGD) phenotype [60,61], and

mutations in Thr-178 to Mendelian susceptibility to mycobacterial

disease (MSMD) syndrome phenotype [62]. In summary, four

conserved positions are probably indicative in distinguishing ROS-

generating homologs of the NOX group from presumptive

metalloreductases: His-101, His-119, Thr-178 and Gly-179.

These findings are key in identifying the point of functional

divergence in evolution. The preNOX group diverges at the very

base of the NOX group, and includes genes from stramenopiles,

red algae as well as green algae and fungi. Except for the fungal

genes, all these members lack His-119; green algae even lack the

second heme-binding histidine in TM3, but all homologs possess

the conserved dipeptide. Hence, the homologs from stramenopiles

and rhodophytes – but not the genes of the chlorophytes analyzed

here – are likely to possess a ROS-generating activity that is not

regulated by Ca2+. All other homologs of the NOX-EF group

possess two or more EF-hands. In addition, two other structural

components are found in members of this group: a domain of

unknown function that encompasses the N-terminus of the

NADPH oxidase (NADPH-oxidase Ox; Pfam: PF08414) and the

heme-containing peroxidase-like domain (Pfam: PF03098). These

two additional domains are the hallmark of two separate NOX

families. The cytoplasmic NADPH-oxidase domain is attached to

the N-terminus of the EF-hands in the RBOH family of land

plants. Interestingly, closely related homologs from stramenopiles

(RBOH-like) seem to possess EF-hands, but show no predicted

domains at the N-terminus. Members of the DUOX family

comprise up to three predicted EF-hand motifs, and a further

transmembrane domain links to an extracellular peroxidase-like

domain. The predicted signal peptide might be required to

translocate the peroxidase-like domain to the extracellular space.

Members from both families have been biochemically character-

ized as ROS-generating and Ca2+-regulated enzymes, strongly

Figure 4. Sequence conservation logos and the proposed structure of the ferric reductase domain of protein groups from the FRD
superfamily. A. Transmembrane domains TM3 to TM5 - as predicted for human cytochrome b-245 heavy chain (NOX2) - are indicated by gray
rectangles. The cladogram indicates the phylogenetic relationship of the analyzed homologous groups. In the conservation logos, the height of the
stacks indicates sequence conservation; the width of the stacks is proportional to the fraction of amino acids, thus narrowed within gapped regions.
B. Proposed structure of ferric reductase domain with conserved amino acid residues corresponding to the annotation in figure 4A.
doi:10.1371/journal.pone.0058126.g004
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Table 1. Biological functions of eukaryotic FRD superfamily members from published experiments.

Protein, species, UniProtKB identifier Biological Function References

Mammalian NOX1-4

NOX1 human: Q9Y5S8, mouse: Q8CIZ9 Signaling (e.g. smooth muscle proliferation, angiogenesis) [72–74]

NOX2 human: P04839, mouse: Q61093 Host defense; signaling to limit inflammation and immune activation [7,75–78]

NOX3 human: Q9HBY0, mouse: Q672J9 Signaling and/or biosynthesis in the inner ear (otoconia formation) [79,80]

NOX4 rat: Q924V1, mouse: Q9JHI8 Signaling (e.g. myofibroblast differentiation, hypoxia response) [81–83]

Fungal NoxA/B

NoxA Epichloe festucae: Q2PEP0 Maintain mutualistic status with host plant [84]

NoxA Botryotinia fuckeliana: B0BES1 Maintain pathogenicity; develop penetration structure to infect host plant [85]

NoxA Emericella nidulans: Q8J0N4 Sexual development [86]

NoxA Magnaporthe grisea: A6ZIB7 Maintain pathogenicity; develop penetration structure to infect host plant [87]

NoxA Neurospora crassa: Q7RW00 Female sexual structure formation; asexual development and hyphal growth [66]

NoxA Podospora anserine: B2AA06 Develop penetration structure to infect host plant; degrade host plant cellulose;
fruiting body differentiation

[88,89]

NoxB B. fuckeliana: B0BES2 Maintain pathogenicity; colonize in host plant [85]

NoxB M. grisea: A6ZIB8 Maintain pathogenicity; develop penetration structure to infect host plant [87]

NoxB N. crassa: A7UW98 Spores germination [66]

NoxB P. anserine: B2AL10 Ascospore germination; develop penetration structure to infect host plant;
degrade host plant cellulose

[88,89]

Amoebozoan NOX homologs

NoxA D. discoideum: Q9XYS3 Development and spore formation [10]

NoxB D. discoideum: Q86GL4 Development and spore formation [10]

NOX-EF

DUOX1 human: Q9NRD9, mouse: A2AQ92 Thyroid hormone synthesis; mucosal host defense; signaling (e.g. urothelium
mechanosensing)

[90–96]

DUOX2 human: Q9NRD8, mouse: A2AQ99 Thyroid hormone synthesis; mucosal host defense [90–94,96,97]

DUOX Danio rerio: F1QVF2 Signaling (chemotaxis, wound healing) [98]

DUOX Aedes aegypti: Q171Q3 Innate immunity; intestinal host defense [99]

DUOX Anopheles gambiae: Q7Q147 Midgut nitration and apoptosis during invasion of Plasmodium berghei [100]

DUOX D. melanogaster: Q9VQH2 Innate immunity; signaling (Ca2+ channel); protein cross-linking for wing stabilization;
epidermal wound healing

[11,101–103]

DUOX1 Caenorhabditis elegans: O61213 Innate immunity; host defense; protein cross-linking in cuticular extracellular matrix [104–106]

DUOX Lytechinus variegatus: Q5XMJ0 Protein cross-linking in fertilization envelope [107]

RBOHC Arabidopsis thaliana: O81210 Signaling (Ca2+ channel); root cell elongation [108]

RBOHD A. thaliana: Q9FIJ0, RBOHF:
A. thaliana: O48538

Host-pathogen interaction; signaling (e.g. ROS as second messengers in abscisic acid
signaling in guard cells)

[109–112]

NOX5 human: Q96PH1 Signaling (e.g. prostate cancer cells, spermatocytes, marginal B lymphocytes) [113–116]

NOX5 A. gambiae: Q7PNG0 Midgut epithelial nitration and innate immunity [117]

NOXC D. discoideum: Q54F44 Development and spore formation [10]

Plant eFRE homologs

FRO2 A. thaliana: P92949 Fe3+ reduction/acquisition in root surface; iron and copper homeostasis; chilling stress
tolerance (block ROS signaling during chilling)

[3,118–120]

FRO3 A. thaliana: F4I4K7 Fe3+ reduction/acquisition in root vascular cylinder and shoots (mitochondria);
iron and copper homeostasis

[120,121]

FRO4 A. thaliana: Q8W110 Iron and copper homeostasis [122]

FRO5 A. thaliana: Q9FLW2 Iron and copper homeostasis in root [120,122]

FRO6 A. thaliana: Q8RWS6 Fe3+ reduction in shoots (chloroplast); iron and copper homeostasis [120,121,123]

FRO7 A. thaliana: Q3KTM0 Fe3+ reduction/acquisition in chloroplast for photosynthesis; iron and copper homeostasis [48,120]

FRO8 A. thaliana: Q8VY13 Iron and copper homeostasis in leaves [120,121]

Fungal eFRE homologs

FRE1 S. cerevisiae: P32791 Fe3+ and Cu2+ reduction/acquisition; iron and copper homeostasis [44,124,125]

FRE2 S. cerevisiae: P36033 Fe3+ and Cu2+ reduction/acquisition; iron and copper homeostasis [124,126]

FRE3 S. cerevisiae: Q08905 Fe3+ reduction; iron homeostasis [46,124]
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suggesting a conserved regulation pattern within the NOX-EF

group (see Table 1).

The NOX Family: ROS Generation and Increasing
Complexity of Regulation

Analyses of the extremely divergent domain architectures

suggest that two distinct series of events appear to have led to

an increased complexity of regulation of ferric reductase domain

enzymes. First, as detailed in previous sections, during the early

evolution of the superfamily, NOX enzymes acquired longer N-

termini with various regulatory and functional domains. Second,

the N-terminus was lost subsequent to the gene duplication event

that gave rise to the emergence of the NOX1-4 family, which

includes the meatozoan NOX1-4 homologs, and the indepen-

dently duplicated co-orthologs of fungi (NOXA, NOXB),

Amoebozoa (NOXA, NOXB) and Naegleria. The loss of the EF

hand-containing N-termini occurred concomitantly with the

emergence of separate cytosolic and membrane bound regulatory

subunits. An advantage of multi-domain proteins is the colinear

expression of functional units that are essential for a specific

cellular task, bypassing the need for coordinated expression of

separate gene products. However, a more fine-grained regulation

is possible when multiple differentially expressed and regulated

subunits assemble into a functional complex.

Developmental steps to a higher regulation complexity from

NOX4, to NOX3, NOX1 and NOX2 can be traced in the NOX

family. Of all these, the best studied NOX ortholog is NOX2 and

its regulatory network has shown to be particularly complex.

Indeed, its fine regulation requires an interaction both with the

membrane component p22phox and the cytosolic components

p47phox, p67phox, and p40phox. Finally, it also associates with a

Rac GTPase that is responsible for the activation of the protein

complex [15]. As a paradigm for the regulation of this class of

enzymes, in the resting state of human NOX2, the proline rich

region (PRR) at the N-terminus of p47phox interacts with the N-

terminal SH3 domain of p67phox, while the PB1 domains of

p67phox and p40phox interact with each other. Upon stimulation,

GTP-bound Rac interacts with the N-terminal region of p67phox.

Due to conformational changes in these cytosolic components, the

SH3 domain of p47phox is able to interact with the N-terminal

PRR of p22phox, which will further interact with NOX2 and

activate its enzymatic function [15]. Only four regulators are

needed for the function of NOX1: namely p22phox, the p47phox

homolog NOXO1 (NOX1 organizer), the p67phox homolog

NOXA1 (NOX1 activator), and Rac [15]. It is remarkable that

most of these subunits are paralogs of the NOX2 regulators,

stressing the importance of differential regulation. In contrast to

this, the organization around NOX3 and NOX4 seems to be less

tight. Indeed, NOX3 activity is up-regulated either by NOXO1 or

by NOXA1, but only p22phox is required for ROS production

[63]. NOX4, the most distant paralog to NOX2, requires only

p22phox for ROS generation and seems to function independently

of further regulators [15,64].

Precursors of the domains that interact with these essential

regulatory subunits can already be found in the NOX homologs of

unicellular organisms. The two orthologs of Heterolobosea N. gruberi,

for instance, contain an SH3 domain (Pfam: PF00018) within their

C-terminal NADPH binding domain. Usually, the SH3 domain

mediates protein complex assembly via binding to proline rich

regions (PRR) of binding partners [65]. Thus, the SH3 domain

found within the NADPH-binding domain of N. gruberi NOX

homologs suggests that some unknown PRR-containing protein

partner is involved in their regulation [15]. Interestingly, an SH3

domain has been identified in the human p67phox, but,

alternatively, the homolog of the social amoeba Dictyostelium

discoideum carries a functionally analogous WW domain for

protein-protein interactions (Pfam: PF00397) [10]. Furthermore,

the N-terminus of both homologs consist of four TPR repeats,

(Pfam: PF00515), a feature also conserved in fungal NOX

regulators (NOXR) found in Pezizomycotina, including Aspergillus

nidulans, Neurospora crassa and Epichloe festucae [66,67]. This

conserved region mediates interaction with small Rac GTPases,

thereby linking these NOX enzymes directly to the regulation by

Rho family members [68]. Although it is still not clear which of the

many Rac homologs might be involved in the regulation of D.

discoideum NOXA and NOXB, Rac1A, -B and -C show the

greatest homology with Rac2 in human neutrophils. In addition,

all of the Rac2 residues at the interface with p67phox are

conserved, suggesting that a similar activation process might also

have occurred in D. discoideum [10].

Functional Congruence in Domain Composition,
Sequence Divergence at Functional Sites

Domain architectures evolve at different modes in prokaryotes

and eukaryotes and our results are characteristic for the two

superkingdoms. Prokaryotic proteins generally possess a less

complex domain composition than eukaryotes, but undergo fusion

and fission events more frequently. Hence, proteins with a more

complex domain organization are found in small clades (Figure 3).

In contrast, eukaryotic proteins tend to be composed of more

domains, but structural alterations can occur stepwise and at a low

rate. Thus, to some extent it is possible to trace back evolution

based on the continuous increase of structural complexity in

proteins from related species. In the case of the FRD superfamily,

this leads to a higher structural diversity in eukaryotic homologs

than prokaryotic ones. Despite the differing mode of evolution

regarding the domain architecture, congruent evolution can be

observed with respect to the function of domains that enlarge the

Table 1. Cont.

Protein, species, UniProtKB identifier Biological Function References

FRE4 S. cerevisiae: P53746 Fe3+ reduction; iron homeostasis [46,124]

FRE5 S. cerevisiae: Q08908 Iron homeostasis [46]

FRE6 S. cerevisiae: Q12473 Export iron and copper from vacuole; iron and copper homeostasis [46,127,128]

FRE7 S. cerevisiae: Q12333 Copper homeostasis [46]

AIM14 S. cerevisiae: P53109 ROS generation; apoptosis; actin cable formation [47]

FRP1 S. pombe: Q04800 Fe3+ reduction/acquisition; iron homeostasis [129]

doi:10.1371/journal.pone.0058126.t001
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bacterial and eukaryotic structural core. First of all, it is likely that

the bacterial long forms and the equivalent eukaryotic structural

core result from independent fusion events. Furthermore, four

distinct domains serve as electron transfer agents (Ferredoxin

(Fer2), Rieske, DOMON, peroxidase-like domain) and two distinct

domains assist protein-protein interactions (NADPH-oxidase-like

domain, SH3). Thus, the reductive function of the ferric reductase

domain was most probably conserved over more than two billion

years. This assumption is supported by the conservation of the

surface-proximal heme-binding histidines in TM3 and TM5.

Finally it is notable that domains with equivalent functions can

occur on either side of the membrane.

At the sequence level, divergent evolution can be observed at

functional sites, which are assumed to reflect changes in substrate

selectivity and possibly the reaction mechanism. The functional

shift from metal reductase to NADPH oxidase activity probably

occurred early on in evolution at the base of the NOX clade. Four

amino acids have been identified to distinguish metalloreductases

from ROS-generating NADPH oxidases. The replacement of the

first canonical heme-spanning histidine by a highly conserved

arginine in members of the prokaryotic YedZ family and the

eukaryotic STEAP family may indicate a change in the reaction

mechanism.

Origin of the FRD Superfamily
The ferric reductase domain may well have emerged from

cytochrome b. The phylogeny of the FAD-binding domain

suggests the fusion of a ferric reductase domain to a dehydroge-

nase module (File S5). Based on the likely absence of ancient ferric

reductase domain gene copies in archaeal genomes, it seems

reasonable to expect a bacterial origin of the ferric reductase

domain. However, as shown above, only about 37% of all

bacterial genomes possess a homolog of the FRD superfamily.

Supporting arguments for a bacterial origin of this superfamily are

– in particular – the presence of homologs in a broad variety of

taxonomic groups compounded by the fact that the ferric

reductase activity is only essential for obligate aerobic species that

have no access to ferrous ion resources and possess no non-

reductive iron uptake system. Furthermore, as a typical opera-

tional gene, ferric reductase is not only transferred more easily

Figure 5. A model of the evolutionary history of the FRD superfamily. The ancestral system may have used reduced quinol to produce
soluble ferrous ions and progressed into a highly regulated system that generates immunologically potent ROS by using NADPH as electron source.
doi:10.1371/journal.pone.0058126.g005
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between bacteria [69], but is also likely to descend from bacteria

early on in eukaryotic evolution [69–71]. Our phylogenetic

superfamily tree shows a bacterial and a eukaryotic clade,

suggesting a unique event of ancient gene transfer between the

superkingdoms. The model is summarized in Figure 5.

Conclusions
This study reveals that the ferric reductase domain superfamily

probably originated from a short bacterial homolog that consisted

solely of a ferric reductase domain. During evolution these ‘one-

domain’ homologs were extended by different modules that either

participate in redox systems or are regulatory components. The C-

terminal fusion of an FAD- and NADPH-binding domain

probably resulted in the core of the long homologs, which are

mostly found in eukaryotes. Phylogenetic analysis reveals that the

highly diverse number of gene copies per species is derived by

extensive lineage-specific gene gain and gene loss throughout

evolution. The functional shift from metal reductase to NADPH

oxidase activity probably occurred early in evolution at the base of

the NOX clade. The generation of potentially toxic ROS is

accompanied by increased complexity of regulatory systems. One

such regulatory component is p22phox, which appears with the

emergence of the NOX family; its origin is still unknown.

Four amino acids have been identified to distinguish metallor-

eductases from ROS-generating NADPH oxidases. We believe

that it might be possible to detect further sites for the construction

of even more specific function predictors based on the comparison

of clade-specific conservation signatures. Finally, we plan to use

conservation signatures for the revision of unresolved nodes.

Preliminary results suggest taking the option of classifying the

superfamily into three main groups, namely NOX, FRE and

YedZ/STEAP. These and other related issues will be the subject

of future interesting studies.
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