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1  | INTRODUC TION

Phenotypic plasticity, the expression of different phenotypes by 
the same genotype under different conditions, is all but ubiqui-
tous across the tree of life and is particularly pronounced in plants 
(Bradshaw, 1965; Josephs, 2018; Sultan, 1987). This is likely due both 
to their sessile nature, which means that they cannot actively choose 

their habitat and must make the best of the conditions to which they 
are exposed, as well as to their modularity, which allows individuals 
to modify the phenotype of their modules (e.g., branches, inflores-
cences or flowers) as they are produced in response to environ-
mental variation over time and space. Nevertheless, evidence that 
plastic variation in plants is adaptive remains surprisingly thin, with 
few clear demonstrations that the different phenotypes expressed 
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Abstract
In dioecious plants, males and females frequently show ‘leaky’ sex expression, with 
individuals occasionally producing flowers of the opposite sex. This leaky sex expres-
sion may have enabled the colonization of oceanic islands by dioecious plant species, 
and it is likely to represent the sort of variation upon which selection acts to bring 
about evolutionary transitions from dioecy to hermaphroditism. Although leakiness 
is commonly reported for dioecious species, it is not known whether it has plastic 
component. The question is interesting because males or females with an ability to 
enhance their leakiness plastically in the absence of mates would have an advan-
tage of being able to produce progeny by self-fertilization. Here, we demonstrate 
that leaky sex expression in the wind-pollinated dioecious herb Mercurialis annua is 
plastically responsive to its mating context. We compared experimental populations 
of females growing either with or without males. Females growing in the absence of 
males were leakier in their sex expression than controls growing with males, produc-
ing more than twice as many male flowers. Our results thus provide a striking in-
stance of plasticity in the reproductive behaviour of plants that is likely adaptive. We 
consider how females might sense their mating environment as a function of pollen 
availability, and we discuss possible constraints on the evolution of plasticity in sex 
expression when the environmental signals that individuals receive are unreliable.
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in different environments actually improve fitness (Hendry,  2015; 
Van Kleunen & Fischer,  2005; Wagner & Mitchell-Olds,  2018). 
Several studies have demonstrated that plant responses to shading 
are adaptive, with fitness benefits to individuals that produce lon-
ger internodes and achieve greater height when overtopped by or 
growing beside potential competitors (e.g. Dudley & Schmitt, 1995, 
1996). The plastic induction of increased defence in response to 
herbivory has also been shown to increase individuals’ fitness (e.g., 
Agrawal,  1998, 1999; Karban et  al.,  1997). Further, Baythavong 
(2011) and Baythavong and Stanton (2010) showed that variation 
in a number of morphological and phenological traits was adaptive 
in environments with small-scale variation in soil chemistry, and 
Kenney et al.  (2014) showed that plasticity in water-use efficiency 
(WUE) conferred fitness benefits under dry conditions—though 
Nicotra and Davidson (2010) reported inconsistent findings in their 
review of plasticity in WUE among studies.

Plant reproductive traits may also be phenotypically plastic. 
Examples include variation in reproductive effort or reproductive 
allocation, which is sensitive to resource availability and competition 
(Weiner, 2004); sex allocation, for example in terms of the relative 
numbers of male versus female flowers produced by monoecious in-
dividuals, which varies with plant size and resource status (Dorken 
& Barrett, 2003; Pannell, 1997; Paquin & Aarssen, 2004); and flo-
ral longevity and floral display size, with plants adjusting their at-
tractiveness to pollinators in response to the relatedness of their 
neighbours (Torices et al., 2018) or as a function of relative pollina-
tor abundance and visitation rates (Harder & Johnson, 2005). This 
latter example is particularly interesting in the context of our study 
here, because it indicates the extent to which plants may alter their 
reproductive allocation decisions specifically in response to plant 
mating opportunities. Specifically, Harder and Johnson (2005) found 
that floral display in the hermaphroditic orchid Satyrium longicauda 
was enhanced when pollinator visitation rates were low, increasing 
the possibility for later pollen receipt or geitonogamous self-polli-
nation, with likely fitness benefits. Similarly, Lopez and Dominguez 
(2003) found that in the monoecious plant Begonia gracilis, individu-
als whose female flowers were pollen-limited produced more male 
flowers than those whose female flowers enjoyed experimentally 
augmented pollen deposition, suggesting that plants can respond to 
the operational sex ratio of the population (though without demon-
strating a clear effect on fitness in natural populations). In homospo-
rous ferns, gametophytes are more likely to develop as males when 
females or hermaphrodites are locally abundant, a switch mediated 
by interplant chemical signalling (Banks, 1997).

Many angiosperms with separate sexes also show variation in 
sex expression. Specifically, the males and females of dioecious 
plants commonly display inconstant or ‘leaky’ sex expression, with 
the occasional production of a few flowers of the opposite sex 
(e.g., Baker,  1967; Delph,  2003; Diggle,  1991; Korpelainen,  1998; 
Lloyd, 1972; Lloyd & Bawa, 1984; Venkatasamy et al., 2007). Such 
leaky sex expression, which is more common in males than fe-
males (Delph & Wolf,  2005; Ehlers & Bataillon,  2007, though 
see Cossard & Pannell,  2019), has probably been important in 

facilitating evolutionary transitions from dioecy to monoecy or 
hermaphroditism under conditions of mate limitation (Crossman & 
Charlesworth, 2014; Ehlers & Bataillon, 2007; Käfer et al., 2017). It is 
plausible that leaky dioecy may be adaptive by assuring reproductive 
success under pollen- or mate-limited conditions, for example during 
the colonization of oceanic islands that are enriched for dioecious 
plant species (Baker, 1965; Pannell et al., 2015; Stebbins, 1965; Sultan 
& Spencer, 2002). However, leaky sex expression can be elicited by 
external stimuli such as temperature, drought, simulated herbivory 
or exogenous hormone application (Delph & Wolf, 2005; Golenberg 
& West, 2013; Korpelainen, 1998; Kuhn, 1939; Westergaard, 1958), 
none of which suggest an obvious adaptive function. Importantly, 
there appears to be no empirical support to date for the possibility 
that leaky sex expression might be prompted by pollen or mate lim-
itation, which would be more plausibly adaptive.

Here, we demonstrate that leaky sex expression in the dioe-
cious, wind-pollinated annual herb Mercurialis annua is plastic and 
that the expression of enhanced leakiness under conditions of al-
tered mate availability is likely adaptive. Dioecious M. annua has an 
XY system of sex determination in which the Y chromosome has a 
mildly degenerate nonrecombining region (Li et  al.,  2019; Veltsos 
et  al.,  2018, 2019). Sex ratios in wild populations are typically 1:1 
(Russell & Pannell,  2015). The species is strongly sexually dimor-
phic, with males and females differing in a number of physiological, 
life-history and morphological characters (Tonnabel et  al.,  2019; 
Tonnabel et al., 2019). Yampolsky (1919); Yampolsky and Yampolsky 
(1922) noted the presence of ‘intergrades’ in both sexes of M. annua 
(evidently individuals showing leaky sex expression), though Cossard 
and Pannell (2019) showed that females are more often leaky than 
males. Yampolsky (1930) and Kuhn (1939) demonstrated that leak-
iness in M.  annua could be enhanced by pruning, but it was not 
obvious from these studies that the plastic response was adaptive 
rather than simply a physiological response to unaccustomed stress. 
Leakiness in M. annua females involves the production of staminate 
(male) flowers that are effectively identical to those on males, except 
that they tend to be clustered around the pistillate (female) flowers 
in the leaf axils, whereas males place their flowers on stalked ‘pedun-
cles’. Staminate and pistillate flowers can be distinguished very early 
in development, at the bud stage.

Our experiment involved growing females of M. annua in popu-
lations with or without males. We predicted that, under a scenario 
of adaptive leaky sex expression, females growing without males 
would be more likely to produce male flowers and would produce 
more of them. There are several reasons to expect that selec-
tion might have favoured a plastic leakiness in sex expression in 
M. annua in response to variation in mate availability. First, the di-
oecious populations of M. annua are known to have expanded their 
range recently from the eastern Mediterranean Basin into west-
ern Europe (Gonzalez-Martinez et al., 2017; Obbard et al., 2006), 
during which populations establishing at the colonizing front are 
likely to have been exposed to mate-limited conditions, but mate 
limitation would be ameliorated with population growth. Second, 
the species has a metapopulation structure and dynamic, with 
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frequent population turnover and substantial fluctuations in pop-
ulation size and sex ratio from generation to generation (Dorken 
et al., 2017; Eppley & Pannell, 2007); as with a range expansion, 
plastic leaky expression of the opposite sex would likely confer 
fitness during episodes of colonization, even after a range expan-
sion ended (Golenberg & West,  2013). Third, previous work has 
shown that females of M. annua quickly become pollen-limited at 
low population density (Hesse & Pannell, 2011), so that plastic ex-
pression of leakiness in sparse populations would be beneficial. 
Fourth, inbreeding depression in western European populations 
is low (Eppley & Pannell, 2009), perhaps as a result of the range 
expansion (Gonzalez-Martinez et al., 2017; Pujol et al., 2009), so 
that selfing by leaky individuals under pollen limitation would 
seem to be particularly likely to be beneficial (Pannell, 2008; Wolf 
& Takebayashi, 2004). Finally, individuals in all-female populations 
established by leaky females would have particularly high siring 
success if they could respond to the absence of males by produc-
ing more pollen (Dorken & Pannell, 2009).

2  | MATERIAL S AND METHODS

We established six experimental populations of dioecious M. annua 
in separate common gardens on the campus of the University of 
Lausanne and in gardens around the city. Three ‘control’ populations 
were established at a 1:1 sex ratio (90 males and 90 females), and 
three ‘all-female’ population comprised only females (180 females). 
Plants were established for the experiment from a well-mixed pool 
of seeds from 35 demes of a metapopulation in north-western Spain 
(Labouche & Pannell, 2016), ensuring that there were no genetic dif-
ferences between the different treatments or replicates. Seedlings 
were first raised for six weeks together in a glasshouse before being 
transplanted into pots in their experimental plots (‘populations’). 
Importantly, there was no difference between plants eventually as-
signed to the two treatments while being raised to maturity in the 
glasshouse; the differences were imposed only during transplant 
into the experimental plots, which individuals effectively allocated 
to plots randomly. Experimental populations were established in 
garden sites scattered around Lausanne and were thus widely sepa-
rated. For logistical reasons, three plants were established in each 
of 60 pots, with three females in each pot in the all-female popula-
tions, and two males and a female alternating with two females and 
a male in the control populations. We included the number of males 
per pot in an initial analysis of our results, but found that it did not 
have an effect on the reproductive effort in either sex function (see 
Results). After 7 weeks of subsequent growth, we recorded male and 
female reproductive allocations and the total dry biomass of all in-
dividuals separately. Male and female reproductive allocations were 
measured in terms of the biomass of all-male flowers, or of all-female 
flowers and fruits (and seeds) found on an individual at the time of 
harvest. Sample sized ranges from 35 to 50 females per population. 
Most of these plants (192) were chosen from separate pots, but 13 
pots contributed two and 18 pots contributed three plants to our 

data set. In total, there were 272 females distributed among the two 
treatments and six plots.

We analysed the extent of leaky sex expression by females in 
terms of (a) the proportion of leaky females in the population (the 
probability that a female showed leaky sex expression) and (b) their 
male and female allocations. To calculate proportions, we defined a 
leaky female as one with any male reproductive effort (MRE; male-
flower biomass divided by total above-ground biomass) greater than 
the 95 percentile MRE across the control populations. By this defi-
nition, an average 5% of females were identified as leaky across the 
three control populations. We chose the 95% threshold for our defi-
nition because it can be easy to miss one or two small male flowers 
on a large plant, and for coherence with previous work on leaky sex 
expression in M. annua (Cossard & Pannell, 2019). An analysis based 
on an absolute measure of leakiness (including all females with any 
male-flower production at all) yielded qualitatively similar results, as 
did an analysis based on adopting a leakiness threshold of 80%.

We compared the proportion of females with leaky sex expres-
sion between all-female and control populations using a generalized 
linear model with a binomial error distribution, and with population 
and pot included as random factors. We used a generalized linear 
mixed model to compare the male and female allocations of females 
between the all-female and the control populations, including treat-
ment and above-ground plant vegetative biomass (offset, log-trans-
formed) as fixed effects, and with population and pot declared as 
random effects. Results for mean allocations are presented in terms 
of the male or female components of reproductive effort (MRE and 
FRE, respectively), calculated as the male or female reproductive 
biomass divided by the above-ground vegetative biomass.

3  | RESULTS AND DISCUSSION

Our results provide evidence for a plastic component to the expres-
sion of sex inconstancy in M. annua. First, females tended to be more 
likely to be leaky in populations lacking males, though the different 
fell just short of statistical significance (p = .058; Figure 1a). Second, 
females growing in the absence of males produced on average 2.33 
times more male flowers, measured in terms of MRE, than in their 
presence (p = .01; Figure 1b). We also found that the seed and fruit 
production by females in the all-female populations, measured in 
terms of FRE, was slightly lower than that of females in control pop-
ulations, but the difference was not significant (p =  .19; Figure 1c; 
note that the mean FRE varied significantly more among all-female 
populations than among the control populations; F-test for equal 
variances between treatment and control means: F2,2  =  0.005, 
p = .01). Neither the MRE (p = .851) nor the FRE of females (p = .977) 
was sensitive to the number of males sharing the same pot, nor was 
the probability of being leaky (p = .11).

Our study demonstrates that leaky sex expression in M. annua 
has an important plastic component. We do not know how plants 
in our experiment assessed their mating prospects, but our failure 
to find any effect of the number of males sharing a pot with the 
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target females suggests that it was probably not through an ability 
to distinguish between the presence or absence of a male neighbour 
Rather, we speculate that plasticity in the leakiness of M.  annua 

females was sensitive to mating opportunities directly, for exam-
ple through perception of the pollination (or its absence) of female 
flowers on the plant—though this speculation requires formal test-
ing. As summarized in the Introduction, leaky sex expression is a 
common feature of the reproduction of dioecious plants (Cossard & 
Pannell, 2019; Ehlers & Bataillon, 2007; Korpelainen, 1998; Lloyd & 
Bawa, 1984). While it is too early to speculate on the frequency of 
plasticity in leaky sex expression in dioecious plants generally, mate 
availability likely varies substantially in natural plant populations, so 
that leaky sex expression is a trait that dioecious populations might 
often evolve.

Mercurialis annua is a ruderal species that occupies disturbed 
habitat, and previous work has shown that its populations are sub-
ject to substantial fluctuations in population size and population 
turnover, with local extinctions and colonization by seed disper-
sal being key features of the species’ ecology (Dorken et al., 2017; 
Eppley & Pannell, 2007; Pannell, 1997). In sparse populations of 
M.  annua, female reproduction may be strongly pollen-limited 
(Hesse & Pannell, 2011), and a capacity to produce male flowers 
and to self-fertilize under these conditions is likely to be adaptive, 
especially as inbreeding depression is low (Eppley & Pannell, 2009). 
It is thus plausible that plasticity in leaky sex expression has 
evolved and/or has been maintained under conditions of fluctu-
ating population size and density in metapopulations. Mercurialis 
annua came to occupy its broad range in western Europe via a 
recent range expansion from the eastern Mediterranean Basin 
(Gonzalez-Martinez et al., 2017; Obbard et al., 2006), and the re-
peated demographic bottlenecks that occurred during the range 
expansion may also have favoured the maintenance of plasticity in 
leaky sex expression.

Ultimately, plasticity in sex expression in dioecious M.  annua 
should be maintained as long as its benefits outweigh its costs. 
Potential costs of plasticity, which might constrain its evolution 
(reviewed in Van Kleunen & Fischer, 2005), include physiological 
costs to the plant of acquiring accurate information about the state 
of the environment, and costs of maintaining a sensitivity to envi-
ronmental cues. Despite considerable effort, however, it has been 
difficult to find any evidence for such costs (Auld et  al.,  2010). 
Rather, it seems more likely that the evolution of plasticity is held 
in check by so-called ‘limits’ associated with its deployment, such 
as the penalty paid by individuals that respond incorrectly to an 
unreliable signal, or the disadvantage of having to wait until a signal 
is perceived before expression of an appropriate phenotype (Auld 
et al., 2010; Murren et al., 2015). We do not know which of these 
limits might apply to plasticity in leaky sex expression, but both 
seem plausible. In short-lived species like M. annua, or in species 
with a short reproductive season, there might be strong disadvan-
tages associated with delaying leaky sex expression until mating 
prospects have been perceived. Yet, such delays seem inevitable 
if, as suggested above, the signal to which M.  annua females are 
responding is the actual deposition of pollen on their stigmas, or 
physiological signals arising from seed-filling or fruit-set that fol-
low pollination.

F I G U R E  1   Measures of sex allocation in the three all-female 
(S1–S3, blue) and the three control populations (C1–C3, red). 
(a) Proportion of females with leaky sex expression, (b) male 
allocation, calculated in terms of the male reproductive effort 
of females as the biomass of male flowers divided by the above-
ground vegetative biomass per plant, and (c) female allocation, 
calculated in terms of the female reproductive effort of females 
as the biomass of female flowers and fruits divided by the above-
ground vegetative biomass per plant. Means and standard errors 
are plotted.**0.001 < p < .01

(a)

(b)

(c)
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In conclusion, our study has demonstrated that leaky sex ex-
pression in M.  annua has a substantial plastic component. Such 
leakiness is common in dioecious plants and likely contributes to 
their ability to colonize oceanic islands, where they are especially 
frequent (Baker, 1955; Pannell, 2015; Pannell et al., 2015). There 
seems little doubt that leaky sex expression will be advantageous 
for individuals of dioecious species during episodes of coloniza-
tion. Demonstrating that plasticity in leakiness is advantageous 
and adaptive in such individuals is much harder. In the case of 
M.  annua, it will require not only showing that leaky individuals 
have higher reproductive success in the absence of mates than 
nonleaky individuals, but also that nonleaky individuals have 
higher reproductive success than leaky individuals when mates 
are abundant. Such plasticity in leakiness seems most likely to be 
adaptive in weedy species such as M. annua that frequently colo-
nize empty habitat patches, and for which mating prospects thus 
vary considerably over time and space.
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