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Summary 

 

Obesity has become a worldwide epidemic with negative impact on health leading to serious consequences 

such as metabolic and cardiovascular disease, type 2 diabetes, musculoskeletal disorders and some cancers. 

Psychiatric and transplanted populations are at risk of metabolic disorders with a significant reduction in life 

expectancy when compared to general populations. Several factors such as the pharmacological treatment, the 

illness itself or socioeconomic (SES) factors as well as genetic factors influence the development of common 

obesity. Weight gain is the first step leading to obesity and metabolic disorders. The aim of the present thesis 

work is to study and describe the factors (notably genetic and SES factors) related to weight gain and 

metabolic outcomes in two high risk collectives (psychiatric and transplanted populations). To do so, 

psychiatric and transplanted populations under psychotropic and immunosuppressant treatments, 

respectively, were followed over time.  

Several genetic factors were associated with metabolic outcomes in both studied populations. More 

specifically, in psychiatric populations, carriers of the PCK1 AA genotype had lower BMI units when 

compared to non-carriers. Additionally, this polymorphism was significantly associated with BMI, waist 

circumference and lipid levels, particularly among women younger than 45 years. An analysis combining both 

polymorphisms of PCK1 and CRTC1 (an upstream gene of the PCK1 previously associated with weight gain 

in our psychiatric populations), showed that carriers of the PCK1 AA genotype and CRTC1 G-allele had lower 

BMI units during psychotropic treatment when compared to non carriers. The combined analysis of several 

variants into genetic risk scores (GRS) showed an association with BMI in three psychiatric samples. 

Extremes of the GRS (i.e. p5 vs p95) showed 1.89 kg/m2 of BMI difference when combining all studied 

psychiatric samples. When stratifying by gender, stronger associations were found in men, whereas no 

association was found in women. In the transplanted samples, GRS showed associations with BMI and with 

New Onset Diabetes After Transplant (NODAT). Moreover, some of the variants predicted an increase of 

10% or more of weight and NODAT one year after transplantation.  

Regarding SES factors, an exploratory analysis showed that living alone and occupational status (including 

people with disability pension) were associated with BMI and weight change in psychiatric populations. 

Additionally, a Swiss socioeconomic position index (integrating income, education, occupation and housing 

conditions) was inversely correlated with BMI.  

The results found in this project explore further the risk factors for metabolic disorders within at risk 

populations, improving the understanding of interindividual variability in weight gain and metabolic 

syndrome, and contributing towards personalized medicine.  
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Résumé 
 

L’obésité est devenue une épidémie mondiale avec un impact négatif sur la santé, menant à des troubles 

métaboliques et cardiovasculaires, à des diabètes du type 2, à des troubles musculo-squelettiques et/ou à 

certains cancers. Les populations psychiatriques et transplantées sont à risque de développer ces troubles 

métaboliques avec une réduction de l’espérance de vie. Plusieurs facteurs dont le traitement pharmacologique, 

la maladie ou le niveau socio-économique (NSE) ainsi que des facteurs génétiques ont été décrits comme 

impliqués dans le développement de l’obésité. Le but de ce travail de thèse est d’étudier et de décrire les 

facteurs (notamment génétiques et NSE) liés à la prise de poids et à d’autres symptômes métaboliques dans 

deux populations (psychiatrique et transplantée). C’est pour cela que nous avons instauré un suivi de 

populations psychiatriques prenant des psychotropes, ainsi qu’un suivi de populations transplantées sous 

traitement immunosuppresseur.  

Plusieurs facteurs génétiques ont été associés à des paramètres métaboliques dans les deux populations. Plus 

spécifiquement, dans la population psychiatrique, les porteurs du génotype AA du PCK1 ont montré un 

Indice de Masse Corporelle (IMC) plus faible. En outre, ce polymorphisme a montré des associations 

significatives avec l’IMC, le tour de taille et les niveaux lipidiques, en particulier chez les femmes de moins de 

45 ans. Une analyse combinant deux polymorphismes du PCK1 et du CRTC1 (gène en amont de PCK1 déjà 

associé à la prise de poids dans notre population psychiatrique) montre que les porteurs du génotype AA du 

PCK1 et de l’allèle G du CRTC1, ont un IMC plus faible au cours du traitement par rapport aux non-porteurs. 

La combinaison de différents polymorphismes dans des scores de risque génétique (GRS) a montré une 

association significative avec l’IMC dans plusieurs cohortes psychiatriques. La différence d’IMC entre les 

extrêmes (p5 vs p95) du GRS est de 1.89 kg/m2 dans les trois cohortes psychiatriques étudiées. Des effets 

plus forts ont été trouvés chez les hommes tandis qu’aucune association n’est constatée chez les femmes. 

Dans la population transplantée, plusieurs GRS ont montré des associations avec l’IMC et avec le 

développement du diabète post-transplantation (NODAT). Par ailleurs, ces facteurs génétiques intégrés dans 

un modèle clinique, améliorent la prédiction d’une prise de poids de 10% ou plus et de la survenue d’un 

diabète une année après transplantation.  

Concernant les facteurs NSE, une analyse exploratoire montre que le fait de vivre seul ainsi que la catégorie 

professionnelle sont associés à l’IMC et à la prise pondérale dans la population psychiatrique. En outre, un 

indice socio-économique Suisse (intégrant le revenu, la formation, le métier et les conditions de logement) a 

été inversement corrélé avec l’IMC et d’autres paramètres métaboliques.  

Les résultats présentés dans ce projet permettent d’expliquer et de comprendre, en partie, la variabilité 

interindividuelle dans la prise de poids et l’apparition de symptômes métaboliques dans deux populations à 

risque, pouvant ainsi contribuer à une médecine personnalisée.  
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Résumé large publique 

 

L’obésité est devenue une épidémie mondiale avec un impact négatif sur la santé, menant à des maladies 

cardiovasculaires et/ou à la survenue d’un diabète. Les populations psychiatriques et transplantées sont à 

risque de développer ce type de problèmes avec une réduction de l’espérance de vie. Plusieurs facteurs dont le 

traitement pharmacologique, la maladie ou le niveau socioéconomique (NSE) ainsi que des facteurs 

génétiques ont été décrits dans le développement de l’obésité. Le but de ce travail de thèse est d’identifier les 

facteurs (notamment génétiques et NSE) liés à la prise de poids, à la survenue d’un diabète ou à l’altération du 

cholestérol sanguin dans deux populations (psychiatrique et transplantée) à risque élevé de développer ces 

maladies. C’est pour cela qu’un suivi des populations psychiatriques et transplantées sous médication pouvant 

induire une forte prise de poids a été instauré dans la routine clinique. Dans le cadre de cette thèse, nous 

avons montré que plusieurs facteurs génétiques sont associés à la prise de poids. Plus spécifiquement, dans la 

population psychiatrique, nous avons observé que les individus ayant une variation sur un gène régulant la 

production de glucose ont montré un Indice de Masse Corporelle (IMC) plus faible. En outre, cette variation 

génétique est significativement associée au tour de taille et aux niveaux de lipides sanguins, en particulier chez 

les femmes de moins de 45 ans. Dans une deuxième partie, nous avons étudié la combinaison de différentes 

variations génétiques intégrées dans un score de risque génétique. Ce score a montré une association 

significative avec l’IMC dans plusieurs cohortes psychiatriques. Dans les trois cohortes étudiées, nous avons 

calculé la différence d’IMC entre les individus situés aux extrêmes du score (les 5% plus bas ; risque faible et 

les 5% plus haut ; risque élevé), avec une différence de 1.89 kg/m2. Des effets plus importants ont été trouvés 

chez les hommes tandis qu’aucune association n’est constatée chez les femmes. Dans la population 

transplantée, plusieurs scores génétiques testés ont montré des associations avec l’IMC et avec le 

développement du diabète après transplantation. Par ailleurs, ces facteurs génétiques intégrés dans un modèle 

clinique, améliorent la prédiction pour une prise de poids égale ou supérieure à 10% et pour la survenue d’un 

diabète une année après transplantation.  

Concernant les facteurs socio-économiques, une analyse exploratoire montre que le fait de vivre seul ainsi que 

la catégorie professionnelle sont associés à l’IMC et à la prise pondérale dans une population psychiatrique. 

En outre, nous avons constaté que les individus ayant un indice de position socio-économique élevé (indice 

intégrant le revenu, le niveau de formation, le métier et les conditions de logement) ont des valeurs plus 

faibles d’IMC que ceux ayant un index faible.  

Les résultats présentés dans cette thèse permettent d’expliquer et de comprendre, en partie, la variabilité de la 

sensibilité de chaque patient envers les problèmes métaboliques, ce qui peut contribuer à une médecine 

personnalisée. 
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1. Generalities of obesity 

1.1 Epidemiological factors 

Overweight and obesity are defined as abnormal or excessive fat accumulation that presents a risk to health 

(1). The Body Mass Index (BMI) remains among the most commonly used assessment of weight in obesity 

studies and has been correlated to body fat content. Obesity can lead to a number of chronic diseases, 

including type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), musculoskeletal disorders and some 

cancers being the fifth most common risk factor for death in the general population (2, 3). According to 

World Health Organization (WHO), over the last decades, obesity has more than doubled all over the world. 

Thirty nine percent of adults aged 18 years and over were overweight (25 kg/m2≤ BMI <30 kg/m2) in 2014, 

and 13% were obese (BMI ≥30 kg/m2) (1). The epidemic of obesity is not limited to developed countries but 

has been rising in most countries, becoming a global phenomenon. Between 1980 and 2008, the number of 

overweight and obese adults in developing countries has more than tripled to reach 900 million of adult cases 

(4). The economic impact of obesity should not be underestimated including direct costs (i.e. medical, 

preventive, diagnostic and treatment services directly related to obesity) and indirect ones (i.e. obesity related 

co-morbidities as well as premature mortality and disability) (5). A recent published review concluded that 

obesity absorbs a huge amount of health-care resources, however it is difficult to estimate the total costs, 

especially the indirect ones (6).  

1.2 Obesity and the regulation of energy balance 

Since obesity is preventable (1) a better understanding of the disease is crucial. The capacity of storing fat is a 

trait that has been selected during many years of human evolution. The thrifty gene hypothesis supports the 

idea that humans evolved efficiently to store excess of energy in order to deal with famine periods (7). Part of 

this energy is stored in the adipose cells which were thought to be a passive storage organ. However, over the 

past decades, the metabolic role of adipocytes on endocrine regulation and energy balance (i.e. the balance 
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between energy intake and expenditure) has been well described, as well as its connection with the Central 

Nervous System (CNS). Energy balance is controlled centrally by the CNS through neuroendocrine pathways 

regulation. From a molecular point of view, the regulation of energy intake is divided in short- and long- term 

regulation systems. A short-term regulation refers to appetite and satiety signals such as Glucagon-like 

peptide-1, which can induce reduction in food intake or Ghrelin, which stimulates food intake by acting in 

the hypothalamus (8). The long term-regulation mechanisms are related to adiposity signals (leptin and insulin 

among others) reflecting the status of energy storages. Not surprisingly, the short- and long- term systems are 

interrelated (9).  

The best characterized and clinically relevant pathway in energy balance regulation is the leptin-melanocortin 

pathway (Figure 1), where seven proteins of this pathway have been related to weight regulation and obesity. 

Energy balance is regulated through brain factors mainly located in the hypothalamic arcuate nucleus (ARC). 

This includes agouti-related peptide (AgRP) and neuropeptide Y (NPY), which are produced by neurons with 

orexigenic (feeding-inducing) properties. Near to the orexigenic neurons, there are pro-opiomelanocortin 

(POMC) and cocaine and amphetamine related transcript (CART), expressed by neurons with anorexigenic 

properties (10). The hormone leptin (LEP) secreted in the adipocytes crosses the Blood Brain Barrier (BBB) 

and through OBRb receptors acts on the orexigenic and anorexigenic neurons. LEP stimulates (+) the alpha 

melanocyte stimulating hormone (α-MSH) production, an agonist of the melanocortin-4 receptor (MC4R) 

and inhibits (-) the AgRP, an antagonist of MC4R. Activation of MC4R by α-MSH reduces food intake 

whereas suppression of MC4R by AgRP increases feeding and diminishes the hypophagic response to LEP 

(11). MC4R expressing neurons receive the leptin-regulated signals and other signals such as NPY. MC4R 

neurons include the thyrotropin-releasing hormone (TRH, thyroid regulation), the melanin-concentrating 

hormone (MCH, feeding regulation) and gamma-aminobutyric acid (GABAergic) neurons acting on other 

neurons also implicated in energy balance. As a result, these mechanisms have implications at endocrine, 

behavioral and autonomic levels related to growth, feeding and energy expenditure regulation (12) . 
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Figure 1. The leptin-melanocortin pathway regulating energy homeostasis. Adapted from (12) 
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2. Factors influencing obesity 

The onset of obesity and metabolic disorders is the result of the combination of several factors, including 

environmental and genetic factors as well as gene-environment interactions (Figure 2).  

Figure 2: Gene, environment and gene-environment interactions influencing obesity (13) 

 

 

 

 

 

 

 

 

 

 

 

2.1 Environmental factors 

Part of the environmental factors influencing energy balance refers to energy expenditure (i.e. physical 

activity) and energy intake (i.e. metabolic rate and food intake). These factors may be highly variable between 

individuals (14). In addition, measuring these covariates might be quite difficult in an experimental setting. 

Body mass composition differs as well between genders with women having more body fat and men more 

central distribution of fat. In both genders, weight gain has been described until 60-65 years, being the largest 

increase between the ages of 20 to 40 years (14-16). Also, a critical role of environmental factors in the 

development of obesity is highlighted in several societies (17). In general population, socioeconomic factors 

(SES) have been described as moderators of obesity. A pattern of inverse relationship between SES and 
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obesity has been reported in women from developed societies, whereas among men this pattern is less clear 

(18, 19). In contrast, in developing societies higher SES has been associated with higher obesity prevalence 

(20). Finally, studies conducted in children found a higher prevalence of obese children among parents with 

lower SES and educational level status (21).  

In addition, recent research has revealed a new insight into obesity risk factor, suggesting that gut microbiota 

is implicated in weight gain, regulating fat metabolism, energy harvest, storage, and expenditure (22, 23). The 

gut microbiota composition differs between lean and obese individuals (24) and the dietary variation and 

caloric intake may induce changes in gut microbiome composition (25, 26). Therefore, how the microbiota 

influences health and disease is a new research area that needs to be further explored. This promising field of 

research may lead to new therapeutic ideas for prevention of obesity and its complications (23). 

2.2 Genetic factors 

The present work focuses on common obesity described as a polygenic disease (27). Environmental factors 

may certainly contribute to gain weight, however, genetic factors should also be considered. Genetic 

predisposition to obesity (BMI) is estimated to be around 50% to 80% (28). Genetic factors are known to 

influence obesity for some decades. For instance, a study examining more than 500 adopted Danish subjects 

found a strong relationship between the weight of adopted children and the BMI of their biological parents. 

Interestingly, no association was observed between the weight of adopted children and the BMI of adoptive 

parents (29).  

Several gene association studies are currently used to identify disease-causing variants. Candidate Gene (CG) 

approaches are based on known biological, physiological or functional pathways relevant to the disease, being 

hypothesis-driven. Some of the most studied and replicated genes are related to food intake and energy 

homeostasis especially from the previously described leptin-melanocortin pathways (i.e. LEP, leptine receptor 

(LEPR), MC4R, POMC). Others refer to peripheral regulation of energy expenditure (i.e. uncoupling proteins 2 
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(UCP2) and 3 (UCP3)). In general these genes are implicated in a wide variety of biological functions such as 

regulation of food intake, energy expenditure, lipid and glucose metabolism or adipose tissue development. 

Further details are reviewed elsewhere (30). 

With the increasing use of Genome Wide Association Studies (GWAS) hundreds of thousands of individuals 

are being tested, reporting many other variants associated with BMI and other metabolic phenotypes. Unlike 

CG approaches, GWAS use hypothesis-free methodologies and are based on genotyped Single Nucleotide 

Polymorphisms (SNPs) showing an association with the trait (i.e. BMI) that will be in Linkage Disequilibrium 

(LD) with the causal variant. However, because they identify common variants with small size effect, large 

cohorts are needed in order to have enough power to detect the effect. Therefore, replication of the results is 

one of the major challenges. To date, at least 97 loci associated with BMI have been elucidated in European 

populations (31). These loci integrated in genetic risk scores (GRS) explained altogether only 2.7% of BMI 

variability. The best replicated SNPs lie in MC4R and fat mass and obesity associated (FTO) gene regions which 

have been involved in food intake, energy homeostasis and energy expenditure (32). These results have been 

replicated in adults and children from European and Asian populations (33-35). However, the low BMI 

variability explained by all these polymorphisms leads to the question of the missing heritability of obesity, 

which could be attributed to factors such as the complex, polygenic nature of obesity, as well as to other 

mechanisms and variants (e.g. copy number variation (CNV), rare mutations, epigenetics) (36).  

2.3 Gene-environment interactions 

Neither genetic factors nor environmental factors alone appear to be the only regulating components of 

obesity. Complex traits are highly dependent on gene-environment interactions, thus the complexity in 

humans lies in the fact that alleles influence common diseases in different genetic backgrounds eventually 

influenced by different environmental factors. A number of studies examined whether specific gene-

environment interactions influenced weight gain. Studies focusing on genetic variants and physical activity 
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showed an interaction between the FTO rs9939609 SNP and physical activity in Danish participants. Those 

physically inactive subjects had significant differences in BMI according to the AA or TT genotypic groups 

(37). Another study reported that the LEPR genetic variants were associated with weight loss in women who 

were prescribed a low-calorie diet (38). A gene-diet interaction was found between Melanocortin-3 receptor 

(MC3R) C17A and G241A variants and low-calorie diet on weight loss in childhood obesity (39).  However, 

quite often, the importance of gene-environment interactions is not properly appreciated leading to non-

replicated results (40).     
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3. Obesity and metabolic disorders in Psychiatric Populations 

It is well described that psychiatric populations have an increased risk of obesity and cardio metabolic 

disorders compared to the general population. The illness itself, lifestyle (e.g. unhealthy diet, physical 

inactivity, smoking habits) and also the psychotropic drug treatment, with an independent dose effect, 

contribute to that risk (41). Evidence shows a 2-3 fold increased mortality rate attributed to natural causes 

such as cardiovascular diseases compared to healthy populations which corresponds to a reduction of 10-25 

years in life expectancy (42). Some of the modifiable risk factors contributing to cardiovascular diseases 

include obesity, smoking, diabetes, hypertension, dyslipidaemia and metabolic syndrome. Relative risks for 

these factors are twice or three times higher compared to the general populations in both schizophrenic and 

bipolar populations (43), as shown in Table 1. Finally, besides of these physical comorbidities, these 

populations have a poorer access to a good health system which efficiently takes care of the metabolic 

diseases.          

Table 1. Relative risks of metabolic side effects in schizophrenia and bipolar disorders compared to general population 

(43) 
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3.1 Psychotropic drugs and metabolic disorders 

In the present research work, we focus particularly on psychotropic drugs including antipsychotic and mood 

stabilizers which are mainly used in the treatment of schizophrenia and bipolar disorders (44). Schizophrenia 

is characterized by a combination of positive (e.g. delusions, hallucinations, disorganized behavior, agitation) 

(44) and negative symptoms (e.g. social withdrawal, lack of empathy and self-care, anhedonia), affecting also 

cognitive and affective functions (45). The negative symptoms of the disease respond poorly to drug 

treatment in many patients as do cognitive symptoms, which are among the major factors in determining the 

opportunity to return to society for these individuals. Bipolar disorders refer to individuals experiencing at 

different time or simultaneously maniac phases (euphoria, abnormally elevated or irritable mood) and 

depression combined with euthymia (normal mood) periods (44).  

3.1.1 Antipsychotic drugs 

The key pharmacological mechanism of antipsychotic drugs, both for typical and atypical, is the blockage of 

dopamine-2 receptors which confers the antipsychotic properties (46). This action, however, is also 

responsible for most of their undesirable side-effects, such as metabolic ones. Concerning first generation 

antipsychotics (FGA) they have been mostly related to extrapyramidal symptoms, tardive dyskinesia, 

hyperprolactinemia and exacerbation of negative symptoms. Second generation antipsychotics (SGA) or 

atypical antipsychotics have replaced FGA in the treatment of schizophrenia and bipolar disorders. SGA can 

be defined as serotonin (5HT) and dopamine antagonists, dopamine antagonists with rapid dissociation, 

partial dopamine agonists or serotonin partial agonists at 5HT1A receptors (44). Due to their affinity to 

serotonin receptors (5HTR), they have less extrapyramidal symptoms and they are somehow better for 

treating negative symptoms compared to FGA. SGA may interact with a large variety of receptors such as 

serotonine, dopamine, histamine, muscarinic and adrenergic receptors which confer the pharmacological 

properties of these molecules as well as their side effects (47). Table 2 summarizes different side effects 

depending on the receptor interaction. 
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Table 2. Target receptors of antipsychotic drugs and its metabolic side effects (48). 

 

 

In addition, the type of antipsychotic drug determines the incidence of metabolic side effects due to different 

mechanisms of action and binding profiles. Thus, olanzapine and clozapine are associated with the highest 

weight gain whereas amisulpride or aripiprazole are at low or moderate risk (49, 50). A meta-analysis 

conducted in schizophrenic patients integrated the available evidence in order to create hierarchies of efficacy, 

non-compliance and major side effects (e.g. weight gain) of typical and atypical antipsychotics compared to 

placebo (50). Figure 3 shows the risk of weight gain according to different typical and atypical antipsychotics. 

Figure 3: Forest plot for weight gain of antipsychotic drugs compared with placebo. (adapted from (50)) 
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SMD=standardised mean difference. CrI=credible interval. 
 

3.1.2 Mood stabilisers 

Lithium and valproate are mood stabilizers that can treat both phases of bipolar disorders, reducing 

symptoms of mania and of bipolar depression, and also preventing relapse. Lithium is the classic mood 

stabilizer and it has been used for more than 50 years. Its mechanism of action might involve signal 

transduction (e.g. via inositol monophosphatase), modulation of G-proteins or interaction at various sites of 

downstream signal transduction cascades (44). For valproate, an anticonvulsivant used as mood stabilizer, 

several hypotheses are proposed for its mechanism of action. Some of them include inhibition of voltage-

sensitive sodium channels and/or boosting the actions of GABA neurotransmitter, among others (44).  

Although the mechanisms of these molecules are not completely understood, they certainly contribute to 

weight gain. A meta-analysis showed that almost 40% of bipolar patients developed metabolic syndrome. 

0.5 1 
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This prevalence is twice than in general population (51). Studies focusing on treatment showed that patients 

under lithium and valproate treatment gain more weight than those receiving placebo (52, 53). Therefore a 

good monitoring of side effects is strongly recommended when starting any of these weight gain inducing 

treatments in order to mitigate the risk of developing CVD, T2DM or other metabolic side-effects (49). 

3.2 Genetic, psychiatric disorders and metabolic disturbances.  

The interaction of antipsychotics with leptin-melanocortin pathway correlates with an increase of appetite. 

Over time, a high food intake leads to obesity and lipid alteration profile such as hypertriglyceridemia. This 

dyslipidemia is followed by insulin resistance to finally lead to T2DM associated with a high risk of 

cardiovascular events, thus increasing mortality rate among this population (44). Also, it has been shown that 

psychiatric disorders such as major depressive disorder, schizophrenia or bipolar disorder share common 

pathways with obesity. Studies in the past decades have demonstrated that obesity is related to increased 

inflammation, oxidative stress, hypothalamus-pituitary-adrenocortical axis dysregulation, upregulation of 

kynurenine pathway which affects neurotransmitter production (e.g. serotonin) (54). Interestingly, high levels 

of inflammatory adiponectin and other cytokines are found among first-episode drug naïve schizophrenia 

patients (55) and upregulation of kynurenine pathway is observed in major depressive disorder, schizophrenia 

and bipolar disorder (56). In addition, schizophrenia and bipolar disorders have been related to 

neurotransmitters dysregulation (e.g. glutamate, dopamine and/or serotonin) (54, 57). Also, mental disorders 

such as schizophrenia, bipolar disorder and major depressive disorder are associated with impairment in 

cognitive functioning (executive functioning and attention memory) (58). This deficiency appears over time 

and worsens with psychiatric illness duration. This might be explained in part, by the combination of clinical 

and treatment variables: Although treatment used may improve some aspects of cognition, the anticholinergic 

effect of some of the psychotropic drugs and comedications prescribed may increase the risk of cognitive 

impairment (59, 60). Furthermore, weight gain associated with the use of some psychotropic drugs (notably 
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atypical antipsychotics) may have negative consequences on cognition (59). Further studies on how 

interaction occurs between medication use, weight gain and cognition in this population, are warranted. 

Obesity may impair cognitive function in neuropsychiatric disorders by inflammatory processes (61), but the 

implicated pathways are only partially elucidated. The neuronal insulin signaling pathway (affecting the 

hippocampus) is implicated in cognitive functions and is involved in glucose homeostasis. Hippocampus is a 

neuronal-insulin sensitive organ and neuronal-insulin mediates metabolic biological actions and modulates 

neurotransmitter concentrations in the central nervous system which are implicated in the physiopathology of 

mood disorders, schizophrenia and alzheimer disease (62). Disturbances in this pathway might lead to 

cognition worsening and appearance of psychiatric disorders.  

From the classical candidate gene approach, the best replicated variants concerning psychotropic-induced 

weight gain concern the -759C/T 5HTR2C polymorphism, showing that carriers of the T-allele had less weight 

gain than C-allele carriers (63). These results have been found in different ethnicities (48, 64). Additionally, the 

C-allele has been related with obesity in general population (48, 65). The LEP -2548G/A showed that GG 

genotype was associated with weight gain in Caucasian with multiple antipsychotics (66). Evidence of 

antipsychotic drugs and receptors and genes implicated in metabolic disturbances has been described in detail 

elsewhere (66, 67). In addition, some polymorphisms have been related to both psychiatric disease and 

obesity, such as the A-allele from the FTO rs9939609 variant which has been associated with lower risk of 

depression and an increased BMI (68). Recently, the CREB-regulated transcription coactivator 1 (CRTC1) gene has 

been also associated with BMI and fat mass but only in lifetime depressed individuals. The mechanism of this 

gene in depression and psychiatric diseases needs to be further investigated (69). Other genes, such as FKBP5 

have shown a positive correlation with insulin levels in adults having suffered from early life stress (70). 

Further studies are needed to disentangle the shared pathways between obesity and psychiatric diseases. An 

extensive genetic analysis in psychiatric cohorts is presented in a later section of this thesis (see Results 

chapter). Recently, a study examining genetic influences on BMI and cognition found that some genetic 



Introduction  16 

 

factors overlapped between both traits. This study took into account two large GWAS meta-analyses 

assessing cognition and BMI (31, 71). Low BMI was correlated with high cognitive function; thus genes 

variants associated with increased cognitive function were associated with lower BMI. Additionally, some 

polymorphisms associated with BMI, explained a significant –although small- proportion of cognition 

variance and vice-versa. When looking at SNPs individually, seven hits were significant for both traits and 

were found in genes of insulin-related functions, among others, thus supporting the link of type 2 diabetes 

and/or disturbances in insulin pathway and impaired cognitive function (61).   
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4. Obesity and Diabetes in Solid Organ Transplant populations 

4.1 Generalities 

In 2003, international experts in the field of transplant and diabetes defined the diagnosis and management of 

new onset diabetes after transplant (NODAT) based on the World Health Organization and the American 

Diabetes Association recommendations (72). The incidence of NODAT ranges widely, depending on the 

transplanted organ and/or the study design among other factors. More specifically, it has been described that 

NODAT occurs in 4-25% in renal transplant recipients, 2.5-25% in liver transplantation, 4-40% in heart and 

30-35% in lung transplant recipients (73-76). Pretransplantation diabetes and NODAT contribute to the risk 

of CVD, which remains the most common cause of death after kidney transplantation worldwide (77). 

Weight gain leading to obesity has been associated with insulin resistance and post-transplant weight gain 

exacerbates this condition leading to NODAT development (78, 79). Post-transplant weight-gain has been 

described in patients regardless of their weight prior to transplant. Excessive weight gain in transplanted 

individuals can lead to severe consequences such as delayed graft function related to surgical and 

post‐operative complications (80) and decreased graft survival (81, 82). 

4.2 Risk factors contributing to metabolic disorders  

Because obesity and other components of the metabolic syndrome are modifiable factors, early intervention 

to prevent these conditions is of major importance. In liver transplanted recipients, factors such as older age 

(83), family history of overweight, high BMI prior to the transplantation and/or high donor BMI (83, 84), 

hypo-metabolism and physical inactivity (83, 85) are some of the risk factors associated with weight gain, 

overweight and obesity. In kidney-transplant recipients, obesity increases NODAT with a relative risk of 1.73 

and this risk increases linearly above 45 kg (86). Additionally, NODAT has been associated with low levels of 

adiponectin (a marker inversely correlated with adiposity) and higher levels of C-reactive protein; potentially 

suggesting an inflammatory process. Regarding NODAT, some of the risk factors (grouped into non-

modifiable, potentially modifiable and modifiable, Figure 4) are family history of diabetes, where the risk is 
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increased by 50% (87) or older age (72). Other factors specifically related to the transplanted populations 

concern HLA group mismatches, donor-recipient mismatch, acute rejection, graft from a deceased donor, 

virus load (i.e. hepatitis C virus –HCV- and cytomegalovirus –CMV-) or immunosuppressant treatment (72). 

NODAT incidence depends on HCV status being 25.6% in HCV positive and 14.4% in HCV negative 

groups (78). Patients may acquire the virus through blood contamination in hemodialysis units. Although the 

mechanism is poorly understood, HCV causes glomerular disease leading to end stage renal disease (88). 

Many HCV infected patients will therefore undergo kidney transplantation. CMV has been associated with 

impaired insulin release through proinflammatory cytokines that cause functional disturbances in the beta-

pancreatic cells. CMV is, however, treated easily in post-transplant recipients compared to HCV. Also, the 

risk of NODAT increases with pre-transplant impaired fasting glucose and glucose tolerance. Finally, 

proteinuria and hypomagnesaemia and its association with NODAT development need to be further 

investigated. Proteinuria might reflect the normal condition just after renal transplantation due to residual 

native kidney proteinuria or the high dose of corticosteroids used at the beginning and might resolve 

spontaneously several weeks after transplantation. Studies have reported an inverse correlation between 

serum magnesium levels and glycemic regulation (72, 88). Additionally, some of the factors contributing to 

NODAT and metabolic disorders (e.g. increased weight gain) are shared. Such is the case for a high BMI and 

high fasting glucose levels prior to transplant (89). 
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Figure 4. Factors influencing NODAT classified by modifiable, potentially modifiable and non-modifiable (72) 
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4.3 Immunosuppressive treatment and metabolic risk 

Organ rejection is reduced by immunosuppressant treatments and although new immunosuppressive drugs 

have improved short-time patient survival, they are not devoid of side effects. CVD together with 

malignancies and infections are the main causes of mortality in transplanted patients (90). Focusing on 

cardiovascular and metabolic-related events, immunosuppressant treatments are of particular interest. 

Immunosuppressive drugs have different impacts on metabolic risk factors. Glucocorticoids, a major 

component of immunosuppressant therapy, are associated with body fat accumulation and liquid retention. 

They damage the insulin-secreting beta cells of the pancreas (91) and long-term glucocorticoid therapy may 

result in clinically significant weight gain through leptin modulation and appetite increase (92). Besides, 

corticosteroids would have a dose-dependent diabetogenic effect (93). Therefore, standardized steroid 

withdrawal protocols are suggested in order to reduce the risk of NODAT (94). Cyclosporine was the first 

calcineurin inhibitor (CNI) approved in 1983 for Solid Organ Transplant (SOT) with the idea of reducing 

corticosteroids dose, thus decreasing the incidence of NODAT (95-97). Despite the steroid-dose lowering 

effect, cyclosporine later showed a strong negative impact on weight gain, blood pressure and lipids (98, 99). 

The CNI second-generation tacrolimus has been associated with an increased risk of NODAT, especially 

when combined with glucocorticoids (100, 101). mTOR inhibitors (i.e. Sirolimus and Everolimus) are one of 

the major causes of hyperlipidaemia after transplantation and also diabetogenic, especially when combined 

with CNI (102, 103). Although induction therapy (i.e. polyclonal and monoclonal antibody preparations) is 

not directly associated with weight gain or metabolic alterations, it has been associated with malignancies 

which lead to mortality (104). Thus, the optimal immunosuppressive therapy combines different drugs 

improving the immunosuppressive potential and decreasing the toxic effects by lowering each single dose.  

4.4 Genetics of metabolic disorders in Solid Organ Transplant populations 

Some of the genetic factors influencing obesity have already been described in Chapter 2.2. Focusing on 

transplant populations, some specific variants have shown an association with obesity and weight gain within 
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this population. Candidate gene approaches found two single nucleotide polymorphisms (SNPs) and one 

insertion/deletion associated with BMI-related phenotypes. In liver transplant recipients, carriers of the D 

allele of the angiotensin-converting enzyme had and carriers of the G-allele of the PNPLA had an increased 

risk of weight gain and higher obesity prevalence dependent of diabetes, respectively, compared to non-

carriers. Finally, in kidney transplanted recipients, carriers of the CC genotype in an ATF6 polymorphism had 

higher BMI compared to non-carriers. The ATF6 gene is involved in lipogenesis and gluconeogenesis and 

would be activated via Tacrolimus during endoplasmatic reticulum stress (105-107). Weight change in kidney 

transplant has been associated with the expression of genes involved in T2DM, obesity and neurological 

concepts such as dopamine, nicotine, and cognition (108). To date, no weight gain-related GWAS in SOT 

have yet been conducted. Since NODAT and T2DM share some mechanisms, some variants associated with 

T2DM have also been associated with NODAT. Such is the case of TCF7L2 or KCNQ1 (109). Recently, a 

GWAS of NODAT in kidney transplanted recipients revealed eight significant SNPs (110). In Projects III 

and IV an extensive analysis of the genetic variants influencing obesity and NODAT in SOT is conducted.    
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5. The challenge of personalized medicine 

Pharmacogenomics, the study of how genes affect a persons’ response to drugs, is part of personalized 

medicine that customizes health care, tailoring treatments to each individual (111). Personalized medicine 

concerns treatment response and/or side effects. To date, the FDA approved more than 100 drugs that 

include label information on pharmacogenomic biomarkers (111, 112). CYP2D6-related dose 

recommendations obtained from pharmacokinetic studies were one of the first steps in developing guidelines 

for therapeutic use of antidepressant treatments (113). Another example is the Steven-Johnson side effect of 

carbamazepine for the treatment of bipolar disorders or epilepsy. In particular, carriers of the HLA allele 

B*1502 have an increased risk of developing Steven-Johnson syndrome in Asian populations. Therefore, the 

Food and Drug Administration (FDA) recommended genotyping all Asians for the allele before starting the 

treatment (114). However, the number of pharmacogenetic tests that are used nowadays in the clinic remain 

small. This could be explained by several facts: First, there is a need to better understand the mechanism of 

action of a drug. Furthermore, many studies are hypothesis-driven and focus on gene candidate approaches, 

missing other gene contributions or gene-gene interactions. The polygenic nature of many phenotypes, such 

as obesity or diabetes, should be taken into account. On the same line, information is missing on how the 

gene-environment interactions affect drug response and side effects. All these factors may reduce the 

predictive value of pharmacogenetic testing (115). Finally, the use of pharmacogenetic tests has to overcome 

important scientific, economic, commercial, political and educational barriers (116). To date, there are no 

reliable biomarkers that can accurately predict the risk of weight gain, making difficult to translate risk 

prediction into clinical practice.  

Finally, if pharmacogenetic testing is combined with therapeutic drug monitoring (TDM), both tools can 

optimally individualize drug therapy in order to maximize the efficacy and the safety of the drug. For instance, 

in tacrolimus treated individuals, carriers of CYP3A*1 allele have a greater clearance needing a dose 

readjustment. TDM may be helpful at the beginning of tacrolimus treatment in order to determine the 

appropriate starting dosage and to avoid serious adverse effects (117).  In psychotropic and antidepressant 
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drugs, for instance, the combination of TDM and CYP2D6/CYP2C19 genotyping is particularly useful in 

verifying concentration-dependent adverse drug reactions or in interpreting psychotropic drug response in 

polypharmacy (116, 118). 
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Obesity has reached epidemic proportions globally, with at least 2.8 million people dying each year as a result 

of being overweight or obese (1). Obesity is preventable and is often associated with other diseases leading to 

metabolic complications and reducing indirectly life expectancy. The present thesis work focuses on two 

particular populations at high risk of metabolic disorders: The psychiatric and the transplanted populations.  

The first aim of this work is to study, from a genetic point of view, the association of several polymorphisms 

with metabolic disturbances in these two populations (Projects I, II, III and IV). This will improve the 

understanding of the molecular pathways associated with the pathogenesis and the onset of metabolic 

disorders which worsen health quality and increase mortality rate. In a second step (Project V) we aimed to 

explore how SES factors influence weight related parameters (i.e. BMI and weight change) over time in a 

psychiatric sample under psychotropic treatment. This work will contribute to better understand 

interindividual variability in order to better adapt treatments.   

A short summary of the secondary aims is included below. 
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Project I: Association of PCK1 with Body Mass Index and Other Metabolic Features in Patients with 

Psychotropic Treatments  

The aim of this project was to study the influence of Phosphoenolpyruvate carboxykinase 1 (PCK1) on BMI change 

over time and other metabolic features in a psychiatric population under psychotropic treatment. This gene 

codes for an enzyme which is a key regulator of the gluconeogenesis and it has been described as a 

downstream gene of CRTC1 (implicated in weight gain in psychiatric populations).  

Project II: Association of Genetic Risk Scores (GRS) with Body Mass Index in Swiss Psychiatric 

Cohorts 

Since common obesity is influenced by many risk variants, in this project we wanted to study how weighted-

GRS (w-GRS) built from previously BMI-related polymorphisms influence BMI in psychiatric cohorts under 

psychotropic treatment. Additionally, w-GRS from previously identified polymorphisms influencing 

antipsychotics-induced weight gain in psychiatric populations were tested for association. 

Project III: Clinical and Genetic factors influencing Body Mass Index and risk prediction of weight 

gain in Solid Organ Transplant populations 

Similarly to what it has been done with polygenic risk scores in psychiatric populations, in the present project 

we wanted to see how previously BMI related polymorphisms in GWAS based in general population, 

influenced BMI in two SOT populations. Additionally, we wanted to assess the ability of these variants to 

predict 10% weight gain one year after transplantation.    
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Project IV: Genetic and clinic predictors of New Onset Diabetes Mellitus after Transplantation 

The present study focuses on multiple variants at risk for T2DM and NODAT, integrated in w-GRS. We 

wanted to determine whether these genetic factors influence NODAT and how they contribute in predicting 

NODAT one year after transplantation. 

Project V:    Socioeconomic and metabolic risk factors in Psychiatric patients 

In the present work we wanted to explore how the sociodemographic factors (i.e. living status and 

professional condition) would influence weight gain and metabolic outcomes over time in psychiatric patients 

treated with psychotropic drugs. In a second step, we wanted to study whether a Swiss socioeconomic 

position index (SEP) based on income, education, occupation and housing conditions is associated with BMI 

and weight change over time. 
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1. The psychiatric cohorts 

1.1 The Suivi Metabolique cohort 

This ongoing study started in the psychiatric department of the Lausanne University Hospital (DP-CHUV) in 

2007. The aim of the Suivi Metabolique is to follow patients starting a psychotropic treatment (i.e. aripiprazole, 

amisulpride, clozapine, olanzapine, quetiapine, risperidone, mirtazapine, lithium and/or valproate) which can 

potentially lead to metabolic disturbances. Currently, this follow-up is integrated as a routine basis practice in 

the adult DP-CHUV. The follow-up consists of several regular medical checkups where anthropometric 

parameters (i.e. weight, height, waist circumference) and blood samples are collected at baseline, 1, 2, 3, 6, 12 

months after initiating psychotropic treatment according to guidelines (119). Metabolic parameters, drug 

plasma concentration and genetic analysis are obtained for those patients who signed a written informed 

consent. As of March 2016, 934 patients who gave a written informed consent to participate in the study have 

been recruited. 

1.2 The Ambulatoire cohort 

Similarly to the Suivi Metabolique cohort, the aim of this cohort is to follow-up individuals who have been 

taking a psychotropic treatment (i.e. aripiprazole, amisulpride, clozapine, olanzapine, quetiapine, risperidone, 

mirtazapine, lithium and/or valproate) for more than one year in an outpatient setting. Started in 2010, 

through yearly medical checkups, data on anthropometric parameters and blood tests are collected.  To date 

(ongoing study), we have obtained the informed consent for 250 patients.  

Recently, for both Suivi Metabolique and Ambulatoire cohorts, patients treated with tricyclic antidepressants, 

FGA and/or newly commercialized SGA (i.e. paliperidone, asenapine, lurasidone) have been also recruited, 

but not taken into account for the present analyses. 



Methods  34 

 

1.3 The Geneva cohort 

Geneva cohort concerns individuals who have been taking olanzapine, clozapine, quetiapine, risperidone, 

lithium, and/or valproate for at least 3 months between June 2006 and May 2008. This is a retrospective 

study that was conducted in an outpatient setting from Psychiatric Department of Geneva University 

Hospital. Questionnaires were filled and blood samples were collected during one of the patient routine 

follow-ups. Weight before starting psychotropic treatment was self-reported or extracted from medical files. 

Informed consent and blood samples were obtained for 198 patients.  

In all samples, patients with previous treatments were included after having switched medication. The latest 

introduced psychotropic medication was considered as the main psychotropic treatment. A detailed 

description of the three cohorts can be found in a previous publication (120). 

2. The Transplanted Populations   

2.1 The Swiss Transplant Cohort Study (STCS) 

The STCS is an ongoing prospective multicenter study (Basel, Bern, Geneva, Lausanne, St. Gallen and 

Zurich) started in May 2008 which enrolls SOT recipients with no particular eligibility or exclusion criteria. 

The sample used for the present work (May 2008 - May 2011) included individuals with a functional graft for 

at least 12 months after transplantation. A total of 1294 patients were followed up in their respective 

transplant centers at baseline and at 6, 12, 24, 36 and 48 months after transplantation. Informed consents and 

genetic analysis were obtained for this sample. Further details can be found elsewhere (121, 122). 

2.2 The Swiss Immunosuppressant Study Cohort 

This transplanted cohort concerned a total of 197 patients who were enrolled between 2003 and 2005 from 

the outpatient clinic of the transplant center of the University Hospital of Lausanne, Switzerland. Only 
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patients with a functional graft for more than 12 months were eligible to participate in the study. Several 

clinical data and blood samples were collected at baseline and during the regular medical check-ups up to five 

years after transplant. Informed consents were obtained and genetic analyses were conducted for this sample. 

Further details can be found elsewhere (122-124).  

3. The General Population 

Participants in the Cohorte Lausannoise (CoLaus, n = 5338) were recruited between June 2003 and May 2006 in 

the Lausanne area as described previously (125). The CoLaus was used to test for replication the positive 

results found in the psychiatric samples. Data related to general population lipid traits (n = 100,184), 

integrating the Global Lipids Genetics Consortium, was downloaded from Genome Wide Associations Scans 

for Total Cholesterol, HDL-C, LDL-C and triglycerides website (126). This data base aimed at testing for 

replication the positive findings in the psychiatric cohorts. Finally, the Genetic Investigation of 

Anthropometric Traits Consortium (GIANT) performed a meta-analysis of genomewide association study 

data with a discovery set of 123,865 individuals of European ancestry from 46 studies for several 

anthropometric traits (i.e. height, waist-to-hip ratio, BMI) (34, 127, 128). The GIANT data set was used to 

test for replication results from psychiatric samples and to calculate effect sizes (beta-estimates) of the w-GRS 

analyses.   

4. Genotyping method 

The cardiometabochip is the array used for genotyping our samples (i.e. the three Psychiatric cohorts and The 

Swiss Immunosuppressant study cohort). This customized chip is designed to test more than 200’000 DNA 

variation of SNPs from regions identified by large scale meta-analyses of GWAS for anthropometric, 

metabolic and cardiovascular traits. Around 7000 customized SNPs were additionally added in the chip. This 

method allows for processing thousands of samples quickly and cost-effectively, with loci-defined content. 

The genotyping was conducted at the iGE3 genomics platform of the University of Geneva 

(http://www.ige3.unige.ch/genomics-platform.php). 
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Summary 

The present work illustrates the association of the PCK1 polymorphisms with BMI in a psychiatric population 

under psychotropic treatment. The PCK1 is a downstream gene of CRTC1 which is implicated in 

hypothalamic control of food intake. The main results of the present gene-candidate study showed that, after 

examining several tagging SNPs of the PCK1 gene, a polymorphism was significantly associated with BMI 

(with stronger results in women younger than 45 years) and with other metabolic parameters. The association 

with BMI was replicated in two other samples. In addition, the same polymorphism was associated with 

waist-to-hip ratio in general population cohorts. Finally, when combining CRTC1 and PCK1 genes, carriers of 

protective alleles had lower BMI when compared to non-carriers. The present work contributes to the 

understanding of metabolic risk pathways, bringing special attention to high risk psychiatric populations.  
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Summary 

Common obesity is a polygenic disease; therefore studies focusing on polygenic scores are warranted. In this 

second project conducted in psychiatric populations, a polygenic risk score or genetic risk scores (GRS) 

approach was used to test the association of combined genetic factors with BMI. Several GRS were built 

from Candidate Gene (CG) or Genome Wide Association (GWA) studies from psychiatric and general 

populations, respectively. When stratifying analysis by sex, stronger associations were found between GRS 

and BMI among men while no association was found among women. The present work replicates in different 

psychiatric cohorts treated with weight gain inducing drugs the results found in large general populations.    
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Summary 

Weight gain is often described in Solid Organ Transplant (SOT) populations. However, genetic studies on 

weight gain in transplanted populations are scarce. The present project was conducted in two SOT cohorts 

(nA=995, nB=156). The aim of the study was to determine whether genetic variants previously associated with 

BMI in general population were also associated with BMI in SOT individuals when combined in Genetic Risk 

Scores (GRS). Two GRS were significantly associated with BMI in the first sample, however, only one GRS 

showed significant results in the second cohort. In addition, an exploratory analysis of a third GRS was 

conducted with polymorphisms coming from genes whose expression is associated with weight change in 

renal transplant recipients. Significant results were found only in the second cohort. Finally, we assessed 

whether adding these variants in a clinical model improved prediction of 10% weight gain or more 12 months 

after transplantation. In general, models containing clinical and genetic predictors performed better than 

clinical models alone, highlighting the importance of taking into account genetic effects.   
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Weighted genetic risk scores and prediction of weight gain in Solid Organ Transplant 

populations 

ABSTRACT  

BACKGROUND: Polygenic obesity in Solid Organ Transplant (SOT) populations is considered a risk factor 

for the development of metabolic abnormalities and graft survival. Few studies to date have studied the 

genetics of weight gain in SOT recipients.  

AIM: To determine whether weighted genetic risk scores (w-GRS) integrating genetic polymorphisms 

from GWAS studies (SNP group#1 and SNP group#2) and from Candidate Gene studies (SNP group#3) 

influence BMI in SOT populations and if they predict ≥10% weight gain (WG) one year after 

transplantation.  

METHODS: Two samples (nA=995, nB=156) were obtained from naturalistic studies and three w-GRS 

were constructed and tested for association with BMI. Prediction of 10% WG at one year after 

transplantation was assessed with models containing genetic and clinical factors. 

RESULTS: w-GRS were associated with BMI in sample A and B combined (BMI increased by 0.14 and 0.12 

units per additional risk allele in SNP group#1 and #2, respectively, p-values<0.008). w-GRS of SNP 

group#3 showed an effect of 0.01 kg/m2 per additional risk allele when combining sample A and B (p-

value 0.04). Models with genetic factors performed better than models without in predicting 10% WG at 

one year after transplantation. 
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CONCLUSIONS: This is the first study in SOT evaluating extensively the association of w-GRS with BMI 

and the influence of clinical and genetic factors on 10% of WG one year after transplantation, showing 

the importance of integrating genetic factors in the final model. Genetics of obesity among SOT 

recipients remains an important issue and can contribute to treatment personalization and prediction of 

WG after transplantation. 
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INTRODUCTION  

Obesity has become a worldwide major concern since it has more than doubled in the last decades. In 

2014, 39% of adults were overweight (25 kg/m2≤ Body Mass Index (BMI)< 30 kg/m2) and 13% were 

obese (BMI ≥ 30 kg/m2) (1). Obesity is a risk factor leading to other co-morbidities such as diabetes, 

cardiovascular diseases and certain type of cancers (1). Among solid organ transplant (SOT) recipients, 

the rate of overweight and obesity has increased over the past years. By 2011, 34% of liver transplant 

candidates were obese, compared to 29% in 2001 (2). Similar results have been found for kidney, heart 

and lung transplant recipients (3-5). Although overweight and obesity prevalence are similar to those 

measured in general population studies, in SOT recipients the consequences are more serious. Indeed, 

obesity in SOT is an important risk factor for the development of New Onset Diabetes after Transplant 

(NODAT) (6) which has a deleterious effect on graft survival (7, 8). Moreover, it can be often associated 

with delayed graft function related to surgical and post‐operative complications (9).  

Few longitudinal studies examining weight gain (WG) among transplant recipients have been conducted 

to date, most of them focusing on WG during the first year post transplantation. A WG ranging from 3.5 

to 10 Kg has been reported in heart, liver and kidney transplant recipients (10-14) and a mean of 10% 

WG during the first year after transplantation was described in kidney transplant recipients (15). A 

threshold of 10% increase of ideal body weight, defined as the metropolitan relative weight criteria (16), 

has been related to a risk of developing cardiovascular disease in general populations followed for more 

than 25 years (16, 17). Ethnicity, sex, age in addition to specific factors such as transplanted organ, 

glucocorticoids and immunosuppressive treatments are some of the described factors influencing WG 

following SOT and NODAT (18), as well as genetic factors. Most studies on transplant populations 

focused mainly on the NODAT rather than WG (19, 20). Regarding BMI-related phenotypes, a protocol 

for the first systematic literature review has been published. The aim is to condense and compare the 
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current state of evidence on WG, overweight and obesity in SOT individuals including genetic and non-

genetic factors (21). Regarding candidate gene approach, two single nucleotide polymorphisms (SNPs) 

and one insertion/deletion have previously been associated with BMI-related phenotypes (22-24). These 

studies were conducted in three heterogeneous populations with small or moderate sample sizes 

(n<270), with different obesity-related outcomes and type of transplanted organ. Furthermore, different 

polymorphisms were analyzed. To our knowledge, no Genome Wide Association Studies (GWAS) 

investigating BMI variants within SOT recipients have yet been published. Recently, a microarray study 

examining gene expression in subcutaneous adipose tissue in kidney transplant recipients found that the 

expression of obesity-related genes was correlated with weight change (25). The top 41 ranked genes 

were further associated with obesity through a text mining approach (26), including genes related to 

diabetes, obesity and neurological concepts such as dopamine, nicotine, and cognition (25). 

Interestingly, two of these genes (i.e. MTCH2 and TFAP2B) were also found in the largest BMI GWAS 

meta-analysis conducted to date in the general population (27). This meta-analysis was conducted in 

more than 300 000 individuals and reported 97 SNPs associated with BMI, also including 32 previously 

replicated BMI SNPs (28-31). All 97 polymorphisms explained up to 2.7% of BMI variability within these 

individuals (27). Since polygenic or common obesity is influenced by many genetic polymorphisms, 

genetic risk scores (GRS) provide a useful tool summarizing risk-associated variations across the genome 

by aggregating information from multiple-risk SNPs, and they may improve the consistency and the 

power to determine genetic risk in polygenic diseases (32, 33). 

In the present study, we aimed to study the association of three weighted GRS, integrating previously 

published SNPs, with BMI in two cohorts of Swiss transplanted individuals. In addition, we assessed 

whether these genetic polymorphisms could predict a ≥10% WG during the first year post transplant. 
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METHODS 

Sample A 

The Swiss transplant cohort study (STCS) is an ongoing prospective multicenter study (Basel, Bern, 

Geneva, Lausanne, St. Gallen and Zurich) started in May 2008 which enrolls SOT recipients with no 

particular eligibility or exclusion criteria. The present study (May 2008- May 2011) included SOT 

recipients (i.e. kidney, liver, lung, heart, or multi-organ) with a functional graft for at least 12 months 

after transplantation. A total of 1294 patients were followed up in their respective transplant centers at 

baseline and at 6, 12, 24, 36 and 48 months after transplantation. Lipid profile, BMI, blood pressure and 

patient characteristics were collected at the different time-points of the follow up. Further details have 

been published elsewhere (34, 35). Only Caucasians and Recipients of 18 years or older were retained. If 

an individual was subjected to more than one transplant, only the first SOT was considered. A total of 

995 patients were considered for analysis. 

Sample B 

A total of 197 SOT recipients (i.e. lung, liver and kidney) were enrolled between 2003 and 2005 from the 

outpatient clinic of the transplant center of the University Hospital of Lausanne, Switzerland. Only 

patients with a functional graft for more than 12 months were eligible to participate in the study. 

Further details can be found elsewhere (35-37). Briefly, data regarding patients’ age, gender, BMI, 

ethnicity, immunosuppressive treatments among others were collected retrospectively from the 

medical files. Additionally, data concerning weight, at baseline, at 1, 3, 6, 9, 12 and at the yearly follow-

up during the 5 years after transplantation were collected retrospectively from the medical files 

between October 2011 and April 2012. Blood samples were collected for further genotyping analysis. 
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156 individuals of 18 years or older for whom Caucasian ethnicity was reported and had clinical data 

available, were included in the analysis.  

All patients gave their written informed consent and the studies were approved by the ethics committee 

of the corresponding centers. 

Genotype selection and genotyping 

SNP selection was done according to large Meta analyses of GWAS published on BMI. SNP group#1 

included 32 BMI associated polymorphisms in general adult populations (28). A second group consisted 

of 97 SNPs (SNP group#2) recently associated with BMI in general populations and which included the 

previous 32 SNPs (or its proxies) (27). Only SNPs significant at GWAS levels (i.e. p-value < 5x10-8) were 

retained for the analysis. Tables S1 and S2 show a detailed description of the selected SNPs.  

Additionally, 41 genes whose expression in subcutaneous adipose tissue has been previously associated 

with weight change in kidney transplant recipients (25) were included. A selection of tagging SNPs of 

these genes was obtained using HapMap Genome Browser (release 28). In order to avoid over 

representation of a particular gene, one tagging SNP per gene was selected based on the number of 

SNPs tagged and on the genotype availability in our samples. Six genes were excluded since no tagging 

SNPs were found in HapMap. Of note, two genes (i.e. MTCH2, TFAP2B) were also present in the GWAS 

mentioned previously (SNP group#1). Finally 19 SNPs, for which genotype was available in both samples 

A and B, were retained in the SNP group#3. A detailed description of these genes and polymorphisms 

can be found in Table S3. 
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For the sample A, genotypes were analyzed with the Human OmniExpress-24  BeadChip Kit as 

described by the manufacturer’s protocol (Illumina, San Diego, CA). For the sample B, genotyping was 

performed using the Illumina 200K Cardiometabochip (Illumina, San Diego, CA). Briefly, the 

CardioMetabochip is a custom Illumina iSelect genotyping array designed to test DNA variation of 

200’000 SNPs from regions identified by large scale meta-analyses of genome wide association studies 

(GWAS) for metabolic and cardiovascular traits (38). Polymorphisms or proxies were chosen based on 

genotype availability. A Quality Control was done for the genotyped SNPs. Samples were excluded from 

the analysis if sex was inconsistent with genetic data from X-linked markers, and when genotype call 

rate was <0.96 and gene call score <0.15. GenomeStudio Data Analysis Software was used to export 

results generated by Illumina CardiometaboChip. 

Construction of Genetic Risk Scores 

Three GRS were built following a weighted GRS (w-GRS) method as previously described (28) with 32 

SNPs (SNP group#1) and 97 SNPs (SNP group#2) both from GWAS, and 19 SNPs (SNP group#3) from 

candidate genes. Briefly, genotypes from each SNP were coded as 0, 1 or 2 according to the number of 

BMI risk alleles and each polymorphism was then weighted by its β-coefficient (allele effect) based on 

the assumption that all SNP of interest have independent effects and contribute in an additive manner 

on BMI. Each unit increase in the GRS corresponded approximately to one additional risk allele. Allele 

effects on BMI were obtained from those published in the literature for the SNPs group#1 and #2 (27, 

28). For the SNP group#3 allele effects were calculated from a large population based sample, GIANT, 

which consisted in a meta-analysis of GWAS with a discovery set of 123,865 individuals of European 

ancestry from 46 studies for height (39), BMI (28) and waist-to-hip ratio (40). 
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Statistical analysis 

Descriptive analysis of quantitative data is presented as median and range unless otherwise specified 

whereas qualitative data is expressed as percentages. Chi-squared test or rank sum test were used for 

association studies within categorical data or non-parametric continuous variables, respectively. Hardy-

Weinberg Equilibrium (HWE) was determined for each polymorphism by a chi-square test. P-value 

threshold was set at <0.05 and Bonferroni multiple test correction (0.05/6) was applied when necessary.  

For multivariate analysis, a Generalized Additive Mixed Model (GAMM) was used to deal with complex 

and non-linear BMI evolution in time and presence of multiple observations per individual introducing 

interdependence among observations. A random effect at the subject level was also introduced to take 

the dependence structure of observed data into account. The GAMMs were fitted using the mgcv 

package of R (settings were fixed at package defaults). To be more conservative, the uncertainty of 

estimated parameters was assessed by 1’000 bootstraps on individuals (41). Because sex and age have 

been described as factors influencing WG (15), further analyses were conducted stratifying by gender 

and the median age when the interactions with w-GRS were significant.   

Prediction of ≥10 % WG one year after transplantation in the sample A and B 

A binary logistic regression model at 12 months after transplant was used to determine whether clinical 

and genetic factors influence a ≥10% WG one year after transplantation for those cases where genetic 

components were significantly associated with BMI. The ability to discriminate between gainers of 10% 

weight versus those who did not gain 10% one year after transplantation was assessed with the Area 

Under the Receiver Operating Characteristic Curve (AUROC) for a model containing only clinical 

covariates (i.e. age, sex, transplanted organ, BMI at baseline, immunosuppressant treatment) and 
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another model integrating clinical and genetic factors. In addition, Sensitivity (percentage of correctly 

predicted individuals with ≥10% WG among all individuals with ≥10% WG), Specificity (percentage of 

correctly predicted individuals with <10% WG among all truly individuals with <10% WG) and Accuracy 

(percentage of correctly classified gainers of ≥10% weight among all subjects) were obtained for each 

model using “pROC” R package (42). An AUROC lower than 0.70 indicates low discriminative accuracy 

(43). As previously described, (44, 45) in order to assess the added value of selected SNPs in predicting a 

≥10% WG one year after transplantation (i.e. comparison of genetic and non-genetic models), likelihood 

ratio tests (LRT) and Integrated Discrimination Improvement (IDI) estimates with their respective p-

values were calculated. Finally, the number needed to genotype (NNG) (i.e. the average number of 

patients who need to be genotyped to detect one case of 10% WG one year after transplantation) was 

calculated based on the inverse of the difference between the accuracy of clinical and genetic models 

(46). 

RESULTS 

Population description 

The characteristics of sample A are presented Table 1. Sixty-six percent were men, 17.0% were obese 

one year after transplantation and 27.1% were diagnosed of NODAT. Similar patterns (p>0.05) were 

observed in sample B (60.9%, 18.5% and 28.8%, respectively, Table 2). Twenty three percent of 

individuals in sample A gained ≥10% of weight the first year after transplantation and 35% of individuals 

in sample B (p<0.001). The mean of WG one year after transplantation was 3.5% and 6.3% for samples A 

and B, respectively. Sample A included also heart and multi-organ transplant, individuals were older 

than in sample B (median age: 54 years compared to 48, p<0.001) and there was a high prevalence of 

living donors (27.1% and 11.5%, respectively, p<0.001). Tacrolimus (TAC) was more frequently 
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prescribed in sample A, whereas cyclosporine (CSA) was more used in sample B (45.1% versus 34.6%, 

respectively for TAC and 19.6% versus 65.4%, respectively for CSA; p<0.05). For sample A, individuals 

with at least 3 immunosuppressive treatments (i.e. cyclosporine, tacrolimus, glucocorticoids, azatioprine 

and/or mycophenolate) gained significantly more weight at one year after transplantation compared to 

the others (p=0.01, Figure 1). Of note, 99% of those with at least 3 immunosuppressants had a 

glucocorticoid treatment prescribed, possibly explaining this weight gain. No significant results were 

found in sample B.  

10% WG one year after transplantation 

In both samples A and B, those gaining ≥10% of weight had lower BMI at baseline and higher BMI 12 

months after transplantation compared to those gaining <10% (Table 1 and 2). The prevalence of 

overweight and obese was lower at baseline and higher at one year after transplantation for ≥10% when 

compared to <10% WG. The transplanted organ differed between ≥10% and <10% for both A and B 

samples. The kidney was the most prevalent transplanted organ in both groups. The second most 

prevalent transplanted organ in the ≥10% WG group was the lung while the heart and the liver were the 

third most frequently transplanted organs. In the <10% WG group, the liver and the lung were among 

the second and the third most frequently transplanted organs. Additionally, in sample A donors were 

younger and individuals had higher cholesterol levels at 12 months in the ≥10% WG group (median: 50 

years and 5.0 cholesterol mmol/L, p 0.04 and p 0.01, respectively). In sample B, significant differences 

were found in the prescribed immunosuppressive treatments; CSA was highly prescribed in the ≥10% 

WG when compared to the <10% WG group (73.8% versus 52.7%, respectively; p 0.02). 
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Genetic Risk Score analysis 

Weighted genetic risk score with GWAS polymorphisms 

In samples A and B, w-GRS ranged from 16 to 40 (SNP group#1) and from 63 to 107 (SNP group#2), 

respectively. Figure S1 shows the w-GRS distribution percentage in each sample. The association 

between w-GRS and BMI over time for sample A is shown on Table 3. w-GRS built from the SNP group#1 

was significantly associated with BMI, showing a 0.16 BMI units increase per additional risk allele and an 

explained variability of 1.46%. When stratified by the median of age (w-GRS*age p=0.001 and p=0.02 for 

SNP group#1 and #2, respectively) individuals older than 54 years old had 0.23 BMI unit increase per 

additional risk allele and an explained BMI variability of 2.74% whereas those at 54 years or younger 

showed a trend of 0.10 units increase and 0.56% of explained BMI variability after multiple test 

correction (p=0.08). For SNP group#2, the effect was slightly lower (0.11 units of BMI per risk allele 

increase, explained variability of 2.08%). These results could be partially replicated in sample B (Table 4) 

for SNP group#1 with an effect of 0.20 BMI units per risk allele increase and explained variability of 

2.40%. Analysis stratified by sex (w-GRS*sex, p=0.03 for SNP group#1) showed no significant 

associations after multiple test correction (Table 4). Additionally, a significant interaction between w-

GRS and organ (i.e. kidney/non kidney) was found for sample B and SNP group#1 (n=83, p-value 0.04) 

showing a slightly higher effect (0.30 units of BMI per risk allele increase) in kidney transplanted 

individuals when compared to the overall 0.20 units (results not shown). When combining samples A 

and B, BMI increased by 0.14 and 0.12 units per additional risk allele in SNP group#1 and #2, respectively 

(p-values<0.001).  
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Weighted genetic risk score in Candidate Gene polymorphisms (SNP group#3) 

No association of w-GRS from SNP group#3 and BMI was found in sample A whereas an increase of 0.05 

units of BMI per additional risk allele was found in sample B (p-value 0.048) with an explained BMI 

variability of 1.72% (Table S4). In addition, in sample B, when SNPs group#3 and #1 were combined (49 

SNPs excluding repeated SNPs) a significant association with BMI was found with an increase of 0.16 

BMI units per additional risk allele and an explained BMI variability of 4.1% (p-value: 0.001) (Table S5). 

The w-GRS in the combined A and B sample showed an effect of 0.01 kg/m2 per additional risk allele (p-

value 0.04). 

Prediction of 10% WG one year after transplantation 

For the models in which the w-GRS was significantly associated with BMI, we evaluated the ability of the 

model to discriminate between gainers of ≥10% of weight and those who gained <10% the first year 

after transplantation. In sample A, a model adjusted by clinical covariates (i.e. age, sex, 

immunosuppressant treatment (tacrolimus and/or cyclosporine), baseline BMI and transplanted organ) 

as well as genetic factors (i.e. SNP group#1) performed better than a model adjusted only by clinical 

covariates (LRT-p: 0.0004). The predictive value for gaining 10% or more weight when including SNP 

group#1 in the model resulted in an AUROC of 0.74, a specificity of 0.61, a sensitivity of 0.77 and an 

accuracy of 0.65, whereas the model without genetic components had 0.66, 0.59, 0.66 and 0.61 of 

AUROC, specificity, sensitivity and accuracy, respectively (Table 5). Similarly, the genetic model including 

SNP group#2, performed better (LRT-p: 0.008) and had higher AUROC (0.80) than the non genetic model 

(AUROC non genetic: 0.66). Similarly, for sample B, the genetic model including clinical covariates and 

SNP group#1 was significantly different from the clinical model, (LRT-p: 0.04) had an AUROC of 0.89 and 

a specificity, sensitivity and accuracy of 0.78, 0.88 and 0.81, respectively (Table 5). The prediction 
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performance of the genetic model compared to the non-genetic one was significantly improved as 

shown by the IDI score. An IDI of 0.17 (Sample 1, SNP group#2, Table 5) indicates that the difference in 

predicted risks between those who gain at least 10% of weight and those who did not, increased by 17% 

in the genetic model.  

The lowest NNG in order to detect one misclassified case of 10% weight increase one year after 

transplantation (Table 5) was 6 (obtained for sample B, SNP group#1). In sample A, the NNG was 13 for 

SNP group#2 and 24 for SNP group#1.  

DISCUSSION 

To our knowledge, this is the first study examining the association of clinical and genetic risk scores with 

WG in SOT patients. Our results showed that, in transplanted populations, previously GWAS-BMI related 

SNPs in general populations, were associated with BMI when combined in w-GRS. These results could be 

partly replicated in a second sample (i.e. sample B).  

The influence of weighted score including SNP group#1 on BMI has been extensively replicated in 

several general populations from different ethnicities (29-32). This is the first study evaluating the effect 

of these polymorphisms on BMI in SOT recipients (kidney, liver, lung, heart, or multi-organ) and WG, 

with positive results being found in both samples. SNPs group#2 was recently published (27) and 

contained a higher number of SNPs (including those from SNP group# 1 except of 2 SNPs). However, 

significant results were found only in sample A. The non replication using SNPs group#2 in sample B 

could be attributed either to no effect at all or to the low number of patients in the latter sample and 

the large number of polymorphisms in group#2, each one of small effect size, thus necessitating large 

sample sizes in order to observe an  effect (47). 
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In addition, an exploratory analysis of 19 polymorphisms combined in a w-GRS (SNP group#3) showed 

an association with BMI in sample B. These variants were selected from a microarray study examining 

subcutaneous gene expression which was correlated with weight change in kidney transplant recipients 

(25). These findings should be considered as preliminary as they were not further replicated. In sample B 

individuals were younger, had lower percentage of living donors and gained more weight after the first 

year of transplant compared to sample A. Young age, low BMI at baseline and deceased donors increase 

the risk of gaining weight, as previously described in the literature (15, 48). Adding SNP group#3 to SNP 

group#1 resulted in an increased explained BMI variability of 4.1%. However, when all SNPs were 

combined (i.e. SNP group#2 and SNP group#3), no significant results were found, probably due to the 

low effect and sample size.  

In a second step, we showed that a combination of extensive genetic factors and clinical data predicts 

better a 10% WG after the first year of treatment than considering the model with clinical data alone, 

increasing AUROC and accuracy. When examining genetic factors in sample A, several polymorphisms 

were significantly associated with 10% WG one year post-transplant. Interestingly, when looking at SNPs 

individually, only MC4R and SEC16B remained significant in both SNP group#1 and #2 analyses. MC4R is 

one of the most common genetic causes of obesity and this gene participates in appetite regulation and 

energy balance (49). SEC16B has been associated with obesity-related phenotypes but the mechanism 

behind remains unknown. In sample B, 4 SNPs in or near MTIF3, ETV5, GNPDA2 and FAIM2 gene regions 

were associated with 10% WG one year post-transplant. Most of these gene functions are not clear yet. 

ETV5 modulates circulating glucocorticoids levels (50) and GNPDA2 regulates metabolic pathways 

leading to insulin resistance (51). Interestingly, the best group of polymorphisms predicting 10% WG at 

12 months post-transplant was SNP group#2 (n=97 SNPs) for sample A and SNP group#1 (n=32 SNPs) for 

sample B. This could be tentatively explained by the fact that a higher sample size (i.e. sample A) is 
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necessary to demonstrate the association with larger set of SNPs (i.e. SNP group#2). Finally, only the 

SNP group#1 was associated with BMI at different time points in both samples A and B.  

In samples A and B, the mean of WG after one year post-transplant is 3.5% and 6.3%, respectively, i.e. 

much lower than the 10% mean value described in the literature (15). It should be noted that a solid 

consensus does not exist yet regarding WG after the first year post-transplantation; a mean of 10% has 

been described but a range from 3.5 to 10 kg as well. A WG of 10 kg over the first year following kidney 

(12, 13, 52) liver (14) and cardiac (10) transplantation as described in some studies would correspond to 

an increase of 14% of weight in our samples (considering a mean baseline weight in sample A and B of 

71 kg and 69.5 kg, respectively) which would be much higher than the WG mean in our samples.   

Some limitations of the present study should be acknowledged. These results can only be extrapolated 

to Caucasians. We could not obtain all genotypes, in particular those from the SNP group#3 and possible 

co-medications influencing weight in addition to the immunosuppressant treatment were not reported 

and/or considered. Finally, sample B size was small and other replication in larger cohorts should be 

tested. However, both Samples were obtained from naturalistic setting studies, which should represent 

the real cases in clinical practice.  

To conclude, this is the first study evaluating extensively the association of w-GRS with BMI and the 

influence of clinical and genetic components on ≥10% WG over the first year post transplant. The results 

obtained in the present study, showed the importance of integrating genetic factors in the final model, 

since they contain predictive information on ≥10% WG. Genetics of obesity among SOT recipients 

remains an important issue and will definitely contribute towards treatment personalizing and 

prediction improvement of WG in these populations by identifying at risk-individuals.    
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Table 1: Characteristics of Sample A (all and by 10% weight gain one year after transplantation) 

Characteristic 
All wg≥10%* wg<10%* p-value 

# n=995 n=204 n=673 

Recipient age at transplantation (years), median 
(range) 54 (18 - 79) 51 (18-73) 55 (18-79) 0.0001 

Recipient men (%) 66.0 56.8 68.9 0.001 

Period of follow up (months), median (range) 12 (0-48) 12 (0-48) 12 (0-48) 0.55 

Living donor (%) 27.1 27.9 29.6 0.6 

Donor age (years), median (range) 53 (1 - 86) 50 (1-80) 53 (1-86) 0.04 

Transplanted organ (%) 
    Kidney 62.4 61.3 67.2 

<0.001 

Liver 15.9 10.3 14.7 

Lung 9.5 14.7 7.8 

Heart 6.5 11.3 4.6 

Multi-organ transplantation 4.1 2.5 4.5 

Before transplant 
    

BMI (kg/m
2
), median (range) 

24.6 (13.7 - 
41.2) 

23.1 (14.9 - 
37.4) 

24.9 (14.3 - 
41.2) 0.0001 

Overweight (25 kg/m
2
 ≤ BMI >30 kg/m

2
), % 30.7 23.0 32.5 

<0.001 
Obese (BMI ≥ 30 kg/m

2
), % 15.3 9.3 16.8 

HDL (mmol/L), median (range) 1.2 (0.01-8) 1.2 (0.1 - 4.1) 1.2 (0.09 - 8) 0.7 

LDL (mmol/L), median (range) 2.2 (0.06-10.02) 2.2 (0.1 - 7.1) 2.2 (0.08 - 10.0) 0.3 

Cholesterol (mmol/L), median (range) 4.2 (0.3-11.7) 4.0 (0.3 - 9.9) 4.2 (0.8 - 11.7) 0.2 

At 12 months after transplant 
    

BMI (kg/m
2
), median (range) 

25.2 (15.3 - 
44.6) 

27.1 (18.8 - 
44.6) 

24.7 (15.3 - 
44.3) 0.0001 

Overweight (25 kg/m
2
 ≤ BMI >30 kg/m

2
), % 34.7 39.0 33.0 

<0.001 
Obese (BMI ≥ 30 kg/m

2
), % 17.0 27.0 14.0 

HDL (mmol/L), median (range) 3.5 1.3 (0.5-4.1) 1.3 (0.2-7.0) 0.08 

LDL (mmol/L), median (range) 1.3 (0.21-7) 2.6 (0.8-5.8) 2.6 (0.3-8.7) 0.8 

Cholesterol (mmol/L), median (range) 2.6 (0.3-8.7) 5.0 (2.3-9.2) 4.8 (1.7-12.0) 0.01 

Incidence of NODAT (%)$ 27.1 25.9 28.1 0.6 

CMV infection (%) 
    Recipient CMV infection (R+) 57.1 21.8 23.7 

0.9 Donor CMV infection (D+) 53.0 20.8 20.6 

Recipient and Donor CMV infection (R+D+) 32.6 33.2 33.1 

Calcineurin inhibitors (%) 
    TAC 45.1 42.2 48.6 

0.3 CSA 19.6 21.1 19.6 

None 35.2 36.8 31.8 

wg: weight gain, CMV: Citomegalovirus, TAC: Tacrolimus, CSA: Cyclosporine, NODAT: New Onset Diabetes After 
Transplant 
# comparison between wg≥10% and wg<10% 
*at 12 months after transplantation, missing n=118 
$NODAT excluded those patients with diabetes previous to transplant 
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Table 2: Characteristics of Sample B (all and by 10% weight gain one year after transplantation) 
 

Characteristic 
All wg≥10%* wg<10%* p-value 

# 156 42 78 

Recipient age at transplantation (years), median (range) 48 (22-68) 47 (26-66) 49 (22-68) 0.4 

Recipient men (%) 60.9 59.5 61.5 0.8 

Period of follow up (months), median (range) 12 (1-60) 12 (1-60) 12 (1-60) 1 

Living donor (%) 11.5 11.9 7.7 0.4 

Donor age (years), median (range) 43.5 (10-73) 45 (10-65) 43 (11-69) 0.7 

Transplanted organ (%) 
    kidney 65.4 76.2 60.3 

0.03 Liver 23.7 7.1 26.9 

Lung 10.9 16.7 12.8 

Before transplant 
    BMI (kg/m2), median (range) 23.4 (15.8-37.3) 22.9 (18.7-33.5) 24.2 (15.8-37.3) 0.06 

Overweight (25 kg/m
2
 ≤ BMI >30 kg/m

2
), % 24.1 14.3 30.8 

0.08 
Obese (BMI ≥ 30 kg/m

2
), % 10.9 9.5 12.8 

At 12 months after transplant 
    BMI (kg/m2), median (range) 25.2 (16.5-39.3) 26.8 (20.9-39.3) 24.3 (16.5-35.4) 0.0006 

Overweight (25 kg/m
2
 ≤ BMI >30 kg/m

2
), % 35.1 45.2 28.2 

0.004 
Obese (BMI ≥ 30 kg/m

2
), % 18.5 28.6 14.1 

Incidence of NODAT (%) 28.8 30.9 35.9 0.6 

CMV infection (%) 
    Recipient CMV infection (R+) 49.3 30.8 36.1 

0.6 Donor CMV infection (D+) 61.5 23.1 15.3 

Recipient and Donor CMV infection (R+D+) 27.6 30.8 27.8 

Calcineurin inhibitors (%) 
    TAC 34.6 26.2 47.4 

0.02 
CSA 65.4 73.8 52.7 

wg: weight gain, CMV: Citomegalovirus, TAC: Tacrolimus, CSA: Cyclosporine, NODAT: New Onset Diabetes After Transplant. 
#  comparison between wg≥10% and wg<10% 
*at 12 months after transplantation 
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Table 3: Weighted Genetic Risk Scores from GWAS SNPs and their associations with BMI in Sample A. 
 

  n Effect on BMI per additional risk 
allele [CI 95%] 

p-value* E. Var (%) 

SNP group#1 

All population 881 0.16 [0.11 - 0.23] p<0.008 1.46 

Age [ 18 - 54 ] years 444 0.10 [0.01 - 0.17] 0.08 0.56 

Age > 54 years 437 0.23 [0.14 – 0.32] p<0.008 2.74 

SNP group#2 

All population 854 0.11 [0.07 - 0.15] p<0.008 2.08 

Age [ 18 - 54 ] years 452 0.08 [0.03 - 0.13] p<0.008 1.10 

Age > 54 years 426 0.13 [0.07 - 0.19] p<0.008 2.90 

E. Var: Explained Variability 

  

 

 CI: Confidence Interval 

  

 

 SNP : Single Nucleotide Polymorphism 

  

 

 BMI: Body Mass Index 

  

 

 * p-value corrected by multiple test  
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Table 4: Weighted Genetic Risk Scores from GWAS SNPs and their associations with BMI in Sample B. 
 

  n Effect on BMI per additional risk 
allele [CI 95%] 

p-value* E. Var (%) 

SNP group#1 

All population 124 0.20 [0.07 - 0.35] 0.02 2.40 

Men 73 n.c n.c n.c 

Women 61 0.28 [-0.05 - 0.63] 0.3 n.c 

SNP group#2 

All population 117 0.02 [-0.08 - 0.11] 1.0 n.c 

Men 69 -0.03 [-0.18 - 0.07] 1.0 n.c 

Women 48 n.c n.c n.c 

E. Var: Explained Variability 

CI: Confidence Interval 

BMI: Body Mass Index 

SNP : Single Nucleotide Polymorphism 

n.c: not calculated because of non significant association and/or low sample size 

* p-value corrected by multiple test  
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Table 5. Comparison of genetic versus non-genetic model for 10% weight gain prediction at one year after transplantation. 
 

 

 

AUROC [95% CI] Specificity Sensitivity Accuracy LRT-p IDI [95% CI]* NNG 

Sa
m

p
le

 A
 

SNP group#1   

non genetic model 0.66 [0.58 – 0.72] 0.59 0.66 0.61 
0.0004 0.08 [0.06 - 0.10] 24 

genetic model 0.74 [0.70 – 0.83] 0.61 0.77 0.65 

SNP group#2   

non genetic model 0.66 [0.54 – 0.69] 0.65 0.62 0.64 
0.008 0.17 [0.14 – 0.20] 13 

genetic model 0.80 [0.71 – 0.84] 0.70 0.77 0.72 

Sa
m

p
le

 B
 

SNP group#1 
    

 
 

 

non genetic model 0.67 [0.61 – 0.88] 0.55 0.76 0.63 
0.04 0.36 [0.28 - 0.45] 6 

genetic model 0.89 [0.79 – 0.97] 0.78 0.88 0.81 
 AUROC: Area Under the Receiver Operating Characteristic Curve 

IDI : Integrated Discrimination Improvement 
NNG: Number Needed to Genotype 
LRT: Likelihood Ratio tests  
SNP : Single Nucleotide Polymorphism 
CI: Confidence Interval 
*p-value < 0.01 
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Figure 1. Percentage of weight gain in Sample A at one year after transplantation by number of 
immunosuppressant treatments (cyclosporine, tacrolimus, glucocorticoids, azatioprine and/or 
mycophenolate). 
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4. Project IV 

 

Genetic and clinic predictors of New Onset Diabetes Mellitus after Transplantation 
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Summary 

The present work describes how several genetic risk factors are associated with New Onset Diabetes After 

Transplantation (NODAT) and how they predict NODAT 12 months after transplantation in two samples of 

SOT. Three genetic risk scores (GRS) were constructed with SNPs obtained from GWAS studies and were 

tested first in a main sample (nmain= 725) and in another sample (nreplication= 156). Two out of the three GRS 

were significantly associated with NODAT in the main sample. In addition, a clinical risk score including 

several clinical variables was found to be associated with NODAT in the main and replication samples.  

Finally, the discrimination parameters showed that adding genetic factors in the clinical model improved the 

ability of the model to discriminate NODAT events one year after transplantation.   
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Genetic and clinic predictors of New Onset Diabetes Mellitus after 
Transplantation 

Abstract (words: 241) 

New Onset Diabetes after Transplantation (NODAT) is a frequent complication after solid 

organ transplantation, with higher incidence during the first year. Several clinical and genetic 

factors have been described as risk factors of Type 2 Diabetes that shares some genetic factors 

with NODAT. We investigated if three genetic risk scores (w-GRS) and clinical factors were 

associated with NODAT and how they predicted NODAT development one year after 

transplantation. In both main (n=725) and replication (n=156) samples the clinical risk score 

was significantly associated with NODAT (ORmain: 1.60 [1.36-1.90], p=3.72*10-8 and ORreplication: 

2.14 [1.39-3.41], p=0.0008, respectively). Two w-GRS were significantly associated with NODAT 

in the main sample (ORw-GRS 2:1.09 [1.04-1.15], p=0.001 and ORw-GRS 3:1.14 [1.01-1.29], p=0.03) 

and a similar ORw-GRS 2 was found in the replication sample, although it did not reach 

significance probably due to a power issue. Despite the low OR of w-GRS on NODAT compared 

to clinical covariates, when integrating w-GRS 2 and w-GRS 3 in the clinical model, the Area 

under the Receiver Operating Characteristics curve (AUROC), specificity, sensitivity and 

accuracy were 0.69, 0.71, 0.58, 0.68, respectively, with significant Likelihood Ratio test 

discrimination index (p-value 0.0004), performing better in NODAT discrimination than the 

clinical model alone. Twenty-five patients needed to be genotyped in order to detect one 

misclassified case that developed NODAT one year after transplantation if using only clinical 

covariates. To our knowledge, this is the first study extensively examining genetic risk scores 

contributing to NODAT development. 
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INTRODUCTION 

In the past decades, diabetes mellitus has become a growing public health problem. New 

Onset Diabetes after Transplantation (NODAT) is a frequent complication after Solid Organ 

Transplant (SOT) (1). The incidence of NODAT varies from 4% to 25% in kidney, 2.5 to 25% in 

liver, 4 to 40% in heart and 30 to 35% in lung transplant recipients (2). A high incidence of 

NODAT (i.e. 15% to 30%) occurs the first year after kidney transplant, decreasing by 5 to 6 

times thereafter (3). NODAT leads to high risk complications, such as infections and 

cardiovascular diseases, reducing patient and graft survival (4, 5).  

Risk factors for the development of NODAT include old age, obesity (6), African-American (3, 7) 

and Hispanic ethnicities (3), family history of diabetes, presence of hepatitis C and receipt of a 

deceased donor transplant (7). In addition, immunosuppressant treatments such as 

corticosteroids (8), calcineurin inhibitors (9) and/or sirolimus (10) contribute to the 

development of NODAT.  

Type 2 Diabetes Mellitus (T2DM) is a polygenic disease. Until now, several genetic factors have 

been associated with T2DM. NODAT shares similarities with T2DM, with both diseases 

characterized by a combination of insulin resistance and insulin hyposecretion and with some 

shared genetic risk factors (11). Therefore, we hypothesized that genetic risk factors that have 

recently been associated with T2DM might also influence the risk of NODAT one year after 

transplantation. Thus, a large-scale association analysis identified 12 new locis related to 

diabetes (12) and some of the results were further replicated (13, 14). In addition, a recent 

study aggregating published meta-analyses of Genome Wide Association Studies (GWAS) from 

four major ethnic groups found new single nucleotide polymorphisms (SNPs) associated with 
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T2DM and replicated results from previous reports (15). Finally, a first exploratory GWAS of 

NODAT in kidney transplanted recipients revealed 8 significant SNPs (16).  

The aim of the present study was to investigate whether several GRS were associated with 

NODAT development and how clinical and genetic factors could predict the development of 

NODAT one year after transplantation. We assessed whether adding genetic factors improved 

the clinical-based model. Such an integrated model would allow clinicians to identify 

individuals at high risk of NODAT before transplantation and, therefore, to provide early 

intervention and/or prevention. 

METHODS 

Main Sample 

The Swiss Transplant Cohort Study (STCS) is an ongoing prospective multicenter study (Basel, 

Bern, Geneva, Lausanne, St. Gallen and Zurich) started in May 2008 which enrolls SOT 

recipients with no particular eligibility or exclusion criteria. The present study included 

individuals with a functional graft for at least 12 months after transplantation (transplantation 

between May 2008- May 2011). A total of 1294 patients were followed up in their respective 

transplant centers at baseline and at 6, 12, 24, 36 and 48 months after transplantation. Lipid 

profile, BMI, blood pressure and patient characteristics were collected at the different time-

points of the follow up. NODAT was diagnosed if patients were taking an antidiabetic 

treatment after transplantation or if diabetes was reported in their case report forms. Patients 

with diabetes or prediabetes previous to transplant were excluded from analysis, as well as 

those with multi-organ transplants. Further details have been published elsewhere (17, 18). 

Only Caucasians and recipients of 18 years or older were retained. If an individual was subject 
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to more than one transplant, only the first SOT was considered. A total of 725 Caucasian 

patients for whom NODAT status was assessed were considered for analysis. 

Replication Sample 

One hundred and ninety-seven patients were enrolled between 2003 and 2005 from the 

outpatient clinic of the transplant center of the University Hospital of Lausanne, Switzerland. 

Only patients with a functional graft for more than 12 months were eligible to participate in 

the study. Further details can be found elsewhere (17, 19, 20). Briefly, data such as patient’s 

age, gender, BMI, ethnicity, and immunosuppressive treatments were collected retrospectively 

from the medical files. Additionally, weight, fasting blood glucose levels, glycated hemoglobin, 

2 hours oral glucose tolerance test, insulin and oral anti-diabetic treatment at baseline, at 1, 3, 

6, 9, 12 and at the yearly follow-up during the 5 years after transplantation were collected 

retrospectively from the medical files between October 2011 and April 2012. All patients gave 

their written informed consent. Blood samples were collected for further genotyping analysis. 

Altogether, 156 Caucasians of 18 years or older from whom clinical and genetic data were 

available were included in the analysis. 

Selection of genetic polymorphisms and genotyping 

Fourteen and 30 GWAS significant SNPs (p<5*10-8) were selected from two GWAS Meta 

analysis associated with T2DM in Caucasian (12) and four multi-ethnic general populations 

(15). In addition, 8 SNPs were retained from a GWAS of NODAT conducted in patients with 

kidney transplantation (16). For the main sample, genotypes were obtained from the Human 

OmniExpress-24 BeadChip Kit as described by the manufacturers’ protocol (Illumina, San 

Diego, CA). For the replication sample, genotyping was performed using the Illumina 200K 
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Cardiometabochip (Illumina, San Diego, CA) at the iGE3 genomics platform of the University of 

Geneva (http://www.ige3.unige.ch/genomics-platform.php). Briefly, the CardioMetabochip is 

a custom Illumina iSelect genotyping array designed to test DNA variation of 200’000 SNPs 

from regions identified by large scale meta-analyses of Genome Wide Association Studies 

(GWAS) for metabolic and cardiovascular traits (32). Polymorphisms or proxies were chosen 

based on genotype availability. A quality control was done for the genotyped SNPs. Samples 

were excluded from the analysis if sex was inconsistent with genetic data from X-linked 

markers, and when genotype call rate was <0.96 and gene call score <0.15. GenomeStudio 

Data Analysis Software was used to export results generated by Illumina CardiometaboChip. 

Tables S1-S3 show a detailed description of the polymorphisms. Of note, most of the 

genotypes from the NODAT GWAS (16) could not be obtained for the replication sample; 

therefore these SNPs could not be tested for replication. 

Construction of Clinical and Genetic Risk Scores 

Clinical Risk Score 

Construction of clinical risk score was done according to risk factors previously described (1, 

21) and one point was assigned to each of the following covariates: male gender, age above 

the mean (53 years), BMI ≥ 30 kg/m2, glucocorticoid treatment, tacrolimus 

immunosuppressant treatment, deceased donor status, antibodies Hepatitis C Virus positive 

(antiHCV+). In the main sample, the score ranged from 0 to 7 and was grouped as low risk 

score (0-1), intermediate risk score (2-3) and high risk score (4-7). The clinic risk score was also 

tested in the replication sample. 

Genetic Risk Score 
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Three weighted genetic risk scores (GRS) were calculated based on the 3 previously mentioned 

GWAS studies (12, 15, 16). A score was assigned to each individual based on the number (0, 1 

or 2) of risk alleles carried, weighted by the risk coefficient reported as Odds Ratios (OR) (22).  

Statistical analysis 

Descriptive analysis presented quantitative data as median and range unless otherwise 

specified whereas qualitative data is expressed as percentages. Chi-squared tests or rank sum 

tests were used to compare categorical or non-parametric continuous variables, respectively, 

in people who developed NODAT and those who did not. Significant threshold of p-value was 

set at 0.05 and multiple test correction was applied when necessary. Two SNPs were excluded 

from the main and replication samples since they were not in Hardy-Weinberg Equilibrium 

(HWE) (further description in Table S1 and S2). We first assessed the association of individual 

covariates with NODAT development. For both samples, GRS and significant covariates with p-

values<0.10 were then included in a multivariate logistic model and the corresponding OR with 

its 95% Confidence Interval (CI) were calculated. 

In a second step, for those GRS significantly associated with NODAT in the main sample, we 

assessed the ability of the genetic model to discriminate between patients with and without 

NODAT one year after transplantation. Genetic factors were integrated in the model as w-GRS. 

A clinical risk score as described above was also tested. Area under the Receiver Operating 

Characteristic Curve (AUROC) was calculated for a model containing only clinical covariates and 

another integrating clinical and genetic factors. An AUROC lower than 0.70 indicates low 

discriminative accuracy (23). In addition, sensitivity (percentage of correctly predicted 

individuals with NODAT among all NODAT individuals), specificity (percentage of correctly 

predicted individuals without NODAT among all truly individuals without NODAT) and accuracy 
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(percentage of correctly classified NODAT among all subjects) were obtained for each model 

using “pROC” R package (24). As previously described in the literature, (25, 26) and in order to 

compare the genetic and non-genetic model, Likelihood Ratio Tests (LRT) and Integrated 

Discrimination Improvement (IDI) estimates with their respective p-values were calculated. We 

used the Net Reclassification Index (NRI) to assess to which extent adding genetic factors in the 

non-genetic model resulted in classifications of individuals into risk categories which better 

reflect their actual outcome. Finally, the number needed to genotype (NNG) (i.e. the average 

number of patients who need to be genotyped to detect one misclassified case of NODAT if 

using only clinical covariates) was calculated based on the inverse of the difference between 

the accuracy of clinical and genetic models (27).      

RESULTS 

Population description 

Sixty-five percent were men in the main sample (Table 1) and the median age was 53 years, 

which was significantly higher than in the replication sample (48 years, p<0.001, Table 2). 

Higher percentages of living donors and elderly donors were found in the main sample when 

compared to the replication sample (32% versus 12%, respectively and 52 years versus 44 

years, Tables 1 and 2, respectively). Tacrolimus was more prescribed in the main sample (67% 

vs 35%). Median of baseline BMI and BMI at 12 months after transplantation were similar in 

both samples. 

NODAT individuals were generally older, had higher baseline and 12-months BMI after 

transplantation and higher percentage of obesity when compared to non-NODAT individuals, 

both in the main and in the replication samples (Tables 1 and 2).  



Results  102 

 
 

Clinical factors and Clinical risk score 

In the main sample, when conducting multivariate analysis (Table 3), induction treatment and 

baseline BMI were significantly associated with NODAT at one year after transplantation, with 

induction treatment protecting against NODAT development. In the replication sample (Table 

4), baseline BMI and tacrolimus treatment were significantly associated with NODAT. A clinical 

risk score was constructed combining several clinical covariates which have been described in 

the literature as risk factors of NODAT. The score ranged from low risk to high risk;  0 to 7 in 

the main sample and from 1 to 6 in the replication sample. Table S4 shows associations of 

clinical risk scores with NODAT development, which was significant for both main and 

replication samples. Figure 1 shows the NODAT incidence according to the clinic risk score in 

the main sample. Sixty-six percent of NODAT had a high clinic risk score compared to 43% of 

non-NODAT (p=2.5*10-7). 

Genetic risk scores 

Three w-GRS were tested in the main sample (Table 3). Significant associations were found for 

w-GRS 2 and 3 with NODAT development (ORw-GRS 2:1.09 [1.04-1.15], p=0.001 and ORw-GRS 3:1.14 

[1.01-1.29], p=0.03). Finally, when combining all SNPs in a w-GRS, the odds of developing 

NODAT increased by 8% per one unit increase of the w-GRS (OR: 1.08 [1.03-1.12], p=0.0005). 

When testing the association of w-GRS with NODAT in the replication sample (N=156), similar 

OR was found for w-GRS 2, although it did not reach statistical significance (Table 4, w-GRS 3 

not available, see Material and Methods). A power analysis showed that the minimum sample 

size needed in order to observe an effect in cohorts with proportion of NODAT ranging from 

0.27 to 0.29 is N=320 and N=335, respectively, with a confidence level of 95% and a width of CI 

set at 0.1.     



Results  103 

 
 

Additional analysis concerning the distribution of genotypes frequencies among NODAT and 

non-NODAT individuals in the main sample differed significantly for the rs2020902, a SNP 

previously associated with NODAT in a GWAS study (16) and located in the CASP9 gene (p-

value: 0.04, not significant after multiple test correction). This gene is implicated in several 

processes such as hyperglycemia or lipotoxicity via induction of β-cell apoptosis (28, 29).           

NODAT discrimination assessment, Number Needed to Genotype (NNG) 

The ability of a model integrating clinical and genetic factors to discriminate NODAT versus 

non-NODAT one year after transplantation was assessed in the main sample. Adding genetic 

components to the clinical model improved the final model, with LRT-p values being significant 

for w-GRS 2 (p=0.001) and when combining w-GRS 2 and w-GRS 3 (p=0.0004) (Table 5). The 

final model (i.e. including SNPs from both w-GRS 2 and w-GRS 3) showed an IDI of 0.02, 

meaning that the difference in predicted risks of developing NODAT after one year increased 

by 2% in the genetic model (p=0.004). In addition, the correctly reclassified individuals 

increased by 24% in the final model (NRI: 0.24 [0.05-0.43], p=0.01), with AUROC, specificity, 

sensitivity and accuracy values being 0.69, 0.71, 0.58 and 0.68, respectively. 

 Additionally, the ability to discriminate between NODAT and non-NODAT at one year after 

transplantation was assessed for a model keeping the same genetic factors than previously 

described (i.e. w-GRS 2 and w-GRS 3) but integrating clinical predictors in a clinical risk score 

(Table S5). Several discrimination parameters became significant when comparing clinical risk 

score model versus clinical plus genetic risk scores model (i.e. LRT, IDI, NRI). Such is the case 

for the IDI which shows the difference of predicted risks between p50 of NODAT and non-

NODAT in both clinical and clinical plus genetic models, with a better discrimination in the later 

model. However the AUROC did not exceed the 0.70 value generally considered as indicator of 
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for clinical significance and the accuracy did not improve when adding GRS in the clinical risk 

score. On the other hand, the clinical relevance of the combined model was also estimated by 

calculating the NNG, in order to detect a misclassified case of NODAT one year after 

transplantation using only clinical covariates. The global percentage of correctly classified 

patients (i.e. accuracy) within the model integrating clinical and genetic factors (w-GRS 2 and 

w-GRS 3 combined) was 68%. With an accuracy of the clinical model alone being 64% (Table 5), 

the NNG was 25. Since the models integrating w-GRS 2 and w-GRS 3 alone did not improve in 

accuracy, the NNG could not be calculated. 

 

DISCUSSION 

To our knowledge, this is the first study extensively examining the influence of w-GRS on 

NODAT development. Our results showed that two out of three w-GRS tested were 

significantly associated with NODAT in the main sample. The fact that the two significant w-

GRS were calculated from T2DM GWAS studies supports the hypothesis that T2DM and 

NODAT share some common genetic risk factors (11). These results were found in the main 

sample and similar results were found in the replication sample, although they did not reach 

significance threshold. As shown by the sample size calculation, in the replication sample the 

minimum sample size needed to observe an effect is not reached, suggesting that the 

replication sample is underpowered to detect the small effect size of each genetic risk score. In 

addition, patients in the main sample were older than in the replication sample (53 years 

versus 48 years), with a higher proportion of individuals in the main sample treated with TAC 

(67% versus 35%). Both TAC treatment and an elderly age have been described as risk factors 

of NODAT (6, 30). As expected, the clinical risk score was significantly associated with NODAT 
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in both main and replication samples, with a higher score being associated with higher NODAT 

incidence.   

Although the clinical risk score had higher impact on NODAT, adding genetic factors as a w-GRS 

in the clinical model improved NODAT discrimination one year after transplantation although 

accuracy and AUROC of the model were lower than 0.70 considered as the threshold for low 

discriminative accuracy (23). The low AUROC found could be explained by the few number of 

SNPs included in the GRS since the highest AUROC was found for w-GRS 2 (N=30 SNPs). 

Nevertheless, the AUROC parameter has been criticized because it does not show risk 

prediction, (31, 32). Thus, when looking at other parameters evaluating the discrimination of 

the genetic versus clinical model, risk prediction and reclassification (i.e. LRT, IDI and NRI) they 

consistently suggest that genetics improve the clinical model. Despite the small contribution of 

genetics in improving the model, the combined genetic and clinical model allows to obtain a 

NNG of 25. 

Genetic variants tested in the present study came from different sources. Those 

polymorphisms associated with T2DM in a Caucasian population (i.e. w-GRS 1) were not 

significantly associated with NODAT when combined in a w-GRS in our sample. Often the non 

replication of results is attributed to limited sample size and/or other missing variants 

contributing to the outcome. The polymorphisms which were associated with NODAT in our 

cohort came from a large T2DM GWAS multiethnic meta-analysis (26,488 cases and 83,964 

controls) (i.e w-GRS 2) (15). Also, significant results were found with polymorphisms from the 

first NODAT GWAS conducted within kidney transplanted recipients (57 cases and 370 

controls) (i.e w-GRS 3) but these results need to be tested for replication in another sample 

(16). 
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Some limitations of the present study should be acknowledged. The size of the replication 

sample should be increased. Indeed, since NODAT outcome is mainly affected by numerous 

genetic variants of small effects, replication samples should be large enough in order to avoid 

being underpowered. In addition, a replication sample including patients with similar age and 

TAC prescription is needed. Also, due to the moderate accuracies, the NNG could only be 

calculated when integrating a larger number of SNPs in a GRS. For the clinical risk score, history 

of diabetes was not available in our samples. This factor should be included in the clinical risk 

score construction despite the conflicting literature on the influence of family history of 

diabetes (33). In addition, some of the genotypes published in the GWAS studies (12, 15, 16) 

could not be obtained in the present study. Finally, our findings cannot be extrapolated to 

other ethnicities. 

To date, little research has been conducted on genetic factors and NODAT development. 

Although the number of SNPs should be increased in order to tentatively improve model 

prediction, this study found two GRS significantly associated with NODAT, thus providing a first 

approach integrating genetic and clinical factors. The present results must be replicated in 

future studies integrating other additional genetic variants, with such studies possibly allowing 

researchers to translate a risk assessment using clinical and genetic variables into clinical 

practice.    
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Table 1. Main sample characteristics 

Characteristic 
Main Sample NODAT non-NODAT 

p-value # 
n=725 n=198 n=527 

Recipient age at transplantation, median (range) 53 (18-79) 55 (19-73) 51 (18-79) 0.002 

Recipient males, % 65 70 63 0.06 

Period of follow up (months), median (range) 12 (0-48) 12 (0-48) 12 (0-48) 0.3 

Living donor, % 32 27 34 0.07 

Donor age (years), median (range) 52 (1 - 86) 53 (14-86) 52 (1-85) 0.8 

Transplanted organ, % 
    Kidney 68 63 69 

0.4 

Liver 15 17 15 

Lung 9 10 9 

Heart 6 9 5 

Multi-organ transplantation 2 2 2 

Before transplantation 
    BMI, median (range) 24.4 (13.7 - 41.2) 25.6 (15.2-41.2) 24 (13.7-39.1) 0.0005 

Overweight (25 kg/m
2
 ≤ BMI >30 kg/m

2
), % 29 32 28 

<0.001 
Obese (BMI ≥ 30 kg/m

2
), % 13 23 10 

HDL (mmol/L) 1.16 (0.01 - 8) 1.14 (0.01 - 8) 1.18 (0.1 - 7.6) 0.5 

LDL (mmol/L) 2.4 (0.08 - 10.0) 2.4 (0.1 - 6.3) 2.3 (0.1 - 10.0) 0.9 

Cholesterol (mmol/L) 4.2 (0.6 - 11.7) 4.2 (0.6 - 9.2) 4.2 (0.8 - 11.7) 0.4 

At 12 months after transplantation 
    BMI, median (range) 25.1 (15.4 - 44.4) 26.1 (17.2-44.3) 24.7 (15.4-44.4) 0.003 

Overweight (25 kg/m
2
 ≤ BMI >30 kg/m

2
), % 36 37 35 

0.003 
Obese (BMI ≥ 30 kg/m

2
), % 15 22 13 

HDL (mmol/L) 1.4 (0.21-7) 1.2 (0.21-3.0) 1.3 (0.5-7.0) 0.01 

LDL (mmol/L) 2.7 (0.4-7.0) 2.5 (0.4-7.0) 2.7 (0.7-5.8) 0.07 

Cholesterol (mmol/L) 4.9 (2.3-12.0) 4.7 (2.3-12.0) 5 (2.6-10.3) 0.05 

Hypolipemiant treatment*, % 33 41 31 0.032 

Percentage of 10% weight gain, % 23 22 24 0.6 

Weight gain (mean), %  3.7 3.5 3.7 0.7 

CMV infection, % 
    Recipient CMV infection (R+) 26 28 25 

0.5 Donor CMV infection (D+) 20 20 20 

Recipient and Donor CMV infection (R+D+) 32 33 32 

Calcineurin inhibitors, % 
    TAC 67 76 63 

0.001 CSA 26 16 30 

None 7 8 7 

Incidence of NODAT, % 27 - -   

CMV: Citomegalovirus, TAC: Tacrolimus, CSA: Cyclosporine, NODAT: New Onset Diabetes After Transplant. 
* Patients considered had neither diabetes nor hypercholesterolemia before trasplantation. Patients were treated with statins. 

# comparison between NODAT and non-NODAT 
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Table 2. Replication sample characteristics  

Characteristic 
Replication Sample NODAT non-NODAT 

p-value # 
n=156 n= 45 n= 111 

Recipient age at transplantation, median (range) 48 (22-68) 53 (28-68) 46 (22-68) 0.002 

Recipient males (%) 61 73 56 0.048 

Period of follow up (months), median (range) 60 (1-60) - - 
 Living donor (%) 12 11 12 0.9 

Donor age (years), median (range) 44 (10-73) 48 (13-69) 41 (10-73) 0.04 

Transplanted organ, % 
    Kidney 65 27 74 

0.46 Liver 24 30 70 

Lung 11 41 59 

Before transplant 
    BMI, median (range) 23.4 (15.8-37.3) 26.4 (18.8-37.3) 22.3 (15.8-36.2) 0.0003 

Overweight (25 kg/m
2
 ≤ BMI >30 kg/m

2
), % 24.1 37.8 17.4 

<0.001 
Obese (BMI ≥ 30 kg/m

2
), % 10.9 20 6.5 

At 12 months after transplant 
    BMI, median (range) 25.2 (16.5-39.3) 26.8 (20.3-39.3) 24.7 (16.5-37.5) 0.003 

Overweight (25 kg/m
2
 ≤ BMI >30 kg/m

2
), % 35.1 37.8 33.9 

0.012 
Obese (BMI ≥ 30 kg/m

2
), % 18.5 31.1 13.2 

Hypolipemiant treatment*, % 28.8 39.4 24.7 0.08 

Percentage of 10% weight gain, % 35 32 37 0.6 

Weight gain (mean), %  6.3 3.2 6.6 0.3 

CMV infection, % 
    Recipient CMV infection (R+) 49.3 42.2 52.5 0.2 

Donor CMV infection (D+) 61.5 66.7 59.2 0.4 

Recipient and Donor CMV infection (R+D+) 27.6 28.9 27 0.8 

Calcineurin inhibitors, % 
    TAC 35 56 26 

<0.001 
CSA 65 44 74 

Incidence of NODAT, % 29 - -   

CMV: Citomegalovirus, TAC: Tacrolimus, CSA: Cyclosporine, NODAT: New Onset Diabetes After Transplant. 

# comparison between NODAT and non-NODAT 

* Patients considered had neither diabetes nor hypercholesterolemia before trasplantation. Patients were treated with statins. 
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Table 3. Odds Ratio of NODAT development in the main sample for a model integrating clinical and genetic factors 
 

  
Non-genetic model 

 
w-GRS 1 

 
w-GRS 2 

 
w-GRS 3 

 
w-GRS All SNPs 

Covariate 
 

OR 95% CI p-value 
 

OR 95% CI p-value 
 

OR 95% CI p-value 
 

OR 95% CI p-value 
 

OR 95% CI p-value 

Clinical 
                    Age 
 

1.01 1.00-1.03 0.08 
 

1.01 1.00-1.03 0.09 
 

1.01 1.00-1.03 0.08 
 

1.01 1.00-1.03 0.07 
 

1.01 1.00-1.03 0.07 

Women 
 

0.77 0.52-1.14 0.2 
 

0.78 0.52-1.15 0.22 
 

0.84 0.56-1.25 0.4 
 

0.78 0.52-1.15 0.21 
 

0.83 0.55-1.23 0.36 
Kidney 
transplanted 

 
0.67 0.44-1.04 0.07 

 
0.67 0.43-1.03 0.07 

 
0.65 0.42-1.01 0.06 

 
0.67 0.43-1.03 0.07 

 
0.63 0.40-0.98 0.04 

Baseline BMI 
 

1.05 1.01-1.10 0.01 
 

1.06 1.01-1.10 0.01 
 

1.07 1.02-1.11 0.004 
 

1.06 1.01-1.10 0.01 
 

1.06 1.02-1.11 0.008 

Living donor 
 

0.76 0.49-1.17 0.22 
 

0.78 0.49-1.20 0.26 
 

0.85 0.54-1.32 0.46 
 

0.78 0.50-1.20 0.27 
 

0.85 0.54-1.34 0.49 
Induction 
treatment 

 
0.62 0.41-0.94 0.02 

 
0.62 0.41-0.95 0.02 

 
0.62 0.40-0.95 0.03 

 
0.6 0.39-0.92 0.02 

 
0.62 0.40-0.96 0.03 

Treatment 
                    CSA 

 
0.65 0.31-1.41 0.26 

 
0.59 0.28-1.29 0.17 

 
0.66 0.31-1.49 0.3 

 
0.69 0.32-1.51 0.33 

 
0.68 0.31-1.53 0.33 

TAC 
 
1.72 0.87-3.59 0.13 

 
1.62 0.81-3.39 0.18 

 
1.65 0.81-3.54 0.18 

 
1.71 0.86-3.61 0.14 

 
1.73 0.85-3.73 0.14 

Antihepatitis C 
 

1.22 0.63-2.31 0.54 
 

1.23 0.63-2.33 0.53 
 

1.28 0.65-2.45 0.46 
 

1.18 0.60-2.23 0.62 
 

1.27 0.65-2.43 0.48 

Genetic 
                    w-GRS           1.01 0.94-1.10 0.67   1.09 1.04-1.15 0.001   1.14 1.01-1.29 0.03   1.08 1.03-1.12 0.0005 

OR: Odds Ratio. CI: Confidence Interval. w-GRS: Weighted Genetic Risk Score. CSA: Cyclosporine, TAC: Tacrolimus 

w-GRS 1: Voight et al., Nat Genet. 2010;42(7):579-89 ; w-GRS 2 : Mahajan et al., Nat Genet. 2014;46(3):234-44 ; w-GRS 3 : McCaughan et al., J Am Soc Nephrol. 
2014;25(5):1037-49 
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Table 4. Odds Ratio of NODAT development in the replication sample for a model integrating clinical and genetic factors 
 

Covariate 
  Non-genetic model   w-GRS 1 

 
w-GRS 2 

 
w-GRS 3   w-GRS All SNPs

# 

 
OR 95% CI p-value 

 
OR 95% CI p-value 

 
OR 95% CI p-value 

 
OR 95% CI 

p-
value 

 
OR 95% CI p-value 

     Clinical 
             

              

Age 
 

1.04 1.00-1.10 0.04 
 

1.04 1.00-1.09 0.04 
 

1.04 0.99-1.09 0.08 
 

         1.04 0.99-1.09   0.07 

Women 
 

0.43 0.17-1.05 0.07 
 

0.43 0.17-1.05 0.07 
 

0.38 0.14-1.00 0.06 
 

         0.39 0.14-1.02   0.06 

Baseline BMI 
 

1.13 1.03-1.25 0.02 
 

1.13 1.03-1.25 0.02 
 

1.17 1.05-1.31 0.004 
 

         1.18 1.06-1.32   0.003 

TAC (vs CSA) 
 
3.13 1.31-7.78 0.01 

 
3.2 1.32-8.04 0.01 

 
2.89 1.14-7.6 0.03 

 
         2.97 1.17-7.8   0.02 

Kidney 
transplanted 

 
0.84 0.33-2.22 0.73 

 
0.85 0.33-2.25 0.75 

 
0.71 0.25-1.99 0.51 

 
         0.73  0.26-2.04  0.54 

     Genetic 
             

              

w-GRS           0.97 0.81-1.15 0.73   1.06 0.94-1.21 0.32            1.02  0.93-1.14  0.58 

OR: Odds Ratio, CI: Confidence Interval, w-GRS: Weighted Genetic Risk Score. CSA: Cyclosporine, TAC: Tacrolimus 
#
includes w-GRS 1 and w-GRS 2 

w-GRS 1: Voight et al., Nat Genet. 2010;42(7):579-89 ; w-GRS 2 : Mahajan et al., Nat Genet. 2014;46(3):234-44 ; w-GRS 3 : McCaughan et al., J Am Soc Nephrol. 
2014;25(5):1037-49 
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Table 5. Discrimination parameters of clinical and genetic (i.e. w-GRS 2, w-GRS 3) models for NODAT prediction at one year in the main sample 
 

NODAT: 140   
non-NODAT: 498 

AUROC Specificity Sensitivity Accuracy LRT-p IDI [95% CI] NRI (continuous) [95% CI] NNG 

Model 
 

p-
value  Net correctly reclassified p-value 

 

Clinical model 0.65 0.74 0.53 0.69 

0.001 0.01 [ 0.004 - 0.03 ] 0.008 0.38 [0.20 - 0.57] 0.00004 n.c 
Clinical and 
genetic*risk score 
model 

0.69 0.60 0.74 0.63 

Model 
  

  

 

Clinical model 0.66 0.73 0.55 0.69 

0.10 0.004 [ -0.001 - 0.009 ] 0.18 0.13 [-0.06 - 0.31] 0.17 n.c 
Clinical and 
genetic** risk 
score model 

0.67 0.64 0.66 0.64 

Model 
  

  

 

Clinical model 0.66 0.64 0.63 0.64 

0.0004 0.02 [ 0.006 - 0.03 ] 0.004  0.24 [0.05 - 0.43] 0.01 25 
Clinical and 
genetic*** risk 
score model  

0.69 0.71 0.58 0.68 

w-GRS: weighted Genetic Risk Score, CI: Confidence Interval, AUROC: Area Under the Receiver Operating Characteristics curve, LRT: Likelihood Ratio Test, IDI: Integrated 
Discrimination Improvement, NRI: Net Reclassification Improvement, NNG: Number Needed to Genotype 
*integrates w-GRS 2 (Mahajan et al., Nat Genet. 2014;46(3):234-44) 
** integrates w-GRS 3 (McCaughan et al., J Am Soc Nephrol. 2014;25(5):1037-49) 
***integrates w-GRS 2 + 3 
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Figure 1. Association of the clinic score with NODAT in the main sample 
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5. Project V 

 

Association of socioeconomic factors with metabolic parameters in psychiatric patients under 

psychotropic treatment  

Background: Weight gain and metabolic abnormalities are a well known problem in the psychiatric 

population. This effect has been attributed to the psychotropic treatment, to the illness itself, but also to 

lifestyle. It is therefore important to explore also social factors in metabolic studies with psychiatric patients. 

In the general population, socioeconomic status (SES) has been described as well as a moderator of obesity, 

with clear patterns in women but contradictory results in men. As a way of integrating socioeconomic factors, 

the Swiss Socioeconomic Position (SEP) index was developed by a group of researchers in the Institute of 

Social and Preventive Medicine of the University of Bern integrating the socioeconomic position by 

neighborhood based on income, education, occupation and housing conditions. To our knowledge, no 

longitudinal studies have yet evaluated the impact of SES on metabolic parameters in psychiatric population 

under psychotropic treatment.  

Aim and Methods: In the present study we wanted to determine how SES, as well as the Swiss SEP index 

are associated with metabolic outcomes in psychiatric patients. 491 individuals from 18 to 65 years old who 

gave their informed consent and started or switched to a psychotropic treatment (i.e. aripiprazole, 

amisulpride, clozapine, olanzapine, quetiapine, risperidone, lithium and/or valproate) were followed up for 12 

months. Clinical (i.e. age, sex, treatment, treatment duration) and socioeconomic covariates (i.e. occupational 

status and living alone or not) were obtained from medical or administrative files. Metabolic-related outcomes 

(i.e. BMI, weight, height, waist circumference (WC), lipid profile) were obtained for each individual during the 

routine medical check-ups. From personal postal address, the address was geocoded and a SEP index was 

assigned to each individual.  
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Results: Preliminary analysis showed an influence of occupational status, with disability pension and living 

alone being associated with stronger weight gain. Multivariate analysis integrating clinical (i.e. age, sex, 

treatment, time of treatment) and socioeconomic covariates (i.e. occupational status, living alone, SEP index) 

showed that socioeconomic covariates were associated with weight gain, BMI and/or WC over time. Patients 

who were employed had lower BMI (-1.72 [-2.60 - (-)0.91]kg/m2) and WC (-4.56 [-6.88 - (-)2.20]cm) when 

compared to individuals receiving disability pension (p-value <0.001). In turn, weight gain was higher in those 

employed individuals (1.18%) compared to individuals receiving disability pension. Employed individuals had 

lower baseline BMI (22.2 kg/m2) compared to the disability pension group (24.5 kg/m2); a known risk factor 

for strong drug induced weight gain during psychotropic treatment. On the same line, the SEP index was 

inversely correlated with BMI and WC (a 10% increase in the SEP index corresponded to 0.4 kg/m2 and 1 

cm decrease, respectively). SES is a critical factor in psychiatric populations at high risk of weight gain and 

should be considered when planning interventions to moderate metabolic effects in such populations. 

 

Manuscript in preparation 

  



Results  119 

 
 

6. Project VI   

 

Risk factors for increasing weight and BMI after solid organ transplantation – a secondary data 

analysis of the Swiss Transplant Cohort Study 

This is an ongoing collaboration with the Institute of Nursing Science, University of Basel, Switzerland (S. 

Beckmann, SM. De Geest) which integrates the Swiss Transplant Cohort Study Psychosocial Interest Group.  

The aim of the present work is to describe the evolution of weight and BMI and to determine the biomedical 

(i.e. treatment), biological (i.e. age, gender, pre-transplantation BMI), genetic (i.e. genetic risk scores), 

behavioral (i.e. smoking status), socioeconomic (i.e. level of education, marital and working status), and 

psychological (i.e. mental health quality of life) risk factors for post-transplanted weight and BMI gain in liver, 

kidney, heart and lung transplant recipients. The contribution in the present work will focus on providing 

genetic risk scores (GRS), interpreting and discussing the obtained results concerning GRS.   

 

Ongoing collaboration 
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In the present thesis work, we wanted to study the factors influencing weight gain and other metabolic side-

effects in high risk treated psychiatric and transplanted populations. The first part of the work (Projects I-

IV) focused on genetic determinants and the second part (Project V) explored the SES factors. The main 

results of this work can be summarized as follows: We showed the effect of a PCK1 gene polymorphism on 

BMI, waist circumference and other metabolic-related outcomes (Project I). The PCK1 is a downstream gene 

of the CRTC1; a gene previously studied in our laboratory and which was associated with BMI in psychiatric 

populations. A pathway analysis combining CRTC1 and PCK1 variants confirmed that carriers of protective 

alleles had lower BMI over time compared to non-carriers. Projects II, III and IV, show how several 

polymorphisms combined into genetic risk scores were associated with BMI and NODAT in psychiatric and 

transplanted cohorts. These polymorphisms were initially obtained from GWAS and CG studies conducted in 

large general and diabetic populations. In addition, in transplanted populations, genetic factors improved the 

ability to predict 10% of weight gain and NODAT development one year after transplantation. Finally, in the 

Project V we showed, over time, how SES factors (i.e. living alone, occupational status and SEP index) are 

related to weight change, BMI and other obesity-related outcomes in a psychiatric sample under psychotropic 

treatment. An ongoing study (Project VI) will also study how SES, clinical, psychosocial as well as genetic 

factors influence the evolution of BMI and weight in a SOT cohort.   

1. Environmental aspects 

1.1 The psychiatric populations 

The psychiatric populations studied here showed, as described previously, (120, 129) the susceptibility of 

metabolic-related side effects compared to the general population. In general, in the present work, the studied 

metabolic traits had weaker or no significant effects in general population when compared to psychiatric 

samples (i.e. see Project I), suggesting that psychiatric populations are at high risk of obesity and/or 

metabolic side-effects. Among the three psychiatric groups significant differences were observed concerning 

obesity prevalence (detailed results presented in the descriptive tables of the manuscripts; see Project I and 
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II). Overall, the Geneva outpatient setting had the highest prevalence of obesity probably due to specific 

psychotropic drug effect, since they had the highest prescription of olanzapine and clozapine, both molecules 

being stronger inducers of weight gain among psychotropic drugs (50). Different effect sizes, detected in the 

Suivi Metabolique versus the outpatient setting cohorts (i.e. Geneva and Ambulatoire), could be explained by a 

lower prevalence of obesity at baseline and a shorter treatment duration in the Suivi Metabolique, because both 

baseline BMI and treatment duration are moderators of weight gain (130). However, to exclude a winner's 

curse event, these results need to be replicated in other short treatment duration samples. Interestingly, in the 

Suivi Metabolique, some socio-economic factors were also related to metabolic outcomes. More specifically, 

individuals with disability pension (occupational status) had higher BMI than those who work or those 

unemployed. Similar results were found in a cross-sectional study conducted in schizophrenia patients where 

individuals in a sheltered employment had higher prevalence of obesity than patients with no earned income 

(131). Altogether, these results show higher BMI in individuals receiving social assistance. On the other hand, 

weight gain was lower among individuals under psychotropic treatment with disability pension. This could be 

explained by the previously reported stronger weight gain in patients with low baseline BMI (130). In 

addition, living alone was positively associated with weight gain. This finding is in line with a previous study 

in general population showing that living alone predicts weight gain among women (132). Finally, when 

analyzing the SEP index (which integrates the socioeconomic position by neighborhood based on income, 

education, occupation and housing conditions) an inverse correlation was found with BMI during treatment. 

These results are in agreement with a previous study which found positive associations between a low SEP 

index and some causes of death (133).  

1.2 The transplanted populations 

Two transplanted populations are described in the present thesis work and although the prevalence of 

NODAT one year after transplantation is similar between both samples, some differences have been 

observed. The immunosuppressant cohort had higher percentage of weight gain recipients which could be 

explained by the fact that individuals were younger and had higher percentage of deceased donors when 
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compared to STCS. Also, high percentage of cyclosporine prescription was found in the Immunosuppressant 

cohort. As described in the Introduction chapter, young age, deceased donors and cyclosporine treatment 

have a negative impact on BMI, increasing the risk of gaining weight.  

Concerning the organ, kidney was the first transplanted organ in both samples followed by liver and lung. 

Although associated with a deleterious effect on graft survival and graft function, weight gain after 

transplantation has also been described as a positive event. This is the case of lung transplanted recipients 

where recipients gaining more weight in the first year (11%-84% proportion of baseline weight) had a better 

survival compared to those with less weight gain (-32%-10%) (134).  Due to our sample sizes, we could only 

conduct stratified analysis by kidney / non kidney recipients. 

 

Altogether these findings show that environmental factors play a role on metabolic outcomes and factors 

such as treatment, treatment duration, transplanted organ and/or socioeconomic determinants should be 

considered in future studies.   

2. Genetic aspects 

Concerning the genetic factors, several approaches have been used in the present work: Firstly, a candidate 

gene approach (monogenic analysis) and secondly, a genetic risk score approach (polygenic analysis). 

Common obesity and diabetes are polygenic diseases. Thus, a combination of several genes which can better 

represent the genetic profile is warranted. However, a monogenic and candidate gene analysis is also of 

interest if the aim of the study is to focus precisely on that gene or pathway and its association with the 

outcome. The motivation of the monogenic analysis (in Project I) was the fact that PCK1 is a downstream 

gene of CRTC1; a gene playing a role on weight regulation in mice (135) and a gene associated with BMI in 

psychiatric populations (120). In addition, PCK1 is a key enzyme of the gluconeogenesis regulation. In this 

manuscript, we integrated both CRTC1 and PCK1 protective alleles finding lower effects on the BMI 

compared to the PCK1 protective alleles alone. 
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The Projects II, III and IV, focused on BMI-related and diabetes-related polymorphisms/genes integrated 

in w-GRS. Most of the genes were obtained from GWAS studies (31, 34, 110, 136, 137), but also from CG 

approaches (i.e. antipsychotic-induced weight gain-related polymorphisms (66)) and from gene expression 

analysis (108). One of the major issues of GWAS is to elucidate the biological pathways behind the variants 

associated with the phenotype, since they are hypothesis free. Regarding BMI, when exploring further the role 

of the genes in or nearby the region of polymorphisms, the implicated genes are related to glutamate signaling 

(CADM2, GRID1, NEGR1) (138, 139) which integrates pathways responding to changes in feeding and 

fasting (140), or genes causing monogenic obesity syndromes (MC4R, POMC) (141) or eventually genes 

related to insulin secretion, energy metabolism and/or adipogenesis (TCF7L2, GIPR, IRS1) (31). Finally, 

these genes are mostly expressed in the hypothalamus; one of the key-regulation sites of body mass (31). 

Genes whose expression was associated with weight change in kidney transplant recipients (108) were related 

to diabetes, obesity and neurological concepts such as dopamine, nicotine, and cognition (108).  

Concerning polymorphisms related to diabetes, most of them have been associated with indices of beta-cell 

function (i.e. TCF7L2, KCNQ1) and insulin sensitivity (i.e. KLF14). FTO has been also associated with 

reduced insulin sensitivity; an action that would be driven by obesity (136). Regarding the GWAS NODAT-

related variants presented in Project IV, they would be mainly related to beta-cell dysfunction and more 

specifically to beta-cell apoptosis. Insulin resistance may contribute to NODAT but this has not been 

conclusively proven (142).  

 

All these results taken together confirm that genetic factors contribute significantly to the complex nature of 

the studied metabolic outcomes. The fact that the BMI explained variability remains low suggests the 

contribution of other factors potentially influencing the BMI (discussed further in limitations and 

strengths, Future perspectives). Finally, the w-GRS which was significantly associated with BMI in the 

psychiatric samples was also significantly associated with BMI in the transplanted population, validating this 

score in other specific populations.  
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3. Strengths and Limitations 

All the research conducted in the present work is based on observational studies, resembling more real life 

situations. Also, many factors (genetic and environmental) influenced the studied outcomes but we could not 

control all of them. Thus, measuring exact food and nutrient intake and individuals’ physical activity in order 

to assess energy expenditure is a difficult issue in an observational setting. 

The follow-up design increases power and allows establishing causality. More longitudinal studies are needed; 

although they are expensive and there is a high risk of drop out. 

Working with gene candidates implies several issues which must be considered. Although hypothesis-driven, 

studying only one gene at a time may lead to non-replication of the results since this may not be 

representative enough of the variability and of the effect of a complex phenotype. GWAS, on the contrary, 

uses a hypothesis-free approach and allows for identification of several novel variants. However, results 

interpretation of GWAS can be a complicated issue, since no a priori biological approach is considered. In the 

present work, the best replicated GRS was obtained from a GWAS (i.e. GRS in Project II, Project III) with 

the BMI association results replicated in both psychiatric and transplanted populations.  

Since allele frequencies can greatly vary among ethnicities, the genetic results in the present work are only 

valid for Caucasian subjects. Nevertheless, it is worth mentioning that the results obtained in the present 

work with T2DM Caucasians came from variants tested in a large trans-ethnic meta-analysis (137).  

Replication of the results remains one of the main issues in pharmacogenetic research contributing to the 

challenging translation into clinical practice. GRS have the advantage of including a wider spectrum of genetic 

variants, with results remaining valid for various populations. This is the case of the 32 BMI-related 

polymorphisms which have been replicated in several populations including different ethnicities (143-145) in 

addition to the specific transplanted and psychiatric populations presented here.  
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4. Future perspectives 

Several attempts to further explore the biological impact of different genes have been conducted in our 

laboratory, for instance the influence of polymorphisms on gene expression in human peripheral blood 

mononuclear cells or in fibroblasts. However, this is laborious work and only a limited number of samples 

could be analyzed. In addition, some positive results could not be replicated (data not shown). The non-

replication or the negative results could be attributed to small sample size or the non-adequacy of tissue 

tested. Nowadays, powerful platforms concerning genotype specific-tissue expression, such as the GTEx 

project, are easily accessible and can save a lot of laborious work, while offering, at the same time, results on a 

large number of samples (146). GTEx project aims to collect and analyze multiple human tissues from 

general population donors who are extensively genotyped. This helps to identify genes whose expression is 

affected by genetic variation and/or to provide a better understanding of the gene regulation. Recently, other 

projects such as the Encyclopedia of DNA Elements (ENCODE) identify all functional regions in the human 

genome. The data generated from this project is accessible through public databases (147, 148). It is described 

that 90% of the SNPs linked to diseases and detected through GWAS are found outside of protein-coding 

region (i.e. non-coding DNA) (148). Nowadays, it is well-known that much of this functional non-coding 

DNA participates in the regulation of the expression of coding genes (149). Thus, with the availability of such 

databases, molecular genetic studies will better characterize the role of enhancers, amplifiers, regulators.  

The significant results concerning GRS methodology referred to well established polymorphisms found in 

large meta-analysis of GWAS. From a biological point of view, many of these genes functions are unknown. 

The analysis of a whole metabolic pathway (integrating the genes in a polygenic score) and its association with 

metabolic parameters would be another way of exploring genetic influences on specific phenotypes. A study 

based on genetic architecture of circulating lipid levels showed that pathway analysis based on the best 

predictive polygenic score was more informative than the pathway analysis based on the genome-wide 

significant findings (150). Interestingly, another study about folate levels and negative symptoms severity in 

schizophrenia based part of the analysis on genetic risk scores constructed with polymorphisms implicated in 

the folate metabolic pathway (151). In addition, a GRS association analysis of gene variants implicated in 



Discussion and Future perspectives  129 

 
 

oxidative stress and inflammation pathways (potentially linked to BMI, obesity and psychiatric illness, see 

Introduction) needs to be further explored. From a methodological point of view, the fact of including all 

polymorphisms of the pathway in a polygenic score will enrich the GRS for positive associations; however, 

the GRS will certainly also include false-positive associations. Therefore, a pre-selection of the SNPs to 

include in the final GRS needs to be done in an independent discovery sample; large enough to have power to 

detect such association. 

Finally, many questions must be answered before genetic information can be appropriately translated into 

clinical practice for preventing complex metabolic disorders. From the genetic point of view, only little BMI 

variability is explained by genetic polymorphisms. This missing variability could be potentially explained by 

other variants than SNPs such as CNV or rare alleles, which are typically not included in the gene-candidate 

associations or GWAS. Data obtained by next generation sequencing techniques would allow taking into 

account other variants.  Epigenetic can also contribute to explaining the genetic variance. In addition, gene-

gene (or SNP-SNP) and gene-environment interaction effects represent potential sources of variance that 

need to be explored. To date, several gene polymorphisms have been associated with the variation on how 

people respond to environment (i.e. physical activity, hunger and intake of high-calorie meals) (152), 

emphasizing the fact that genetic factors should be considered together with environmental and clinical 

factors in order to better characterize the target population. Finally, before implementing genetic tests into 

clinical practice, a cost-benefit analysis is warranted in order to provide recommendations for policy and 

decision-making strategies. Figure 5, shows an integrative view of the key elements contributing towards 

personalized treatment. 
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Figure 5: An integrative view of personalized treatment (adapted from: (153)) 

 

5. Final conclusions 
 

Many aspects of genetics of obesity and of other metabolic outcomes still remain uncovered. Presently, 

genetic knowledge cannot yet be translated from bench to bedside given that more understanding is needed 

on their implication in energy balance regulation. 

In order to curb the obesity epidemic, a population-based multisectorial (i.e. by improving health policies, 

health services and preventive actions such as dietary advice) multi-disciplinary (e.g. from physicians, nurses, 

dieticians to biologists, bioinformatics or pharmacologists) and also culturally (e.g. developed versus 

developing world, westernized versus oriental cultures) approach is warranted. The present work suggests 

some clues for next steps towards personalized medicine in high risk populations. 
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Supplementary files. Project I: Association of PCK1 with Body Mass Index and other metabolic 
features in patients with psychotropic treatments 

 

eTable 1. Description of demographic and clinical psychiatric Caucasian samples. 

Characteristics 

Discovery 
Sample 
n = 478 

Replication 
Sample 1 
n = 168 

Replication 
Sample 2 
n = 188 

Combined 
sample 
n= 834 

Male,% 44 53 62 50 

Age, median (range), years 50 (12-96) 42 (19-64) 42 (19-69) 45 (12-96) 

Diagnosis         

Psychotic disorders,% 33.3 27.5 43.4 34.5 

Schizo-affective disorders,% 6.5 15.6 12.1 10 

Bipolar disorders,% 19.9 32.9 17 22.2 

Depression disorders,% 20.4 16.8 13.7 17.9 

Others diagnosis,% 19.9 7.2 13.7 15.4 

Initial BMI status
 ‡

         

BMI, median (range), kg/m
2 

 24 (13-44) 25 (15-46) 25 (16-46) 24 (13-46) 

Overweight (25≥ Initial BMI<30), %
 
 23 36 32 28 

Obese (Initial BMI≥ 30), %  14 15 15 14 

Current BMI status
 #

         

     BMI, median (range), kg/m
2
 25 (15-50) 28 (16-42) 27 (17-44) 25 (15-50) 

Overweight (25≥ Current BMI<30), % 26 30 34 27 

Obese (Current BMI≥ 30), % 18 40 27 24 

Initial waist circumference
‡
         

     WC, median (range), cm 90 (54-138) -- -- 87 (54-138) 

High WC ≥ 94cm (male), 88cm (female), %
 
 43 (n=315) -- -- 43 (n=315) 

Current waist circumference
 #

         

     WC, median (range), cm 93 (48 – 162) -- 98 (51-148) 95 (48-162) 

High WC ≥ 94 (male), 88 (female), %
 
 54 (n=592) -- 64 (n=182) 57 (n=774) 

Initial Lipid status
 ‡

         

   High LDL, % (n)
a 

9 (n=224) -- -- 9 (n=224) 

   High TG, % (n)
b 

19 (n=234) -- -- 19 (n=234) 

   Low HDL, % (n)
c 

25 (n=222) -- -- 25 (n=222) 

Current Lipid status
 #

         

   High LDL, % (n)
a 

14 (n=383) -- -- 15 (n=363) 

   High TG, % (n)
b 

28 (n=402) -- -- 28 (n=402) 

   Low HDL, % (n)
c 

27 (n=359) 28 (n=164) 19 (n=160) 26 (n=665) 

          

Smoker, % 41 60 75 50 
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Discovery 
Sample 
n = 478 

Replication 
Sample 1 
n = 168 

Replication 
Sample 2 
n = 188 

Combined 
sample 
n= 834 

Prescribed psychotropic drug        

Amisulpride, % 8 - 10 7 

Aripirazole, % 10 - 8 8 

Clozapine, % 8 14 9 9 

Olanzapine, % 10 16 12 11 

Quetiapine, % 31 18 23 28 

Risperidone, % 16 17 16 16 

Lithium, % 7 20 12 10 

Valproate, % 4 14 8 6 
Treatment duration, median (range), 
months 6 (1-12) 27.4 (3-333) 36 (1-390) 9 (1-390) 

   

‡ Before the current psychotropic treatment 

# For sample 1,3 : current observation ; for sample 2 : last follow-up 

-- Missing clinical values or obtained in non fasting conditions  

a. High LDL cholesterol : equal or higher than 4.1 mmol/L 

b. High triglycerides : equal or higher than 2.2 mmol/L 

c. Low HDL cholesterol : lower than 1 mmol/L 
BMI: body mass index, WC: waist circumference, LDL: low density lipoprotein, TG: triglycerides,  HDL: 
high density lipoprotein 
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eTable 2. HWE and PCK1 genotypes distribution among three psychiatric cohorts. 

rs11552145 Discovery sample Replication 1 Replication 2 Combined Sample 

GG 478 141 173 792 

GA 197 49 72 318 

AA 30 8 11 49 

HWE (p
$
-value) 0.40 0.68 1.00 0.08 

rs707555 Discovery sample Replication 1 Replication 2 Combined Sample 

CC 547 166 190 903 

CG 142 29 61 232 

GG 16 3 6 25 

HWE (p
$
-value) 0.28 0.80 1.00 0.12 

rs8123020 Discovery sample Replication 1 Replication 2 Combined Sample 

CC 546 140 193 879 

CT 149 55 62 266 

TT 11 3 2 16 

HWE (p
$
-value) 1.00 1.00 0.84 1.00 

rs2071023 Discovery sample Replication 1 Replication 2 Combined Sample 

CC 217 52 69 338 

CG 333 103 122 558 

GG 153 41 53 247 

HWE (p
$
-value) 0.96 1.00 1.00 1.00 

$
p-corrected value 
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eTable 3. Marginal analysis of the influence of PCK1 polymorphisms on BMI in the three psychiatric samples. 

  Discovery Sample
#
  Replication 1  Replication 2  Combined Sample* 

B
a

se
lin

e 
B

M
I 

rs11552145 AA G-allele p-value
$
  AA G-allele p-value  AA G-allele p-value  AA G-allele p-value 

n 22 354 
0.36 

 8 131 
0.49 

 10 169 
0.46 

 40 654 
0.05 

BMI [kg/m
2
] (SE) 22.4 (0.7) 24.3 (0.3)  24.3 (1.4) 25.5 (0.4)  23.8 (0.7) 25 (0.4)  23.1 (0.5) 24.7 (0.2) 

rs707555 GG C-allele p-value
$
    

 

   

 

   

 n 10 366 
1.00 

         

BMI [kg/m
2
] (SE) 23.6 (6.7) 24.2 (5.1)          

rs8123020 TT C-allele p-value
$
             

n 10 366 
1.00 

   
 

   
 

   
 

BMI [kg/m
2
] (SE) 23.4 (3.1) 24.2 (5.2)          

rs2071023 CC G-allele p-value
$
  CC G-allele p-value  CC G-allele p-value  CC G-allele p-value 

n 122 277 
0.28 

 33 106 
0.66 

 46 130 
0.58 

 194 496 
0.048 

BMI [kg/m
2
] (SE) 23.6 (0.5) 24.4 (0.3)  24.8 (0.6) 25.6 (0.5)  24.5 (0.7) 25.0 (0.5)  24.0 (0.4) 24.8 (0.2) 

 Discovery Sample
#
  Replication 1  Replication 2  Combined Sample* 

C
u

rr
en

t 
B

M
I 

rs11552145 AA G-allele p-value
$
  AA G-allele p-value  AA G-allele p-value  AA G-allele p-value 

n 12 421 
0.08 

 8 160 
0.57 

 11 170 
0.80 

 30 742 
0.01 

BMI [kg/m
2
] (SE) 22.8 (2.9) 25.4 (5.4)  27.1 (1.3) 28.2 (0.4)  26.9 (1.6) 27.3 (0.4)  23.3 (0.6) 25.7 (0.2) 

rs707555 CC G-allele p-value
$
             

n 12 421 1.00 
 

   
 

   
 

    

BMI [kg/m
2
] (SE) 25.1 (6.1) 25.3 (5.4)          

rs8123020 TT C-allele p-value
$
             

n 10 423 
1.00 

   
 

   
 

    

BMI [kg/m
2
] (SE) 25.8 (2.6) 25.3 (5.4)          

rs2071023 CC G-allele p-value
$
  CC G-allele p-value  CC G-allele p-value  CC G-allele p-value 

n 143 333 
0.018 

 39 128 
0.41 

 49 132 
0.88 

 287 722 
0.003 

BMI [kg/m
2
] (SE) 24.5 (0.5) 25.7 (0.3)  27.5 (0.7) 28.3 (0.5)  26.9 (0.7) 27.3 (0.5)  25.3 (0.3) 26.4 (0.2) 

# For current BMI, only significant findings in the discovery sample were further tested for replication. The same SNPs were also tested for replication at the baseline BMI.  
*Only patients treated for up to 24 months. 

 
$
p-corrected value for the discovery sample. 
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eTable 4. Selected polymorphisms description and Minor Allele Frequencies (MAF). 

variant position in gene type of variation 
major / 
minor allele 

MAF in combined 
psychiatric sample 

MAF in 
Caucasians 

rs11552145 chr 20:56138648 missense Glu>Lys G/A 0.17 0.16 

rs707555 chr 20:56137895 missense Leu>Val G/C 0.12 0.14 

rs8123020 chr 20:56137061 intron variant  C/T 0.12 0.12 

rs2071023 chr 20:56135934 5' near gene C/G 0.46 0.48 
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eFigure 1: Pairwise linkage disequilibrium (LD) in CEU HapMap samples for PCK1 
polmorphisms. LD expressed as r2. 

* SNPs tested in the present study, including SNPs in LD with one of the four analyzed SNPs. rs2071023 (not present in the figure) 
is in LD with rs1062600 (r

2
=1), rs1062601 (r

2
=0.81) and rs1042523 (r

2
=0.82). rs11552145 is in LD with rs6070157 (r

2
=0.97). 

rs8123020 is in LD with rs8192708 (r
2
=0.94). 

 

 

  

* * 
* * * * * * 
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Supplementary files. Project II: Association of Genetic Risk Scores (GRS) with Body Mass Index in 
Swiss Psychiatric Cohorts 
 

S1 Table. SNP description and HWE analysis of 32 SNPs previously associated 
with BMI in a Genome Wide Association Study [1]. 
 

nearest 
gene 

SNP 
Major/minor 

allele 
Chr position 

MAF  
(Caucasian) 

HWE in the  
Sample 1 
(p-value*) 

HWE in all 
psychiatric samples 

(p-value*) 

CADM2 rs13078807 A/G 3:85884150 0.20 0.34 0.08 

FTO rs1558902 T/C 16:53800954 0.44 0.88 0.45 

GPRC5B rs12444979 C/T 16:19933600 0.12 0.99 0.55 

LRP1B rs2890652 T/C 2:142959931 0.16 0.63 0.88 

BDNF rs10767664 C/A 11:27728539 0.24 0.19 0.28 

TFAP2B rs987237 A/G 6:50803050 0.20 0.02 0.08 

NRXN3 rs10150332 T/C 14:79936964 0.22 0.09 0.01 

MC4R rs571312 C/A 18:57839769 0.23 0.19 0.05 

MAP2K5 rs2241423 G/A 15:68086838 0.23 0.21 0.12 

PRKD1 rs11847697 C/T 14:30501885 0.05 0.06 0.13 

TNNI3K rs1514175 G/A 1:74991644 0.44 0.86 0.91 

SEC16B rs543874 A/G 1:177889480 0.20 0.79 0.99 

SLC39A8 rs13107325 C/T 4:103188709 0.08 0.42 0.16 

NUDT3 rs206936 A/G 6:34302869 0.20 0.07 0.35 

ZNF608 rs4836133 G/A 5:124330522 0.47 0.36 0.07 

MTIF3 rs4771122 A/G 13:28020180 0.26 0.91 0.87 

MTCH2 rs3817334 C/T 11:47650993 0.42 0.53 0.67 

FLJ35779 rs2112347 T/G 5:75015242 0.38 0.08 0.04 

TMEM18 rs2867125 C/T 2:622827 0.18 0.10 0.23 

TMEM160 rs3810291 A/G 19:47569003 0.34 0.82 0.01 

RBJ / POMC rs713586 T/C 2:25158008 0.46 0.33 0.14 

NEGR1 rs2815752 A/G 1:72812440 0.37 0.35 0.58 

KCTD15 rs29941 G/A 19:34309532 0.32 0.58 0.30 

PTBP2 rs1555543 C/A 1:96944797 0.42 0.40 0.14 

ETV5 rs9816226 C/T 3:185834290 0.22 0.10 0.98 

GNPDA2 rs10938397 A/G 4:45182527 0.42 0.66 0.32 

RPL27A rs4929949 T/C 11:8605739 0.50 0.78 0.89 

FAIM2 rs7138803 G/A 12:50247468 0.34 0.22 0.38 

FANCL rs887912 C/T 2:59302877 0.31 0.14 0.14 

QPCTL rs2287019 C/T 19:46202172 0.19 0.23 0.10 

LRRN6C rs10968576 A/G 9:28414339 0.31 0.13 0.31 

SH2B1 rs7359397 C/T 16:28885659 0.34 0.89 0.41 

HWE: Hardy-Weinberg Equilibrium. MAF: Minor Allele Frequency.*p-value corrected threshold < 0.001
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S2 Table.  SNP description and HWE analyses of 20 Candidate Gene SNPs associated with antipsychotic induced 
weight gain. 

nearest gene SNP 
Major/Minor 

Allele 
MAF  

(Caucasian) 

HWE in 
the 

Sample 1  
(p-value*) 

HWE in all 
psychiatric 

samples 
(p-value*) 

mutation type 
effect 
allele 

Effect on BMI 

animal / in vitro 
studies related to 

obesity or metabolic 
parameters 

clinical 
studies 

CRTC1 rs6510997 C>T 0.17 0.16 0.23 Intron variant T-allele decreased weight [2] [3] 

HSD11β1 rs3753519 C>T 0.10 0.56 0.86 Intron variant T-allele decreased weight [4] [5] 

MCHR2 rs6925272 C>T 0.37 0.13 0.20 Intron variant T-allele decreased weight [6] [7] 

PCK1 rs11552145 G>A 0.16 0.10 0.02 
Missense variant 

(Glu -> Lys) 
AA decreased weight [8] [9] 

CRTC2 rs8450 G>A 0.30 0.71 0.03 
3 prime UTR 

variant 
AA increased weight [10] [11] 

IRS2 rs1411766 G>A 0.36 0.06 0.11 
Intergenic 

variant 
A-allele increased weight [12] [13] 

PPARGC1A rs8192678 C>T 0.36 0.52 0.20 
Missense variant 

(Gly -> Ser) 
T-allele decreased weight [14] [15] 

FAAH rs324420 C>A 0.21 0.60 0.75 
Missense variant 

(Pro -> Thr) 
A-allele 

More frequent in patients 
with 7% of weight gain 

[16] [17] 

INSIG2 rs17587100 A>C 0.10 0.68 0.47 
Intergenic 

variant 
C-allele change in BMI [18] [19] 

PPARG rs1801282 G>A 0.12 0.15 0.24 
Missense variant 

(Pro -> Ala) 
A-allele weight loss [20] [21, 22] 

PRKAA1 rs10074991 G>A 0.29 0.09 0.08 Intron variant A-allele change in weight [23] [24] 

SCARB1 rs4765623 C>T 0.32 0.78 0.50 Intron variant T-allele 
weight gain in the 

olanzapine-treated group 
[25] [26] 

TNF rs1800629 G>A 0.14 0.04 0.07 
Upstream gene 

variant 
GG weight gain [27] [28] 

ADRA2A rs1800544 C>G 0.26 0.52 0.63 
Upstream gene 

variant 
C-allele weight gain [29] [30, 31] 

CNR1 rs806378 C>T 0.27 0.31 0.65 Intron variant T-allele weight gain [32] [33, 34] 

DRD2 rs1800497 G>A 0.18 0.12 0.32 Intron variant C-allele weight gain [35] [36] 

HTR2A rs6313 G>A 0.44 0.32 0.32 
Synonymous 

variant (Ser -> 
Ser) 

A-allele weight gain [37] [38, 39] 

LEPR rs1137101 A>G 0.49 0.12 0.11 
Missense variant 

(Gln -> Arg) 
G allele weight gain [40] [41] 

ADIPOQ rs17300539 G>A 0.07 0.63 0.64 
Upstream gene 

variant 
G-allele decreased risk of obesity [37] [24, 42] 

LEP rs7799039 G>A 0.46 0.18 0.24 
Upstream gene 

variant 
A-allele weight gain [37] [37] 

HWE: Hardy-Weinberg Equilibrium. MAF: Minor Allele Frequency.*p-value corrected threshold < 0.001
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S3 Table. Description of SNPs previously associated with Diabetes in GWAS [43]. 
 

Chr position SNP 
Major/Minor 

Alleles 
MAF in 

Caucasians Gene Position 

10:114758349 rs7903146 C>T 0.17 TCF7L2 intron-variant 

11:72433098 rs1552224 A>C 0.07 ARAP1 utr-variant-5-prime 

2:227020653 rs7578326 A>G 0.30 IRS1 intron-variant 

10:94465559 rs5015480 T>C 0.42 - intergenic 

2:60584819 rs243021 A>G 0.48 - intergenic 

11:92673828 rs1387153 C>T 0.41 - intergenic 

11:2691471 rs231362 G>A 0.25 KCNQ1 intron-variant 

5:76424949 rs4457053 A>G 0.12 ZBED3 intron-variant 

9:22133284 rs10965250 G>A 0.23 - intergenic 

X:152899922 rs5945326 A>G 0.25 - intergenic 

10:104844872 rs7092200 T>C 0.38 - intergenic 

6:152790573 rs9371601 T>G 0.37 SYNE1 intron-variant 

8:95960511 rs896854 C>T 0.46 TP53INP1 intron-variant 

3:185529080 rs1470579 A>C 0.46 IGF2BP2 intron-variant 

7:28196222 rs849134 A>G 0.30 JAZF1 intron-variant 

12:66174894 rs1531343 G>C 0.22 HMGA2 intron-variant 

8:118185025 rs3802177 G>A 0.29 SLC30A8 utr-variant-3-prime 

16:53845487 rs11642841 C>A 0.17 FTO intron-variant 

17:36098040 rs4430796 A>G 0.46 HNF1B intron-variant 

12:71634794 rs4760790 G>A 0.24 - intergenic 

6:20686996 rs9368222 C>A 0.30 CDKAL1 intron-variant 

7:130438214 rs13234407 G>A 0.34 - intergenic 

9:107669073 rs13284054 T>C 0.12 ABCA1 intron-variant 

4:6293350 rs10012946 C>T 0.19 WFS1 intron-variant 

 Chr: Chromosome. MAF: Minor Allele Frequency
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S4 Table. Description of SNPs previously associated with Psychiatric disease in GWAS [44]. 

 

chr: position SNP 
Major/Minor 

Alleles 
MAF in 

Caucasians Genes Position 

11:125550049 rs556884 A>G 0.12 ACRV1 intron-variant 

3:52818579 rs2239551 G>A 0.41 ITIH1 intron-variant 

10:104844872 rs7092200 T>C 0.38 - intergenic 

6:152790573 rs9371601 T>G 0.37 SYNE1 intron-variant 

8:4188511 rs10866968 C>T 0.41 CSMD1 intron-variant 

10:62181128 rs10994338 G>A 0.13 ANK3 intron-variant 

10:104660004 rs11191454 A>G 0.12 AS3MT intron-variant 

10:104906211 rs11191580 T>C 0.14 NT5C2 intron-variant 

8:89574375 rs13263450 G>T 0.13 - intergenic 

Chr: Chromosome. MAF: Minor Allele Frequency
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S5 Table. Allele effects (β-coefficients) calculated from the general population for 
the 52 SNPs.  

Gene SNP Allele Effect 
Per allele effect 
(β-coefficient*) 

p-value 

BDNF rs10767664 A 0.048 1.2E-19 

CADM2 rs13078807 G 0.033 5.4E-10 

ETV5 rs9816226 T 0.048 4.7E-18 

FAIM2 rs7138803 A 0.035 5.2E-16 

FANCL rs887912 T 0.026 2.4E-08 

FLJ35779 rs2112347 T 0.028 1.6E-10 

FTO rs1558902 A 0.080 2.9E-75 

GNPDA2 rs10938397 G 0.042 5.4E-21 

GPRC5B rs12444979 C 0.050 2.7E-15 

KCTD15 rs29941 G 0.032 2.6E-12 

LRP1B rs2890652 C 0.036 2.0E-10 

LRRN6C rs10968576 G 0.029 3.8E-10 

MAP2K5 rs2241423 G 0.037 5.4E-13 

MC4R rs571312 A 0.056 2.0E-28 

MTCH2 rs3817334 T 0.030 2.0E-12 

MTIF3 rs4771122 G 0.029 1.3E-08 

NEGR1 rs2815752 A 0.038 1.7E-18 

NRXN3 rs10150332 C 0.031 1.4E-09 

NUDT3 rs206936 G 0.022 2.2E-05 

PRKD1 rs11847697 T 0.070 1.0E-09 

PTBP2 rs1555543 C 0.024 1.5E-08 

QPCTL rs2287019 C 0.037 2.0E-09 

RBJ POMC rs713586 C 0.026 6.9E-10 

RPL27A rs4929949 C 0.024 3.2E-08 

SEC16B rs543874 G 0.044 2.4E-16 

SH2B1 rs7359397 T 0.028 1.5E-10 

SLC39A8 rs13107325 T 0.055 2.9E-08 

TFAP2B rs987237 G 0.049 3.9E-19 

TMEM160 rs3810291 A 0.029 2.8E-09 

TMEM18 rs2867125 C 0.060 2.2E-26 

TNNI3K rs1514175 A 0.030 4.9E-12 

ZNF608 rs4836133 A 0.023 3.0E-07 

CRTC1 rs3746266# T 0.015 2.2E-02 

HSD rs3753519 C 0.003 6.5E-01 

PCK1 rs6070157# T 0.003 6.3E-01 

CRTC2 rs8450 C 0.004 3.7E-01 

IRS2 rs1411766 A 0.001 8.9E-01 

PPARGC1A rs8192678 T 0.0001 9.9E-01 

PRKAA1 rs10074991 A 0.006 2.3E-01 
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Gene SNP Allele Effect 
Per allele effect 
(β-coefficient*) 

p-value 

LEPR rs1137101 A -0.006 0.14 

INSIG2 rs17587100 A -0.006 0.42 

DRD2 rs1800497 A 0.014 0.01 

TNF rs1800629 A 0.003 0.60 

PPARG rs2197423# A 0.015 0.02 

FAAH rs324420 A 0.002 0.68 

ADRA2A rs1800544 A 0.003 0.51 

HTR2A rs6313 A -0.006 0.14 

SCARB1 rs7954697# A 0.006 0.18 

CNR1 rs806378 T -0.014 0.00 

MCHR2 rs7749425# T 0.003 0.47 

ADIPOQ rs17300539 A 0.013 0.18 

LEP rs7799039 A -0.003 0.56 

* β-coefficients are obtained from GIANT consortia # rs3746266 is a proxy of rs6510997 (r2=0.70), 
rs6070157 is a proxy of rs11552145 (r2=1), rs2197423 is a proxy of rs1801282 (r2=1), rs7954697 is a 
proxy of rs4765623 (r2=0.62), rs7749425 is a proxy of rs6925272 (r2=0.93) 
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S6 Table. Detailed characteristics of the combined sample stratified by gender. 
 

 
Men Women p-value 

  
 

375 375 

Score, mean (SD) 1.02 (0.13) 1.02 (0.13) 0.8 

  1st quartile of GRS, % 24 26 

0.1 

  2nd quartile of GRS, % 26 20 

  3th quartile of GRS, % 22 28 

  4th quartile of GRS, % 29 26 

Newly diagnosed and first episode, (%)** 23 30 0.1 

Age, median (range), years 40 (13-97) 49 (15-96) 0.0001 

Baseline BMI (kg/m2) * 24.6 (16-44) 24.1 (13-46) 0.004 

Current BMI (kg/m2) # 25.5 (17-50) 24.2 (15-47) 0.1 

Treatment prescription       

Ami, Ari, Li, Quet, Risp 70 70   
0.9 Clo, Olan, Valp 30                          30  

Treatment duration, median (range), months 9 (1-24) 6 (1-23) 0.05 

High waist circumference (WC ≥94 cm men, 88 
cm women); %  50 53 0.5 

Diagnostic, %       

   Psychotic disorders  49 34 

<0.001    Bipolar disorders  22 21 

   Depression  11 21 

Ami: amisulpride, Ari: aripiprazole, Li: lithium, Quet: quetiapine, Risp: risperidone, Clo: clozapine, Olan: 
olanzapine, Valp: valproate. WC: waist circumference 
* Before the current psychotropic treatment 
** Only for Sample 1 

# Last observed data 
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S7 Table. Detailed characteristics of the combined sample by first episode and 
newly diagnosed (FEND) patients. 
 

 
FEND Others 

p-value 

 
116 309 

Score, mean (SD) 1.02 (0.12) 1.01 (0.13) 0.2 

  1st quartile of GRS, % 21 26 

0.4 

  2nd quartile of GRS, % 22 22 

  3th quartile of GRS, % 26 25 

  4th quartile of GRS, % 30 26 

Men, % 37 46 0.10 

Age, median (range), years 58 (14-96) 51 (13-97) 0.4 

Baseline BMI (kg/m2) * 22.3 (13.4-38.2) 24.2 (14.3-44.5) 0.09 

Current BMI (kg/m2) # 23.4 (16.5-37.7) 26.0 (14.7-50.2) 0.01 

Treatment prescription       

Ami, Ari, Li, Quet, Risp 79 73                   
0.2  Clo, Olan, Valp 20 27 

Treatment duration, median (range), months 3 (1-12) 4 (1-23.8) 0.002 

High waist circumference (WC ≥94 cm men, 
88 cm women); %  41 50 0.2 

Diagnostic, %       

   Psychotic disorders  32 40 

<0.001    Bipolar disorders  8 22 

   Depression  20 16 

Ami: amisulpride, Ari: aripiprazole, Li: lithium, Quet: quetiapine, Risp: risperidone, Clo: clozapine, Olan: 
olanzapine, Valp: valproate.WC: waist circumference 

* Before the current psychotropic treatment 

# Last observed data 
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S8 Table. Weighted GRS association with BMI obtained from 32 SNPs of Genome Wide Association Studies. 
 
 

  n  
BMI difference between GRS (p90) and GRS (p10) [95% CI] 

p-value  

  at baseline at 12 months at 24 months 

Sample 1*  425 1.38 [0.21 – 2.57] 1.55 [0.21 – 2.88] 

 
0.01 

Sample 2 ** 148 -0.42 [-2.75 – 1.91] -0.49 [-3.29 – 2.29] -0.59 [-4.3 – 3.11] 0.8 

Sample 3 ** 177 2.02 [-0.002 – 4.04] 2.19 [-0.06 – 4.44] 2.38 [-0.35 – 5.13] 0.04 

Samples 2 and 3 **  325 1.14 [-0.38 – 2.68] 1.29 [-0.47 – 3.06] 1.46 [-0.76 – 3.69] 0.06 

All samples combined 750 1.31 [0.39 – 2.24] 1.47 [0.42 – 2.52] 

 
0.001 

FEND patients* 116 2.52 [0.31 – 4.73] 2.91 [0.32 – 5.50] 

 
0.01 

Men  375 2.05 [1.04 – 3.05] 2.29 [1.15 – 3.45] 
 

0.0001 

Women  375 0.59 [-0.53 – 1.71] 0.65 [-0.62 - 1.93] 
 

0.3 

GRS: Genetic Risk Score, p90: percentile 90 of GRS, p10: percentile 10 of GRS.  
*follow-up to 12 months of treatment. **follow-up to 24 months of treatment. 
 FEND: First Episode and Newly Diagnosed Patients
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S9 Table. Weighted GRS association with BMI obtained from 20 Candidate Genes SNPs. 
 

  n  
BMI difference between GRS (p95) and GRS (p5) [95% CI] 

p-value  

  at baseline at 12 months at 24 months 

Sample 1*  425 -0.03 [-1.39 – 1.32] -0.03 [-1.55 – 1.48]   0.96 

Sample 2 ** 143 1.66 [-1.22 – 4.55] 1.97 [-1.48 – 5.43] 2.37 [-2.10 – 6.85] 0.28 

Sample 3 ** 175 1.26 [-1.03 – 3.54] 1.36 [-1.17 – 3.89] 1.48 [-1.53 – 4.48] 0.31 

Samples 2 and 3 **  318 1.19 [-0.59 – 2.97] 1.33 [-0.71 – 3.38] 1.51 [-1.00 – 4.04] 0.21 

All samples combined 743 0.53 [-0.90 – 1.99] 0.42 [-0.65 – 1.51] 
 

0.46 

FEND patients* 116 -1.53 [-4.00 – 0.94] -1.75 [-4.62 – 1.11] 
 

0.22 

Men  374 1.16 [-0.05 – 2.38] 1.30 [-0.08 – 2.69]  0.11 

Women  369 -0.37 [-1.76 – 1.02] -0.41 [-1.97 – 1.15] 
 

0.66 

GRS: Genetic Risk Score, p95: percentile 95 of GRS, p5: percentile 5 of GRS.  
*follow-up to 12 months of treatment. **follow-up to 24 months of treatment.  
FEND: First Episode and Newly Diagnosed Patients 
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S10 Table. Weighted GRS association with BMI obtained from 20 SNPs of Candidate gene approach and 32 SNPs 
of Genome Wide Association Studies (52 SNPs). 
 

  n  
BMI difference between GRS (p95) and GRS (p5) [95% CI] 

p-value  

  at baseline at 12 months at 24 months 

Sample 1*  425 1.87 [0.49-3.26] 2.08 [0.53 - 3.63]   0.01 

Sample 2 ** 143 -0.20 [-2.79 – 2.39] -0.24 [-3.35 – 2.87] -0.29 [-4.36 – 3.79] 0.8 

Sample 3 ** 175 2.37 [0.13-4.61] 2.57 [0.08-5.06] 2.79 [-0.19-5.78] 0.04 

Samples 2 and 3 **  318 1.71 [-0.03 – 3.45] 1.92 [-0.07 – 3.92] 2.18 [-0.29 – 4.66] 0.06 

All samples combined 743 1.74 [0.68-2.80] 1.94 [0.75-3.14] 
 

0.001 

FEND patients* 116 3.19 [0.54-5.84] 3.66 [0.58-6.73] 
 

0.01 

Men  374 2.75 [1.57-3.93] 3.09 [1.74-4.45] 
 

0.0001 

Women  369 0.85 [-0.49 – 2.21] 0.94 [-0.57 – 2.47] 
 

0.3 

GRS: Genetic Risk Score, p95: percentile 95 of GRS, p5: percentile 5 of GRS.  
*follow-up to 12 months of treatment. **follow-up to 24 months of treatment. 
 FEND: First Episode and Newly Diagnosed Patients
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S1 Fig. Relationship between weighted genetic risk score and number of alleles 
(unweighted genetic risk score)
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S2 Fig. Evolution of Body Mass Index between Genetic Risk Score extreme 
percentiles (10%  and 90%): 

 

Boxplots show median values of BMI for each time of the treatment duration (solid horizontal line), 25th 

and 75th percentile values (box outline), the lowest and upper value within 1.5 Interquartile range 
(whiskers) and outlier values (open circles). (n) corresponds to individuals.  
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Supplementary files. Project III: Clinical and Genetic factors influencing Body Mass Index and risk 
prediction of weight gain in Solid Organ Transplant populations 

 
Table S1. SNP group#1 description (1) 

SNP Gene(s) 
Sample A Proxy  

(LD, r
2
) 

Sample B Proxy  
(LD, r

2
) 

Alleles 
Effect 
allele 

β SE P value 

rs13078807 CADM2 
  

A/G G 0.1 0.02 3.94E-11 

rs1558902 FTO rs1421085 (1)  rs1421085 (1) T/A A 0.39 0.02 4.8E-120 

rs12444979 GPRC5B 
  

C/T C 0.17 0.03 2.91E-21 

rs2890652 LRP1B 
not found in 

Sample A 
rs17834293 (0.7) T/C C 0.09 0.03 1.35E-10 

rs10767664 BDNF rs7103411 (1)  rs2030323 (1) A/T A 0.19 0.03 4.69E-26 

rs987237 TFAP2B 
  

A/G G 0.13 0.03 2.9E-20 

rs10150332 NRXN3 rs17109256 (1) rs17109256 (1) T/C C 0.13 0.03 2.75E-11 

rs571312 MC4R 
  

C/A A 0.23 0.03 6.43E-42 

rs2241423 MAP2K5 
  

G/A G 0.13 0.02 1.19E-18 

rs11847697 PRKD1 
not found in 

Sample A 
rs10134820 (0.74) C/T T 0.17 0.05 5.76E-11 

rs1514175 TNNI3K 
  

G/A A 0.07 0.02 8.16E-14 

rs543874 SEC16B 
  

A/G G 0.22 0.03 3.56E-23 

rs13107325 SLC39A8 
  

C/T T 0.19 0.04 1.5E-13 

rs206936 NUDT3 
  

A/G G 0.06 0.02 3.02E-08 

rs4836133 ZNF608 rs6864049 (1) rs6864049 (1) C/A A 0.07 0.02 1.97E-09 

rs4771122 MTIF3 
rs9512699 

(0.87) 
rs1006353 (0.74) A/G G 0.09 0.03 9.48E-10 

rs3817334 MTCH2 rs7124681 (1) 
 

C/T T 0.06 0.02 1.59E-12 

rs2112347 FLJ35779 rs10057967 (1) 
 

T/G T 0.1 0.02 2.17E-13 

rs2867125 TMEM18 
  

C/T C 0.31 0.03 2.77E-49 

rs3810291 TMEM160 
  

A/G A 0.09 0.02 1.64E-12 

rs713586 
RBJ / 

POMC 
rs713587 (0.97) rs10182181 (1) T/C C 0.14 0.02 6.17E-22 

rs2815752 NEGR1 
  

A/G A 0.13 0.02 1.61E-22 

rs29941 KCTD15 rs29942 (1) 
 

G/A G 0.06 0.02 3.01E-09 

rs1555543 PTBP2 rs10489741 (1) rs11165643 (1) C/A C 0.06 0.02 3.68E-10 

rs9816226 ETV5 
not found in 

Sample A 
rs7647305 (0.71) T/A T 0.14 0.03 1.69E-18 

rs10938397 GNPDA2 
  

A/G G 0.18 0.02 3.78E-31 

rs4929949 RPL27A 
rs11041994 

(0.97) 
rs7127684 (0.93) C/T C 0.06 0.02 2.8E-09 

rs7138803 FAIM2 
  

G/A A 0.12 0.02 1.82E-17 

rs887912 FANCL rs1016287 (1) 
 

C/T T 0.1 0.02 1.79E-12 

rs2287019 QPCTL 
  

C/T C 0.15 0.03 1.88E-16 

rs10968576 LRRN6C 
  

A/G G 0.11 0.02 2.65E-13 

rs7359397 SH2B1 
rs3888190 

(0.97) 
  C/T T 0.15 0.02 1.88E-20 
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Table S2. SNP group#2 description (2) 

SNP Gene(s) 
Proxy Sample A  

(LD, r
2
) 

Proxy Sample B 
(LD, r

2
) 

Alleles 
Effect 
allele 

β SE P value 

rs17024393 GNAT2; AMPD2 
  

C/T T 0.066 0.009 7.03E-14 

rs11847697 PRKD1 not found in Sample A rs10134820 (0.74) T/C C 0.049 0.008 3.99E-09 

rs7899106 GRID1 rs11201714 (1) 
 

G/A A 0.04 0.007 2.96 × 10
−8

 

rs16851483 RASA2 
 

rs2035935 (0.91) T/G G 0.048 0.008 3.55 × 10
−10

 

rs13107325 SLC39A8 
  

T/C C 0.048 0.007 1.83E-12 

rs11191560 NT5C2; CYP17A1; SFXN2 
  

C/T T 0.031 0.005 8.45 × 10
−9

 

rs12429545 OLFM4 
  

A/G G 0.033 0.005 1.09E-12 

rs13201877 IFNGR1; OLIG3 not found in Sample A 

 
G/A A 0.024 0.004 4.29 × 10

−8
 

rs2121279 LRP1B 
  

T/C C 0.025 0.004 2.31E-08 

rs17001654 NUP54; SCARB2 rs17001561 (1) rs17001561 (1) G/C C 0.031 0.005 7.76 × 10
−9

 

rs2207139 TFAP2B rs943005 (1) rs734597 (0.90) G/A A 0.045 0.004 4.13E-29 

rs1460676 FIGN rs10192119 (1) 
 

C/T T 0.021 0.004 4.98 × 10
−8

 

rs2245368 PMS2L11 
not found in Sample A 

bad genotype 
quality C/T T 0.032 0.006 3.19 × 10

−8
 

rs543874 SEC16B 
  

G/A A 0.048 0.004 2.62E-35 

rs17203016 CREB1; KLF7 
  

G/A A 0.021 0.004 3.41 × 10
−8

 

rs13078960 CADM2 rs9852127 (0.95) rs7622475 (0.95) G/T T 0.03 0.004 1.74E-14 

rs12016871 MTIF3; GTF3A 
 

rs1885988 (0.82) T/C C 0.03 0.005 2.29E-10 

rs17094222 HIF1AN rs17113301 (0.90) 
 

C/T T 0.025 0.004 5.94 × 10
−11

 

rs9914578 SMG6; N29617 rs8082647 (1) 
 

G/C C 0.02 0.004 2.07 × 10
−8

 

rs6567160 MC4R 
  

C/T T 0.056 0.004 3.93E-53 

rs2176598 HSD17B12 
  

T/C C 0.02 0.004 2.97 × 10
−8

 

rs758747 NLRC3 
  

T/C C 0.023 0.004 7.47 × 10
−10

 

rs205262 C6orf106; SNRPC 
  

G/A A 0.022 0.004 1.75E-10 

rs11126666 KCNK3 
  

A/G G 0.021 0.003 1.33 × 10
−9

 

rs1016287 LINC01122 
  

T/C C 0.023 0.003 2.25E-11 

rs2033529 TDRG1; LRFN2 
  

G/A A 0.019 0.003 1.39 × 10
−8

 

rs2650492 SBK1; APOBR not found in Sample A 

 
A/G G 0.021 0.004 1.92 × 10

−9
 

rs6465468 ASB4 rs2375019 (0.80) 
 

T/G G 0.025 0.005 4.98 × 10
−8

 

rs10968576 LINGO2 
  

G/A A 0.025 0.003 6.61E-14 
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rs1000940 RABEP1 rs3026101 (1) 
 

G/A A 0.019 0.003 1.28 × 10
−8

 

rs12401738 FUBP1; USP33 rs17381664 (0.83) 
 

A/G G 0.021 0.003 1.15E-10 

rs3849570 GBE1 rs3772883 (1) rs6792696 (0.70) A/C C 0.019 0.003 2.60 × 10
−8

 

rs6477694 EPB41L4B; C9orf4 not found in Sample A 

 
C/T T 0.017 0.003 2.67 × 10

−8
 

rs2176040 LOC646736; IRS1 rs2943641 (0.96) rs2972143 (0.96) A/G G 0.024 0.004 9.99 × 10
−9

 

rs7138803 BCDIN3D; FAIM2 
  

A/G G 0.032 0.003 8.15E-24 

rs7239883 LOC284260; RIT2 
  

G/A A 0.023 0.004 1.51 × 10
−8

 

rs657452 AGBL4 
  

A/G G 0.023 0.003 5.48 × 10
−13

 

rs11583200 ELAVL4 
  

C/T T 0.018 0.003 1.48 × 10
−8

 

rs3888190 ATXN2L; SBK1; SULT1A2; TUFM 
  

A/C C 0.031 0.003 3.14E-23 

rs977747 TAL1 
  

T/G G 0.017 0.003 2.18 × 10
−8

 

rs3817334 MTCH2; C1QTNF4; SPI1; CELF1 rs7124681 (1) 
 

T/C C 0.026 0.003 5.15E-17 

rs2080454 CBLN1 
  

C/A A 0.017 0.003 8.60 × 10
−9

 

rs1558902 FTO rs1421085 (1) rs1421085 (1) A/T T 0.082 0.003 7.51E-153 

rs7715256 GALNT10 rs7719067 (1) 
 

G/T T 0.017 0.003 8.85 × 10
−9

 

rs492400 PLCD4; CYP27A1; USP37; TTLL4;STK36; ZNF142; RQCD1 
  

C/T T 0.024 0.004 6.78 × 10
−9

 

rs9641123 CALCR; hsa-miR-653 rs10488551 (0.93) rs5014937 (0.70) C/G G 0.029 0.005 2.08 × 10
−10

 

rs10938397 GNPDA2; GABRG1 
  

G/A A 0.04 0.003 3.21E-38 

rs12566985 FPGT-TNNI3K rs6604872 (1) rs1514175 (0.97) G/A A 0.024 0.003 3.28E-15 

rs9540493 MIR548X2; PCDH9 
  

A/G G 0.021 0.004 4.97 × 10
−8

 

rs3736485 SCG3; DMXL2 
  

A/G G 0.018 0.003 7.41 × 10
−9

 

rs10182181 ADCY3; POMC; NCOA1;SH2B1; APOBR rs713587 (1) 
 

G/A A 0.031 0.003 8.78E-24 

rs10733682 LMX1B 
  

A/G G 0.017 0.003 1.83 × 10
−8

 

rs4787491 MAPK3; KCTD13; INO80E; TAOK2; YPEL3; DOC2A; FAM57B 
  

G/A G 0.022 0.004 2.70 × 10
−8

 

rs12286929 CADM1 
  

G/A G 0.022 0.003 1.31 × 10
−12

 

rs11688816 EHBP1 rs360791 (0.90) 
 

G/A G 0.017 0.003 1.89 × 10
−8

 

rs7141420 NRXN3 
  

T/C T 0.024 0.003 1.23E-14 

rs1808579 NPC1; C18orf8 rs11663558 (1) 
 

C/T T 0.017 0.003 4.17E-08 

rs4740619 C9orf93 
  

T/C C 0.018 0.003 4.56 × 10
−9

 

rs1928295 TLR4 
  

T/C C 0.019 0.003 7.91 × 10
−10

 

rs1167827 HIP1; PMS2L3; PMS2P5; WBSCR16 
  

G/A A 0.02 0.003 6.33 × 10
−10

 

rs2820292 NAV1 rs1032524 (1) 
 

C/A A 0.02 0.003 1.83 × 10
−10
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rs12940622 RPTOR 
  

G/A A 0.018 0.003 2.49E-09 

rs6804842 RARB 
  

G/A A 0.019 0.003 2.48 × 10
−9

 

rs2365389 FHIT rs815710 (0.96) 
 

C/T T 0.02 0.003 1.63 × 10
−10

 

rs11165643 PTBP2 rs10489741 (1) 
 

T/C C 0.022 0.003 2.07E-12 

rs2836754 ETS2 
  

C/T T 0.017 0.003 1.61 × 10
−8

 

rs3101336 NEGR1 
  

C/T T 0.033 0.003 2.66E-26 

rs1441264 MIR548A2 
  

A/G G 0.017 0.003 2.96 × 10
−8

 
rs9925964 KAT8;ZNF646; VKORC1; ZNF668; STX1B;FBXL19 rs1978487 (0.98) 

 
A/G G 0.019 0.003 8.11 × 10

−10
 

rs2112347 POC5; HMGCR; COL4A3BP rs10057967 (1) 
 

T/G G 0.026 0.003 6.19E-17 

rs1528435 UBE2E3 rs6727573 (1) 
 

T/C C 0.018 0.003 1.20 × 10
−8

 

rs12885454 PRKD1 rs11625899 (1) 
 

C/A A 0.021 0.003 1.94 × 10
−10

 

rs4256980 TRIM66; TUB rs4929927 (1) rs7113874 (1) G/C C 0.021 0.003 2.90E-11 

rs3810291 ZC3H4 
  

A/G G 0.028 0.004 4.81E-15 

rs29941 KCTD15 rs29942 (1) 
 

G/A A 0.018 0.003 2.41E-08 

rs7164727 LOC100287559; BBS4 rs9460 (0.84) 
 

T/C C 0.019 0.003 3.92 × 10
−9

 

rs10132280 STXBP6 
  

C/A A 0.023 0.003 1.14 × 10
−11

 

rs9400239 FOXO3; HSS00296402 not found in Sample A 

 
C/T T 0.019 0.003 1.61 × 10

−8
 

rs17405819 HNF4G rs12679314 (1) 
 

T/C C 0.022 0.003 2.07E-11 

rs7903146 TCF7L2 
  

C/T T 0.023 0.003 1.11 × 10
−11

 

rs6091540 ZFP64 rs6096969 (1) 
 

C/T T 0.03 0.004 2.15 × 10
−11

 

rs7599312 ERBB4 
  

G/A A 0.022 0.003 1.17 × 10
−10

 

rs9374842 LOC285762; rs1329530 (1) 
 

T/C C 0.023 0.004 2.67 × 10
−8

 

rs17724992 GDF15; PGPEP1 
  

A/G G 0.019 0.004 3.42 × 10
−8

 

rs2033732 RALYL 
  

C/T T 0.019 0.004 4.89 × 10
−8

 

rs16951275 M4P2K5; LBXCOR1 rs4776982 (1) rs2241420 (1) T/C C 0.031 0.004 1.91E-17 

rs11030104 BDNF 
 

rs7103411 (0.91) A/G G 0.041 0.004 5.56E-28 

rs2287019 QPCTL; GIPR 
  

C/T T 0.036 0.004 4.59E-18 

rs7243357 GRP 
  

T/G G 0.022 0.004 3.86 × 10
−8

 

rs13021737 TMEM18 not found in Sample A 
 

G/A A 0.06 0.004 1.11E-50 

rs2075650 TOMM40; APOE; APOC1 
  

A/G G 0.026 0.005 1.25E-08 

rs12446632 GPRC5B; IQCK rs12444979 (0.88) 
 

G/A A 0.04 0.005 1.48E-18 

rs1516725 E7V5 rs10513801 (1) rs4234589 (1) C/T T 0.045 0.005 1.89E-22 

rs13191362 PARK2 rs13202339 (1) 
 

A/G G 0.028 0.005 7.34 × 10
−9
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rs11057405 CLIP1 
  

G/A A 0.031 0.006 2.02 × 10
−8

 

rs11727676 HHIP 
  

T/C C 0.036 0.006 2.55 × 10
−8

 

rs16907751 ZBTB10 not found in Sample A 

 
C/T T 0.047 0.009 3.89 × 10

−8
 

SE: Standard Error 
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Table S3. SNP group#3 description (3) 

Gene SNP Position 
Major/minor 

allele 
Effect 
allele β-coefficients * 

Proxy Sample A 
(LD, r2) 

Proxy Sample B 
(LD, r2) 

# SNPs 
tagged 

MSRA rs2001338 intron-variant(dbSNP) A/G A -0.0108 
 

rs13254942 (0.89) 9 

NMUR2 rs982716 utr-variant-3-prime(dbSNP) C/T T -0.0033 
 

rs17113291 (0.82) 5 

FSD2 rs12592976 intron-variant(dbSNP) T/C T -0.0046 
 

rs17158366 (0.80) 1 

REPIN1 rs1051760 utr-variant-3-prime(dbSNP) A/G A 0.0119 
 

rs17173681 (1) 2 

ANGPTL2 rs999092 intron-variant(dbSNP) A/G A 0.0096 rs11789486 (1) rs2789507 (0.78) 5 

LEP rs4236625 intron-variant(dbSNP) A/T A -0.0133 rs7795794 (0.88) rs4731427 (0.80) 3 

GLIS3 rs7870193 intron-variant(dbSNP) C/T T 0.0016 rs2791757 (0.86) rs605571 (1) 4 

GRB14 rs13000232 intron-variant(dbSNP) G/C C 0.0022 rs4130269 (0.95) rs6754749 (0.90) 7 

TAS2R38 rs1726866 missense(GVS) A/G A 0.0013 
 

rs713598 (0.73) 2 

PTRF rs12948909 intron-variant(dbSNP) A/C A -0.005 rs7223784 (1) rs7223784 (1) 1 

BCMO1 rs11865869 intron-variant(dbSNP) A/G A -0.0032 
  

1 

CRP rs1205 utr-variant-3-prime(dbSNP) C/T T 0.0077 
  

0 

CPE rs1438114 intron-variant(dbSNP) T/G T -0.0048 
  

3 

EXT2 rs2067787 intron-variant(dbSNP) T/C T -0.0046 
  

0 

MTCH2 rs3817334 intron-variant(dbSNP) T/C C 0.026 rs7124681 (1) 
 

2 

SERPINA12 rs4905211 intron-variant(dbSNP) G/A A -0.0027 
  

0 

H6PD rs732950 intron-variant(dbSNP) G/T T -0.0037 rs2268175 (0.93) 
 

2 

TFAP2B rs987237 intron-variant(dbSNP) A/G G 0.045 
  

0 

HRASLS2 rs9943597 intron-variant(dbSNP) A/C A 0.0032   
 

2 

* β-coefficients are obtained from GIANT consortia 
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Table S4: Weighted Genetic Risk Scores from candidate gene SNPs (SNP group#3) and their associations 
with BMI. 
 

  n 
Effect on BMI per 

additional risk allele 
[CI 95%] 

p-value* E. Var (%)  

Sample A 938 0.01 [-0.01 - 0.03] 1.0 n.c 

Sample B 118 0.05 [0.01 - 0.10] 0.048 1.72 

E. Var: Explained Variability 

    CI: Confidence Interval 

    BMI: Body Mass Index 

    n.c: not calculated because of non significant association 

* multiple test correction p-value 
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Table S5. Weighted genetic risk scores association with BMI in Sample B when combining GWAS with 
candidate gene SNPs. 

  n 
effect on BMI per 

additional risk allele 
[CI 95%] 

p-value E. Var (%)  

SNP group#1 + SNP group#3 115 0.16 [0.08 - 0.24] 0.001 4.1 

SNP group#2 + SNP group#3 108 0.04 [-0.04 - 0.11] 0.11 n.c 

E. Var: Explained Variability 

    CI: Confidence Interval     
BMI: Body Mass Index 

    SNP: Single Nucleotide Polymorphism 

n.c: not calculated because of non significant association 

 
Figure S1. Distribution of w-GRS within Samples A and B using SNP group#1 and #2 
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Upper: Sample A; Lower: Sample B  
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Supplementary files. Project IV: Genetic and clinic predictors of New Onset Diabetes Mellitus after Transplantation 
 
Table S1. SNPs description according to the study of Mahajan et al. (1) 

Gene SNP-Risk Allele 
proxy Main 

Sample LD (r2) 
proxy Replication 

Sample LD (r2) 
Major>Minor 

allele MAF position 
OR 95% CI 

UBE2E2 rs7612463-C 
  

no proxy found 
 

C>A 20.8 intron-variant(dbSNP) 1.1 [1.04 - 1.16] 

TCF7L2 rs7903146-T 
    

C>T 17.5 intron-variant(dbSNP) 1.40 [1.35-1.46] 

CDKAL1 rs7756992-G 
    

A>G 45.5 intron-variant(dbSNP) 1.20 [1.16-1.25] 

HHEX - EXOC6 rs1111875-C rs10882099 0.97 
  

C>T 42.9 intergenic(GVS) 1.15 [1.11-1.19] 

SLC30A8 rs3802177-G 
    

G>A 29.1 
utr-variant-3-
prime(dbSNP) 1.16 [1.11-1.22] 

IGF2BP2 rs4402960-T 
    

G>T 34.7 intron-variant(dbSNP) 1.13 [1.09-1.17] 

KCNQ1 rs163184-G 
    

T>G 34.7 intron-variant(dbSNP) 1.09 [1.04-1.13] 

HMG20A rs7178572-G rs1022172 0.96 
  

G>A 49.8 intron-variant(dbSNP) 1.08 1.04-1.13 

KCNJ11 rs5215-C 
    

T>C 27.2 missense(dbSNP) 1.08 [1.04-1.12] 

ZMIZ1 rs12571751-A rs703980 1 
  

A>G 46.7 intron-variant(dbSNP) 1.09 1.06-1.13 

JAZF1 rs849135-G rs849142 0.97 
  

G>A 22.5 intron-variant(dbSNP) 1.12 [1.08-1.17] 

CDC123 - CAMK1D rs11257655-T 
    

C>T 37.4 intergenic(GVS) 1.06 [1.01-1.11] 

FAF1 rs17106184-G rs1278516 1 
  

G>A 11 intron-variant(dbSNP) 1.1 1.07-1.14 

BCL6 - LPP-AS2 rs6808574-C 
    

C>T 11.3 intergenic(GVS) 1.07 1.04-1.09 

ARL15 rs702634-A 
    

A>G 21.8 intron-variant(dbSNP) 1.06 1.04-1.09 

NYAP2 - MIR5702 rs2943640-C rs2943641 0.96 
  

C>A 14.9 intergenic(GVS) 1.09 1.05-1.13 

ADCY5 rs11717195-T rs2877716 0.9 
  

T>C 9.2 intron-variant(dbSNP) 1.09 [1.05-1.14] 
KRT18P24 - 
CHCHD2P9 rs17791513-A 

    
A>G 6 intergenic(GVS) 1.06 [1.04-1.08] 

RPSAP52 rs2261181-T 
    

C>T 10.6 intron-variant(dbSNP) 1.16 [1.10-1.23] 

HNF4A rs4812829-A rs2144908 1 
  

G>A 26.4 intron-variant(dbSNP) 1.07 [1.01-1.12] 

TMEM154 rs6813195-C no proxy found 
   

C>T 0.41 intergenic(GVS) 1.08 [1.06-1.10] 

SSR1  rs9505118-A 
    

A>G 40.9 intron-variant(dbSNP) 1.06 1.04-1.08 

POU5F1 rs3130501-G 
    

G>A 27.1 intron-variant(dbSNP) 1.07 1.04-1.09 

CDKN2A/B rs10811661-T no proxy found 
   

T>C 0.18 intergenic(GVS) 1.18 1.13-1.24 

WFS1 rs4458523-G 
  

rs10012946 1 G>T 20.1 intron-variant(dbSNP) 1.09 1.06-1.13 

HNF1B rs4430796-G 
  

rs11651755 0.97 A>G 46.4 intron-variant(dbSNP) 1.13 1.07-1.09 

RPS3AP49 - MC4R rs12970134-A 
  

rs11663816 - not 1 G>A 20.9 intergenic(GVS) 1.08 1.03-1.12 
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in HWE 

MPHOSPH9 rs1727313-C rs1463877 0.9 rs1727294 1 G>C 9.9 near-gene-3(GVS) 1.21 [1.13-1.31] 

PPARG rs1801282-C rs17036160 0.9 rs2197423 1 C>G 4.9 missense(dbSNP) 1.16 1.10-1.23 

FTO rs9936385-C     rs9923233 0.94 T>C 30.7 intron-variant(dbSNP) 1.13 1.09-1.18 

MAF: Minor Allele Frequency, LD: Linkage Disequilibrium, OR: Odds Ratio, CI: Confidence Interval 
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Table S2. SNPs description according to the study of Voight et al. (2) 

Gene SNP-Risk Allele 
proxy Main 

Sample LD (r2) 
proxy Replication 

Sample LD (r2) 
Major>Minor 

allele MAF position 
OR 95% CI 

KRT18P48 - DUSP9 rs5945326-A not in HWE 
 

no proxy found 
 

A>G 0.21 intergenic(GVS) 1.27 [1.18-1.37] 

ZBED3-AS1 rs4457053-G rs7708285 0.93 
  

A>G 12.4 
intron-

variant(dbSNP) 1.08 [1.06-1.11] 
TP53INP1; 

LOC101927002 rs896854-T rs7845219 0.85 
  

C>T 45.7 
intron-

variant(dbSNP) 1.06 [1.04-1.09] 

KCNQ1;KCNQ1OT1 rs231362-G 
    

G>A 24.7 
intron-

variant(dbSNP) 1.08 [1.06-1.10] 

ARAP1 rs1552224-A 
    

A>C 7.1 
utr-variant-5-
prime(dbSNP) 1.14 [1.11-1.17] 

ZFAND6 - FAH rs11634397-G 
    

G>A 33.2 near-gene-3(GVS) 1.06 [1.04-1.08] 

LOC646736 rs7578326-A rs13405357 0.85 
  

A>G 29.8 
intron-

variant(dbSNP) 1.11 [1.08-1.13] 
RPS3AP42 - 

MTNR1B rs1387153-T 
    

C>T 41.2 intergenic(GVS) 1.09 [1.06-1.11] 

KLF14 - MIR29A rs972283-G 
  

rs13234407 0.97 G>A 27.9 intergenic(GVS) 1.07 [1.05-1.10] 
KRT18P24 - 
CHCHD2P9 rs13292136-C rs10512085 0.87 rs17791513 0.76 C>T 9.3 intergenic(GVS) 1.11 [1.07-1.15] 
RNA5SP94 - 

MIR4432 rs243021-A 
  

rs243083 1 G>A 47.7 intergenic(GVS) 1.08 [1.06-1.10] 

RPSAP52 rs1531343-C rs2612067 1.00 rs2612035 0.82 G>C 22.2 
intron-

variant(dbSNP) 1.10 [1.07-1.14] 

PRC1;PRC1-AS1 rs8042680-A 
  

rs4932182 0.64 C>A 23.5 
intron-

variant(dbSNP) 1.07 [1.05-1.09] 

OASL rs7957197-T no proxy found   rs7965349 0.87 T>A 0.11 
intron-

variant(dbSNP) 1.07 [1.05-1.10] 

MAF: Minor Allele Frequency, LD: Linkage Disequilibrium, OR: Odds Ratio, CI: Confidence Interval 
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Table S3. SNPs description according to the study of McCaughan et al. (3) 

Gene SNP-Risk Allele 
proxy Main 

Sample LD (r2) 
proxy Replication 

Sample LD (r2) 
Major>Minor 

allele MAF position 
OR 95% CI 

 
rs10484821 no proxy found 

 
rs10484820 0.78 T>C 0.14 regulatory region variant 3.5 [2.1-5.8] 

DNAJC16 rs7533125-C rs4646092 1.00 no proxy found 
 

T>C 0.26 intron-variant(dbSNP) 2.4 [1.5-3.6] 

CELA2B rs2861484-T rs4646092 0.81 no proxy found 
 

G>T 0.15 intron-variant(dbSNP) 2.4 [1.5-3.7] 

AGMAT rs11580170-T rs4646092 0.81 no proxy found 
 

C>T 0.28 missense(dbSNP) 2.2 [1.4-3.4] 

CASP9 rs2020902-G 
  

no proxy found 
 

A>G 0.09 intron-variant(dbSNP) 2.3 [1.5-3.6] 

NOX4 rs1836882-C 
  

no proxy found 
 

T>C 0.22 intron-variant(dbSNP) 2.7 [1.5-4.8] 

none rs198372-A 
  

rs5065 0.56 G>A 0.08 upstream-variant-2KB(dbSNP) 2.5 [1.5-4.2] 

none rs4394754-T     no proxy found   C>T 0.2 intergenic(GVS) 2.1 [1.4-3.2] 

MAF: Minor Allele Frequency, LD: Linkage Disequilibrium, OR: Odds Ratio, CI: Confidence Interval 
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Table S4. Odds Ratio of NODAT development in the model integrating clinical risk score and genetic risk score 

covariate 
  Main Sample   Replication Sample 

 
OR 95% CI p-value 

 
OR 95% CI p-value 

Clinical risk score* 
 

1.60 1.36 – 1.90 3.72E-08 
 

2.14 1.39 – 3.41 0.0008 

Genetic risk score $ 

 
1.08 1.03 – 1.12 0.0002 

 
1.06 0.98 – 1.16 0.17 

OR: Odds Ratio, CI: Confidence Interval, w-GRS: Weighted Genetic Risk Score 
* includes age, BMI≥30 kg/m

2
, living donor status, glucocorticoid treatment, immunosuppressant treatment and anti Hepatitis C 

Virus status 
$ includes weighted Genetic Risk Score with 45 SNPs in the Main Sample and 40 SNPs in the Replication Sample 
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Table S5.  Discrimination parameters of clinical risk score and of clinical plus genetic risk scores in the main sample 

NODAT: 138   
non-NODAT: 492 

AUROC Specificity Sensitivity Accuracy LRT-p IDI [95% CI] NRI (continuous) [95% CI] NNG 

Models  
 

p-value  Net correctly reclassified p-value  

clinical risk score 
model 

0.66 0.73 0.52 0.69 

0.005 
0.01 [0.0007 - 

0.02] 
0.03 0.27 [0.09 - 0.46] 0.004 n.c clinical and 

genetic risk 
scores* model 

0.68 0.54 0.79 0.60 

n.c not calculated, LRT: Likelihood Ratio Test, IDI: Integrated Discrimination Improvement, NRI: Net Reclassification Improvement, NNG: Number Needed to Genotype, 
AUROC: Area Under the Receiver Operating Characteristics curve 
* integrates w-GRS 2 + w-GRS 3 
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