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ABSTRACT 21 

Aim Modelling species distributions at the community level is required to make effective forecast of 22 

global change impacts on diversity and ecosystem functioning. Community predictions may be 23 

achieved using macroecological properties of communities (macroecological models, MEM), or by 24 

stacking of individual species distribution models (stacked species distribution models, S-SDMs). To 25 

obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species 26 

assemblage modelling) framework suggests applying successive filters to the initial species source 27 

pool, by combining different modelling approaches and rules. Here we provide a first test of this 28 

framework in mountain grassland communities.   29 

Location The western Swiss Alps. 30 

Methods Two implementations of the SESAM framework were tested: a ‘probability ranking’ rule 31 

based on species richness predictions and rough probabilities from SDMs, and a ‘trait range’ rule that 32 

uses the predicted upper and lower bound of community-level distribution of three different functional 33 

traits (vegetative height, specific leaf area and seed mass) to constrain a pool of species from binary 34 

SDMs predictions.  35 

Results We showed that all independent constraints contributed to reduce species richness 36 

overprediction. Only the ‘probability ranking’ rule allowed slight but significant improvements in the 37 

predictions of community composition. 38 

Main conclusions We tested various implementations of the SESAM framework by integrating 39 

macroecological constraints into S-SDM predictions, and report one that is able to improve 40 

compositional predictions. We discuss possible improvements, such as further understanding the 41 

causality and precision of environmental predictors, using other assembly rules and testing other types 42 

of ecological or functional constraints.  43 

 44 
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INTRODUCTION 48 

Understanding the distribution and composition of species assemblages and being able to predict them 49 

in space and time are important for understanding the fate of biodiversity under global change. 50 

Different approaches have been proposed to predict the composition of species assemblages, which 51 

can work on mechanistic or empirical bases. Neutral views have also been proposed to explain relative 52 

abundance patterns in communities (Hubbell, 2001), which were contrasted to niche/trait views 53 

(Wennekes et al., 2012). Neutral theory has been challenged for not representing forces that actually 54 

operate in nature to shape communities and their composition (e.g. Clark, 2009). Using a more 55 

deterministic approach, Shipley et al. (2006) proposed the use of predicted community weighted 56 

means of functional traits to infer the assemblage composition given species traits through a maximum 57 

entropy approach (Shipley et al., 2006, 2011; Sonnier et al., 2010a; see also Laughlin et al., 2012). 58 

Mokany et al. (2011, 2012) proposed a dynamic framework to model species richness and 59 

composition dissimilarity based on species data. A distinct approach, not requiring traits, is to use the 60 

empirical relationships between species distribution data and environmental factors to predict 61 

community types or axes of compositional variation derived from ordination techniques (Ferrier & 62 

Guisan, 2006).  63 

One widely used method is to predict the distributions of individual species with niche-based species 64 

distribution models (SDMs; also called ecological niche models, ENMs; see Guisan et al., 2013), and 65 

then to stack them to predict species assemblages (stacked-SDM, S-SDM; Dubuis et al., 2011). This 66 

method pertains to the category ‘predict first, assemble later’ in Ferrier & Guisan’s (2006) 67 

classification of community-level models, and has been tested in recent studies to draw conclusions 68 

about species richness (SR), assemblage composition or species turnover under current or future 69 

climatic conditions (Baselga & Araújo, 2009, 2010; Aranda & Lobo, 2011; Albouy et al., 2012; 70 

Pottier et al., 2013). Stacking individual species predictions can be applied to both rough probabilities 71 

(pS-SDM) and binary predictions from SDMs (bS-SDM) (e.g. Dubuis et al., 2011; Calabrese et al., 72 

2014). pS-SDM currently allows the prediction of species richness only, while bS-SDM also provides 73 
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information on species composition. It has been shown that bS-SDMs tend, on average, to overpredict 74 

species richness per unit area (Algar et al., 2009; Dubuis et al., 2011; Mateo et al., 2012), whereas pS-75 

SDMs do not (Dubuis et al., 2011; Calabrese et al., 2014). Overprediction by bS-SDMs could be 76 

expected, as reconstructing communities from SDM predictions implies applying a series of species-77 

specific abiotic filters, without consideration for macroecological constraints on the general properties 78 

of the system as a whole (Guisan & Rahbek, 2011). As an alternative explanation, it has also been 79 

suggested that overprediction could result from a mathematical artefact if the stacking process is 80 

applied to binary SDM predictions, i.e. after thresholding the rough probability of species’ predictions 81 

(Calabrese et al., 2014).  82 

Guisan & Rahbek (2011) proposed a framework – SESAM: spatially explicit species assemblage 83 

modelling – that aims to improve predictions of species assemblages. The main idea of the SESAM 84 

framework is to reconstruct species assemblages by applying successive filters of the assembly 85 

process through four main conceptual steps (Hortal et al., 2012). First, the species pool of each 86 

modelling unit in the study area must be defined. Second, species are filtered from the species pool 87 

according to their suitability to the environmental conditions in the modelling unit, e.g. by fitting 88 

SDMs. Third, limits previously set to one or several properties of each assemblage (e.g. richness or 89 

functional properties) are used to apply constraints on the assemblage in each unit, based on model 90 

predictions. Fourth, the species to be kept in the assemblage are chosen among the potential coexisting 91 

species (i.e. those predicted by the S-SDM), through biotic assembly rules. Macroecological 92 

constraints can be defined by macroecological models (MEMs), i.e. models of emergent properties or 93 

attributes of communities, such as species richness (SR) or other functional characteristics (e.g. 94 

functional richness) that are theoretically predictable directly from environmental variables (Francis & 95 

Currie, 2003; Moser et al., 2005; Sonnier et al., 2010b; Dubuis et al., 2011, 2013). MEMs, which 96 

belong to the ‘assemble first, predict later’ category of Ferrier & Guisan (2006)’s classification, have 97 

been shown to provide less biased predictions of SR than bS-SDMs (Dubuis et al., 2011). Yet, no 98 

attempt has been made to implement and test the SESAM framework.  99 
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In the SESAM framework, assemblage properties are predicted to define constraints to be applied to 100 

the assemblage in each unit. In this study, we test three macroecological constraints: (1) richness 101 

predicted by the sum of probability S-SDM (pS-SDM); (2) direct predictions of species richness 102 

(MEM) (Dubuis et al., 2011); and (3) predicted values of three functional traits (Dubuis et al., 2013). 103 

In particular, we test the use of functional traits as macroecological constraints, as they can be 104 

predicted spatially (Dubuis et al., 2013) and may provide an understanding of the functional 105 

underpinnings of plant communities, allowing generalization beyond species identities (e.g. Hooper et 106 

al., 2005; McGill et al., 2006). Functional traits are supposed to enable the refinement of predictions 107 

of community composition along environmental gradients, by contrasting trait values for individual 108 

species to the ones aggregated at the community level (Shipley et al., 2006; Douma et al., 2012). We 109 

consider extremes in trait values to represent a filtering effect, i.e. the trait values that allow a species 110 

to be included in a community in a given environment (Keddy, 1992a,b). In order to build 111 

macroecological constraints, the same rationale applies to both richness and traits extreme values: 112 

limited amount of resources or environmental conditions (e.g. heterogeneity) defines ‘how many’ or 113 

‘what type of’ species can strive in the considered unit. Here, both species richness and the functional 114 

characteristics of the community are assumed to be mainly controlled, among other possible factors, 115 

by available energy, as expressed by climatic predictors (Wright, 1983; Currie, 1991; Hawkins et al., 116 

2003; Shipley et al., 2006; see Guisan & Rahbek, 2011). 117 

By integrating over these sources of information, we set macroecological constraints on the pool of 118 

species predicted to potentially co-occur in each site according to SDM predictions only. Doing this, 119 

we test – for the first time – a simplified version of the SESAM framework (i.e. without elaborated 120 

biotic assembly rules), using outputs from MEMs or pS-SDMs as constraints to limit the number of 121 

species predicted by bS-SDMs, this way attempting to improve predictions of community 122 

composition. More specifically, we ask the following questions: 123 

1. Does combining different modelling techniques developed for biodiversity prediction improve the 124 

predictions of community attributes such as richness, species composition, traits distribution?  125 
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2. Does the use of assembly rules (driven either by habitat suitability or functional characteristics) to 126 

select the species that enter in the predicted community from SDMs improve the predictions of 127 

community richness and composition?  128 

 129 

MATERIALS AND METHODS 130 

Vegetation and traits data 131 

The study area is located in the Alps of western Switzerland (http://rechalpvd.unil.ch) and covers c. 132 

700 km2, with elevations ranging from 375 to 3210 m. The species occurrence data used in our 133 

analysis originate from fieldwork conducted between 2002 and 2009 in the study area following a 134 

random-stratified sampling design and limited to open, non-woody vegetation (for more information 135 

see Dubuis et al., 2011). A first dataset of 613 vegetation plots of 4 m2 each was inventoried and used 136 

for SDM and MEM calibration (‘calibration dataset’). An additional set of 298 plots was identically 137 

surveyed to evaluate S-SDMs, and test the efficiency of MEM constraints (‘evaluation dataset’) (Fig. 1 138 

– Data box). This evaluation dataset was shown to be spatially independent of the first one, and thus 139 

valid for model evaluation, by calculating the spatial correlation of SDMs’ residuals between the 140 

calibration and the evaluation datasets based on neighbourhood graphs and Moran’s I coefficient 141 

(Pottier et al., 2013).  142 

A total of 241 species were recorded in the study area, with traits data available for a subset of the 189 143 

most frequent species of this pool (Fig. 1; Pottier et al., 2013; Dubuis et al., 2013). We selected three 144 

traits (vegetative height, specific leaf area and seed mass) that are expected to represent the key axes 145 

of plant ecological strategies following the leaf–height–seed (LHS) scheme of Westoby (1998), 146 

already widely used for studying plant assembly rules. In particular, vegetative height (H) and specific 147 

leaf area (SLA) were measured on the field (for each species between 4 and 20 individuals were 148 

sampled over its entire bioclimatic range). We used the average trait value among all sampled 149 
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individuals for each species for further analyses (Dubuis et al., 2013). Height was measured for each 150 

species in the field as the distance between top photosynthetic tissues and the ground, expressed in 151 

mm. This trait is related to competitive ability and is correlated with above-ground biomass 152 

(Cornelissen et al., 2003). SLA was calculated as the ratio of leaf surface to its dry mass and expressed 153 

in mm2 mg−1. SLA is correlated with the relative growth rate and photosynthetic ability of plant 154 

species (Cornelissen et al., 2003). Seed mass (SM) data originate from literature and field 155 

measurements (Pellissier et al., 2010) and is expressed in milligrams. This trait is a good predictor of 156 

colonization ability of the species and seedling survivorship (Moles & Westoby, 2006). To account for 157 

trait range limitation, we calculated percentiles of trait distribution in sites where the 189 species for 158 

which trait data were available represented more than 80% of the total vegetation cover (Pakeman & 159 

Quested, 2007; see Pottier et al., 2013, Dubuis et al., 2013).  160 

 161 

General analytical framework 162 

We tested different implementations of the SESAM framework to predict species composition, by 163 

applying two different types of species assembly rules:  164 

1. ‘Probability ranking’ rule: this rule is based on the assumption that species with the highest habitat 165 

suitability are competitively superior. According to this rule, community composition is obtained by 166 

selecting the species in decreasing order of their predicted probability of presence from SDMs up to 167 

the richness prediction (i.e. predictions from MEM or pS-SDM).  168 

2. ‘Trait range’ rule: we applied a filter based on important functional characteristics of plant species 169 

that relate to competitive and reproductive abilities. We used percentile predictions from MEMs of 170 

three functional traits, individual or in combination, as criteria to discard species that do not fall into 171 

the predicted functional range of the sites. We implemented this approach with the three percentiles 172 

boundaries.  173 
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We fitted all the models (both SDMs and MEMs) by applying three modelling techniques in R 174 

(2.14.1) with the BIOMOD package (Thuiller et al., 2009): generalized linear models (GLMs), 175 

generalized additive models (GAMs) and generalized boosted models (GBMs). The resulting 176 

projections were averaged to implement an ensemble forecasting approach.  177 

We applied the SESAM framework following the four step design described by Guisan & Rahbek 178 

(2011) and adapted to our study case (Fig. 1).  179 

Step 1 – Species pool 180 

As the first component of the SESAM framework, we considered a unique species pool for all 181 

modelling units, defined as the most frequent plant species occurring in our study area (241 species). 182 

This pool was used to test the ‘probability ranking’ rule. A subset of this pool was used to test the 183 

‘trait range’ rule (189 species). 184 

Step 2 – Abiotic filtering 185 

Single species models were fitted with environmental predictors calculated from temperature and 186 

precipitation data recorded by the Swiss network of meteorological stations and from a digital 187 

elevation model at 25 m resolution (see Dubuis et al., 2011). We used growing degree-days (above 0 188 

°C), moisture index over the growing season (difference between precipitation and potential 189 

evapotranspiration), the sum of solar radiations over the year, slope (in degree) and topographic 190 

position (unit less, indicating the ridges and valleys). These five variables have been shown to be 191 

useful for predicting the topo-climatic distributions of plant species in mountainous environment 192 

(Dubuis et al., 2011). The models were evaluated on the evaluation dataset with the area under the 193 

curve (AUC) of a receiver operating characteristic plot (ROC) and the true skill statistic (TSS; 194 

Allouche et al., 2006). Ensemble predictions were obtained by computing the weighted average of the 195 

predictions by the three techniques. To do this, we used weights from the internal cross-validation 196 

with both AUC (Swets, 1988) and TSS (Allouche et al., 2006) evaluation metrics. The predictive 197 

ability of the final ensemble models was then tested with the same metrics using the external 198 
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evaluation dataset. The raw predictions for the 241 species represent the ‘probability pool’ used in the 199 

‘probability ranking’ rule test. In ‘trait range’ rule tests the projected species distributions for the 189 200 

species were transformed into binary presences and absences using two threshold approaches: (1) the 201 

threshold corresponding to equal values of sensitivity and specificity (Liu et al., 2005), and (2) the 202 

threshold maximizing TSS. The resulting binary projections were stacked to predict assemblages in 203 

each of the evaluation plots (bS-SDM). This way, we obtained a pool of species potentially present 204 

filtered by topo-climatic factors.  205 

Step 3 – Macroecological constraints 206 

Three different methods were used to define macroecological constraints. First, we summed 207 

probabilities from SDMs (Dubuis et al., 2011) for the 241 species, obtaining a prediction of richness 208 

for each unit (pS-SDM). Second, observed species richness (SR) was calculated as the number of 209 

species (among the 241 used in this study) present in each sampling plot. Total SR was predicted with 210 

the same environmental predictors and modelling techniques used for SDMs fitted with a Poisson 211 

distribution. Also in this case, we applied the ensemble forecasting approach (as described above) to 212 

obtain a final richness prediction (‘species richness’ MEM; see Dubuis et al., 2011). Finally, we 213 

modelled traits values, considering three pairs of percentiles limits: 1st–99th, 5th–95th and 10th–90th. 214 

We modelled each trait percentile as a function of the environmental predictors and assuming a normal 215 

distribution (‘traits range’ MEM; Dubuis et al., 2013). The modelling procedure was the same used for 216 

species richness prediction. Prior to modelling, trait data were log-transformed. The predictive power 217 

of the SR and traits range models were measured by computing a Spearman rank correlation between 218 

the observed and predicted indices values for the evaluation dataset.  219 

Step 4 – Ecological assembly rules 220 

We applied our rules to couple results coming from previous steps. To test the ‘probability ranking’ 221 

rule, we determined the community composition by ranking the species in decreasing order of their 222 

predicted probability of presence from SDMs up to the richness prediction by pS-SDM or SR-MEM. 223 
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We further compared the application of this rule with a random selection of species in the number of 224 

the richness predictions, as a null test of composition prediction success. This was performed on the 225 

full evaluation dataset of 298 plots not used in model calibration.  226 

In the ‘trait range’ rule, for each site, among the species predicted as present by the binary SDMs 227 

(‘traits pool’), we excluded from the final community prediction those species with traits valued 228 

outside the predicted functional range predicted by MEMs. In particular, for each percentile pair (1st–229 

99th, 5th–95th, and 10th–90th), we considered the predicted trait values and we excluded all species 230 

having traits values outside these quantiles. All seven combinations of the three functional traits were 231 

considered (taken singularly, in pairs or all together) to constraint community composition. As a 232 

result, we tested a total of 21 macroecological constraints based on traits. The ‘trait range’ rule was 233 

applied to the 192 plots of the evaluation dataset for which we had trait data for more than 80% of the 234 

vegetation cover for the second test.  235 

Finally, species richness and composition outputs resulting from the SESAM approaches were 236 

compared to the evaluation dataset. Assemblage predictions were evaluated with several metrics based 237 

on a confusion matrix where all species (species pool: SP) are classified into: TP: the species observed 238 

as well as predicted as present (true positive), FN: the species observed as present but predicted as 239 

absent (false negative; omission error), FP: the species observed as absent but predicted as present 240 

(false positive; commission error) and TN: the species both observed and predicted as absent (true 241 

negative) (see Appendix S1 in Supporting Information). We computed the species richness error 242 

(predicted SR – observed SR, expressed as a number of species in Fig. 2), the assemblage prediction 243 

success (a), and the Sørensen index, related to Bray–Curtis dissimilarity (b). 244 

�a�	Prediction	success = 		
�� + ��

��
 

(b�	Sørensen	index = 	
���

���������
 245 

 246 

Page 11 of 38 untypeset proof

Journal of Biogeography



12 

 

 

 

RESULTS 247 

SDMs for most species had an AUC value higher than 0.7 and can therefore be considered as useful 248 

for predictions (see Appendix S2). The MEM for species’ richness and pS-SDM gave similar results: 249 

both predictions showed fair correlations between observed and predicted values of richness in the 250 

evaluation dataset (ρ = 0.529 and 0.507, respectively, Spearman rank correlation test). 251 

Macroecological models for traits were all above 0.5 (ρ values, Spearman rank correlation test) except 252 

for the 1st and 5th percentiles of log(SM) (Appendix S2). The ‘trait range’ rule was applied by 253 

considering all couples of percentile, but as the results are consistent (see Appendix S3), in the 254 

following section we only show results coming from the 5th–95th percentiles. The S-SDM built with 255 

binary SDMs overpredicted species richness (SR) in all plots (Figs 2a & 3). All filtering types, both 256 

coming from the ‘probability ranking’ rule and the ‘trait range’ rule contributed on average to reduce 257 

SR overprediction, i.e. reduction of SR error (Figs 2a,d & 3), except when using the combination of 258 

SLA and SM trait limits as constraining rule.  259 

Considering composition predictions, the prediction success was increased when applying either the 260 

‘probability ranking’ rule or the ‘trait range’ rule (Fig. 2b,e), again with the exception of the 261 

combination of SLA and SM trait limits. Results from the Sørensen index (Fig. 2c) indicate that the 262 

‘probability ranking’ rule increased the predictive capability by using both predicted SR from MEM 263 

and pS-SDM, as a limit, with the former slightly outperforming the latter. In both cases, the Sørensen 264 

index was significantly higher than the one of the simple bS-SDM (Wilcoxon signed rank test, P-value 265 

< 0.005). On average, this approach was less affected by errors of commission (false positive; 266 

Appendix S1) than other approaches and had the highest rate of correctly predicted absences (Fig. 4a). 267 

Using SR as a limit (from both MEM and pS-SDM) but choosing species randomly among those 268 

predicted yielded the worst assemblage composition predictions (Fig. 2c). We observed a decrease in 269 

the ability to correctly predict species identities when using the ‘trait range’ rule to constraints S-SDM 270 

predictions (Fig. 2f). Predicted functional traits did not provide a sufficient constraint to improve 271 

composition, and did not allow for a complete reduction of the SR over-prediction. Their use allowed 272 
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species richness prediction to be improved, but at the cost of slightly decreasing assemblage 273 

composition prediction success (Sørensen index) (Fig. 4b). The applications of our rules did not 274 

produce a prediction of species assemblage compositions better than an average Sørensen’s similarity 275 

of 0.5. 276 

Results for community predictions using TSS and the ‘trait range’ rule were similar to those using 277 

AUC and are thus presented in Appendix S1. 278 

DISCUSSION 279 

This study represents the first formal test of the SESAM framework (Guisan & Rahbek, 2011). We 280 

have shown different ways to implement the SESAM framework, by integrating stacked predictions 281 

from species distribution models (S-SDMs) with richness predictions from macroecological models 282 

(MEMs) or from the sum of rough probabilities from S-SDM (pS-SDM). Our results show that the 283 

application of macroecological constraints on single species predictions from SDMs improve the 284 

overall quality of assemblage’ composition estimation. As expected, all the macroecological 285 

constraints considered reduced the overprediction of species richness. But more importantly, the 286 

sequence of steps of the framework allowed a more accurate prediction of the realized species 287 

assemblage as measured with metrics equally weighting commission (false presence) and omission 288 

(false absence) errors. This positive result encourages further developments of the SESAM framework 289 

to improve the prediction of community attributes.  290 

Among the implementations of the SESAM framework tested here, the application of the ‘probability 291 

ranking’ rule improved the predictions of species richness and composition. First, both ways of 292 

producing species richness predictions, i.e. stacking of probabilities from SDMs (pS-SDM), and 293 

directly predicting species’ richness (MEM), gave more reliable results than the simple binary S-294 

SDMs, a result shown previously (e.g. Dubuis et al., 2011; Calabrese et al., 2014). Second, this 295 

approach also produced better predictions of community composition, by selecting single species from 296 

the pool predicted by SDMs by decreasing order of predicted probability (until the predicted richness 297 
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is reached). One possible explanation for this positive result is that the same species that are least 298 

likely to be present, i.e. the ones removed by the rule, are also the ones most likely to be overpredicted 299 

by bS-SDMs.  300 

The ‘trait range’ rule (as applied here) proved less effective in constraining community predictions, 301 

and no specific functional trait or any percentile interval proved more efficient than another in 302 

reducing species richness overprediction. Although surprising because MEMs for traits were on 303 

average better than those for species richness (see Dubuis et al., 2011, 2013), we can hypothesize 304 

some explanations for this result: (i) we used trait averages for each species, whereas each of these 305 

traits is known in situ to exhibit intraspecific variation along environmental gradients (Albert et al., 306 

2010); (ii) the traits that we used have been shown not always to relate significantly to species’ habitat 307 

suitability (Thuiller et al., 2010); (iii) a larger dataset of traits, as used in trait-based modelling 308 

approaches (e.g. Shipley et al., 2011), could have been more efficient in setting specific functional 309 

limits for the community prediction than the three traits used here. Still, the use of the combination of 310 

three traits as a constraint allowed an efficient decrease of species richness’ overprediction, supporting 311 

the need to put restraints on species pools based on a simple stacking of species predictions. Roots 312 

traits, indicating below-ground competition, could be good additional candidates to complement the 313 

functional constraints. These and other possible trait types should be assessed in future studies testing 314 

the SESAM framework. A potential limitation to the use of particular functional traits is that they must 315 

relate to species’ ability to cope with the environment and be reliably predicted in space by MEM (e.g. 316 

Dubuis et al., 2013), which may not always be possible. Finally, we used three different percentiles 317 

ranges to depict minimal and maximal trait values as functional constraints, but the results for 318 

community predictions were not significantly different, so that we can be confident that our outcomes 319 

were not dependent on the percentiles’ choice.  320 

Overall, and even after strongly reducing the species richness overprediction bias, predicted 321 

assemblage composition was improved but still remained significantly distinct from the observed 322 

ones, a result consistent with those by Aranda & Lobo (2011) and Pottier et al. (2013). Even if the 323 
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individual SDMs have reasonably good independent evaluations, each of them nevertheless contains 324 

substantial errors that can be unevenly distributed among species and along environmental gradients 325 

(Pottier et al., 2013). By stacking SDMs, small errors in many individual species models can 326 

accumulate into quite large errors in the community predictions, degrading assemblage predictions 327 

accordingly (Pottier et al., 2013). In this regard, the values of the Sørensen index of community 328 

similarity obtained in this first formal test of the SESAM framework – above 0.5 – can be considered a 329 

reasonable first achievement. A correction for the probability values based on the true species richness 330 

has been recently proposed by Calabrese et al. (2014). Their maximum likelihood approach, however, 331 

still does not allow the determination of which species in the list of probabilities will enter the final 332 

community. The error propagation could be even more severe if the single species predictions were 333 

binarized before reconstructing the community composition, because the choice of a threshold can 334 

matter (Liu et al., 2005). Moreover, a statistical bias was recently proposed as the main cause of the 335 

general overprediction in richness estimation showed by summing binary SDMs (e.g. Calabrese et al., 336 

2014). As just discussed, we acknowledge the fact that stacking binary SDMs could add biases to the 337 

community prediction, but on the other hand it has the strength to allow an easy identification of the 338 

component species. Predicting assemblage composition over probabilities is still largely wished and 339 

applied, especially in conservation studies (e.g. Faleiro et al., 2013; Leach et al., 2013). In order to 340 

partially control for the additional uncertainty introduced by thresholding, we ran all our analyses 341 

using both AUC and TSS threshold maximization metrics. The results of both analyses were 342 

consistent and therefore we can be confident that our outcomes are not too sensitive to this threshold 343 

choice.  344 

The possibility of predicting species composition in a probabilistic way, without thresholding, holds 345 

the promise of reducing methodological biases, but it is still an unresolved issue that will need further 346 

developments.  In the test of the ‘probability ranking’ rule, we proposed one solution, which avoids 347 

the binary transformation of SDM predictions, while still maintaining information about species 348 

composition. We did this by selecting a number of species equal to the prediction of species richness 349 
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on the basis of decreasing probability of presence calculated by SDMs. Predictions of species 350 

composition is a great challenge for community ecologists and not many applicable solutions have 351 

been proposed (e.g. Webb et al., 2010; Shipley et al., 2011; Laughlin et al., 2012). Our results thus 352 

provide new insights to achieve this goal by using SDMs, while avoiding the statistical bias potentially 353 

occurring when stacking binary SDM predictions (Calabrese et al., 2014). Yet, several issues still need 354 

to be resolved; in particular, new approaches are needed to decrease rates of omission error in SDMs 355 

and in the resulting community predictions. One route to improve compositional predictions could 356 

come from producing single species models that are more efficient at predicting presences correctly 357 

(i.e. limiting omission errors by optimizing sensitivity). A source of omission errors in our case may 358 

come from limitations related to the environmental predictors and resolution used to build the SDMs 359 

(Pradervand et al., 2014). Available predictors can themselves include some level of errors (e.g. from 360 

measurement, interpolation, calculation) and other important predictors (see below) may be missing in 361 

the underlying SDMs (Austin & Van Neil, 2010). As a result, species’ realized niches are likely to be 362 

incompletely described and some suitable or unsuitable situations for a species cannot be captured in 363 

the model. Two recent papers have shown similar problems of assemblage predictions in the case of 364 

butterflies and plants, respectively (Pellissier et al., 2012; Pottier et al., 2013). In both cases, the 365 

sensitivity (true-positive rate) of assemblage predictions was lower at higher elevations, which was 366 

probably due to the more fragmented, mosaic-like environmental conditions there and to missing 367 

substrate predictors (e.g. rock type, soil depth). Regarding our study area, snow cover and 368 

geomorphology (Randin et al., 2009), soil moisture and soil temperature (Le Roux et al., 2013), as 369 

well as edaphic conditions (Dubuis et al., 2012) and finer micro-climatic measurements (Pradervand et 370 

al., 2014), are potential missing predictors that could contribute to improve SDMs and hence the 371 

resulting community composition predictions. Yet, these missing predictors are currently not available 372 

or only available for some plots, and none of them exist in a spatially explicit way to support the final 373 

predictions to be generalized to the whole study area. 374 

Conclusions and future perspectives 375 
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In the last decade, the range of possible approaches to model species communities has been 376 

expanding. Remarkably, most of the very recent solutions agree on the idea of combining 377 

complementary approaches into a single framework, as we did here with SESAM (e.g. Webb et al., 378 

2010; Mokany et al., 2012; Fernandez et al., 2013). A framework approach has a number of highly 379 

desirable characteristics, in particular the flexibility to integrate different drivers and processes to 380 

represent the complexity of factors that influence community assembly and the possibility to couple 381 

strengths of different pre-existing techniques in a unique workflow. Community ecology research is in 382 

continuous development and any new technical improvement coming from theoretical advances could 383 

be promptly accommodated in a framework approach. For instance, in this study we tested the 384 

integration of two types of macroecological models, but other recent implementation could also be 385 

used, such as the use of sum of predicted species probabilities (Dubuis et al., 2011; Calabrese et al., 386 

2014). Another innovative way to model species categories would be the species archetypes model 387 

(SAM; Dustan et al., 2011; Hui et al., 2013), which predicts communities using a finite mixture of 388 

regression model, on the basis of common responses to environmental gradients. Also, 389 

macroecological models not based on correlative statistics could be included to explicitly incorporate 390 

the mechanisms responsible for the observed distributions (e.g. Gotelli et al., 2009).  391 

Among the great challenges in predictive community ecology is the inclusion of biotic rules. This has 392 

been repeatedly attempted in simple SDMs (e.g. by adding other species or simple biotic variables as 393 

predictors of the modelled species) with the result of improving significantly the predictions (reviewed 394 

in Kissling et al., 2012 and Wisz et al., 2013). In contrast, community-level models most often 395 

incorporate the effect of biotic interactions indirectly by considering synthetic community attributes 396 

(as we did in this study), while only in a few cases were biotic interactions accounted for in an explicit 397 

fashion (e.g. Laughlin et al., 2012; Fernandes et al., 2013; Pellissier et al., 2013). This gap could 398 

partly be explained by the shortage of data available to characterize interactions among species in 399 

diverse communities (Araújo et al., 2011). A potential way to overcome the lack of biotic interaction 400 

information could be the analysis of the spatial patterns of geographical overlap in the distributions of 401 
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species. These can inform about potential interactions between species, but approaches to control for 402 

species habitat requirements should be applied in co-occurrence analyses to correctly infer biotic 403 

interactions from observed patterns (e.g. Gotelli et al., 1997; Peres-Neto et al., 2001; Ovaskainen et 404 

al., 2010). Because considering each pairwise interaction as a separate process is difficult, some 405 

alternative solutions to reduce this complexity have been also suggested, such as the analysis of 406 

separate smaller ‘community modules’ (as applied in food web analyses; Gilman et al., 2010), or the 407 

use of proxies of interactions (‘interaction currencies’) based on measures of non-consumable 408 

environmental conditions (described in Kissling et al., 2012).  409 

The implementation of the full SESAM framework, i.e. implementing the ‘step 4’ through the 410 

definition of biotic assembly rules coming from empirical patterns of co-occurrence or experiments, 411 

could represent a promising route to further define the group of species that can coexist at each site, 412 

and help decreasing the rate of omission error. This fourth component of the framework has not been 413 

tested in an ecologically explicit way in this study, although using ranked probabilities of occurrence 414 

per site can be considered a form of implicit biotic rules. Identifying and quantifying other biotic 415 

assembly rules that can be applied generally along wide environmental gradients appears still to be 416 

difficult given our current state of knowledge and the heterogeneity of approaches used (Götzenberger 417 

et al., 2012; Kissling et al., 2012; Wisz et al., 2013), but it constitutes a necessary target if we want to 418 

improve our capacity to predict assemblages in space and time. 419 

Further important drivers of community assembly are stochastic processes, associated with 420 

environmental disturbance and demographic dynamics within local and regional species pools 421 

(Dornelas et al., 2006). The potential presence of stochastic effects would deviate the community 422 

assemblage process from being fully deterministic, i.e. from yielding a specific community 423 

configuration for a given environmental combination and species pool, but instead be probabilistic so 424 

that the projections could for instance consist of a density function of various possible end 425 

compositions (Ozinga et al., 2005; Shipley, 2010; Pellissier et al., 2012; Pottier et al., 2013). 426 

Therefore, assemblage composition will always entail some level of prediction errors. In this regard, 427 
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what would prove useful in future studies would be to understand and discern better the different 428 

sources of errors in the single techniques integrated in the SESAM framework. In particular, it would 429 

be useful to assess how errors propagate from individual SDMs to S-SDMs, and what value of the 430 

Sørensen index (or other evaluation metric of community similarity) would qualify as a fair value of 431 

assemblage prediction. This will help estimate the level of similarity and reliability with which one 432 

can ultimately expect species assemblages to be successfully predicted, and how far the latter may 433 

contribute to a better understanding and prediction of community assembly in space and time (Hortal 434 

et al., 2012). 435 
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Figure legends 637 

Figure 1 Workflow of the analytical steps followed in the study. Data box: We used a calibration and 638 

an evaluation datasets derived from field samplings carried out on 613 and 298 (192 with trait data) 639 

plots, respectively. These datasets were used to test the ‘probability ranking’ rule (left side of the 640 

figure with dashed arrows) and the ‘trait range’ rule (left side of the figure with dotted arrows). Step 1 641 

– species pool: a total of 241 species collected in the study area were considered the ‘species pool’ to 642 

test the ‘probability ranking’ rule, (a) and (b). A subset of this species pool (189 species with trait 643 

data) was used to test the ‘trait range’ rule (c) and (d). All models were fitted by an ensemble 644 

forecasting approach based on the average of three techniques: generalized linear models (GLM), 645 

generalized additive models (GAM), and generalized boosted models (GBM). (e). Step 2 – abiotic 646 

filtering: distribution of individual species (a) and (c) were modelled and then stacked to create binary 647 

stacked species distribution model (S-SDM) predictions to represent a ‘probability pool’ for the 648 

‘probability ranking’ rule test (f) and a ‘traits pool’ for the ‘trait range’ rule test (g). Step 3 – 649 

macroecological constraints:  three different methods were used to define macroecological 650 

constraints, resulting in models with the stacked probabilities from SDMs (h; pS-SDM) and two 651 

different macroecological models (MEMs). These were created by modelling directly species richness 652 

values (i; SR_MEM) and three pairs of traits percentiles (j; Traits_MEM). Step 4 – ecological 653 

assembly rules: in the test of the ‘probability ranking’ rule (k) we limited species richness to fit the 654 

MEM or pS-SDM predictions and the species composition was determined (1) as a random selection 655 

from the pool or (2) selecting the species in decreasing order of predicted probability. In the test for 656 

the ‘trait range’ rule (l) we used the predicted values of MEM of functional traits (each trait separately 657 

and combinations of traits) to discard species functionally outside the assemblage. Assemblage 658 

prediction box: all the outputs resulting from the different approaches were compared and evaluate 659 

using the evaluation dataset (solid arrows).  660 

Figure 2 Boxplots comparing unconstrained stacked species distribution model (S-SDM) predictions 661 

to results from the ‘probability ranking’ rule and random tests when applied constraining richness by 662 
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the sum of probabilities from SDMs (PRR.pSSDM and rand.pSSDM, respectively) or by 663 

macroecological models (PRR.MEM and rand.MEM, respectively) (a, b, c), and to results from the 664 

‘trait range’ rule test for single traits and all their combinations (d, e, f). The metrics utilized in the 665 

comparison are: species richness error, i.e. predicted SR – observed SR (first column); prediction 666 

success, i.e. sum of correctly predicted presences and absences divided by the total species number 667 

(second column); and Sørensen index, i.e. a statistic used to compare the similarity of two samples 668 

(third column). Abbreviations: SR rand, a random choice of species from the probability pool to reach 669 

the number predicted by richness model; SR prob, selection of the most probable species to reach the 670 

number predicted by richness model; H, height; SLA, specific leaf area of the community; SM, seed 671 

mass. 672 

Figure 3 Predictions of species richness on the whole study area produced by (a) the unconstrained 673 

stacked species distribution model (S-SDM), and by the application of the SESAM framework 674 

implemented with (b) the ‘probability ranking’ rule implemented with the sum of probabilities from 675 

SDMs (pS-SDM), (c) the ‘probability ranking’ rule implemented with the richness estimation by  the 676 

macroecological model (MEM) and (d) the ‘trait range’ rule (using the combination of the three traits 677 

as constraints).  678 

Figure 4 Histograms showing the proportion (mean among all plots) of true and false positive, as well 679 

as true and false negative for all the implementations of the SESAM framework, compared with the 680 

unconstrained sum of binary species distribution model (bS-SDM). In the upper plot results from the 681 

‘probability ranking’ rule test implemented with macroecological models and sum of probabilities 682 

from SDMs (PRR MEM and PRR pS-SDM, respectively) and random selections (rand MEM and rand 683 

pS-SDM, respectively). In the lower plot results from the ‘trait range’ rule test for single traits and all 684 

their combinations (H, height; SLA, specific leaf area of the community; SM, seed mass). 685 

 686 
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Appendix S1 Assemblage evaluation metrics and supplementary results. 

 

Table S1 Confusion matrix used to compute the assemblage evaluation metrics. 

    observed 

p
re

d
ic

te
d

  0 1 

0 TN FN 

1 FP TP 

 

 

Figure S1 Results from true skill statistic (TSS) thresholding criterion: the boxplots compare results 

from the ‘trait range’ rule test for single traits and all their combinations when using TSS to binarize 

the SDM predictions. The metrics utilized in the comparison are: (a) species richness error, i.e. 
predicted SR – observed SR (first column), (b) prediction success, i.e. sum of correctly predicted 

presences and absences divided by the total species number (second column) and (c) Sørensen index, 

i.e. a statistic used to compare the similarity of two samples (third column). Abbreviations: H, height; 
SLA, specific leaf area of the community; SM, seed mass. 
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Appendix S2 Evaluation results for SDMs and MEMs. 

 

Table S2 Summary of the SDMs evaluation results. 

  GAM GBM GLM 

AUC mean 0.803 0.783 0.799 

AUC stdev 0.078 0.081 0.077 

TSS mean 0.541 0.507 0.537 

TSS stdev 0.142 0.137 0.142 

 

 

Table S3 Values of Spearman correlation test between observed and predicted values of trait 

percentiles. 

 

Percentile Trait ρ 

1
st H 0.711 

1st SLA 0.759 

1
st SM 0.152 

99th H 0.859 

99
th SLA 0.584 

99th SM 0.514 

5
th H 0.825 

5
th SLA 0.803 

5
th SM 0.350 

95
th H 0.887 

95th SLA 0.652 

95th SM 0.528 

10
th H 0.848 

10th SLA 0.814 

10
th SM 0.550 

90th H 0.867 

90
th SLA 0.677 

90th SM 0.645 
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Appendix S3 Comparison of the assemblage predictions coming from the application of the 

trait range rule with three pairs of percentiles. Abbreviations: SSDM, sum of binary SDMs; H, 

height; SLA, specific leaf area of the community; SM, seed mass. 
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Workflow of the analytical steps followed in the study. Data box: We used a calibration and an evaluation 
datasets derived from field samplings carried out on 613 and 298 (192 with trait data) plots, respectively. 
These datasets were used to test the ‘probability ranking’ rule (left side of the figure with dashed arrows) 
and the ‘trait range’ rule (left side of the figure with dotted arrows). Step 1 – species pool: a total of 241 
species collected in the study area were considered the ‘species pool’ to test the ‘probability ranking’ rule, 
(a) and (b). A subset of this species pool (189 species with trait data) was used to test the ‘trait range’ rule 
(c) and (d). All models were fitted by an ensemble forecasting approach based on the average of three 

techniques: generalized linear models (GLM), generalized additive models (GAM), and generalized boosted 

models (GBM). (e). Step 2 – abiotic filtering: distribution of individual species (a) and (c) were modelled and 
then stacked to create binary stacked species distribution model (S-SDM) predictions to represent a 

‘probability pool’ for the ‘probability ranking’ rule test (f) and a ‘traits pool’ for the ‘trait range’ rule test (g). 
Step 3 – macroecological constraints:  three different methods were used to define macroecological 

constraints, resulting in models with the stacked probabilities from SDMs (h; pS-SDM) and two different 
macroecological models (MEMs). These were created by modelling directly species richness values (i; 

SR_MEM) and three pairs of traits percentiles (j; Traits_MEM). Step 4 – ecological assembly rules: in the 
test of the ‘probability ranking’ rule (k) we limited species richness to fit the MEM or pS-SDM predictions and 
the species composition was determined (1) as a random selection from the pool or (2) selecting the species 
in decreasing order of predicted probability. In the test for the ‘trait range’ rule (l) we used the predicted 
values of MEM of functional traits (each trait separately and combinations of traits) to discard species 

functionally outside the assemblage. Assemblage prediction box: all the outputs resulting from the different 

approaches were compared and evaluate using the evaluation dataset (solid arrows).  
274x190mm (284 x 284 DPI)  
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Boxplots comparing unconstrained stacked species distribution model (S-SDM) predictions to results from 
the ‘probability ranking’ rule and random tests when applied constraining richness by the sum of 
probabilities from SDMs (PRR.pSSDM and rand.pSSDM, respectively) or by macroecological models 

(PRR.MEM and rand.MEM, respectively) (a, b, c), and to results from the ‘trait range’ rule test for single 
traits and all their combinations (d, e, f). The metrics utilized in the comparison are: species richness error, 
i.e. predicted SR – observed SR (first column); prediction success, i.e. sum of correctly predicted presences 
and absences divided by the total species number (second column); and Sørensen index, i.e. a statistic used 
to compare the similarity of two samples (third column). Abbreviations: SR rand, a random choice of species 
from the probability pool to reach the number predicted by richness model; SR prob, selection of the most 
probable species to reach the number predicted by richness model; H, height; SLA, specific leaf area of the 

community; SM, seed mass.  
106x66mm (300 x 300 DPI)  
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Predictions of species richness on the whole study area produced by (a) the unconstrained stacked species 
distribution model (S-SDM), and by the application of the SESAM framework implemented with (b) the 

‘probability ranking’ rule implemented with the sum of probabilities from SDMs (pS-SDM), (c) the 
‘probability ranking’ rule implemented with the richness estimation by  the macroecological model (MEM) 

and (d) the ‘trait range’ rule (using the combination of the three traits as constraints).  
136x44mm (300 x 300 DPI)  
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Histograms showing the proportion (mean among all plots) of true and false positive, as well as true and 
false negative for all the implementations of the SESAM framework, compared with the unconstrained sum 
of binary species distribution model (bS-SDM). In the upper plot results from the ‘probability ranking’ rule 

test implemented with macroecological models and sum of probabilities from SDMs (PRR MEM and PRR pS-
SDM, respectively) and random selections (rand MEM and rand pS-SDM, respectively). In the lower plot 

results from the ‘trait range’ rule test for single traits and all their combinations (H, height; SLA, specific leaf 
area of the community; SM, seed mass).  
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