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� Structure-function coupling of interictal epileptic discharges (IEDs) was studied with graph signal processing for the first time.
� The predominance of smooth vs coarse spatial maps changes during the IED and points at stronger integration mechanisms during IEDs.
� This effect was localized in the ipsilateral mesial temporal regions of patients with temporal lobe epilepsy.
a r t i c l e i n f o

Article history:
Accepted 18 May 2023
Available online 15 June 2023

Keywords:
Temporal lobe epilepsy
EEG
Graph signal processing
Structure–function coupling
a b s t r a c t

Objective: Structure-function coupling remains largely unknown in brain disorders. We studied this cou-
pling during interictal epileptic discharges (IEDs), using graph signal processing in temporal lobe epilepsy
(TLE).
Methods: We decomposed IEDs of 17 patients on spatial maps, i.e. network harmonics, extracted from a
structural connectome. Harmonics were split in smooth maps (long-range interactions reflecting integra-
tion) and coarse maps (short-range interactions reflecting segregation) and were used to reconstruct the
part of the signal coupled (Xc) and decoupled (Xd) from the structure, respectively. We analysed how Xc
and Xd embed the IED energy over time, at global and regional level.
Results: For Xc, the energy was smaller than for Xd before the IED onset (p < .001), but became larger
around the first IED peak (p < .05, cluster 2, C2). Locally, the ipsilateral mesial regions were significantly
coupled to the structure over the whole epoch. The ipsilateral hippocampus increased its coupling during
C2 (p < .01).
Conclusions: At whole-brain level, segregation gives way to integrative processes during the IED. Locally,
brain regions commonly involved in the TLE epileptogenic network increase their reliance on long-range
couplings during IED (C2).
Significance: In TLE, integration mechanisms prevail during the IED and are localized in the ipsilateral
mesial temporal regions.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Focal epilepsy is a disorder of brain networks (Laufs, 2012).
Interictal epileptic discharges (IEDs) are used by clinicians on a
daily basis to diagnose the disease and gain insight on the so-
called epileptogenic network that is involved in the generation
and propagation of epileptic seizures (Bartolomei et al., 2017). IEDs
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have been the object of investigation of connectivity studies as
they are the more evident epileptic signature on interictal elec-
troencephalography (EEG) traces and are easier to capture than
seizures. Past studies have suggested that higher levels of network
integration during both IEDs and resting state are to be interpreted
as markers of hyperexcitable pathologic activity, reflecting a
greater extent of activity transfer within the epileptic network
(Carboni et al., 2020, 2019). In support of such interpretation,
higher interictal connectivity of regions not belonging to the
epileptogenic zone as well as higher levels of global network inte-
gration during IEDs were associated with poor post-operative out-
comes (Lagarde et al., 2018; Carboni et al., 2019).

Although it is still not understood how white matter connectiv-
ity gives rise to seizure dynamics, changes in structure–function
(SF) coupling are known to occur in epilepsy. Studies using func-
tional magnetic resonance imaging (fMRI) show that SF correlation
is higher in right temporal lobe epilepsy (TLE) patients than in con-
trols (Wirsich et al., 2016) but that it decreases in the limbic net-
work of left TLE patients (Chiang et al., 2015) and in the
language network during picture naming tasks (Trimmel et al.,
2021). At the same time, intracranial EEG research reports that
SF coupling increases from pre-ictal to ictal periods (Shah et al.,
2019) and that it seems to predict post-surgery outcomes better
than clinical parameters (Sinha et al., 2022). These heterogeneous
findings illustrate the need for further investigation of SF coupling
during interictal activity in TLE patients.

Graph signal processing (GSP) allows us to investigate brain
connectivity patterns by including information about the struc-
tural connections that constrain the functional connectivity
(Sorrentino et al., 2021). In practical terms, GSP is a framework that
reinterprets common signal processing operations in a graph con-
text (Shuman et al., 2013). Here, the signal to be processed is the
functional brain signal –IEDs measured by EEG- and the graph on
which the operations are performed is the structural connectome
(SC). Using GSP, building blocks of the brain signal on the graph
can be obtained via the so-called graph Laplacian, which is derived
directly from the SC. In particular, ‘‘network harmonics” (NHs)
(Glomb et al., 2020; Rué-Queralt et al., 2021) are the eigenvectors
of the SC Laplacian, ordered according to increasing eigenvalue,
which plays the role of graph frequency that reflects the increasing
amount of variations along the brain graph (Atasoy et al., 2016;
Ortega et al., 2018). The first low frequency (LF) harmonics, on
the one hand, represent smooth gradients without much variation,
capturing the main geometry of brain graph organization and long-
range connections. The higher frequency (HF) harmonics, on the
other hand, capture more localized patterns, less constrained by
the white matter connectivity, and encapsulate short-range con-
nections between neighboring brain regions. As in the time-
domain, we can filter the functional signal by rewriting it as a lin-
ear combination of a subset of these spectral components (Shuman
et al., 2013). If the LF harmonics are used, we reconstruct the part
of the signal that is more ‘‘coupled” to structural connections; if the
HF harmonics are used instead, we reconstruct the signal that
moves more freely on the SC and that can be therefore considered
more ‘‘decoupled” from the structure (Preti and Van De Ville,
2019). The structural-decoupling index (SDI) reflects the ratio
between the energy of the decoupled and coupled signals in each
brain region, allowing to quantify the regional level of SF coupling
(Preti and Van De Ville, 2019).

This GSP-pipeline, applied on both resting state and task-
related fMRI data, showed that low-level processing areas such
as visual, auditory and somatomotor regions are more coupled to
the SC, while high-level processing regions are less constrained
by the structural connections (Preti and Van De Ville, 2019). More-
over, this SF coupling performed very accurately for task decoding
and individual fingerprinting and, in particular, the more liberal
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part of the signal appeared to yield key information for fingerprint-
ing (Griffa et al., 2022). GSP was also applied to EEG data recorded
during a face detection task (Glomb et al., 2020; Rué-Queralt et al.,
2021). An alternation between time windows with signal energy
concentrated in the LF harmonics –signaling long-range integrative
patterns- and windows where HF harmonics prevailed -signaling
focal, short-range segregation mechanisms- was interpreted as a
succession of processing stages (Rué-Queralt et al., 2021).

Here, we used a pipeline previously tested on healthy subjects
during evoked potentials (Glomb et al., 2020; Rué-Queralt et al.,
2021) to distinguish between integration and segregation mecha-
nisms during IEDs by projecting the EEG signal respectively on
the LF and HF harmonics and studying their energy distribution
in time and in space. We hypothesized that an increase of global
network integration would be observed around the peak of the
spike, reflecting the propagation process of the IED to the rest of
the irritative network. We also investigated the regional SF cou-
pling using the SDI.
2. Methods

2.1. Participants

In this retrospective study, 17 patients (median age 33 yrs,
range 15–56 yrs, 5 females) diagnosed with TLE were selected from
the research database of high-density EEG (HD-EEG) recorded at
the epilepsy unit of the University Hospital of Geneva. Eight
patients with left TLE (LTLE) and nine patients with right TLE
(RTLE) were selected (see Table 1 for patients’ details) based on
the following inclusion criteria: diagnosed with TLE, available
HD-EEG with IEDs and available structural MRI. At our centre,
HD-EEG is routinely performed for the presurgical work-up and
the reuse of this clinical data has been approved by the local ethics
committee (CER 2020-02526).

2.2. Data acquisition and preprocessing

2.2.1. EEG
In the context of pre-surgical evaluation, a HD-EEG (129 or 257

channels, Electrical Geodesic Inc. system, sampling rate = 1000 Hz)
is recorded overnight. From the recordings available, IEDs were
identified and revised by a board-certified EEG expert (SV) and
extracted for further analyses. IEDs that occurred less than 1 sec-
ond apart were discarded. Epochs of 4 seconds, centered at the
IED peak with highest amplitude, were extracted for each patient,
preprocessed and used to reconstruct the electrical activity in
N ¼ 118 regions of interest (ROI). Epochs containing motion arti-
facts or eye-blinks were discarded after visual inspection. Selected
data were band-pass filtered between 1 and 40 Hz, notch-filtered
at 50 Hz and downsampled to 250 Hz. Channels with poor signal
to noise ratio were identified as those with a standard deviation
-computed across epochs- exceeding the third quartile by a factor
of 1.5 times the interquartile range: these were replaced by a
‘spline’ interpolation of the neighboring channels (Perrin et al.,
1989). Finally, the epochs were referenced to the average, further
cropped to epochs of 1 second ([�0.5 0.5]) and source-
reconstructed (see Fig. 1).

2.2.2. MRI
T1 weighted MRI: An individual structural MRI image, namely a

T1 weighted magnetization-prepared rapid acquisition gradient
echo (MPRAGE), recorded in a 3 T scanner (Siemens Prisma), was
available for each patient as part of the state-of-the-art clinical epi-
lepsy MR imaging. The scans were resampled to 1 mm3 isotropic
resolution using cubic interpolation and the gray matter was par-



Table 1
Patients’ characteristics, including the number of IEDs analyzed after removing those containing artefacts. F = female; M = male; R = right; L = left; ILAE = International League
Against Epilepsy; IED = interictal epileptic discharge.

Pat ID Sex Age when
epilepsy started
(years)

Age of
recording
(years)

Duration
of disease
(years)

Handedness Etiology (MRI
and histology)

Localisation ILAE-class
outcome

Follow -up
(months)

Number of
IEDs analyzed

P1 F 25 30 5 R Mesial temporal dysplasia Temporal R 5 21 40
P2 M 22 28 6 R Hippocampal sclerosis Temporal L 1 12 20
P3 M 27 51 24 R Hippocampal sclerosis Temporal L 1 12 55
P4 M 25 31 6 R Hippocampal sclerosis Temporal R 1 36 16
P5 M 1 15 14 R Mesial temporal dysplasia Temporal L 1 15 33
P6 M 17 44 27 R Hippocampal sclerosis Temporal L 1 60 12
P7 F 26 29 3 R Mesial temporal glioma Temporal L 1 12 9
P8 M 5 53 48 R Hippocampal sclerosis Temporal L 1 12 11
P9 M 11 16 5 R Hippocampal sclerosis Temporal R 1 36 26
P10 M 5 27 22 R Hippocampal sclerosis Temporal R 1 12 28
P11 M 15 33 18 Not lesional Temporal L 3 3 14
P12 F 25 56 31 R Hippocampal sclerosis Temporal R 1 12 25
P13 M 23 27 4 R Hippocampal sclerosis Temporal R 1 36 29
P14 F 12 50 38 R Hippocampal sclerosis Temporal R 1 60 8
P15 F 16 51 35 L Hippocampal sclerosis Temporal L 1 24 33
P16 M 19 36 17 R Not lesional Temporal R 4 18 19
P17 M 19 34 15 R Hippocampal sclerosis Temporal R 1 9 21

Fig. 1. The source reconstruction of the average interictal epileptic discharge (IED) of a patient. On the left, the spike, averaged across trials and displayed for the 204
channels. On the right, the same EEG time-course reconstructed in the brain region space, displayed for 118 regions of interest (ROI). In the middle, the patient-specific
headmodel. The dashed vertical lines depict the start, half-rise and peak of the IED, calculated across patients.
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celed in 128 ROI based on the second scale of Lausanne 2008 par-
cellation (Cammoun et al., 2012; Hagmann et al., 2008), using Free-
surfer v6.0.1 and the Connectome Mapper (v3.0.0-beta-RC1) open-
source pre-processing software (Tourbier et al., 2022, 2020). Ten
subcortical structures (thalamus, caudate, putamen, pallidum and
accumbens area) were removed and a total of N ¼ 118 ROIs were
retained for source reconstruction.

Diffusion weighted MRI: As standardized diffusion MRI is not
part of the routine pre-clinical evaluation, we used an online avail-
able dataset consisting of 70 healthy participants to create a gen-
eric structural connectivity matrix (Griffa et al., 2019). The
subjects were scanned in a 3 T scanner (Trio, Siemens Medical, Ger-
many) with a 32-channel head-coil. As previously described, the
subjects of the dataset were scanned with a diffusion spectrum
imaging (DSI) sequence (Rué-Queralt et al., 2021) and MPRAGE,
and tractography was performed on the DSI data following the pro-
tocol described in (Wedeen et al., 2008). In detail, the grey matter
was segmented from the MPRAGE scans of the healthy subjects
and parceled into 128 ROI according to the scale 2 of the Lausanne
2008 atlas. The reconstructed DSI data were used to estimate 70
structural connectivity matrices by deterministic streamline trac-
tography. The number of fibers found between each voxel at the
gray/white matter interface was summed within each brain area.
A consensus connectome W was then obtained as previously
3

reported (Rué-Queralt et al., 2021) – with N ¼ 118 ROI retained
(same as above)- and was used for the extraction of the network
harmonics (see Section 2.4).

2.3. Functional data – EEG source reconstruction

The EEG forward model was computed with the boundary ele-
ment method for a three-layer model using OpenMEEG (Gramfort
et al., 2011), starting from the individual resampledMRI scan. Solu-
tion points were imposed on a 5 mm grid located in the patient’s
gray matter and were unconstrained, meaning that each dipole
had a three-dimensional orientation. The 129- and 257- electrodes
EEG caps were manually coregistered to a template MRI scan and
automatically warped to the individual MRI scan. Electrodes on
the cheeks and neck were removed, leaving 109 and 204 channels,
respectively, for the forward and inverse solution (Vorderwülbecke
et al., 2020). For the latter, the electrical activity was reconstructed
at the source level with exact low-resolution brain electromagnetic
tomography (eLORETA) (Pascual-Marqui, 2007), with a regulariza-
tion parameter value set to 0.05.

The three-dimensional information available at each solution
point was summarized within each ROI (N ¼ 118) as the first left
singular vector, weighted by its singular value, resulting from a
single value decomposition (SVD) performed across the concate-
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nated epochs (Rubega et al., 2019). The ROI for which the neural
time-courses were reconstructed were the same ROI that consti-
tuted the nodes of the consensus connectome W.

EEG preprocessing and source reconstruction were imple-
mented in Matlab, using the Fieldtrip Toolbox (Oostenveld et al.,
2011).

2.4. Structural data – Network harmonics

The network harmonics are defined as the eigenvectors of the
graph Laplacian of the consensus structural connectome W. First,
the symmetrically normalized graph Laplacian L of W is calculated
as:

L ¼ 1� D�1
2 �W � D�1

2

where D is the degree matrix of W , which is the diagonal matrix
with the number of connections of each node. Then the eigenvec-
tors U and eigenvalues K of L are extracted from the eigendecompo-
sition L ¼ UKUT . The columns of U, u1. . .uN, are the eigenvectors of
the graph Laplacian, the so-called network harmonics. These are
associated with the corresponding eigenvalues k1. . .kN, which have
increasing values and are ordered according to the smoothness of
the network harmonics (eigenvectors) on the graphW. The smooth-
ness of the eigenvector ui measures the differences between con-
nected nodes and therefore reflects the amount of variation along
the gradient. Ui is smooth if neighboring nodes have similar values.
Eigenvectors with increasing eigenvalues have decreasing smooth-
ness, meaning that the variations along the cortex become less
gradual and more abrupt (see Fig. 2). Each network harmonic is
N-dimensional and identifies a specific brain pattern or spatial
map. Refer to (Ortega et al., 2018; Shuman et al., 2013) for more
details.

2.5. Graph signal processing

2.5.1. Graph Fourier transform
The graph Fourier transform (GFT) is the operation through

which the EEG time-courses – reconstructed in the ROI-space-
are mapped onto the space defined by the u1. . .uN harmonics. Here,
the ROI time-series data of each subject is an array of dimensions
Fig. 2. Graph power spectral density of one RTLE patient (a) and one LTLE patient (b) and
defined for each patient, individually. In the first case, kC ¼ 52; in the second, kC ¼ 38. kC

(light red). On the right, the first four LF harmonics and the last four HF ones are depicted
of the ROI time-courses; the HF harmonics (NHC+1, NHC+2, . . ., NH118) are used to recons
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N� T � E, where N is the number of ROI (N ¼ 118), T is the number
of time points (T ¼ 100, for 400 ms sampled at 250 Hz) and E is the
number of epochs that varies across patients. Each N � 1 � 1 col-
umn of this 3-dimensional array, xe tð Þ, is the source-reconstructed
electrical activity of each ROI at the specific time point t of the
epoch e. Being U the N � N matrix where each column is a NH,
the GFT of xe tð Þ is defined as follows (Shuman et al., 2013):

bxe tð Þ ¼ GFT xe tð Þf g ¼ UT � xe tð Þ:

As the graph spectral coefficients bxe tð Þ describe the participa-
tion of each network harmonic to the original signal xe tð Þ at each
time point, we refer to it as the ‘‘connectome spectrum” of the orig-
inal ROI-based signal.

The original ROI-traces can then be retrieved via the inverse GFT
(iGFT):

xe tð Þ ¼ iGFT bxe tð Þ� � ¼ U � bxe tð Þ
2.5.2. Spectrum dichotomization
For each patient and epoch, the ROI time-courses were further

cropped to epochs of 400 ms ([�0.2 0.2]), z-scored along time
and graph Fourier transformed.

The graph power spectral density (gPSD) of xe tð Þ was calculated

as the squared-value of the graph Fourier transform ( bxe tð Þ�� ��2), aver-
aged over time and further averaged over epochs. We defined then
a cut-off frequency kC as the frequency that divided the gPSD in
two parts of equal cumulative power, i.e. area-under-the-curve
(Preti and Van De Ville, 2019). Differently from what was previ-
ously proposed, the patients’ individual variability was taken into
account by selecting a cut-off frequency for each patient, rather
than selecting a cut-off frequency based on a group-average gPSD
(see Fig. 2). In other words, we calculated the patient-specific gPSD
and kC .

We then used the first lowest C and the last highest N � C har-
monics to reconstruct the original ROI time-courses, resulting in

xC;e tð Þ ¼ U lowð Þ � bxe tð Þ

xD;e tð Þ ¼ U highð Þ � bxe tð Þ
the network harmonics (NH). The vertical red line indicates the cut-off frequency kC

separates the low frequency harmonics (in light blue) from the high frequency ones
(c). The LF harmonics (NH1, NH2, . . ., NHC) are used to reconstruct the ‘‘coupled” part
truct the ‘‘decoupled” part.
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where U lowð Þ and U highð Þ are the N � N matrices containing only the
first C low-frequency harmonics and the last N � C harmonics
respectively, complemented with zeros, xC;e tð Þ is the filtered signal
(in ROI-space) mostly coupled to the underlying structure and
xD;e tð Þ the decoupled one.

To follow the dynamics of the energy distribution in the upper
and lower end of the spectrum, the coupled and decoupled time-
series were summarized over the space dimension (ROI) into two
normalized energy time-courses:

EL;e tð Þ ¼ kxC;e tð Þk2
kxe tð Þk2
EH;e tð Þ ¼ kxD;e tð Þk2
kxe tð Þk2

where the numerator is the l2-norm of the filtered signal taken, for
each time point and epoch, over the ROI dimension, divided by the
same l2-norm of the original (unfiltered) ROI time-course. As com-
puting the l2-norm of a signal corresponds to compute the squared
value of its energy calculated in the spatial domain (over ROI), EL;e tð Þ
and EH;e tð Þ reflect, at each time point, the normalized amount of
energy of the original ROI time-course xe tð Þ contained in the
lowest- and highest-end of the spectrum (Rué-Queralt et al.,
2021). EL;e tð Þ and EH;e tð Þwere then averaged across the epochs avail-
able for each patient and retained for compactness and broadcast-
ing analyses. We will refer to these values as to EL tð Þ and EH tð Þ.
2.6. Graph signal processing analyses

2.6.1. Whole-brain integration and segregation along the IED
Given that functional integration is the ability to rapidly com-

bine specialized information from distributed brain regions
(Rubinov and Sporns, 2010) and that LF harmonics capture smooth,
long-range couplings, we interpret EL tð Þ as representative of inte-
grative processes (Rué-Queralt et al., 2021; Wang et al., 2019).
Contrarily, considering that functional segregation is the ability
for specialized processing to occur within densely interconnected
groups of brain regions (Rubinov and Sporns, 2010) and that HF
harmonics capture focal, short-range couplings, we interpret
EH tð Þ as representative of segregative processes (Rué-Queralt
et al., 2021; Wang et al., 2019).

To detect whether integration and segregation mechanisms
prevailed at any point in time during the IED, we used a cluster-
based permutation test on the EL tð Þ and EH tð Þ time courses (Maris
and Oostenveld, 2007). The null distribution was generated by ran-
domly swapping the labels of the time-courses (L and H) 2000
times and an alpha-level of 0.05 was used to identify the significant
clusters over time (Gerber, 2022). The same analyses were also run
as supplementary analyses on the 1-second-long epoch to expand
the investigation to the post-IED signal.

On the clusters of time-points identified by the significance test,
we calculated the number of harmonics that are necessary to
reconstruct 80% of the average energy (N80%) as a measure of the
compactness of the signal, which was shown to be maximal when
brain activity is integrated (rather than segregated) (Rué-Queralt
et al., 2021). For each patient, the gPSD was computed on the por-
tion of the signal identified by the cluster-based permutation test
and it was used to sort the harmonics in descending order. Then
we calculated the l2-norm over the harmonic dimension, using
M ¼ 1; � � � ;N harmonics. N80% was defined as the total number of
NH necessary to reconstruct 80% of the total energy (where the
total energy is the l2-norm calculated -over the timepoints of the
cluster and over the epochs- using all NHs) and a Wilcoxcon
signed-rank test was used to compare N80% between the clusters.
5

2.6.2. Broadcasting analyses and permutation test
Supplementary analyses include testing the broadcasting direc-

tion (BD) of the graph-filtered signal against 1000 degree-
preserving surrogate SCs, computed with the Brain Connectivity
Toolbox function null_model_und_sign (Rubinov and Sporns,
2010) as previously proposed (Rué-Queralt et al., 2021).The BD
reflects the prevalent type of broadcasting dynamics and is defined
as the difference between EL tð Þ and EH tð Þ. When BD > 1, LF harmon-
ics are more strongly represented and global communication is the
prevalent broadcasting profile. When BD < 1, HF harmonics are
more strongly represented and functional specialization is the
prevalent broadcasting profile (Avena-Koenigsberger et al., 2018).
At each time-point, the empirical BD was compared with the null
distribution obtained by projecting the ROI time-courses on the
degree-preserving surrogate structural connectomes. The goal
was to investigate whether (1) the directionality of the BD was
consistent across patients; (2) the harmonics of the empirical
structural connectome performed better than those obtained from
the surrogate.
2.6.3. Local changes: Structural decoupling index
After investigating how the content of LF and HF harmonics

changed over time at the whole-brain level, we studied the nature
of this content locally, i.e. for each ROI (averaged over time). The
SDI was indeed calculated as the ratio between the norms of
xD;e tð Þ and xC;e tð Þ over time, averaged over epochs (Preti and Van
De Ville, 2019), for each brain region over the whole epoch
(400 ms). For the analyses we used the binary logarithmic value
of this index, so that a value of 0 corresponds to a perfect balance
between SF coupling and decoupling, while positive/negative val-
ues represent decoupled/coupled regions and quantify the number
of times ‘‘decoupling vs coupling”/‘‘coupling vs. decoupling” is pre-
sent in one region (e.g., 1 = double decoupling with respect to
coupling).

Since the SDI is a ROI-specific feature, we decided to group
patients according to the lateralization of the epilepsy. For each
of the groups (RTLE and LTLE, N = 9 and N = 8 respectively), we
selected the ROIs that were significantly coupled/decoupled over
the whole 400 ms epoch with respect to surrogate graph signals,
as previously described (Pirondini et al., 2016; Preti and Van De
Ville, 2019). Briefly, we compared the empirical SDI of each ROI
with the SDI of 19 surrogate time-courses, generated for each
patient and epoch. The surrogate data xrand;e tð Þ were reconstructed
with the iGFT, but we randomized the signs of the graph spectral
coefficients by multiplying the harmonics of the structural connec-
tome by PHI, a diagonal matrix with random + 1/-1 values:

xrand;e tð Þ ¼ U � bxrand;e tð Þ ¼ U � PHI � bxe tð Þ ¼ U � PHI � UT � xe tð Þ
In this way, interactions between NHs are randomized but the

non-stationarity of the EEG data and correlations between time-
points are maintained. Once surrogate time-courses are generated
for each epoch and subject, the SDI is calculated as described above
over the whole 400 ms epoch.

To define the brain regions that were significantly more coupled
or decoupled than in the surrogate time-courses, we determined,
for each ROI, the number of individuals that had a SDI bigger than
the most decoupled surrogate or smaller than the most coupled
one, with a probability of occurrence of p = 1/(1 + 19) = 0.05. Then,
we used the binomial distribution P nð Þ of having n detections to
threshold the average SDI across individuals, for both groups (RTLE
and LTLE). For a significance of 0.05, we retained only the ROI that
were more coupled/decoupled than surrogates in at least 3
patients, for each group. Considering the small sample size of this
study, we also use a more conservative threshold by retaining only
the ROI more coupled/decoupled in 75% of patients in each group.
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2.6.4. Local SDI changes across time (between clusters)
To test our hypothesis that the level of coupling/decoupling

increases during the IED versus ‘immediately before it’, we calcu-
lated the SDIs of each ROI over the time windows detected by
the cluster-based permutation test and compared them with a
one-side Wilcoxon test. Given the small sample size, we reduced
the number of comparisons by testing the SDI only for those
regions that were significantly coupled/decoupled in at least 75%
of participants for each group, which corresponded to 6 (out of
8) for the LTLE group and 7 (out of 9) for the RTLE group. We
applied a Bonferroni correction according to the number of ROIs
tested in each group.

In summary, we first identify significant time windows with
cluster-based permutation test (Section 2.6.1). Then we look at
the spatial changes by comparing the SDI with surrogate time ser-
ies (used to retain only the most significant brain regions, Sec-
tion 2.6.3). And then we merge this information, and we look at
how those most significant ROI change between significant tempo-
ral clusters (Section 2.6.4).
3. Results

3.1. Segregation and integration along the IED

The cluster-based permutation test identified two clusters, clus-
ter 1 (C1, (p < .001)) and cluster 2 (C2, p <.05), during which the
energy contained in the HF harmonics was different from that con-
tained in the LF harmonics (see Fig. 3). The first significant cluster
C1, in the time window preceding the IED, shows that the energy of
the whole-brain signal is concentrated in the upper end of the
spectrum, i.e. HF harmonics explain most of the functional signal.
C1 highlights a time window characterized by high-frequency har-
monics corresponding to increased segregation patterns. Con-
versely, the second cluster C2 shows a significant predominance
of LF harmonics from the IED half-rise until after the IED peak. This
time window, represented mostly by smooth spatial maps, points
at a predominance of integrative patterns. In the 1-second epoch,
the supplementary analyses confirm these results. In addition, they
show that the distribution of signal energy that characterizes the
post-IED time window returns to pre-spike level, with predomi-
nance of HF harmonics (Fig. S1).
Fig. 3. The normalized energy of the ROI time-courses contained in the lower (EL tð Þ,
in blue) and higher (EH tð Þ, in red) end of the spectrum. The black lines indicate a
significant cluster of time points where the content of the low frequency harmonics
and the high frequency ones is significantly different across patients. Asterisks (**
and *) indicate significance, respectively p <.001 and p <.05. The vertical dashed
lines indicate the start, half and peak of the average IED, across epochs and patients.
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Moreover, the comparison of the number of harmonics neces-
sary to reconstruct 80% of the average energy (N80%) during C1
and C2 confirmed that the functional signal is more compact dur-
ing C2 or, in other words, represented by fewer spatial patterns
(Fig. S2, p < .001). The higher compactness of the signal in C2 fur-
ther points at integration as the prevalent mechanisms occurring
during C2.

Indeed, the comparison of the broadcasting direction with the
surrogate functional signals showed that all patients have a pre-
dominance of the low frequency harmonics during the spike, while
the pre-spike time window is generally characterized by a preva-
lence of high frequency harmonics. This comparison was only sig-
nificant in some patients and time-points although a trend was
observed in all subjects (see Fig. S3).
3.2. Epileptic activity in ipsilateral mesial regions become more
coupled during the spike

Our comparison of the empirical and surrogate structural-
decoupling index shows that epileptic activity in mesial temporal
regions over the 400 ms epoch is significantly coupled to the
underlying structure even when using a more conservative thresh-
old (see Fig. 4). Moreover, their level of coupling is higher in the
ipsilateral hemisphere, as more intense shades of blue show in
Fig. 4. When applying the more conservative threshold (75% of
patients for each group), no region stands out as significantly
decoupled (compared to surrogates), while the ipsilateral mesial
regions result significantly coupled to the structure. Specifically,
when using the most conservative threshold, 10 ROIs resulted sig-
nificantly coupled to the structure in RTLE (among which featured
the ipsilateral hippocampus, entorhinal cortex, amygdala, tempo-
ral pole and parahippocampal gyrus) and 7 in LTLE (including ipsi-
lateral hippocampus, entorhinal cortex and insula), as shown in the
second row of Fig. 4.

When we looked at local changes in time, we compared the
SDI of the ROI that are more coupled than the best performing
surrogate in at least 75% of each group (see blue regions in
Fig. 5). The results revealed that some ipsilateral mesial ROI
increased their level of coupling in C2 with respect to C1 (see
Fig. 5, where a decrease of SDI correspond to an increase in cou-
pling to the structure). Specifically, in the LTLE group, the left hip-
pocampus was significantly more coupled -across patients-
during C2 rather than C1 (p <.05, Bonferroni corrected for 7 com-
parisons, see Fig. 5b). Similarly, in the RTLE group, the right hip-
pocampus, entorhinal cortex as well as left rostral anterior
cingulate (RAC) increased their level of coupling during C2, with
respect to C1 (p <.05, Bonferroni corrected for 10 comparisons,
see Fig. 5d).
4. Discussion

Using GSP, we studied interictal activity in TLE in relation to its
link to the underlying brain architecture, decomposed into pat-
terns of structural harmonics. First, we found that the pre-spike
window is characterized by the predominance of high-frequency
harmonics while in the IED window, low-frequency harmonics
contribute more strongly. Second, we found that activity of ipsilat-
eral mesial regions is significantly coupled to the structure in most
patients, while no significant decoupling was found with more
conservative thresholds. Finally, we found that the level of cou-
pling in the ipsilateral hippocampus (for both groups) and entorhi-
nal cortex (for RTLE) increases from the pre-spike timepoints to the
peak of the spike.

GSP and connectome analyses have recently been used to inves-
tigate resting state and cognitive processes tracked by fMRI and



Fig. 4. Significant structural-decoupling index (SDI) values, calculated on the whole IED epoch in left TLE (LTLE, left column, (a) and (c)) and right TLE (RTLE, right column, (b)
and (d)). The SDI is reported in binary logarithmic scale so a value of �2 indicates that the level of coupling of the specific ROI is 4 times as big as its level of decoupling.
Regions reported in gray are not significantly coupled/decoupled (vs surrogate data). In the first row, (a) and (b), we retain the ROIs that were significantly more coupled/
decoupled than in the surrogate functional signals in at least 3 subjects. In the second row, we keep ROI significantly coupled/decoupled in at least 75% of the subjects, which
corresponds to 6 out of 8 subjects for the LTLE (c) and 7 out of 9 subjects for the RTLE group (d).
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EEG (Glomb et al., 2021, 2020; Griffa et al., 2022; Preti and Van De
Ville, 2019; Rué-Queralt et al., 2021). However, to the authors’
knowledge, this is the first application to interictal discharges in
epilepsy. On top of strengthening the recent evidence on increased
SF coupling during interictal and ictal activity based on intracranial
recordings (Shah et al., 2019; Sinha et al., 2022), our non-invasive,
whole brain, dynamic study suggests that this level of coupling
shows transient changes during IEDs.

Low frequency harmonics have been interpreted as integrative
patterns of neural activity in which brain regions communicate
with each other via strong long-range couplings, assuming that
the functional signal actually propagates through the structural
connections (Avena-Koenigsberger et al., 2018). On the other hand,
high frequency harmonics represent short-range coupling and, in
this sense reflect more localized and segregative patterns. Here,
the fact that most of the energy was found to be concentrated
toward the higher harmonics before the IED (C1) and then toward
the lower ones during the IED (C2), suggests a radical change in
functional network organization occurring during IED. In other
words, the brain activity seems fragmented and sparsely localized
before the discharge, and therefore relies on coarse spatial pat-
terns, or segregative mechanisms. When the spike occurs, a
smoother and more long-range network, more linked to the under-
lying structure, seems to be recruited – possibly to play out the
propagation of the epileptic activity to the rest of the epileptogenic
network- in what could be seen as an integrative process. Supple-
mentary analyses show that, although the empirical NHs do not
outperform surrogate ones for every time point and patient, the
transition between HF and LF harmonics is consistent across
patients (see Fig. S3). Increased integration of brain activity during
IEDs –as reflected by the global efficiency of the brain network-
was indeed reported in TLE patients with worse post-operative
outcome, suggesting that the extent of the efficiency of the infor-
mation transfer across the brain reflected a more spread (smooth,
long-range) epileptogenic network (Carboni et al., 2019). As further
evidence in support of this interpretation, we showed that com-
pactness of the ROI time-courses in C2 is higher than in C1, i.e.
fewer harmonics are sufficient to explain 80% of the energy of
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the signal in C2 than in C1. When GSP was applied to visual evoked
potentials, the compactness of the functional ROI signals was
inversely correlated to the amount of energy concentrated in the
higher end of the spectrum (Rué-Queralt et al., 2021).

To shed light on the spatial detail, we calculated, for each brain
region, the ratio between the energy of its decoupled and coupled
time courses and thresholded the ROIs by comparing their SDI with
those of surrogate time series. The least conservative threshold
retained a wide variety of both coupled and decoupled ROIs, with
the latter showing no clear spatial pattern across the groups. When
the more conservative threshold was used instead, only coupled
ROIs were retained (Fig. 4, second row). Specifically, when retain-
ing only the ROIs significantly coupled in at least 75% of the sub-
jects it can be noticed that the sole brain regions retained are the
mesial ones, mostly located in the ipsilateral hemisphere. Interest-
ingly, these brain regions are characterized by very low SDI values,
meaning that the LF harmonics (smooth spatial maps) express
most of their time-course. Read in the context of our TLE cohort
mostly diagnosed with hippocampal sclerosis (HS), the ipsilateral
mesial regions coupled to the structure could reflect critical nodes
with long-range coupling in the epileptogenic network. Further
studies are warranted to assess whether this coupling is also pre-
sent during background EEG activity between IEDs and how it
deviates from controls subjects.

Studying the SDI changes in the two time-windows identified
by the cluster-based permutation test, C1 (pre-IED) and C2 (IED
peak), we found that the ipsilateral hippocampus (and also ipsilat-
eral entorhinal cortex and contralateral rostral anterior cingulate
for the RTLE group), which are strongly coupled during C1, become
even more coupled during C2. This coupling enhancement during
the IED is in line with previous EEG-fMRI studies. Similar connec-
tivity patterns were found among fMRI-derived functional connec-
tivity (FC) maps between runs with or without visible IED on scalp
EEG, suggesting that the underlying network originating and sup-
porting the spread of the IED is constantly embedded but more
strongly recruited in occurrence of the IEDs (Luo et al., 2014). Sim-
ilarly, FC maps were preserved with and without the contribution
of the epileptic discharge, with a significant reduction in connec-



Fig. 5. Changes of the structural-decoupling index (SDI) values, in specific region of interest (ROI), between the two clusters in the left TLE (LTLE) and right TLE (RTLE) group
(top and bottom line, respectively). Figures on the left show the ROI that were tested for the LTLE group (a) and the RTLE group (c), where ROI depicted in blue are those that
were more coupled than surrogates in at least 75% of the patients. Yellow asterisks indicate the ROI for which the SDI changed significantly between C1 and C2. Figures on the
right, (b) and (d), show the boxplots of the logarithmic value of the SDI for the ROI that significantly changed from C1 to C2: asterisks indicate statistical significance (p <.05).
Hipp = hippocampus; EntC = entorhinal cortex; RAC = rostral anterior cingulate.

I. Rigoni, J. Rué Queralt, K. Glomb et al. Clinical Neurophysiology 153 (2023) 1–10
tivity values when the IED contribution was regressed out (Iannotti
et al., 2016) and with a strengthening of some connections corre-
lated to IED occurrence (Iannotti et al., 2020). In line with these
findings, our results suggest that an increased recruitment of this
network is observable during the IED.
8

Altogether, at the whole-brain level, our analyses are able to
distinguish between segregative patterns – preceding the IED –
and integrative patterns – during the IED – indicating a switch
between very different network configurations at a global level.
However, when looking at each ROI individually, we find that the
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electrical activity of brain regions that are likely to be highly
involved in the epileptogenic network (generation and propagation
of the IED) –hippocampus and entorhinal cortex- is predominantly
coupled to the structural connectome, rather than decoupled, and
that this coupling significantly increases during the IED. This sug-
gests that the mesial regions are likely to constantly belong to this
network (and therefore be coupled even before the beginning of
the spike), but the smooth (long range) spatial maps are recruited
more during the spike. It remains unknown whether this is part of
a large scale permissive mechanisms for the IED occurrence or the
consequence of the IED allowing the transfer of the information to
other brain regions via long range coupling. Future studies could
extend these analyses to longer ‘pre-IED’ segments, or even to seg-
ments without IEDs, to investigate if the background coupling level
of ipsilateral mesial temporal regions is indeed constant and
whether it differs from that of healthy controls. If these differences
in SF coupling persist even in the absence of scalp-visible IEDs, the
coupling between brain architecture and EEG could constitute a
potential biomarker for epilepsy. Moreover, future studies should
expand this investigation to a more heterogeneous population,
including extra-temporal epilepsies and more patients who did
not achieve seizure-freedom after the surgery to investigate the
clinical relevance of SF coupling in epilepsy.
Limitations

The small sample size of the study represents one of the main
limitations. However, the highly conservative approach used to
threshold brain region SDI should ensure robustness. Indeed,
choosing to threshold the ROIs to those that are significantly more
coupled/decoupled than the surrogates in 75% of subjects corre-
sponds to a p value of 1e�44 and 1e�36, for RTLE (7/9 patients)
and LTLE (6/8 patients) respectively.

Another potential limitation relates to the reconstruction of cor-
tical electrical activity based on scalp EEG. ROI-based time-courses
are smooth and therefore LF harmonics represent most of the
energy of the signal. We addressed this issue by dichotomizing
the connectome spectrum in two halves of equal energy rather
than simply dividing the set of harmonics in two. Moreover, the
connectome spectrum was shown to be the most robust represen-
tation to this bias by comparing compactness performance in
empirical and white-noise data across ROI-based representation,
connectome spectrum representation and Euclidean distance har-
monic representation (Rué-Queralt et al., 2021). The inclusion of
subcortical regions would be easy in the structural connectome
but poses important challenges and uncertainties for the recon-
struction of source activity. Including dummy subcortical struc-
tures (functional signals set to zero) would practically change the
structural connectivity graph (and therefore the harmonics them-
selves) but their contribution (to each network harmonic) would
be zeroed during the GFT. In this first clinical application of EEG-
based GFP we preferred to stick to the previously proposed
methodology (Glomb et al., 2020; Rué-Queralt et al., 2022a,
2022b).

We used a consensus structural connectome obtained from
healthy subjects. Arguably, this could be seen as another limitation
of the study but actually carries some advantages. On the one hand,
it is known that structural differences exist in patients with TLE,
such as decreased fractional anisotropy and increased mean diffu-
sivity (Slinger et al., 2016) or that pathologic SCs are less integrated
than healthy ones (Slinger et al., 2021). The use of NHs extracted
from patient-specific SC could therefore be seen as definite
methodological improvement. On the other however, high-
quality diffusion MRI data is difficult to obtain in clinical settings
and its reconstruction at the individual level would lead to false
9

positive connections and a variability of bases to project the EEG
traces onto. Importantly the eigenvectors of the SC (network har-
monics) are used in large groups of frequency values (LF vs HF)
and no single harmonic is used to infer on the network underlying
the IED. Therefore, we consider that using a slightly different SC
would provide only slightly different harmonics and would not
yield different results as to whether the energy of the signal is allo-
cated in LF or HF harmonics. For future studies, a consensus SC
obtained from TLE patients is probably the most robust option to
consider.
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