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Rapport de synthèse 

Les systèmes d'assistance ventriculaire sont apparus durant la dernière 
décade comme une approch~ thérapeutique efficace du traitement de 
l'insuffisance cardiaque terminale, en particulier dans le contexte de manque 
de donneurs d'organes. Néanmoins, et ceci malgré les progrès techniques 
majeurs, les taux de complications restent élevés et sont en partie liés à la 
configuration géométrique, en particulier le site d'implantation de la cannule 
de sortie à l'aorte thoracique. Bien que l'anastomose à l'aorte descendante 
permette une chirurgie moins invasive, les bénéfices de cette technique sont 
toujours controversés, comparée à la méthode standard de l'aorte 
ascendante, en raison du risque thrombo-embolique possiblement augmenté 
et des modifications hémodynamiques induites au niveau de l'arc aortique. 

Dans ce travail, nous comparons in silico en terme de débit et pression les 
deux possibilités anastomotiques. Nous développons un réseau de modèles 
mathématiques unidimensionnels, et l'appliquons à diverses situations 
cliniques, pour différents stades d'insuffisance cardiaque et de vitesses de 
rotation de la machine. Les données initiales sont obtenues grâce à un 
modèle OD (c'est-à-dire qui dépend uniquement du temps mais pas de 
l'espace) du système cardiovasculaire comprenant une assistance 
circulatoire, validé avec des données cliniques. Les simulations réalisées 
montrent que les deux méthodes sont similaires, en terme de débit et courbes 
de pression, ceci pour tous les cas cliniques étudiés. Ces résultats 
numériques soutiennent la possibilité d'utiliser la technique d'anastomose à 
l'aorte thoracique descendante, permettant une chirurgie moins invasive. 

Sur un plan plus fondamental, le système cardiovasculaire peut être simulé 
par le biais de multiples modèles de niveau de complexité différents, au prix 
d'un coût computationnel toujours plus élevé. Nous évaluons les avantages 
de modèles géométriques à plusieurs échelles (uni- et tridimensionnelle) avec 
données provenant de patients, comparés à des modèles simplifiés. Les 
résultats montrent que ces modèles de dimensions hétérogènes apportent un 
bénéfice important en terme de ressources de calcul, tout en conservant une 
précision acceptable. 

En conclusion, ces résultats encourageant montrent la relevance des études 
numériques dans le domaine médical, tant sur le plan fondamental et la 
compréhension des mécanismes physiopathologiques, que sur le plan 
applicatif et le développement de nouvelles thérapeutiques. 
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1. Introduction 

ABSTRACT 

In this workwe present numerical simulations of continuous flow leftventricle assist device implantation 
with the aim of comparing difference in flow rates and pressure patterns depending on the location 
of the anastomosis and the rotational speed of the device. Despite the fact that the descending aorta 
anastomosis approach is less invasive, since it does not require a sternotomy and a cardiopulmonary 
bypass, its benefits are still controversial. Moreover, the device rotational speed should be correctly 
ch os en to avoid anomalous flow rates and pressure distribution in specific location of the cardiovascular 
tree. With the aim of assessing the differences between these two approaches and device rotational 
speed in terms of flow rate and pressure waveforms, we set up numerical simulations of network of one­
dimensional models where we account for the presence of an outflow cannula anastomosed to different 
locations of the aorta. Then, we use the resulting network to compare the results of the two different 
cannulations for several stages of heart failure and different rotational speed of the device. The inflow 
boundary data for the heart and the cannulas are obtained from a lumped parameters mode! of the entire 
circulatory system with an assist device, which is validated with clinicat data. The results show that 
ascending and descending aorta cannulations lead to similar waveforms and mean flow rate in ail the 
considered cases. Moreover, regardless of the anastomosis region, the rotational speed of the device has 
an important impact on wave profiles; this effect is more pronounced at high RPM. 

© 2013 JPEM. Published by Elsevier Ltd. Ali rights reserved. 

The implant of a ventricular assist device (VAD) has become a 
common therapeutic approach for treating heart failure, especially 
because of the lack of donors and to the raising number of patients 
presenting terminal heart failure [1,2]. At the early stage the use 
of a VAD was indicated for patients on the transplantation waiting 
list (bridge to transplantation [3]) and for patients with a temporary 
need of circula tory support (bridge to recovery [ 4 ]). 

When using a continuous-flow left ventricular assist device 
(LVAD), such as the HeartMate II®(Thoratec Corporation 1 ), the out­
flow cannula is usually anastomosed to the ascending aorta (M). 
However, other devices su ch as thejarvik 2000 FlowMaker® (Jarvik 
Heart Inc.2 ) allow to perform the anastomosis to the descending 
aorta (DA). The latter procedure is less invasive for the patient as it 
consists in a left thoracotomy without a cardiopulmonary bypass 
(CPB) [7] and avoids the adverse effects of the CPB and the ster­
notomy, especially in the case of patients who are critically ill and 
already had multiple median sternotomy [8]. With the development of more effective devices and the 

improvement of the clinical experience, the indication for the pro­
cedure has widen and it is now proposed to patients who are 
ineligible for transplantation (destination therapy [5]) and also in 
situations of extreme emergency (bridge to decision [6]). 

* Corresponding author. Tel.: +41(21)693 2555. 
E-mail addresses: jean.bonnemain@grnail.com O. Bonnemain), 

cristiano.malossi@epfl.ch (A.C. I.Malossi),rnatteolesinigo@grnail.com (M. Lesinigo), 
sirnone.deparis@epfl.ch (S. Deparis), alfio.quarteroni@epfl.ch (A. Quarteroni), 
lk@segesser.com (LI<. von Segesser). 

Nevertheless the beneficial effect of this procedure is still con­
troversial. For instance, Litwak and co-workers [9] performed 
in vivo experiments showing that DA anastomosis induces a signifi­
cant lower flow rate in the aortic arch and an abnormal flow pattern, 
such as turbulent regions. This has been further confirmed in Lit­
wak et al. [10] through in vitro experiments where the combined 

1 http://www.thoratec.com. 
2 http://www.jarvikheart.com. 

1350-4533/$ - see front matter © 2013 IPEM. Published by Elsevier Ltd. Ali rights reserved. 
http://ctx.doi.org/10.1O16/j.medengphy.2013.03.022 
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ejection of the DA anastomosed cannula and the heart induced 
regions of stagnation and turbulence which could potentially have 
clinical consequences [11 ]. Moreover Nawata and co-workers [12] 
reported adverse clinical effects in patients with DA anastomo­
sis, especially thromboembolic events. In addition, the numerical 
results provided by Bazilev et al. [ 13] indicate deficiencies associ­
ated with the implantation of the LVAD in the descending branch 
of the thoracic aorta, specifically, blood flow stagnation, abnor­
mally high mean wall shear stress in the vicinity of the implant, 
and abnormally low and highly oscillatory wall shear stress in the 
aortic arch. 

However, the reliability of DA anastomosis with the Jarvik 2000 
flowMaker® device has been demonstrated clinically by Frazier 
et al. [ 14 ]. Furthermore, Tuzun et al. [ 15] showed that myocardial 
blood flow is not adversely affected by the outflow-graft anasto­
mosis and Ghodsizad et al. [16] reported the advantages of DA 
anastomosis without CPB; both studies were conducted on animais. 

Few studies were performed by mathematical and numerical 
models to compare the different sites of outflow cannula anasto­
mosis [17-19]. Moreover, at the best of our knowledge, only Kar 
et al. [20] compared the AA and DA configurations, highlighting the 
presence of stagnation zones in the aortic arch, especially in the DA 
configuration. 

On a slightly different context, another relevant aspect that 
should be addressed to help physicians improving the correct 
tuning of the device is the assessment of the response of the cardio­
vascular system to the rotational speed of the device itself. Recent 
studies show that variable pump sp~ed is beneficial, especially for 
outpatient and for exercise [21,22]. 

Consequently, in this work we aim to: 

• develop a new mathematical multiscale framework for assessing 
the response of the cardiovascular response to the implant of a 
LVAD; 

• assess possible differences in flow rates and pressure patterns 
depending on the location of the anastomosis; 

• assess possible differences in flow rates and pressure patterns 
depending on rotational speed of the device. 

A critical point of the numerical models is the choice of a sui table set 
ofboundary conditions to correctly impose the flow rates provided 
by the device and by the heart. Up to now, experimental flow rates 
(either from humans or animais) have been applied as boundary 
data at the root of the aortic arch, while experimental or extrapo­
lated data have been used as inflow conditions for the anastomosed 
cannula of the LVAD. Although these methods allow a rough esti­
mation of flows, they do not take into account the fact that the 
flow rate prescribed by the LVAD depends on the pressure differ­
ence across the device and therefore on the left ventricle pressure 
which is determined by the cardiac function. 

To overcome these limitations, in this work we set up a geo­
metrical multiscale mode! based on the algorithms developed in 
Malossi et al. [23,24] that: 

1 simula tes different stages of heart failure; 
2 takes into account the interaction of a continuous-flow LVAD 

with the cardiovascular system (including different rotational 
speeds and the effects of autoregulation); 

3 allows the evaluation of flow rate and pressure at different loca­
tion of the cardiovascular system; 

4 evaluates qualitatively and quantitatively differences between 
AA and DA anastomosis. 

The main ingredient of our geometrical multiscale mode! is 
a network of one-dimensional (1D) models [25], which provides 
a detailed description of the pulse wave propagation along the 
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arterial tree. The network is terminated by lumped parameters 
windkessel models to account for the peripheral circulation. lnflow 
boundary conditions are determined a priori by using the global cir­
culation lumped parameters mode! [26], which has been slightly 
modified to account for the presence of the LVAD. 

2. Models and methods 

In this section we summarize the main components of our geo­
metrical multiscale mode!. First we introduce the network of 1D 
models describing the global arterial circulation proposed by Rey­
mond et al. [25], that has been slightly modified to account for the 
presence of the two aforementioned cannula configurations. Then, 
we recall from the work of Ursino et al. [26] a lumped parame­
ters mode! for the global circulation, which is used to generate the 
inflow boundary data for the geometrical multiscale problem. 

To have comparable results between the two cannulation pos­
sibilities, we decided to use the parameters of only one device, the 
Thoratec HeartMate Il®, although this device is neither designed 
nor approved for a DA cannulation. 

2.1. 1D FSI mode/for the global arterial circulation 

Numerical simulations of the cardiovascular system using a col­
lection of simple distributed 1D fluid-structure interaction (FSI) 
models have proven to be able to provide useful information under 
physiological and pathophysiological conditions. In particular, they 
give insight about the main characteristics of the flow and the 
interplay among physical phenomena taking place in the systemic 
arteries [27-33]. 

2.1.1. Equations and numerical approximation 
The 1 D FSI mode! is derived from the incompressible 

Navier-Stokes equations by introducing some simplifying 
hypotheses on the behavior of the flow quantities over the 
cross-section of the artery. Being z E [O, L] the axial coordinate, 
with L the length of the vesse!, the resulting governing equations 
are 

{ 

BA+ BQ= 0 at Bz 

BQ+~ (ap Q2) + ~ BP + Kp9: = 0 
Bt Bz A PF Bz A 

in (0, L) x (0, T], 

( 1) 

in (0, L) x (0, T], 

where ap and Kp are the Coriolis and friction coefficients, respec­
tively, whose definitions are given in Malossi et al. [24], A is the 
cross-sectional area, Qis the volumetric flow rate, and Pis the aver­
age pressure. The fluid problem (1) is cou pied with the 1D structural 
mode! through the pressure-area relation 

P = if!(A) = Pext + Îfr(A) +~(A) in (0, L) x (0, T], (2) 

being Pext a reference pressure, i.e., the pressure level at which the 
vesse! area A is equal to the reference area A0 , and 

Îfr(A) = /3s ({fa- 1) , - ( 1 BA) if!(A) = Ys A./A at , 

with 

{Jt hsEs 
/3s = V AD 1 - v2 ' 

s 

Ts tan <Ps hsEs 
Ys = 4J7f 1 - v~ ' 

being hs is the wall thickness, Ts is the wave characteristic time, and 
<Psis the viscoelastic angle. The functions Îfr and~ in (2) account for 
the elastic and viscoelastic response of the vesse! wall. If needed, 
problem (1) is closed by a proper set of initial and boundary con­
ditions. The latter can be either inflow or outflow boundary data 



Table 1 
List of the four parameters calibrated to account for the two heart failure levels (MHF 
and SHF). The values of the parameters for the HH are the same as those given in 
Ursino et al.126). 

Parametera HH MHF SHF 

Emax,lv 2.950 0.800 0.200 
Emax 2.392 0.800 0.200 

lv,O 

GErnax,lv 0.475 0.200 0.200 
kE,lv 0.140 0.130 0.110 

a Emax,lv lmmHg/ml), referencevalue oftheventricle elastance; Emax [mmHg/ml), 
lv,O 

reference value of the ventricle elastance in absence of autoregulation; GE 
[mmHg/ml/(spikes/s)], maximum baroreceptor gain; kE,tv 11/ml], steepness ofth~ 
pressure-volume curve. 

or coupling conditions with other models, as we detail in Section 
2.1.3. 

From the numerical viewpoint, the 10 FSI problem is solved 
by using an operator splitting technique based on an explicit 
second order Taylor-Galerkin discretization, where the solution 
of the problem requires two steps: the first one corresponds to 
the solution of a purely elastic problem, while the second one 
provides a viscoelastic correction. The spatial discretization is 
accomplished using!P'l finite elements. For more details see Malossi 
et al. [24]. 

2.1.2. Human arterial tree mode! with cannula 
Ta mode! the global circulation we use the data of the arterial 

network provided in Reymond et al. [25] (Fig. 2 and Table 2), in 
which the entire arterial network is divided in many small anatom­
ical arterial segments. More precisely, the mode! is composed by 
103 elements, i.e., 24 elements for the aorta, 4 for the coronary 
system, 51 for the cerebral system, 10 for the upper limbs, and 14 
for the lower limbs. It also includes ail the values of the parame­
ters required to describe the blood flow, such as the geometrical 
properties of the vessels (length and proximal/distal areas) and the 
data for the terminais, which are modeled as three-element wind­
kessel elements. These values have been obtained bath from in vivo 
measurements and averaged literature data. The presence of the 
venous circulation is taken into account by imposing a constant 
pressure of 5 mmHg on the distal side of each windkessel termi­
nal, i.e., Pv = 5 mmHg (see Malossi et al. [24], Fig. 7). Regarding the 
parameters of the wall, since we use a different mode!, we esti­
mate these values from other sources, as described in Malossi et al. 
[24]. 

Ta account for the presence of the LVAD the global network of 
10 arteries is extended by including an additional segment repre­
senting the cannula. As discussed in the introduction, the position 
of the cannula depends on the chosen approach for the anastomo­
sis. Following the same numeration in Reymond et al. [25] (Fig. 2 
and Table 2), in the M configuration the cannula is connected in 
the middle of the segment 95 (ascending aorta 2), while in the DA 
configuration it is attached at the junction between segments 18 
(thoracic aorta A) and 27 (thoracic aorta B). The end of the outflow 
cannula of the LVAD is modeled as a stiffer 10 element (Young 
modulus Es =4 MPa) and a diameter of 16 mm as reported by the 
manufacturer. The inflow boundary data for the cannula are com­
puted by using the lumped parameters mode! by Ursino et al. [26], 
as described in Section 2.2. 

2.1.3. Interface conditions for the network of models 
The solution of the global network of 10 models is addressed 

in detail in a previous work of Malossi et al. [24]. We consider a 
general network of 10 models connected by C coupling nodes: at 
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each eth coupling node we impose the conservation of mass and 
the continuity of mean pressure as 

{ 
t,<lc.i = 0 

Pc,1-Pc,i=O, i=2,. .. ,lc, 

(3) 

where Ic is the number of interfaces connected by the eth coupling 
node, c = 1, ... , C. From the numerical viewpoint, the global inter­
face problem is written in a residual formulation and solved by 
Newton or inexact-Newton methods, where the Jacobian matrix is 
either computed analytically, by solving the tangent problem asso­
ciated to each mode!, or approximated with finite difference. To 
avoid the recomputation of the Jacobian matrix at each iteration, a 
Broyden method is used [24]. 

2.2. Lumped parameters mode/for the cannula injlow boundary 
conditions 

Zero-dimensional (0-D) (or lumped or compartmental models) 
usually provide averaged spatial information about the fundamen­
tal variables (pressure, flow, and volume) of the compartment 
(organ, vesse! or part of vesse!) of interest at any instant intime, 
differentiating themselves from higher dimensional models that 
are also able to capture the spatial variation of these parameters. 
They are particularly appreciated in the description of complex 
multi-compartmental systems as they are easy to develop and pro­
totype, fast to solve and may be refined by adding equations for 
second-order effects and nonlinearities. Usually, lumped param­
eter models consist of differential algebraic equations describing 
the conservation of mass and momentum which are comple­
mented by a pressure-volume relation [34-37]. Lumped models 
have been extensively applied for modeling the cardiovascular 
system [26,31,38]. For a recent review on lumped parameters mod­
els for cardiovascular problems see Shi et al. [39] and references 
therein. 

2.2.1. Madel description 
The lumped description of the cardiovascular network is 

obtained extending the mode! of Ursino et al. [26] by includ­
ing a compartment representing the LVAD. Ursino mode! was 
developed to provide a lumped mathematical description of the 
whole cardiovascular system accounting also for autoregulation 
and therefore constitute a sui table basis for our analysis. The mode! 
includes an elastance variable description of the left and right heart, 
the splanchnic and extrasplanchnic systemic circulation, the pul­
monary circulations, the afferent carotid baroreceptor pathway, the 
sympathetic and vagal efferent activities, and the action of several 
effector mechanisms. A sketch of the mode! is depicted in Fig. 1. 

The vascular compartments are modeled by the classical basic[,­
circuit equivalent equations, derived by linearizing system (1) [40]. 
The resulting equations relate the volume of the compartment Ve. 
the inlet and outlet volumetric flow rate Clin and <2out. and the inlet 
and outlet pressure Pin and Pout· The mass conservation reads 

dVc(t) 
~ = Clin(t) - <2our(t), 

white the momentum conservation is given by 

Pin(t) - Pout(t) =Re <2out(t) +Le d~~(t), 

(4) 

(5) 

where Re denotes the hydraulic resistance of the compartment and 
Le the inertance of the flow. Eqs. ( 4) and (5) are complemented by 
a pressure-volume relation by mean of a compliance Cc, namely 

dVc(t) _ C dPin(t) 
dt - c dt . 



Veins Peripheral Circulation Arteries 

Heart 

Lcft atrium Mitral valve Lcft vcntriclc Aortic valve 

Systemic circulation 
Splanchnic circulation 

........ llllm. • ....... 

Fig. 1. Diagram of the lumped model. Four main compartments may be identified: heart, systemic circulation, and pulmonary circulation . Red elements denote subcompart­
ments containing oxygenated blood while blue elements subcompartment containing deoxygenated blood. White circles represent compliances, white rectangles inertances, 
and white facing triangles resistances. Single triangles denote proper valves. Elements with a thick gray contour are subject to autoregulation as a function of the arterial 
pressure at the inlet of the systemic circulation arteries. The LVAD device pumps blood from within the left ventricle to the systemic arteries. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of the article.) 

Table 2 
Lumped parameter model results with and without LV AD. ln the latter case, bath model and reference resu lts are provided, where the reference values are clinical data given 
byCoxetal. [41j. 

Parameter' NoVAD LVAD 

Ref. Mod. 8kRPM 9kRPM 10k RPM 

HH HF HH MHF SHF MHF SHF MHF SHF MHF SHF 

EF 55- 65 15-33 57 32 17 35 17 34 17 33 23 
HR 60-100 76- 103 71 78 85 75 81 72 77 69 71 
EDV 90-162 20-522 133 180 238 169 224 156 208 140 174 
ESV 27- 45 140-249 56 122 197 110 185 104 172 94 134 
LV AD Pl 25 15 15 10 10 9 
Cl 2.8-4.2 1.9- 2.4 3.0 2.5 1.9 1.3 0.4 0.7 0.0 0.1 0.0 
AQ 5.4 4.4 3.5 2.2 0.7 1.2 0.0 0.1 0.0 
LVADQ 2.4 3.2 3.7 4.3 5.0 4.9 
TOTQ 5.4 4.4 3.5 4.6 3.9 4.9 4.3 5.1 4.9 
SAP 90-140 107- 115 131 112 94 109 91 105 89 98 95 
DAP 60-90 68-76 88 79 69 83 78 87 84 90 89 
MAP 70-105 78-95 102 90 78 92 83 93 85 93 91 
SPAP 15- 28 54-62 27 30 32 29 30 28 29 27 27 
DPAP 5- 16 28-29 13 18 23 16 20 15 18 13 14 
MPAP 10-22 27-40 18 23 26 21 24 20 22 18 19 
PCWP 5-12 17-29 8 14 19 12 17 11 14 8 9 

• EF [%j, ejection factor: HR [1/minj, heart rate; EDV [mlj, end-diastolic volume: ESV [mlj , end-systolic volume: LVADPI, LVAD pulsatile index: Cl [L/(minm2 )J, cardiac 
index: AQ (L/minJ. aortic now rate; LVADQ [L/minJ, LVAD now rate; TOTQ [L/minj , total now rate; SAP [mmHgJ, systolic arterial pressure: DAP JmmHgJ, diastolic arterial 
pressure; MAP [mmHgJ, mean arterial pressure: SPAP [mmHgJ, systolic pulmonary arterial pressure: DPAP [mmHgJ, diastolic pulmonary arterial pressure: MPAP [mmHgJ, 
mean pulmonary arterial pressure: PCWP [mmHgj, pulmonary capillary wedge pressure. 

The conservation of mass and momentum is imposed at each node 
of the 0-D network through equations analogous to (3). lnertance 
of the flow is considered only for arterial compartments since in 
the other elements that term is small with respect to the resis­
tive hydraulic pressure Joss and may be neglected. Cardiac valves 
are considered open if the pressure in the upper chamber is greater 
than the one in the lower compartment and closed otherwise. ln the 
former case, a nonlinear resistance models the hydraulic pressure 
Joss through the valve. Autoregulation is modeled by differential 
algebraic equations changing the elastance of the heart ventri­
cles and the resistances and the unstressed reference volumes of 
splanchnic and extrasplanchnic circulation. Bath sympathetic and 
vagal autoregulation pathways are taken into account [26]. 

6 

The LVAD is modeled by a pressure-controlled flow generator. 
Particularly, for each value of the pressure across the device, the 
corresponding flow is prescribed according to interpolated exper­
imental pressure-flow curves at different rotational speeds3 . The 
model has been implemented in Modelica® (a non-proprietary, 
object-oriented, equation based language aimed at conveniently 
model complex physical systems4 ) and solved for different device 
rotational speeds and ventricular elastance corresponding to the 

3 For the data we referred to the HeartMate Il® operating manual available at: 
http: //www. thoratec.com. 

4 http: //www.modelica.org. 
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fig. 2. Comparison of pressure-volume diagrams for several heart conditions and LVAD speeds. (a) Physiological and pathological cases without LVAD. (b) MHF with and 
without LVAD. (c) SHF with and without LVAD. 

case of healthy heart (HH), mid heart failure (MHF), and severe 
heart failure (SHF); the last two are both in the context of dilated 
cardiopathy. 

To set up the two cases we have changed some of the param­
eters given in Ursino et al. [26] ; these are summarized in Table 1. 
More precisely, Emax.lv represents the reference value of the ventri­
cle elas tance at the instant of maximum contraction for the patient, 
while Emax the value in absence of autoregulation, and GE 
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the maximum baroreceptor gain (autoregulation effect). By low­
ering the se parameters the contractility properties of the heart are 
decreased, hence modeling heart failure of different intensity. We 
also varied kE,lv· the steepness of the pressure-volume curve for the 
ventricle (supposed to be monoexponential), to be able to correctly 
represent the pressure- volume curve in patients presenting heart 
failure of different intensity. Ali the other parameters are set as in 
Ursino et al. [26]. 
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Fig. 3. Time dependent inflow boundary cond itions fo r the ID arterial network computed with the lumped parameters modelas a function of the LVAD rotational speed and 
of the heart fa ilure leve l. 
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rable 3 
Mean flow rate comparison, at severa l location of the arterial network, between different LVAD configurations and heart fai lures. The flow rates are expressed in [ml/s ). 

Location MHF [RPM] 

8k 9k 

AA DA AA 

Abdominal aorta 40.822 40.880 42.715 
Left main coronary 3.215 3.210 3.356 
Left ant. desc. coron. 1.532 1.530 1.599 
Right coronary RCA 1.346 1.344 1.407 
Right common carotid 4.123 4.101 4.322 
Right vertebral 0.891 0.886 0.920 
Left subclavian 4.289 4.298 4.522 
Right renal 8.821 8.825 9.219 
Right common iliac 5.521 5.520 5.771 
Right anterior tibial 0.940 0.939 0.977 
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Fig. 4. Flow rate (solid lines) and pressure (dashed lines ) comparison between AA (black lines ) and DA (red \ines ) cannula configurations in eight different arterial vessels for 
a MHF wi th LVAD at 8k RPM. The left image represe nts a global view of the 1 D network elements, while the right one is a zoomed view of the aortic region . The ye ll ow and 
green segments represent the two configurations for the cannula (AA and DA, respectively). Pos itioning of the elements is pu rel y visual. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web vers ion of the art icle.) 
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Fig. 5. Flow rate (solid lines) and press ure (dashed lines) comparison be tween AA (black Jines) and DA (red Jines) cannula co nfi gurations in six diffe rent a rterial vessels for 
a SHF w ith LVAD a t 1 Ok RPM. (For interpretation of the refe rences to co lor in thi s fi gure lege nd , the read er is refe rred to the web version of the arti cle.) 

3. Lumped parameters mode! results and validation 

In this section we present the numerical results obtained by 
the lumped parameters mode!. Particularly, the mode! offers the 
poss ibility to compare and evaluate different scenarios including: 

1. different stages of heart failure ; 
2. pre- and post-operative situations (before and after the device 

implant); 
3. different rotational speeds of the device. 

An extensive overview of the results provided by the mode! is 
reported in Table 2 for bath pre- and post-LVAD implant. Simula­
ti ons performed without the LVAD aim at comparing the predictive 
and explanatory ability of the mode! for the cases described in 
Section 2, i.e .. HH, MHF, and SHF. To set up these simulations we 
use the parameters reported in Table 1. To validate our results, we 
compare them with the clinical data given by Cox et al. [41 I. which 
are reported in Table 2 under the "Ref." column for the reader's 
convenience. The values predicted by the model for the case of an 
healthy heart match the reference data except for the end-systolic 
volume, which is higher than the upper bound of the clinical range. 
In the case of middle and severe heart failure the mode! provides 
results that are in good agreement with the limits of the clinical 
ranges for the heart failure (HF), th us representing the case of MHF 
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and SHF. However, in these cases, predicted pulmonary pressures 
are lower than expected. 

Finally the pressure-volume diagrams for the physiological and 
the two pathological situations are depicted in Fig. 2(a). The curves 
for stages of dilated heart failure match bath qualitatively and 
quantitatively the typical curves observed in clinical practice [42]. 
Note that the pathological conditions, compared to the physiologi­
cal one, exhibit the presence of systolic dysfunction with increased 
end-systolic and end-diastolic volumes, decreased stroke volume, 
and increased end-diastolic pressure. 

Configurations including the LVAD were tested for MHF and 
SHF and for different pump rotational speeds corresponding to the 
usual values used in the clinical practice (Sk, 9k, and lük RPM). 
The numerical results show that our mode! is able, at least qualita­
tively, to reproduce the main features of the continuous-flow assist 
devices. Particularly we observe: 

1. a flow rate increase when increasing the pump rotational speed; 
2. a flow rate increase when decreasing the pressure jump across 

the pump; 
3. a pulsatility decrease when increasing the pump rotational speed 

(measured by the pulsatile index); 
4. a venous pulmonary pressure decrease when increasing the 

pump rotational speed : this is a well known behavior of LVAD, 
since it improves pulmonary circulation in patients. 
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Fig. 6. Flow rate comparison, in six different arterial vessels, for three different speed of the LVAD anastomoted to the AA of a patient with MHF. 

The pressure-volume curves for the middle and severe heart 
failure states are reported in Fig. 2(b) and ( c), respectively, for differ­
ent rotational speeds. ln ail the cases the device helps in unloading 
the ventricle from its pumping workload and the effect becomes 
more evident when the rotational speeds and therefore the LVAD 
flow rate are increased. The model reproduces the typical triangu­
lar pressure volume curves observed in clinical practice for patients 
under ventricular assistance [ 43 ]. 

ln conclusion, the lumped parameters mode! provides a reli­
able description of the behavior of the device in different relevant 
physiological and pathological conditions, since it accounts for the 
interaction among the ventricle, the assist device, the aorta, and 
the other parts of the circulatory system. Consequently, it can be 
used to estima te a proper set of inflow boundary conditions for the 
network of 1 D arteries. ln particular, we generate six sets ofbound­
ary data at different values of the rotational speed and for different 
heart failure Ievels, as shown in Fig. 3 where, for the reader's con­
venience, the timescale in the images has been normalized to one 
heart beat; the real timescale can be deduced by the heart rate 
values reported in Table 2. 

The curves exhibit a good qualitative agreement with the exper­
imental data reported, for example, by Khalil et al. [ 44 ]. Particularly, 
the OO mode! allows us to take into account the dynamic interaction 
between the device and the cardiovascular system itself, predict­
ing, for example, the blood stealing effect that the device has on the 
ventricle chamber, especially at high rotational speeds. ln fact, the 

device empties the ventricle chamber continuously reducing the 
amount of blood available to be ejected by the aortic valve during 
heart contraction. Coherently, the aortic valve flow rate provided 
by the OO mode! is present only at the systolic phase peak and is 
reduced by increasing the device RPM, being effectively null in the 
case of 9k and 1 Ok RPM with SHF. By using the lumped parameters 
mode! results as boundary data for the networks of 1 D arteries we 
take into account these effects. 

4. Numerical comparisons of LVAD implant configurations 

We use the network of 1 D arteries described in Section 2.1.2 
to set up several numerical comparisons between different LVAD 
implant configurations. The aortic and the LVAD periodic flow rates 
computed by the lumped parameters mode! (see Fig. 3) are used as 
inflow boundary data for the network of 1 D arteries, as described in 
Section 3. Note that these data are supposed to be val id for both the 
AA and DA cannulations, since the lumped parameters model used 
was notable to take into account the exact location of the anasto­
mosis. This can introduce a bias in our comparisons by attenuating 
the differences between AA and DA. We analyze 12 different clinical 
scenarios obtained by the combination of the two possible sites for 
the anastomosis of cannula, the two stages of heart failure, and the 
three available rotational speeds of the device. We remark that not 
only these scenarios are rather frequent among different patients 
presenting heart failure, they may also regard a single patient at 

10 



Abdominal aorta 
20 

-8k RPM 

'2 15 9k RPM 
- lOkRPM ] 

:::::, 10 

, ' 
~ 

-
5 

0 0.25 0.5 0.75 
Normali zed heart beat lime 

Right vertebral 
0.2.---.,-------,----;======;i 

-8k RPM 
'2 0.16f·····························'···················· .......... , ................ 1- 9k RPM 
] - !Ok RPM 
:::::, 0.12~·········"""""' .. : ....................... ; ................ '.:::::===:::::'.! 
" ë 0.08f""""''""""'"'""""''"f\ 

~ 0.04 ~~~J'fr~ ..... 7, .. ,s; ...... t<2 ... .r?"'."~::::::~~ 
OO 0.25 0.5 O. 75 

Normalized heart beat lime 

Righi common iliac 
2.5 

-8k RPM 

'2 1.9 f ............................. ; .............................. , ................. - 9k RPM 

] 
1.3 :::::, 

- lOk RPM 

~ e 0.7 
~ 
0 

[;:; 0.1 

-0.5 0 0.25 0.5 0.75 
Nonnali zed heart beat lime 

Righi common carotid 
2 .5.---~--~--.======;i 

-8k RPM 
'2 1.9, ............................ + .......................... ,· ................. ,--gk RPM 

·- - IOk RPM â 1.3~ ·········"•"""" : ........................ ; ................ '.:::::=== ::::'.! 

" ë 0.7 ................ ", ................................. ....................... , .................. . 

~ 0.1 ,..~~?..=~:' :\'!v<== ...... r. .... ~ ... .;;;~~~~~~~ 
-0.5 0 0.25 0.5 0.75 

Normalized heart beat time 

Left anterior descending coronary LAD 
0.15,---.,-------,----;======;i 

-8k RPM 
'2 0.13f ............................. , .............................. , ................ - 9k RPM 

Ï~ - IOk RPM 
20.11 

0
·
05 

0 0.25 0.5 0.75 
Normalized heart beat lime 

Righi anterior tibial 
0.12.---~---r-----;========o 

-8k RPM 
'2 0.1 .............................................................................. - 9k RPM 

·Ë - IOk RPM 
2 0.08, ........................... .. , ............................ ., .............................. , ............................ ~ 

" ë 0.06~::::::::=J::;7"'""""'"'"""'"'"' J ..... ~ 
~ r----+----/ ~ ...... c: 0.04 "-.... 

0.02 0 0.25 0.5 0.75 
Normali zed heart beat time 

Fig. 7. Flow rate comparison, in six different arterial vessels, for three different speed of the LVAD anastomoted to the AA of a patient with SHF. 

different stages of the disease, for example in the case of the idio­
pathie dilated cardiomyopathy in which the device, implanted as 
a bridge to recove1y, weans to the progressive full recovery of the 
heart [4 ]. 

The main motivation for our study is to numerically mode! and 
compare different sites of outflow cannula anastomosis. lndeed, the 
network of 1 D arteries allows to perform this analysis by comparing 
the blood pressures and flow rate waveforms at different locations 
for the selected clinicat scenarios. 

ln Table 3 we select nine arteries from the global 1 D network and 
we compare the predicted mean flow rates for the two cannulation 
techniques. The results show that, regardless of the heart failure 
stage (MHF or SHF) and rotational speed (8k, 9k, and 1 Ok RPM), the 
mean flow rate between the M and DA anastomosis is similar. ln 
particular, the flow rates in the coronaries and in the cerebral arter­
ies for the two approaches may be considered clinically equivalent. 
This is relevant due to the importance of the heart and cerebral 
perfusions. Moreover, for ail the other arterial segments, the dif­
ferences between the two approaches have been quantified in less 
than 1%. 

Furthermore, we want to assess whether there is any significant 
difference in the flow rates and pressures waveforms between the 
two different cannulation techniques. ln this respect, we compare 
the flow rates and pressures waveforms for two limit configura­
tions: the MHF state with LVAD at 8k RPM and the SHF state with 
LVAD at 1 OK RPM. ln the first case both the cannula and the aortic 
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valve inflows are non-null, such that the systemic circulation is fed 
from two different points and with flows characterized by different 
shape and amplitude. ln the second case the device is the only flow 
source since it sucks too much blood from the ventricle for the aor­
tic valve flow rate to be present. Thus the heart does not contribute 
to the systemic circulation. The results of these comparisons are 
shown in Figs. 4 and 5 . respectively. ln both configurations, the M 
and the DA flow rate and pressure waveforms are almost the same 
in ail the vessels. 

Finally, in Figs. 6 and 7 we show flow rate comparisons at 
different rotational speeds for the MHF and SHF cases, respec­
tively, in six selected arterial segments. Since the M and DA 
cannulations lead to very similar waveforms, in the images we 
show only the results of the former approach. Similar curves 
are obtained for the case of the DA cannulation. An increase of 
the rotational speed of the device decreases the flow rate wave 
amplitude, regardless of the stage of heart failure . This effect is 
particularly pronounced in the MHF case in which wave pro­
files alteration are observed in the right common carotid, in the 
right vertebral artery, and in the left anterior descending coro­
nary. We recall that loss or reduction ofpulsatility and wave profile 
alterations for flow rates may have adverse effects on human phys­
iology. For this reason, even if numerical simulations have proven 
that the M and DA cannulation approaches are similar, particu­
lar care should be taken in setting the correct device rotational 
speed. 



s. Limitations and extension of the current work 

Our mode! proved to be effective in describing the global car­
diovascular response to the implant of a LVAD, toits location, and 
to its rotational speed. However, the present work presents some 
limitations that should be further investigated in the future. Being 
based on reduced dimensional techniques which provide only spa­
tial averages of the quantities of interest, our approach neglects 
possibly relevant 30 effects like vortex flow regions, turbulent flow 
regions, zones of stagnation, and abnormal distributions of the wall 
shear stress at the site of anastomosis or at vessels bifurcations. 
These flow patterns can, in principle, lead to complications, e.g., 
thrombosis or hemolysis, to long-term effect on aortic wall, i.e., 
rernodeling, or to haemodynamical effects on the aortic valve, i.e., 
valve regurgitation. These limitations could be partly overcome 
using a 30 mode! of the cannula anastomosed to the aorta, thus 
considering the 30 dynamics of the flow in that region [ 45 ]. The use 
of3D geometries, besides allowing the study of the effect of the site 
and the angle of the anastomosis of the cannula, make it possible a 
cornparison of 30 flow patterns with data from the literature [ 13 ]. 

Another limitation of the present work is that the OO and the 
1D mode! do not provide reciprocal feedbacks, being effectively 
decoupled. ln fact the lumped parameters mode! is used only to 
pre-generate the inflow boundary condition for the cannula while 
the 1 D mode! does not feature a closed loop as it only accounts for 
the description of the systemic arteries. ln this respect. the devel­
opment of a closed-loop mode! which accounts for the interaction 
between a detailed (i.e., 1 D plus 30) systemic circulation and a 
lumped description of the peripheral ' and venous compartments, 
as well as of the LVAD pump, may provide more accurate results. 
Another possible extension of the present mode! deals with the 
inclusions of the effects due to nonlinear material properties of 
blood and wall tissues. However, these effects are generally consid­
ered negligible when using reduced order models, such as the 1 D 
FSI mode! employed in this work. More precisely, the assumption 
of a linear elastic stress-strain wall relation is acceptable unless 
specific clinical scenarios dominated by the nonlinear mechanics 
of the wall are analyzed (e.g., stenoses or aneurysms): for this class 
of problems, a 30 description of the flow and of the arterial wall 
could be essential. 

6. Conclusions 

ln this work we developed a geometrical multiscale mode! to 
simulate the interaction of a LVAD with the systemic circulation. 
A brief description of the employed models including some details 
about the used numerical approximation have been provided. Our 
work had three main goals. 

1 The development of a multiscale framework for assessing the 
cardiovascular response to the implant of a LVAD. This frame­
work effectively combines a lumped mathematical mode! with 
autoregulation and a network of 1 D FSI arteries that in future 
works can be extended to include local 30 blacks. The lumped 
parameters mode! has been validated for different stages of heart 
failure and is able to represent different clinical situations pre­
and post-LVAD implant, being therefore able to provide reliable 
preliminary results on pressures and flow rates. accounting for 
the interaction between the device and the global circulation. 
The 1 D FSI arteries mode! uses the results of the lumped mode! 
as inflow boundary data and provides an effective description of 
the flow rates and pressure in the global arterial tree. Through 
this framework we were able to study several clinical scenarios, 
given by the combination of two possible sites for the anastomo­
sis of cannula of the LVAD (M and DA), three rotational speed of 
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the device (8k, 9k, and 101< RPM), and two stages of heart failure 
(MHF and SHF). 

2 The assessment of possible difference in flow rates and pressure 
patterns depending on the location of the anastomosis. ln this 
respect the results for M and DA cannulations exhibit similar 
waveforms and mean flow rates in ail the considered cases. ln 
spi te of the limitations of our mode!, the results confirmed that. 
as mentioned in Section 1, DA cannulation remains an adequate 
therapeutic option, especially in patients who are at high risk for 
the M cannulation. 

3 The assessment of possible difference in flow rates and pres­
sure patterns depending on rotational speed of the device. ln 
this respect the results show that, regardless of the anastomosis 
region. the rotational speed of the device has a significant impact 
on the wave profiles. ln particular, the pulsatility decreases by 
increasing the rotational speed of the device and this effect is 
more pronounced at high RPM. The resulting continuous-flow 
physiology is a well known issue of these devices, for which the 
clinical impact is still not clear, even if it is suspected to be rele­
vant especially in the long term period. lndeed, manufacturers are 
now trying to re-introduce pulsatility in continuous-flow devices 
by, e.g., varying the RPM intime. From this viewpoint this mode! 
might be useful to evaluate and test new devices and functioning 
modes. 

Although the current mode! presents some limitations (see Section 
5), our mathematical framework has proven to be effective in 
describing and capturing many global phenomena and, in spi te of 
neglecting specific local 30 flow patterns, it provides indication that 
may be considered already useful in clinical practice. Moreover, 
the introduced multiscale framework could easily be extended to 
include local 30 geometries. To conclude. in future studies the geo­
metrical multiscale mode! will be used to evaluate several new 
clinical scenarios. For example, for the evaluation of the hemody­
namic response and pump behavior in aortic regurgitation. which 
is a common problem, or for testing different devices under typical 
clinical situations. 
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Abstract-Arterial tree hemodynamics can be simulated by 
means of several models of different level of complexity, 
depending on the outputs of interest and the desired degree 
of accuracy. In this work, several numerical comparisons of 
geometrical multiscale models are presented with the aim of 
evaluating the benefits of such complex dimensionally­
heterogeneous models compared to other simplified simula­
tions . More precisely, we present flow rate and pressure wave 
form comparisons between three-dimensional patient-specific 
geometries implicitly coupled with one-dimensional arterial 
tree networks and (i) a full one-dimensional arterial tree 
mode! and (ii) stand-alone three-dimensional fluid- structure 
interaction models with boundary data taken from precom­
puted full one-dimensional network simulations. On a 
slightly different context, we also focus on the set up and 
calibration of cardiovascular simulations . In particular, we 
perform sensitivity analyses of the main quantities of interest 
(flow rate, pressure, and solid wall displacement) with respect 
to the parameters accounting for the elastic and viscoelastic 
responses of the tissues surrounding the external wall of the 
arteries. Finally, we also compare the results of geometrical 
multiscale models in which the boundary solid rings of the 
three-dimensional geometries are fixed , with respect to those 
where the boundary interfaces are scaled to enforce the 
continuity of the vessels size with the surrounding one­
dimensional arteries. 
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INTRODUCTION 

Numerical simulations based on complex mathe­
matical approaches have become an effective tool to 
mode! arterial flow dynamics. Research in this field is 
essential in order to understand, predict, and treat 
common and potentially fatal cardiovascular pathol­
ogies , such as aneurysms formation , atherosclerosis, 
and congenital defects , as well as the planning of sur­
gical intervention, usually called predictive surgery. 

Thanks to modern supercomputing facilities , mod­
eling big portions of the systemic arterial tree with a 
fully detailed three-dimensional (3-D) description is 
nowadays feasible.48 Nevertheless , the amount of data 
required by these simulations can be hardly retrieved. 
Moreover, a compromise between mode! complexity 
and computational cost might be still relevant in a 
medical environment, where huge number of patients 
need to be assisted at the same time. In this sense, 
geometrical multiscale approaches provide an efficient 
and reliable way to select the desired level of com­
plexity in each component of the cardiovascular sys­
tem. 6·2 1·37·40·41 ·47 The main ingredients ofa geometrical 

multiscale mode! for cardiovascular flows are (i) 3-D 
fluid-structure interaction (FSI) models, which are 
used to represent few specific components of main 
interest,4• 

10
• 
13

• 
18

•
23

•
25

•
26

•
46 (ii) one-dimensional (1-D) 

FSI models, which describe the global blood circula­
tion in the arterial network, 1•

7
•
8

•
20

•
35 and (iii) lumped 

parameters models, which account for the cumulative 
effects of ail distal vessels , i.e., small arteries , arterioles, 
and capillaries. 22

•
45 More generally, from the medical 

point of view, a 3-D mode! allows to have a deep in­
sight of a specific region of the cardiovascular system 
(e.g ., the thoracic aorta) , whereas the interaction with 
the global cardiovascular system is modeled by the 

© 20 13 Biomedical Engineering Society 
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mean of simpler models obtained through a dimen­
sional reduction. 

Despite the fact that the geometrical multiscale 
modeling technique is widely accepted in the literature, 
so far the greatest part of the studies has focused mai ni y 
on mathematical and methodological aspects. In par­
ticular, at the best of our knowledge, there are no 
studies performing a quantitative comparison between 
large heterogeneous cardiovascular networks (includ­
ing at the same time 3-D FSI, 1-D FSI, and lumped 
parameters models), vs. simplified problems, e.g. , 
stand-alone 3-D FSI simulations or full 1-D FSI 
problems. Moreover, most of the patient-specific car­
diovascular applications in the literature does not make 
use of networks of 1-D arteries to account for the sys­
temic circulation, which is generally condensed by using 
lumped parameters models directly coupled with the 
inlets/outlets of the 3-D geometries of the patients (see, 
e.g., Balossino et al.,2 Laganàà et a/. ,30 Baretta et al.,3 

and Moireau et a/.39
). This is a quite severe modeling 

assumption, since the flow in the systemic arteries is 
strongly space-time dependent, thus requiring at least a 
1-D axial description of the traveling waves. 

To fill this gap, in this work we provide several 
numerical comparisons of geometrical multiscale 
models with the aim of prôving, and somehow quan­
tifying, the benefits of such complex dimensionally­
heterogeneous problems with respect to other simpler 
approaches. The geometrical multiscale models are set 
up by coupling one or more 3-D patient-specific 
geometries with a full network of 1-D models repre­
senting the global circulation of an average healthy 
patient. In particular, since the analysis of pathological 
scenarios is not considered here, we select two healthy 
3-D geometries corresponding to the aorta and the iliac 
arteries. The results of these models are compared with 
both a full 1-D network of arteries and stand-alone 3-
D FSI simulations, where the data for the latter at the 
inlet and outlet boundary interfaces are taken from a 
precomputed full 1-D network simulation . The com­
parisons are performed mainly in terms of flow rate 
and pressure waveforms. In addition, we also analyze 
the 3-D solid wall displacement magnitude. 

On a slightly different context , we also focus on the 
calibration of cardiovascular simulations. Indeed, a key 
aspect to consider in order to obtain results in the 
physiological range is the tuning of the problem 
parameters, especially for modeling 3-D FSI arteries . In 
the literature there are several works on parameter 
estimation for cardiovascular applications; among the 
most popular techniques we can mention the Kalman 
filtering approaches or the varia tional procedures. 5• 

15
•
38 

For our specific analysis, it is essential to account for the 
correct boundary data on the solid wall geometries. This 
problem has been already addressed by Crosetto et a/.14 
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and Moireau et al. 39 for the external surface of the 
arterial wall, where Robin boundary conditions have 
been successfully used to account for the elastic and 
viscoelastic responses of the external tissues. Neverthe­
less, the values of the empiric tissue parameters 
appearing at the boundaries is rather difficult to esti­
mate, and neither calibration procedures nor sensitivity 
analysis to show the effect of the variation of the 
parameters on the main quantities of interest were pro­
vided. Regarding the interface boundary rings of the 
arterial wall, in Formaggia et at. 20 and Malossi et al. 37 

an approach to prescribe thecontinuity of the vesse! area 
with surrounding models has been proposed. However, 
its impact on cardiovascular simulations compared to 
fixed area configurations has never been investigated, 
apart from few benchmark tests in simple geometries. 

With the aim of covering the aspects mentioned 
above, in this work we also provide several compari­
sons and sensitivity analysis focused both on the cali­
bration of the tissue parameters and on the analysis of 
the impact of different interface ring boundary condi­
tions on the main quantities of interest. 

This work is organized as follows . In the "Geometrical 
M ulti scale Approach" section we describe the main 
ingredients of the geometrical multiscale methodology. 
Then, in the " Numerical Simulations" section, we pres­
ent the numerical results with several comparisons and 
sensitivity analyses. Finally, main conclusions are sum­
marized in the "Con cl usions" section . 

GEOMETRICAL MUL TISCALE APPROACH 

In this section we describe the main components of 
the geometrical multiscale method that we use to simu­
late the global arterial circulation. More precisely, we 
mode! the arterial network by coupling together differ­
ent dimensionally-heterogeneous models , such as 3-D 
FSI models , which are used to represent specific com­
ponents of main interest, 1-D FSI models, to simulate 
the pulse wave propagation in the global arterial system, 
and three-element RCR windkessel terminais, that 
account for the peripheral circulation and correspond to 
well known simple differential algebraic equations, for 
brevity not described here (see Malossi et a!.35

, Section 
5.1 for ail the details). Finally, we briefly recall from 
other works the coupling equations and the numerical 
approach to solve the global network of models. 

5-D FSI Mode/ for lvlain Arteries 

In a geometrical multiscale setting, 3-D FSI models 
are used to simulate the hemodynamics in complex 
geometrical situations, such as those occurring at 
bifurcations, aneurysms, and stenoses among others. In 
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addition , when a iming at patient-specific analyses, the 
correct cha racterization of the local a rterial fiow has to 
be carried out by using patient-specific data obtained 
from medical images, e.g., computed tomography (CT) 
scan or magnetic resonance imaging (MRI). 

Equations 

Let Q C IR3 with boundary 80, where Ô = QF u· Ôs , 
being OF and Os the ftuid and solid domains , respec­
tively. In addition, let r 1 be the fiuid-solid interface 
éJQF n éJOs. The FSI problem employed in this work 
consists of the incompressible Navier- Stokes equations 
cou pied wi th a linear elastic isotropie structure described 
by the St. Venant- Kirchhoff equations. To account for 
the interaction between the fiuid and the solid, we define 
an Arbitrary Lagrangian- Eulerian (ALE) map, i.e ., 

M 1 
: ni ---> O~ c IR3 

x01---t ;vt1 (x0
) = x0 + dF(x0

) , 

where the superscripts 0 and t refer to the reference and 
current configurations, respectively (see Fig. 1), 
XO E ni is a point , and dF is the fiuid domain dis­
placement. More precisely, in this work we compute dF 
as the harmonie extension of the solid displacement ds 
at the reference fiuid-solid interface r~ to the interior 
of the reference fiuid domain ni. 

The resulting FSI problem reads 

éJuFI + ( (uF _ éJdFI ) . v) uF 
Of x O al x O 

l 
- - V · ŒF = 0 in Q~ x (0, T], 

PF 
V . Uf = 0 

82ds 
Ps 8 12 - V . as = 0 

- AdF = 0 

1 éJds 
UF o M - -= 0 

81 
as· ns - l sGsT(a F o M 1

) • ns = O 

dF - ds = 0 

in 0~ X (0 , T], 

in 0~ x (0, Tj, 

in ni X (0 , T], 

on r~ x (0, T], 

on r 0 x (O, T], 
on r~ x (0, T], 

(L) 

where (0,7) is the time interval, uF the fiuid velocity, PF 
and Ps are the fiuid and solid density, respectively, ns is 
the outgoing normal direction applied to the solid 

FIGURE 1. ALE map between reference and current config­
urations. The colors in the scheme refer to the computed 
pressure field. 
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domain, Gs = I + Vds the solid deformation gradient 
(with 1 the identity matrix), and ls = det(Gs) . In 
addition , ŒF and Œs are the Cauchy and the first Piola­
Kirchhoff stress tensors , respectively, i.e ., 

O'F = - pfl + 2/ttf(UF) , 

as= },s(Es , vs)tr(Es(ds))I + 2tts(Es , vs)Es(ds), 

where ff( Uf) is the strain rate tensor, being PF the fluid 
pressure and fLF the fiuid dynamic viscosity, and Es(ds) 
is the linear strain tensor, being Às and /ts the first and 
second Lamé parameters, respectively, which are 
algebraic fonctions of the Young's modulus Es and the 
Poisson's ratio vs of the wall material. 

Problem ( l ) is closed by a proper set of initial and 
bounda ry conditions. More precisely , on the external 
wall r~,ex t we apply a viscoelastic Robin boundary 
condition to account for the presence of the externat 
tissues, as we detail in the " R obin Boundary Condition 
for the Solid Externa l Wall " section. On 
r~j c é)Q~ \r: ) j = 1) . .. ) n~s we impose either infiow 
and outfiow boundary d a ta or continuity equations 
with the surrounding models , which are detailed in the 
" Interface Equations for the Global Network of 
Models" section. Similarly, the inlet/outlet solid rings 
r~J' j = l , ... , n~s can be either fixed or scaled to 
match the area of surrounding models, as described by 
Malossi et a/.37 and briefiy recalled in the " Interface 
Equations for the Global Network of Models" section. 

Remark 1 Severa) models of the a rteria l wall a re 
described in literature, with different levels of 
complexity. 24

•
27

•
28

•
32

•
44 An accurate mode! for the 

arterial wall should take into account the effects of 
anisotropy due to the distribution of the collagen 
fi.bers , the three layers (intima, media, and adventitia) 
structure, the nonlinear behavior due to collagen 
activation, and the incompressibility constraint. 
Nevertheless, a linear elastic isotropie structure is still 
considered a reasonable approximation for the large 
healthy arteries, as demonstrated numerically in , e.g. , 
Crosetto et al. , 12

•
14 and validated experimentally m, 

e.g., Kanyanta et al. 29 

Numerical Approximation 

The FSI problem is solved by using a non-modular 
(monolithic) approach. 11

•
13 The fiuid problem is dis­

cretized in space by a IP' 1 - IP' l fini te element method, 
stabilized by an interior penalty technique. 9 The solid 
and the geometric problems are discretized in space by 
IP' 1 fini te elements. Regarding time discretizations for 
the incompressible Navier- Stokes equations on mov­
ing domains we use a first order Euler scheme, while 
for the structural problem we use a second order mid­
point scheme, for an overall accuracy of one. The time 

~~M~~NGsocrm~ 
www.bmes.org 
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interval [O, 1] is split into subintervals [t11
, t11+1], 

n = 0, l , 2, ... , such that 111 = nl1t , 11t being the time 
step. The fluid and solid problems are coupled by using 
the geometric convective explicit time discretization, 
i.e., the fluid problem is linearized by considering ex­
plicit the fluid domain displacement and the convective 
term. This choice allows to split the solution of the 
geometric part (the harmonie extension) from the fluid­
solid one, leading to a significant reduction of the 
computational cost. For more details on the 3-D FSI 
problem see Crosetto. 11 

Robin Boundary Condition for the Sa/id Externat Wall 

From the modeling point of view, one critical aspect 
to get physiological results in a 3-D FSI simulation is 
the tuning of the boundary condition on the solid 
external wall. The influence of externat tissues and 
organs tethering and constraining the movement of 
blood vessels is of critical importance when simulating 
3-D FSI problems in the arterial system. 33 At the 
present time, the modeling of the detailed multi-con­
tact relations between the arteries and the other tissues 
is unfeasible. However, in the literature there are 
examples proving that the behavior of externat tissues 
support on the outer arterial wall can be handled by 
enforcing a Robin boundary condition on rg,ext. As an 
example we mention the work of Crosetto et al., 14 

where the tissues are modeled with a purely elastic 
term, and the work of Moireau et al.,39 where both the 
elastic and the viscoelastic contributions are 
accounted. In this latter case, the resulting Robin 
boundary condition for the 3-D FSI problem reads 

ers . ns + ksds + CsVs + Pextns = 0, on rg,ext X (0 , T], 

(2) 

where vs is the velocity of the solid domain and Pexi the 
reference externat pressure. The parameters ks and cs 
account for the elastic and viscoelastic response of the 
externat tissues, respectively . More generally, they are 
empiric coefficients that depend on space and, possi­
bly, on time (e.g., to represent the change of mechan­
ical properties over time). 

Tuning the value of the parameters ks and cs is 
rather difficult. In both Crosetto et al. 14 and Moireau 
et al. 39 a range of orders of magnitude for the aorta is 
identified on the basis of qualitative considerations 
about the pulse wave velocity and the maximum 
admissible displacement of the vesse! wall. However, 
neither further investigations nor sensitivity analyses 
that show the effect of the variation of the parameters 
on the main quantities of interest are provided. To fi.li 
this gap, in the " Externat Tissues Parameters Com­
parisons: 3-0 Aorta" and " Externat Tissues Parame­
ters Comparisons: 3-0 Iliac" sections we perform 
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several comparisons in terms of flow rate and dis­
placement for the aorta and iliac arteries, respectively, 
as a function of different sets of values for the 
parameters ks and cs. 

Remark 2 From the numerical viewpoint, the Robin 
boundary condition must be implemented according to 
the time discretization scheme used in the solid problem. 
In particular, since in this work we use an explicit second 
order mid-point scheme, the following relation holds 

v11+1 + v11 
s s d11 + I d11 

s - s 
2 11t 

such that, for n = 0, 1, 2, ... , the discrete form of (2) 
reads 

(
, 2cs) 11+1 

ers · ns+ 1cs +/fi ds 

1-D FSI Mode/ for the Global Arterial Circulation 

In a geometrical multiscale setting, the global arterial 
circulation can be modeled by a network of l -D FSI 
models based on the Euler equations. 16 Despite its 
simple axial symmetric representation of the blood flow, 
it has proven to be able to provide accurate information 
under physiological and pathophysiological conditions, 
and therefore gives insight about the main characteris­
tics that lead to the interplay among physical phenom­
ena taking place in the systemic arteries. 

Equations 

The l-0 FSI mode! is derived from the incom­
pressible Navier- Stokes equations by introducing 
some simplifying hypotheses on the behavior of the 
flow quantities over the cross-section of the artery. The 
structural mode! is accounted through a simple pres­
sure-area relation. Being z E [O,L] the axial coordi­
nate, with L the length of the vesse!, the resulting 
governing equations are 

ôA + ôQ = O 
Ôt ô z 

ôQ +2 (et.F Q2) +~ ôP 
Ôt ÔZ A PF Ôz 

+ KFg ·= 0 
A 

P - 1/;(A) = 0 

in (0 , L) x (0 , T], 

in (0, L) x (0, T], 

in (0, L) x (0, Tj, 

(3) 

where Ct.f and Kf are the Coriolis and friction coeffi­
cients, respectively, 35 A is the cross-sectional area, Q 
the volumetric flow rate, P the average pressure, and 
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~(A) = P ext + /1s ({fa- 1) + Ys (A :a~~), (4) 

where 

n = {§; hsEs 
FS ' A 1 2 ' 0 - Vs 

Ts tan c/>s hsEs 
Ys= 4 r.;;. 1 2' vn - "s 

being A 0 the reference value for the vesse! area , hs the 
wall thickness, Ts the wave characteristic time, and cf>s 
the viscoelastic angle. The second and third terms in 
(4) account for the elastic and viscoelastic response of 
the vesse! wall. 

Problem (3) is finally closed by a proper set of initial 
and boundary conditions. The latter can be either inftow 
and outftow boundary data or continuity equations with 
the surrounding models , as we detail in the " Interface 
Equat ions for the Global Network of Models" section. 

Numerical Approximation 

The 1-D FSI problem is solved by using an operator 
splitting technique based on an explicit second order 
Taylor- Galerkin discretization , where the solution of 
the problem is split into two steps, such that the first 
one corresponds to the sofution of a purely elastic 
problem, while the second one provides a viscoelastic 
correction .19 The spatial discretization is accomplished 
using IP 1 fini te elements. For more details see Malossi 
et al. 35 and references therein. 

lnte1fa ce Equations.for the Global Net work of Models 

The solution of the global dimensionally-hetero­
geneous problem is addressed following the approach 
first devised in Malossi et al. 36 and la ter extended in 
Malossi et al. 37 to account for the continuity of the 
vesse! area. More precisely, let us consider a general 
network of heterogeneous models connected by C cou­
pling nodes . At each node we write the conservation of 
averaged/integrated quantities over the boundary 
interfaces, such that the interface problem does not have 
any dependency on the geometrical nature nor on the 
mathematical formulation of each mode!. In other 
words, we treat the cou pied models as black boxes, such 
that the equations and the modeling assumptions (e.g., 
3-D vs . 1-D modeling) are hidden behind general inter­
faces providing information regarding the boundary 
va lues in tenns of averaged/integrated quantities . Par­
ticularly, these boundary quantities are the volumetric 
ftow rate Q, the averaged normal component of the 
traction vector S , and the area of the ftuid section A , 
hereafter referred to as couplingjloiv, coupling stress, and 
coupling area, respectively. On the jth coupling interface 
of the 3-D FSI mode! these quantities are computed as 
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QrD = r Uf · Ilfdr, j = 1, .. · , n~S > 
lr~j 

3-D j r ( ) dr . j r s1 = _l _l_I Jr ,. O'f . " F . " F , J = , .. ., nFs , 
r F j r,, 

At 0 
= lrjl , J = 1,. . ., n~s ' 

where nF is the outgoing normal direction applied to 
the fiuid domain . The 3-D FSI ftuid problem is closed 
by imposing (O'F · nF) · •2F = 0 and (O' F · nF) · • 2F = 0 
on r~J ,j = 1, .. ., n~s ' where •IF and •2F are the two 
tangential directions . In addition, we assume that the 
normal stress ( O'f · nF) · nF is constant over the cou­
pling interfaces. Regarding the solid problem, follow­
ing the approach of Formaggia et al.,20 the vesse! area 
is imposed by prescribing a radial displacement of the 
internai contour of the jth 3-D solid ring, i.e ., 

{ 

ds · ns = O on r? n rt x (0 , T], 

[ds - \f'j ( x0 
- x~J)] . •1s = 0 on r? n rt X (0 , T], 

[ds - \f'j ( x0 
- x~J) J · •2s = o on r? n r~J x (O, T], 

for j = l , . .. , n~s , where •1 s and • 2s are the two tan­
gential directions lying on rL,J = l ) ... ) n~s · This 
corresponds to scale the boundary area preserving its 
original shape, where the radial scale factor is defined 
as 

being AJ and x~J the reference area of the jth coupling 
interface of the 3-D fiuid problem and its geometric 
center, respectively. Other more general approaches 
might be employed to weakly prescribe the value of the 
area on the solid boundary interface. Nevertheless , since 
in cardiovascular applications the displacement of the 
vesse! is relatively small, thus not far from the original 
shape, the technique presented here can be considered 
enough accurate for our analysis. Note that to close the 
3-D FSI solid problem, we need to impose an additional 
boundary condition on rL \ r? n rL,J = 1, .. . , n~s , 
which in our case is Gs · ns = O. Regarding the two 
coupling interfaces of the 1-D FSI mode! we have 

QI-D _ - Q 
L - L , 

Ql-D _ Q 
R - R , 

Al-D = Â L, 

A l-D - A 
R - R , 

51 - D =-PL, 

S l-D _ - P 
R - R , 

where the subscripts L and R stand for left and right 
quantities , respectively. 

The resulting set of conservation equations for the 
fiuid part of the interface problem is 

~!JM~~NGsoc1m· 
www.bmes.org 
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{ 

I c 

I: Qc,i = o, 
i= I 

S c, 1 - S c,;= 0, i = 2, ... , I c, 

(5) 

where Ic is the number of interfaces connected by the 
eth coupling node, c = 1, ... , C. More precisely, the 
first equation ensures the conservation of the mass and 
the second implies the continuity of the mean normal 
stress. Note that no assumption is made on the type of 
boundary data (Q or S) to be imposed on the 3-D and 
1-D interfaces. Indeed, our methodology allows to 
choose the type of data to be applied on any boundary 
interface independently of the models type. 36

•
37 The 

iterations number of the interface problem might be 
slightly affected by the type of boundary data imposed 
on the interface of the coupled models. Particularly, in 
ail the tested cases, at a given time step the increase/ 
decrease of the iterations number is always bounded to 
one or two iterations maximum, without a precise 
correlation with the chosen type of boundary data. By 
averaging the number of iterations per time step over 
the entire simulation, this difference further reduces 
and becomes nearly negligible. 

Remark 3 Being written iri terrns of mean normal 
stress, the set of interface equations (5) does not 
preserve the total energy of the problem at the 
interface between two dimensionally-heterogeneous 
models . However, the kinetic contribution of the 
total stress is negligible for cardiovascular problems, 
as shown by Malossi ,34 see Section 5.4.2.5 of the 
dissertation, such that the results presented here using 
(5) coïncides with those that would have be obtained 
by prescribing the continuity of the mean total normal 
stress. Hence, the set of interface equations used in this 
work are stable for this class of problems. 

In case the continuity of the vesse! area is enforced 
between two vessels, the set of Eqs. (5) becomes 

(6) 

where, for the sake of clarity, the mode! to which each 
quantity belongs is indicated in the superscript. More 
precisely, the continuity of the vesse! area cannot be 
imposed between two 1-D FSI vessels . In fact, due to 
modeling reasons , the 1-D FSI problem needs just one 
physical boundary condition on each side of the seg­
ment, and therefore it is not possible to impose both a 
fluid quantity and the vesse! area at the same time. On 
the contrary, the 3-D FSI model needs boundary data 
on both the fluid and the solid parts of each interface, 
such that it is possible to set the continuity of its 
boundary areas with the surrounding 1-D FSI models. 
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In addition, we remark that (6) is written for the spe­
cific case ofa 3-D FSI interface coupled with a single I­
D FSI mode!. In the case of a generalization to two or 
more 1-D models connected to the same 3-D FSI 
interface, the continuity of the area does not make 
sense, and for this reason we do not address this case. 37 

From the numerical viewpoint, the global interface 
problem is written in a residual formulation and solved 
by using the Newton and the Broyden methods. First of 
ail , the Jacobian of the global interface problem is either 
computed analytically by solving the tangent problem 
associated to each mode! , or approximated with finite 
differences. The resulting matrix is used to perform a 
single (inexact-)Newton iteration, which corresponds to 
the very first iteration at the first time step of the sim­
ulation. After that, from the second iteration and for ail 
the other tirne steps, the Jacobian is updated by using a 
Broyden method, which is based on a cheap evaluation 
of the residual of the interface problem. 34

•
35

,
37 

NUMERICAL SIMULA TI ONS 

In this section we present several comparisons among 
different geometrical multiscale models. The purpose of 
these comparisons is manifold. On the one hand, we 
study the interaction between 3-D patient specific 
geometries and a global arterial network of 1-D rnodels. 
This results are compared both with a full 1-D network 
of arteries , and a stand-atone 3-D simulation with 
boundary data taken from the same full 1-D network . 
On the other hand, we also analyze the effect of the 3-D 
solid boundary conditions on the simulations . In par­
ticular, we perforrn a sensitivity analysis of the externat 
tissues pararneters, and we also compare results of 
configurations where the area at the interfaces is fixed , 
with those where it is scaled to have the continuity of the 
vessels size wi th the surrounding 1-D arteries . 

Ali the simulations presented in this work have been 
performed using the LifeV library 1 on several cluster 
nodes with two Intel® Xeon® processors X5550 (quad 
core, 8 MB cache, 2.66 GHz CPU) each, intercon­
nected by a 20 Gb/s InfiniBand® architecture. 

Human Arteria! Tree Mode! 

To model the global circulation we use the data of the 
arterial network provided in Reymond et al. ,43 which is 
composed by 103 elements ( 4 coronary, 24 aortic, 51 
cerebral, 10 upper limbs, and 14 lower limbs) and 
includes ail the values of the parameters required to 
describe the blood flow, such as the geometrical prop­
erties of the vessels (length and proximal/distal areas) 

1http: www.lifcv.o rg. 
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TABLE 1. Main parameters of the 1-D network of arteries. 

PF Blood density 1.04 g/cm3 

/IF Blood viscosity 0.035 g/cm/s 
KF Friction coefficient 2.326 cm2/s 
rlF Coriolis coefficient 1.1 
P cxt Reference external pressure 100,000 dyn/cm2 

Pv Venous pressure 6,666 dyn/cm2 

lzs/Rs Wall thickness/local radius 0.1 
Es Young's modulus 3-12 x 106 dyn/cm2 

\15 Poisson's ratio 0.50 
<Ps Viscoelaslic angle 10° 
Ts Systolic period 0.24 s 

Heart rate 75 bpm 

For more details see Malossi et a/.35 and references therein. 

and the data for the terminais, which are modeled as 
three-element windkessel elements and account for the 
cumulative effects of ail distal vessels (small arteries, 
arterioles, and capillaries). These values have been 
obtained both from in vivo measurements and averaged 
data from the literature. The presence of the venous cir­
culation is taken into account by imposing the return 
venous pressure Pv on the distal side of each windkessel 
terminal node. Regarding the parameters of the wall, 
since we use a different mode! , we estimate these values 
from other sources.35 The m~in parameters that define 
the problem are summarized in Table 1. The average 
space discretization of each 1-0 FSI segment is 0.1 cm. 
Regarding the tune discretization, in each artery we define 
a different time step based on the local CFL require­
ments . These local inner time steps are defined such that 
they synchronize with each other at each global outer 
time step, i.e., the time step chosen for the 3-D FSI 
models . This guarantee the possibility to write the inter­
face equations between ail the coupled models at each 
outer time step. More details about this two-level adap­
tive time step technique are provided in Malossi et a!. 35 

Geometry Reconstruction and J'vlesh Generation 

In this work we use the 3-0 FSI mode! to simulate 
the flow in two main patient-specific arteries, i.e ., the 
aorta and the iliac of two healthy patients . These 
geometries have several bifurcations and some severe 
bends, such that the blood flow dynamics can be pre­
cisely described only by employing a 3-D mode!. 

The segmentation of the aorta was obtained 
through MRI Time of Flight acquisition on a 3T MRI 
scanner (Siemens Trio-Tim 3T System); details on the 
used sequences are given in Reymond et al.42 Then, the 
arterial lumen was reconstructed in 3-D from MRI 
magnitude data (ITK Snap software). Since the 
thickness of the wall is not visible in MRI data, it had 
to be synthetically reconstructed. In particular, it has 
been estimated to be equal to 10 percent of local lumen 
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radius, which is a commonly accepted approxima­
tion. 31 Regarding the iliac, the geometry of the lumen 
has been taken from the Simtk website,2 and the 
thickness of the wall has been reconstructed with the 
same assumptions used for the aorta. 

To correctly mode! the different material properties 
of the arterial wall and of the external tissues, we di­
vide the solid domains into several regions , which are 
schematically shown in Fig. 2. Note that for the iliac 
geometry we provide two different configurations, 
which are later used in the " External Tissues Param­
eters Compari so ns: 3-D Ili ac" section for a numerical 
comparison of the results as a fonction of the tissue 
parameters at the bifurcations. The main wall param­
eters that define the 3-D problems are summarized in 
Table 2. 

Remark 4 The jumps in the mechanical properties of 
the arterial wall (see Fig. 2 and Table 2) might 
introduce wave reflections in the flow field. Never­
theless, these reflections are negligible if compared to 
the physical reflection driven by the sudden change in 
the vesse! lumen at the bifurcations. Moreover, the 
structural model can be easily refined by introducing 
smooth continuo us fonctions between the different wall 
regions . This improvement will be included in future 
works. 

Remark 5 The value of the arterial wall density has 
been taken from Crosetto el al. 13 and Moireau et al. 39 

In Malossi,34 see Section 5.4.2.6 of the dissertation, a 
comparison of the results obtained by setting Ps = 1.2 
g/cm3

, with those computed by using either Ps = 1.0 g/ 
cm346

•
47 or Ps = 0.0 g/cm3 (purely elastic wall without 

inertia) is presented, proving that (i) the inertia of the 
arterial wall has a very small impact on this class of 
applications, and (ii) the methodology and algorithms 
described in Section 2 are stable even if the arterial wall 
density is neglected. 

Finally, for each arterial vesse! two separate con­
forming fluid and solid geometries have been generated 
using the VTK,3 VMTK,4 and ITK5 libraries. 17 The 
resulting mesh of the fluid part of the 3-0 aorta con­
sists of 280, 199 unstructured tetrahedral elements with 
50,866 vertices, while the solid part is made of 278,904 
structured tetrahedral elements with 58 ,565 vertices . 
The corresponding average space discretizations for 
both the fluid and solid problems is 0.158 cm. 
Regarding the 3-0 iliac, the mesh of the fluid part 

2http: / /simtk.org. 
3http: www.vtk.org. 
4 http:/ www.vmtk.org. 
5h11p: www.itk.org. 

~DM~~NGsoc1m·· 
www.bmes.org 
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FIGURE 2. View of the aorta and iliac geometries with wall regions. (a) The aorta is divided in three regions: aortic arch (yellow), 
carotids and subclavians (red), and vertebrals (blue). (b) The iliac is divided in four regions: abdominal aorta (red), common iliac 
(yellow), external iliac (blue), and inner iliac (cyan). (c) Same as (b) with two additional regions at the bifurcations: abdominal aorta 
bifurcation (green) and common iliac bifurcations (magenta). 

Ps 
lis/Rs 
Es 
Vs 

TABLE 2. Wall parameters of the 3-D FSI arteries. 

Wall density 
Wall thickness/local ·radius 
Young's modulus 
Poisson's ratio 

1.2 g/cm3 

0.1 
3-12 x 106 dyn/cm2 

0.48 

The Young's modulus of the 3-D FSI aorta and iliac is 3,000,000 
dyn/cm2 in all the branches apart from the vertebral arteries, where 
it is 6,000,000 dyn/cm2

, and inner iliac arteries, where it is 
12,000,000 dyn/cm2

. 

consists of 350,376 unstructured tetrahedral elements 
with 63,716 vertices, while the solid part is made of 
359,256 structured tetrahedral elements with 60,788 
vertices. In this case, the corresponding average space 
discretizations for both the fluid and solid problems is 
0.076 cm. Regarding the time discretization, we use a 
constant time step of 0.001 s. 

Remark 6 The mesh size employed for the 
discretization of the 3-D geometries used in our 
studies might not be fine enough to represent the 
smallest fluid dynamics structures . Particularly, the 
relatively high Reynolds number in the aorta requires 
the use of boundary layers to capture the details of the 
fluid dynamics near the wall (which are fundamental to 
evaluate, e.g., the wall shear stress) . Nevertheless, the 
focus of our analysis is on the value of the averaged/ 
integrated interface quantities, such as the flow rate, 
the inlet/outlet pressure drop, and the boundary wall 
displacement, for which the employed discretization is 
fine enough. 
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Geometrica/ !vlu/t isca/e M odeling 

In this section we set up and solve three different 
geometrical multiscale models where the 3-D patient­
specific vessels in Fig. 2 are embedded in the 1-D net­
work described in the " Human Arterial Tree Model" 
section, which represents an average healthy patient. 

To set up the models we use the following procedure. 
First of ail , we identify the 1-D elements of the network 
to be removed or eut , since they overlap with some 
regions of the 3-D patient-specific geometries. This is 
done by measuring the length of the different branches 
of the 3-D vessels and comparing these data with the 
one of the 1-D network. Obviously, this phase presents 
several degrees of freedom and arbitrariness. The de­
gree of precision of this step also depends on the region 
of interest and the required level of accuracy (e .g., 
rough evaluation offlow vs. precise local quantification 
for surgery planning). In a clinical context this opera­
tion should be supervised by the clinician in order to 
immediately determine the crucial regions for the 
numerical simulations . Once the 1-D elements are eut, 
the second step consists in changing the reference area 
and the wall thickness of the 1-D arteries in order to 
match the one of the nearby 3-D interfaces . Since the 3-
D geometries are not symmetric, it is possible that some 
asymmetries are introduced also in the 1-D networks 
(e .g., between the left and right externat iliac arteries). 
Moreover, it is important to check that the resulting 
distal area is always smaller or equal than the proximal 
one. If it is not the case, some further adjustments to the 
1-D elements are required to avoid a non-physiological 
behavior of the flow in those elements. 
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Parai/el Solution of the Global Problem 

The parallelism is handled by distributing the models 
across the available processes and cluster nodes . Each 
mode! can be either assigned to a single process or 
partitioned across several nodes. In our implementa­
tion, we distribute the models as a fonction of their type 
and computational cost. More precisely, the rhodels 
obtained through a dimensional reduction (e.g., 1-D 
FSI models and the lumped parameters terminais) are 
distributed one per each available process. If the 
number of models exceeds the number of processes, the 
algorithm assigns more models to the same process. For 
examples, when solving a network of 150 1-D and/or 
lumped parameters models using 48 processes, each 
process holds at least 3 models. The more expensive 3-
D FSI models are then partitioned across ail the 
available nodes and processes (including those that are 
already holding one or more reduced dimensional 
models) . If more 3-D models are present in the net­
work, each of them is split on a subset of nodes such 
that they globally use ail the available resources. 
Thanks to the parallelism intrinsic in our algorithms, 
this choice leads in general to a balanced load . 

The global network of elements is solved by using 
the Broyden method, as tlescribed at the end of the 
" interface Equations for the Global Network of 
Models" section. The convergence to the imposed 
tolerance of 10- 6 is achieved between 2 and 4 itera­
tions; the average number of iterations per time step is 
approximately 2.25 in ail the presented cases. 

Externat Tissues Parameters Comparisons: 3-D Aorta 

In this section we focus on the study of the external 
tissues parameters ks and es introduced by the Robin 
boundary condition on the arterial wall of the 3-D FSI 
problem. For this analysis, we consider a geometrical 
multiscale mode! assembled by coupling the 3-D pa­
tient-specific aorta in Fig. 2a with the 1-D arterial tree 
described in the " Human Arterial Tree Mode! " sec­
tion, which represents an average healthy patient. For 
the sake of simplicity, the results presented in this 
section are obtained by fixing the position of the 
boundary solid rings of the 3-D arterial wall of the 
aorta, i.e., ds = 0 on rgj, j = 1, ... l 11~s· 

The first study we perform consists of a sensitivity 
analysis of the main quantities of interest with respect 
ta a variation of the elastic parameter ks. This is done 
by assuming es = 0 dyn s/cm3 and choosing five sets of 
values for the coefficient ks at the different branches of 
the aorta, as detailed in Table 3. Note that the values 
of the different cases are chosen as multiples of those 
of case E~. 

The results of this comparison, at the most signifi­
cant coupling interfaces between the 3-D aorta and the 
1-D network, are summarized in Fig. 3, where we also 
plot the result of the full 1-D arterial network . First of 
ail, we observe that the behavior of the flow rate and 
pressure is qui te different in each of the five considered 
cases. From the behavior of the pressure we observe 
that the elastic tissues parameters of case E~ is not stiff 
enough to correctly capture the cardiovascular wave 
pulse (the pressure level is low and nearly fiat). This is 
confirmed by the analysis of the displacement magni­
tude field of the 3-D arterial wall of the aorta at the 
second heart beat (see Fig. 4), where we observe a 
small overinflation of the thoracic aorta in case E~ and 
severe overinflations of the left common carotid artery 
for the first three sets of coefficients in Table 3. 

The analysis of the flow rate profiles in the other 
branches displayed in Fig. 3 shows that ail the con­
sidered cases present spurious high-frequency oscilla­
tions at the vertebral arteries, which are probably the 
cause of the numerical breakdown in cases E~ and Et. 
In case E~, which represents the stiffest artery, the 
oscillations do not appear in the left vertebral artery, 
suggesting that this phenomenon might be related to 
the stiffness of the external tissues parameters. In 
particular, the two vertebral arteries are the smallest 
branches of the considered geometry, which in turn 
means that the wall thickness there is considerably 
smaller than in the other branches (we recall that the 
thickness of the solid domain is chosen to be propor­
tional to the local lumen of the vesse!). This could 
explain the fact that the high-frequency oscillations are 
not present in the other branches of the same geome­
try . 

Remark 7 Here, as well as in the forthcoming 
" External Tissues Parameters Comparisons: 3-D 

TABLE 3. Empirical external tissues coefficients at the different wall regions of the 3-D aorta (see Fig. 2a). 

Artery E~ E~ 

Aortic arch 15,000 30,000 
Left/right carotid and subclavian 22,500 45,000 
Left/right vertebral 30,000 60,000 

We define live cases for the sets of values of the elastic coefficient. 

k 5 (dyn/cm3
) 

E~ E~ 

45,000 60,000 
67,500 90,000 
90,000 120,000 
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E~ 

75,000 
112,500 
150,000 

es ( dyn s/cm3
) 

0.0 
0.0 
0.0 
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FIGURE 3. Flow rate and pressure comparison, at the third heart beat, for the sets of values given in Table 3 (elastic behavior of 
the external tissues), at the most significant coupling interfaces between the 3-D aorta (see Fig. 2a) and the 1-D network. The black 
line is the solution of the full 1-D network. 

fli ac" section, the results of the full 1-D network are 
aimed to provide a reference, va lidated43 va lue for the 
main quantities of interest, and must not be considered 
as a reference exact solution. Indeed, differences 
between the results of the geometrical multiscale 
models and those of the full 1-D network are 
expected in view of the patient-specific topologies of 
the 3-D geometries embedded in the former models. 

Further comments about the high-frequency oscil­
lations observed in the purely elastic case can be per­
formed by studying the results of a second set of 
simulations m which we introduce the viscoelastic 
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response of the tissues through the parameter cs (see 
Eq. (2)). As previously done for the elastic parameter, 
we select several sets of va lues for the coefficient cs at 
the different branches of the aorta, as detailed in Ta­
ble 4. Regarding the elastic parameter, we choose the 
set of values E~, which has proven to be stiff enough to 
prevent excessive strain in ail the branches of the 3-D 
geometry (see Fig. 4), even if it was notable to smooth 
out the high-frequency osci llations observed m the 
smallest branches. 

The results of this comparison , at the same inter­
faces of the previous one, are summarized in Fig. 5. 
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Case E~. Case E~ . Case Et. Case E~. 

FIGURE 4. Wall displacement magnitude comparison, at the end-systole of the second heart beat (t = 1.2 s), for the sets of values 
given in Table 3 (elastic behavior of the external tissues) of the 3-D aorta (see Fig. 2a) coupled with the 1-D network (not shown). 
The color bar ranges from blue {O.O cm) to red (1.8 cm). 

TABLE 4. Empirical external tissues coefficients at the different wall regions of the 3-D aorta (see Fig. 2a). 

ks (dyn/cm3
) 

Artery E: V~ 

Aortic arch 60,000 500 
Left/right carotid and subclavian 90,000 500 
Left/right vertebral 120,000 500 

We define six cases for the sets of values of the viscoelastic coefficient. 

First of ail , we observe that the spurious high-fre­
quency oscillations disappear at ail the boundary 
interfaces and independently of the chosen set of values 
for the parameter cs. This behavior confirms the 
importance of including the viscoelastic effects in the 
mode! of the arterial wall, not only in 1-D FSI simu­
lations, as already proven, for instance, by Malossi 
et a!., 35 but also in 3-D FSI problems, as claimed by 
Moireau et a/. 39 Moreover, this result suggests that the 
high-frequency oscillations observed in Fig. 3 might be 
related mainly to the mode! chosen for the structure of 
the arterial wall. In particular, we recall that in our 
simulations we use a linear elastic isotropie mode! , 
which does not include any damping effect. 

Regarding the value of the viscoelastic parameter, 
we observe that the flow rate and pressure waveforms 
change significantly among the simulated cases. More 
precisely, the set of values V~ and V~, are not high 
enough to smooth the low-frequency oscillations of the 
3-D FSI elastic wall. Moreover, they lead to a pressure 
overshoot at most of the branches during the systolic 
peak . On the contrary, the results given by the other 
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es (dyn s/cm3
) 

V~ V~ v: V~ V~ 

1,000 5,000 10,000 50,000 100,000 
1,000 5,000 10,000 50,000 100,000 
1,000 5,000 10,000 50,000 100,000 

four sets of values are ail very similar and belong to the 
physiological regime. In particular, we observe a sort 
of limit behavior of the viscoelastic parameter, such 
that above a certain threshold the sensitivity of the 
fl.ow rate and pressure waveform to a variation of the 
parameter Cs becomes very small. This is coherent with 
the nature of the Robin boundary conditions, whose 
contribution decrease drastically when the parameters 
value become high. In view of these results, hereafter 
we compute the value of the viscoelastic parameter as 
one tenth of the value of the corresponding elastic one, 
i.e ., 

cs = ks/ 10. (7) 

This rule provides a reliable and easy way to calibrate 
the viscoelastic parameter of the Robin boundary 
condition for the external tissues. 

Extemal Tissues Parameters Comparisons: 3-D Iliac 

In this section we further extend the study of the 
externat tissues parameters ks and cs by considering a 
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different problem. More precisely, we set up a geo­
metrical multiscale mode! composed by the 3-D 
patient-specific iliac in Fig. 2b coupled with the l-D 
arterial tree described in the " H uman Arteria l Tree 
Model" section, which represents an average healthy 
patient. For the sake ofsimplicity, the results presented 
in this section are obtained by fixing the position. of the 
boundary solid rings of the 3-D arterial wall of the 

First of ail, we perform a sensitivity analysis of the 
main quantities of interest with respect to a variation 
of the externat tissues parameters. In view of the results 
achieved in the previous section, we directly consider 
both the elastic and viscoelastic coefficients. For the 
first one, we choose five sets of values at the different 
branches of the iliac, as detailed in Table 5. Note that 
the values of the different cases are chosen as multiples 
of the ones of case E~ . Then, following the result of the ·1· · d - o r 0 · - l r 11ac, 1.e. , s - on Sj•l - , ... , nFs· 
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FIGURE 5. Flow rate and pressure comparison, at the third heart beat, for the sets of values given in Table 4 (elastic and 
viscoelastlc behavior of the external tissues), at the most significant coupling interfaces between the 3-D aorta (see Fig. 2a) and the 
1-D network. The black line is the solution of the full 1-D network. 
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TABLE 5. Empirical external tissues coefficients at the different wall regions of the 3-D Illac (see Fig. 2b). 

ks (dyn/cm3
) 

Artery E\ Ek E~ E~ Ek c5 (dyn s/cm3
) 

Abdominal aorta 25,000 50,000 75,000 100,000 125,000 ks/10 
Left/right common iliac 35,000 70,000 105,000 140,000 112,500 ks/10 
Left/right external iliac 37,500 75,000 112,500 150,000 187,500 ks/10 
Left/right inner iliac 42,500 85,000 127,500 170,000 212,500 ks/10 

We define live cases for the sets of values of the coefficients. 

Abdominal aorta E Left external iliac Left inner iliac 
35.---~----,---.,-;===o 2.5.-----,~--.,--~-=== 

- 1-D -1-D 
~ 27.5•- ................. ,... ... ,, ........... , 
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ri: - 2.5f-....................... ; ...... ..-... - .... --.; ·\ 
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-1-D -1 -D 
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FIGURE 6. Flow rate and pressure comparison, at the third heart beat, for the sets of values given in Table 5 (elastic and 
viscoelastic behavior of the external tissues), at the most significant coupling interfaces between the 3-D Illac (see Fig. 2b) and the 
1-D network. The black line is the solution of the full 1-D network. 

previous section, the viscoelastic parameter is obtained 
from (7). 

The results of this comparison, at the most signifi­
cant coupling interfaces between the 3-D iliac and the 
1-D network, are summarized in Fig. 6. There we ob­
serve that, apart from case E\, whose tissues are clearly 
not stiff enough (the pressure level is significantly lower 
than the reference one), ail the other cases lead to re­
sults in a physiological regime. Moreover, there are no 
significant differences among the last four cases, even if 
the parameters change considerably. This confirms the 
results of the previous section. In particular, we remark 
that the high sensitivity observed in Fig. 3 for the aorta 
was mainly due to the Jack of damping terms and, 
consequently, to the high-frequency oscillations in the 
solution , rather than to a true sensitivity to the elastic 
parameter ks. 

Regarding the displacement of the 3-D arterial wall, 
similarly to the previous section, we observe a graduai 

26 

decrease in the displacement magnitude with respect to 
an increase in the value of the tissues parameters. No 
overinftations appear along the iliac branches in ail the 
simulated cases. However, even in the stiffest case, we 
observe some severe overinftations at a il the three 
bifurcations. This non-physiological behavior is due to 
the local reduced stiffness of the vesse!, which in turn is 
caused by the fact that at the branching points the 
lumen of the vesse! increases significantly, white the 
thickness of the wall gradually diminish (since the 
distal branches have a smaller radius). In the real pa­
tient, these large deformations are prevented thanks to 
the support of the external tissues and to the presence 
of collag;::n fibers, which are not accounted in our 
mode!. 

To solve this issue without introducing a more 
complex mode! for the 3-D vesse! wall, we use a second 
configuration of the iliac geomet ry, where two addi­
tional regions are introduced at the bifurcations (see 
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TABLE 6. Empirical external tissues coefficients at the bifurcations of the 3-D iliac (green and magenta wall regions in Fig. 2c). 

Artery 

Abdominal aorta (bifurcation) 
Left/right common iliac (bifurcations) 

E~ 

100,000 
140,000 

k 5 (dyn/cm3
) 

E~a 

200,000 
280,000 

300,000 
420,000 

From the reference case E4 (see Table 5), we define three additional configurations. 

Case E~ . Case E~11 • Case E~b · 

E~c 

400,000 
560,000 

c5 (dyn/cm3
) 

Case E~c · 

ks/10 
ks/10 

FIGURE 7. Wall displacement magnitude comparison, at the end-systole of the third heart beat (t = 2.0 s), for the sets of values 
given in Table 6 (stiffening of the bifurcations), of the 3-D iliac (see Fig. 2c) coupled with the 1-D network (not shown). The color bar 
ranges from blue (0.0 cm) to red (0.5 cm). 

Case E~ . Case Et,. 

Case E~b · Case E~c· 

FIGURE 8. Lateral view of the top and low left bifurcations for the four cases in Fig. 7. 
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Fig. 2c). Then we choose case E~ as the reference one, 
and we introduce three additional sets of values for the 
tissues parameters at the iliac bifurcations, as detailed 
in Table 6. As before, the values of the different cases 
are chosen as multiples of the reference one. 

In Fig. 7 we compare the magnitude of the dis­
placement field of the 3-D iliac arterial wall for the 
different cases. The graphs show that at each increase 
in the values of the tissues parameters, the overinfia­
tions at the branches diminish. This phenomenon is 
more visible in Fig. 8, where an enlarged lateral view of 
the top and low left bifurcations is shown. In addition, 
a further analysis of the fiow rate and pressure wave­
form at the coupling interfaces (which for brevity is not 

Laierai view. Top view. 

presented here) shows no significant changes compared 
to the results in Fig. 6. In view of these results we 
conclude that, despite their simple formulation, Robin 
boundary data provide a reliable way to account for 
the effect of external tissues over the arterial wall. 
Moreover, they can be used to somehow compensate a 
local lack of stiffness due to particular geometrical 
topologies, at least in healthy arteries. 

Sa/id Ring Boundary Condition Comparisons 

In this section we compare the solution of geomet­
rical multiscale models in which the boundary solid 
rings of the 3-D geometries are fixed , as opposed to the 

Bouom view. 

FIGURE 9. 3-D aorta wall displacement magnitude difference, at the end-systole of the sixth heart beat (t = 4.4 s), between the 
scaled area and the fixed area cases. The color bar ranges from blue (0.0 cm) to red (0.2 cm). 

Laierai view. Top vicw. Bottom vicw. 

FIGURE 1 O. 3-D iliac wall displacement magnitude difference, at the end-systole of the sixth heart beat (t = 4.4 s), between the 
scaled area and the fixed area cases. The color bar ranges from blue (0.0 cm) to red (0.1 cm). 
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case where the same 3-D boundary interfaces are 
scaled to enforce the continuity of the vessels size with 
the surrounding 1-D arteries. For these comparisons 
we use the same geometrical multiscale models intro­
duced in the " External Tissues Parameters Compari­
sons: 3-D Ao rta" and " Externa l Tiss ues Parameters 
Compa ri so ns: 3-D Iliac" sections. For the values e>f the 
elastic parameter of the external tissues , we select cases 
E~ and E1b for the aorta and iliac, respectively, while 
the viscoelastic parameter is given by (7). 

In Figs. 9 and LO several views of the magnitude 
difference of the two 3-D geometries displacement 
fields are shown. In particular, we observe that a sig­
nificant difference between the two cases exists only 
near the coupling interfaces, where the boundary 
conditions change. ln the other parts of the wall the 
result is almost the same. In addition, a further anal­
ysis of the fiow rate and pressure waveform at the 
coupling interfaces (which for brevity is not presented 
here) shows no significant differences between the two 
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FIGURE 11. Flow rate comparison, at the sixth heart beat, for different configurations of the global arterial network, at the eight 
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configurations. This is coherent with the St. Venant­
Kirchhoff theory, which states that the influence of the 
boundary conditions is bounded to the boundaries in 
dissipative systems. In view of these results we con­
clude that the continuity of the vesse! area between 3-D 
and 1-D models is not essential for cardiovascular 
applications, unless the focus of the analysis is ·on the 
study of the dynamics and stresses of the wall near the 
boundary interfaces. On the contrary, it might still be 
relevant to avoid (or at least reduce) the generation of 
spurious interface wave refiections in other fiow 
regimes. 37 

Geometrica! Mu!tisca!e M ode!s Comparisons 

In this section we present several comparisons 
among different geometrical multiscale models. More 
precisely we compare the results of the full 1-D arterial 
tree described in the " Human Arterial Tree Model" 
section, which represents an average healthy patient, 
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with the two dimensionally-heterogeneous models 
introduced in the " Externat Tissues Parameters Com­
parisons: 3-D Aorta" and " External Tissues Parame­
ters Comparisons: 3-0 Iliac" sections, and a third 
mode! where the 3-D aorta and iliac geometries are 
coupled together within the same 1-D network. The 
purpose of the latest mode! is twofold: on the one 
hand, it serves to prove the robustness of the presented 
algorithms in configurations where more than a single 
3-D FSI mode! is included; on the other hand, it is used 
to analyze the combined effect of multiple disjoint 3-D 
geometries embedded in the same arterial network, 
compared to the cases in which just one single 3-D 
geometry is considered. For ail the configurations , we 
impose the continuity of the vesse! area through (6) at 
the interfaces between the 3-D geometries and the 1-D 
arteries. Regarding the values of the elastic parameter 
of the external tissues, we select cases E~ and Elb for 
the aorta and iliac, respectively, white the viscoelastic 
parameter is given by (7). 
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FIGURE 12. Flow rate comparison, at the sixth heart beat, for different configurations of the global arterial network, at the 
five interfaces of the 3-D iliac. The color of the 3-D picture represents the pressure field at the end-systole of the sixth heart beat 
(t = 4.4 s), where the color bar ranges from blue (80,000 dyn/cm2

) to red (165,000 dyn/cm2
). Positioning of 1-D network elements is 

purely visual. 
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The results of the flow rate waveform comparison at 
a il the coupling interfaces between the 1-D network 
and the 3-D aorta and iliac are summarized in Figs. 11 
and 12, respectively. First of a il, we observe that the 
presence of the 3-D iliac geometry has almost no effect 
on the upstream solution (apart in the thoracic aorta B 
interface, which is qui te close to the iliac artery), w hile 
the 3-D aorta produces a visible, even if small, differ­
ence in the downstream flo w (see, e.g., the external iliac 
interfaces). In addition, even if the inlet flow rate is the 
same in ail the cases (see ascending aorta 2 flow rate in 
Fig. 11 ) the flow rate at the seven outlets of the aorta is 

slightly different. This can be justified by observing 
that the 3-D geometry of the aorta is not symmetric 
(particularly, the branches have different left and right 
vessel sizes), thus inducing a different splitting of the 
flow compared to the one obtained for the full 1-D 
arterial tree. Particularly, this difference is more pro­
nounced in the vertebral arteries , where the left/ right 
area is equal to 0.1 cm2 in the 1-D network, while in 
the 3-D geometry we have 0.2 cm2 on the left side and 
0.07 cm2 on the right one. 

Regarding the behavior of the pressure and, conse­
quently, of the radial scale factor, which are shown in 
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FIGURE 13. Pressure and radial scale factor comparisons, at the sixth heart beat, for different configurations of the global arterial 
network, at the most significant coupling interfaces of the 3-D aorta and iliac (see Figs. 11 and 12). 
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Fig. 13, we observe a difference in mean values 
between the cases with and without the 3-D aorta 
geometry. This is due to an increase in the resistance 
between the inlet and the outlet, which in turn is due to 
the presence of 3-D fluid dynamics. This was confirmed 
by a sensitivity analysis with respect to the Young's 
modulus (for brevity not reported here) , whlch has 
shown almost no effect on the level of the end-diastolic 
pressure. A possible motivation for the increase of 
the resistance could be related to the presence of the 

curvature of the aortic arch in the 3-D mode!, which is 
not accounted in the 1-D problem. Moreover, recircu­
lation regions as well as friction forces at branching 
points are also neglected in the 1-D case . In view of 
these results , we conclude that 3-D patient-specific 
geometries might have a significant effect on the arterial 
flow, even in the case of healthy arteries. The presence 
of geometrical singularities and pathologies, such as 
aneurysms and stenoses, would probably increase this 
effect and will make the subject of future works. 
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FIGURE 14. Flow rate and pressure comparisons, at the sixth heart beat, between the solution of the geometrical multiscale 
problem and the one of the stand-alone 3-D aorta with flow rate or stress boundary data from the full 1-D network, at the most 
significant coupling interfaces of the 3-D aorta. 
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Stand-A/one 3-D FSI Modeling 

In this section we set up a comparison between the 
~·esults"of the geo~1etrical multiscale models presented 
m the External Tissues Parameters Comparisons: 3-D 
Aorta" and " Ex ternal Tissues Parameters Compari ­
so ns: 3-D Il iac" sections, and their stand-atone 3-D 
FSI simulations counterparts. More precisely, the 
stand-alone 3-D problems are set up by considering the 
same 3-D geometries and data used in the two refer­
ence geometrical multiscale models (cases E0 and E' . ~ 4b, 
respectlvely, where the viscoelastic parameter is given 
by (7)) . However, at the boundary interfaces instead 
of imposing the set of conservation equations 'with the 
surrounding models, as described in the " Interface 
Equat ions fo r the G lobal etwork of Models" section 
we prescribe either flow rate or stress time profiles, 
taken from a precomputed solution of a full 1-D 
arterial tree . Following the same approach, we also 
impose the radial scale factor time profile on the solid 
ring boundary interfaces, such that they are not fixed. 

The flow rate and pressure waveform comparisons 
at the most significant coupling interfaces between the 3~ 
D aorta and the 1-D network, are summarized in 
Fig. 14. The results show significan t differences between 
the reference configuration, i.e ., the geometrical multi­
scale mode! , and the solution computed by solving the 
stand-atone 3-D aorta mode!. For instance, let us con­
s1der the flow rate waveform. The red lines coincide with 
the precomputed (and imposed) solution of the full 1-D 
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arterial tree, which is different from the one of the 
geometrical multiscale mode!, as already discussed in 
the " Geometrica l Mul tiscale Models Comparisons" 
~ectio~ . On the contrary, the blue lines are computed by 
1mposmg a stress boundary data . However, even in this 
case, the resulting fiow rate is significantly different 
from the reference one. In particular, the flow rate 
prediction in the left common carotid and vertebral 
arteries are clearly incorrect. Regarding the pressure 
waveform, where the precomputed solution of the full I­
D arterial network coïncides with the blue lines, a visible 
mismatch between the reference solution and the stand­
alone cases is always present. In particular, the average 
pressure level is overestimated when the flow rate is 
imposed , and underestimated when the stress is pre­
scnbed . As a consequence of the different flow rate and 
pressure "".'ave~orm, also the displacement field changes, 
as shown m Fig. 15. The differences with respect to the 
reference case are more evident when imposing the flow 
rate, where we also observe a non-physiological exces­
sive strain ( overinflation) of the left common carotid 
artery, even if we use the same values for the tissues 
parameters in both simulations. 

Regarding the stand-atone 3-D iliac mode! , similar 
considerations hold , as shown in Figs. 16 and 17. 
Among other things , we highlight the totally incorrect 
flow rate prediction in the left inner iliac artery when 
imposing a stress boundary data . 

The results of these comparisons prove the impor­
tance of the geometrical multiscale approach in the 
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FIGURE 16. Flow rate and pressure comparisons, at the sixth heart beat, between the solution of the geometrical multiscale 
problem and the one of the stand-alone 3-D iliac with flow rate or stress boundary data from the full 1-D network, at the most 
significant coupling interfaces of the 3-D iliac. 

Flow rate imposed (t = 4.4 s). Stress imposed (t = 4.4 s). Flow rate imposed (t = 4.8 s). Stress imposed (t = 4.8 s). 

FIGURE 17. 3-D iliac wall displacement magnitude difference, at the end-systole and end-diastole of the sixth heart beat, between 
the solution of the geometrical multiscale problem and the one of the stand-alone 3-D illac with flow rate or stress boundary data 
from the full 1-D network. The color bar ranges from blue (0.0 cm) to red (0.5 cm). 

modeli ng of cardiovascular flows. The different 
behavior of the stand-alone 3-D FSI simulations with 
respect to the geometrical multiscale mode! reference 
cases is mainly d ue to the lack of dynamic in terplay 
between the dimensiona lly-heterogeneous models. 
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Indeed, on the one hand , the set of conservation 
equations described in the " Interface Equations for the 
Global Network of Models" section provides a reliable 
and automatic way to determine the boundary da ta of 
each coupled mode!. On the other hand, they also 
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provide bilateral information on both flow rate and 
pressure, independently of the imposed boundary 
condition type. 

CONCLUSIONS 

In this work, we presented several numerical com­
parisons of geometrical multiscale models. A brief 
description of the main ingredients of the geometrical 
multiscale approach has been recalled from previous 
works, together with the partitioned solution strategy 
used to set up the global network of dimensionally­
heterogeneous models. 

The purposes of this work were manifold. A first 
goal was to describe in detail a possible approach to set 
up and solve geometrical multiscale problems (not only 
regarding interface equations, network connectivity 
and solution algorithms, but also with a focus on the 
set up of the specific problems), and to give more in­
sight on the calibration of the most critical parameters 
needed by the numerical simulations . In this regard we 
first provided a short description of the procedure 
required to plug one or more 3-D patient-specific 
geometries in a 1-D art.erial tree network, whose 
parameters were calibrated to represent an average 
healthy patient. Then we set up several comparisons to 
study the sensitivity of the main quantities of interest 
(flow rate, pressure, and solid wall displacement) with 
respect to the elastic and viscoelastic externat tissues 
parameters. These quantities, which appear in the 
Robin boundary condition on the solid wall of the 3-D 
FSI models, are empiric coefficients whose evaluation 
is rather difficult. The results of our analysis show that: 

1. the use of purely elastic Robin boundary con­
ditions together with a linear elastic structure 
might lead to spurious high-frequency oscilla­
tions in some arteries , due to the total lack of 
damping terms in the structural mode!; 

2. viscoelastic Robin boundary conditions can be 
used to somehow compensate for the lack of 
damping terms in 3-D FSI mode!, at least in 
healthy arteries, where a linear elastic structure 
can still be considered a reasonable approxi­
mation; 

3. a simple empmc relation can be used to 
determine the value of the viscoelastic param­
eter as a fonction of the elastic one; 

4. above a certain threshold , the sensitivity of the 
flow rate and pressure waveform to a variation 
of the externat tissues parameters is very small. 

In future works , additional investigations will be 
performed to confirm the results of the first two 
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points. A possible strategy to do this is to try to 
reproduce the high-frequency oscillations observed in 
the vertebral arteries by using simpler geometrical 
configurations, such as a cylindrical benchmark case 
where the radius, the material properties, and the 
inflow wave are chosen to be similar to those at the 
simulated vertebral arteries. In addition, further sets of 
simulations will be performed on the 3-D geometry of 
the aorta by varying, for instance, the local thickness 
of the wall or by including a more accurate mode! for 
the structure. Anyway, despite these aspect, we showed 
that it is possible to estimate, in a systematic way, an 
admissible range of values for these parameters, such 
that they lead to reliable physiological results . 

Another goal of this work was to prove the 
importance of the geometrical multiscale approach in 
the modeling of cardiovascular flows . To do this we 
compared the results given by geometrical multiscale 
models with both the solution of a full 1-D arterial 
tree, and the one of stand-atone 3-D problems, where 
the 3-D patient-specific geometries were fed with 
boundary data taken from a precomputed solution of 
the same full 1-D network . Main results of this analysis 
are: 

1. 3-D patient-specific geometries might produce 
significant changes in the 1-D arterial flow, 
even in the case of healthy arteries; 

2. flow rate and pressure waveforms produced by 
stand-atone 3-D FSI simulations are different 
(and in some cases far) from the ones obtained 
in comparable geometrical multiscale scenar­
ios: this is due to the fact that stand-alone 3-D 
FSI simulatons lack the dynarnic interplay 
among the dimensionally-heterogeneous mod­
els; 

3. the continuity of the vesse! area between 3-D 
and 1-D FSI models is not essential for car­
diovascular applications, unless the focus of 
the analysis is on the study of the dynamics and 
stresses of the wall near the boundary inter­
faces . 

In summary, despite their increased complexity and 
computational cost with respect to either 1-D arterial 
networks or simpler stand-alone 3-D FSI simulations, 
geometrical multiscale models represent a powerful , 
accurate tool to study in detail complex cardiovascular 
problems. Indeed, they give the possibility to detail 
some specific regions of interest by the mean of 3-D 
FSI models , evaluating local hemodynamics parame­
ters (e.g., wall shear stress, turbulent flow, regions of 
recirculation) without neglecting the interaction with 
the global circulation, accounted through a network of 
1-D elements . 
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